1
|
Rigo N, Sun C, Fabrizio P, Kastner B, Lührmann R. Protein localisation by electron microscopy reveals the architecture of the yeast spliceosomal B complex. EMBO J 2015; 34:3059-73. [PMID: 26582754 DOI: 10.15252/embj.201592022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
The spliceosome assembles on a pre-mRNA intron by binding of five snRNPs and numerous proteins, leading to the formation of the pre-catalytic B complex. While the general morphology of the B complex is known, the spatial arrangement of proteins and snRNP subunits within it remain to be elucidated. To shed light on the architecture of the yeast B complex, we immuno-labelled selected proteins and located them by negative-stain electron microscopy. The B complex exhibited a triangular shape with main body, head and neck domains. We located the U5 snRNP components Brr2 at the top and Prp8 and Snu114 in the centre of the main body. We found several U2 SF3a (Prp9 and Prp11) and SF3b (Hsh155 and Cus1) proteins in the head domain and two U4/U6 snRNP proteins (Prp3 and Lsm4) in the neck domain that connects the main body with the head. Thus, we could assign distinct domains of the B complex to the respective snRNPs and provide the first detailed picture of the subunit architecture and protein arrangements of the B complex.
Collapse
Affiliation(s)
- Norbert Rigo
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Chengfu Sun
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
2
|
Hayduk AJ, Stark MR, Rader SD. In vitro reconstitution of yeast splicing with U4 snRNA reveals multiple roles for the 3' stem-loop. RNA (NEW YORK, N.Y.) 2012; 18:1075-1090. [PMID: 22411955 PMCID: PMC3334694 DOI: 10.1261/rna.031757.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
U4 small nuclear RNA (snRNA) plays a fundamental role in the process of premessenger RNA splicing, yet many questions remain regarding the location, interactions, and roles of its functional domains. To address some of these questions, we developed the first in vitro reconstitution system for yeast U4 small nuclear ribonucleoproteins (snRNPs). We used this system to examine the functional domains of U4 by measuring reconstitution of splicing, U4/U6 base-pairing, and triple-snRNP formation. In contrast to previous work in human extracts and Xenopus oocytes, we found that the 3' stem-loop of U4 is necessary for efficient base-pairing with U6. In particular, the loop is sensitive to changes in both length and sequence. Intriguingly, a number of mutations that we tested resulted in more stable interactions with U6 than wild-type U4. Nevertheless, each of these mutants was impaired in its ability to support splicing, indicating that these regions of U4 have functions subsequent to base pair formation with U6. Our data suggest that one such function is likely to be in tri-snRNP formation, when U5 joins the U4/U6 di-snRNP. We have identified two regions, the upper stem of the 3' stem-loop and the central domain, that promote tri-snRNP formation. In addition, the loop of the 3' stem-loop promotes di-snRNP formation, while the central domain and the 3'-terminal domain appear to antagonize di-snRNP formation.
Collapse
Affiliation(s)
- Amy J. Hayduk
- Department of Chemistry, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 Canada
| | - Martha R. Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 Canada
| | - Stephen D. Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 Canada
| |
Collapse
|
3
|
Abstract
Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.
Collapse
|
4
|
Gonzalez-Santos JM, Wang A, Jones J, Ushida C, Liu J, Hu J. Central region of the human splicing factor Hprp3p interacts with Hprp4p. J Biol Chem 2002; 277:23764-72. [PMID: 11971898 DOI: 10.1074/jbc.m111461200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human splicing factors Hprp3p and Hprp4p are associated with the U4/U6 small nuclear ribonucleoprotein particle, which is essential for the assembly of an active spliceosome. Currently, little is known about the specific roles of these factors in splicing. In this study, we characterized the molecular interaction between Hprp3p and Hprp4p. Constructs were created for expression of Hprp3p or its mutants in bacterial or mammalian cells. We showed that antibodies against either Hprp3p or Hprp4p were able to pull-down the Hprp3p-Hprp4p complex formed in Escherichia coli lysates. By co-immunoprecipitation and isothermal titration calorimetry, we demonstrated that purified Hprp3p and its mutants containing the central region, but lacking either the N-terminal 194 amino acids or the C-terminal 240 amino acids, were able to interact with Hprp4p. Conversely, Hprp3p mutants containing only the N- or C-terminal region did not interact with Hprp4p. In addition, by co-immunoprecipitation, we showed that intact Hprp3p and its mutants containing the central region interacted with Hprp4p in HeLa cell nuclear extracts. Primer extension analysis illustrated that the central region of Hprp3p is required to maintain the association of Hprp3p-Hprp4p with U4/U6 small nuclear RNAs, suggesting that this Hprp3p/Hprp4p interaction allows the recruitment of Hprp4p, and perhaps other protein(s), to the U4/U6 small nuclear ribonucleoprotein particle.
Collapse
|
5
|
Mougin A, Gottschalk A, Fabrizio P, Lührmann R, Branlant C. Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 tri-snRNP particles. J Mol Biol 2002; 317:631-49. [PMID: 11955014 DOI: 10.1006/jmbi.2002.5451] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The U4/U6.U5 tri-snRNP is a key component of spliceosomes. By using chemical reagents and RNases, we performed the first extensive experimental analysis of the structure and accessibility of U4 and U6 snRNAs in tri-snRNPs. These were purified from HeLa cell nuclear extract and Saccharomyces cerevisiae cellular extract. U5 accessibility was also investigated. For both species, data demonstrate the formation of the U4/U6 Y-shaped structure. In the human tri-snRNP and U4/U6 snRNP, U6 forms the long range interaction, that was previously proposed to be responsible for dissociation of the deproteinized U4/U6 duplex. In both yeast and human tri-snRNPs, U5 is more protected than U4 and U6, suggesting that the U5 snRNP-specific protein complex and other components of the tri-snRNP wrapped the 5' stem-loop of U5. Loop I of U5 is partially accessible, and chemical modifications of loop I were identical in yeast and human tri-snRNPs. This reflects a strong conservation of the interactions of proteins with the functional loop I. Only some parts of the U4/U6 Y-shaped motif (the 5' stem-loop of U4 and helix II) are protected. Due to difference of protein composition of yeast and human tri-snRNP, the U6 segment linking the 5' stem-loop to the Y-shaped structure and the U4 central single-stranded segment are more accessible in the yeast than in the human tri-snRNP, especially, the phylogenetically conserved ACAGAG sequence of U6. Data are discussed taking into account knowledge on RNA and protein components of yeast and human snRNPs and their involvement in splicesome assembly.
Collapse
Affiliation(s)
- Annie Mougin
- UMR 7567 CNRS-UHP Nancy I, Maturation des ARN et Enzymologie Moléculaire, Université H. Poincaré B.P. 239, 54506 Vandoeuvre-les Nancy Cédex, France
| | | | | | | | | |
Collapse
|
6
|
Chen CH, Tsai WY, Chen HR, Wang CH, Cheng SC. Identification and characterization of two novel components of the Prp19p-associated complex, Ntc30p and Ntc20p. J Biol Chem 2001; 276:488-94. [PMID: 11018040 DOI: 10.1074/jbc.m006958200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae Prp19p protein is an essential splicing factor and a spliceosomal component. It is not tightly associated with small nuclear RNAs (snRNAs) but is associated with a protein complex consisting of at least eight proteins. We have identified two novel components of the Prp19p-associated complex, Ntc30p and Ntc20p. Like other identified components of the complex, both Ntc30p and Ntc20p are associated with the spliceosome in the same manner as Prp19p immediately after or concurrently with dissociation of U4, indicating that the entire complex may bind to the spliceosome as an intact form. Neither Ntc30p nor Ntc20p directly interacts with Prp19p, but both interact with another component of the complex, Ntc85p. Immunoprecipitation analysis revealed an ordered interactions of these components in formation of the Prp19p-associated complex. Although null mutants of NTC30 or NTC20 showed no obvious growth phenotype, deletion of both genes impaired yeast growth resulting in accumulation of precursor mRNA. Extracts prepared from such a strain were defective in pre-mRNA splicing in vitro, but the splicing activity could be restored upon addition of the purified Prp19p-associated complex. These results indicate that Ntc30p and Ntc20p are auxiliary splicing factors the functions of which may be modulating the function of the Prp19p-associated complex.
Collapse
Affiliation(s)
- C H Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai 112, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
7
|
Vidovic I, Nottrott S, Hartmuth K, Lührmann R, Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell 2000; 6:1331-42. [PMID: 11163207 DOI: 10.1016/s1097-2765(00)00131-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have determined the crystal structure of a spliceosomal RNP complex comprising the 15.5kD protein of the human U4/U6.U5 tri-snRNP and the 5' stem-loop of U4 snRNA. The protein interacts almost exclusively with a purine-rich (5+2) internal loop within the 5' stem-loop, giving an unusual RNA fold characterized by two tandem sheared G-A base pairs, a high degree of purine stacking, and the accommodation of a single RNA base, rotated out of the RNA chain, in a pocket of the protein. Apart from yielding the structure of an important entity in the pre-mRNA splicing apparatus, this work also implies a model for the complex of the 15.5kD protein with box C/D snoRNAs. It additionally suggests a general recognition principle in a novel family of RNA binding proteins.
Collapse
Affiliation(s)
- I Vidovic
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Ayadi L, Callebaut I, Saguez C, Villa T, Mornon JP, Banroques J. Functional and structural characterization of the prp3 binding domain of the yeast prp4 splicing factor. J Mol Biol 1998; 284:673-87. [PMID: 9826507 DOI: 10.1006/jmbi.1998.2183] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear pre-mRNA splicing occurs in a large RNA-protein complex containing four small nuclear ribonucleoprotein particles (snRNPs) and additional protein factors. The yeast Prp4 (yPrp4) protein is a specific component of the U4/U6 and U4/U6-U5 snRNPs, which associates transiently with the spliceosome before the first step of splicing. In this work, we used the in vivo yeast two-hybrid system and in vitro immunoprecipitation assays to show that yPrp4 interacts with yPrp3, another U4/U6 snRNP protein. To investigate the domain of yPrp4 that directly contacts yPrp3, we introduced deletions in the N-terminal half of yPrp4 and point mutations in the C-terminal half of the molecule, and we tested the resulting prp4 mutants for cell viability and for their ability to interact with yPrp3. We could not define any particular sequence in the first 161 amino acid residues that are specifically required for protein-protein interactions. However, deletion of a small basic-rich region of 30 amino acid residues is lethal to the cells. Analysis of the C terminus prp4 mutants obtained clearly shows that this region of yPrp4 represents the primary domain of interaction with yPrp3. Interestingly, yPrp4 shows significant similarity in its C-terminal half to the beta-subunits of G proteins. We have generated a three-dimensional computer model of this domain, consisting of a seven-bladed beta-propeller based on the crystalline structure of beta-transducin. Several lines of evidence suggested that yPrp4 is contacting yPrp3 through a large flat surface formed by the long variable loops linking the beta-strands of the propeller. This surface could be used as a scaffold for generating an RNA-protein complex.
Collapse
Affiliation(s)
- L Ayadi
- Centre de Génétique Moléculaire du CNRS, Laboratoire Propre Associé à l'Université P. & M. Curie, Gif-sur-Yvette, 91198, France
| | | | | | | | | | | |
Collapse
|
9
|
Jakab G, Mougin A, Kis M, Pollák T, Antal M, Branlant C, Solymosy F. Chlamydomonas U2, U4 and U6 snRNAs. An evolutionary conserved putative third interaction between U4 and U6 snRNAs which has a counterpart in the U4atac-U6atac snRNA duplex. Biochimie 1997; 79:387-95. [PMID: 9352088 DOI: 10.1016/s0300-9084(97)86148-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The spliceosomal UsnRNAs U2, U4 and U6 from the green alga Chlamydomonas reinhardtii (Cre) were sequenced using a combination of RNA and cDNA sequencing methods and were compared to other sequenced UsnRNAs. The lengths of Cre U6 and Cre U2 RNAs are similar to those of their higher plant equivalents. Cre U4 RNA is shorter (139 nt) than its counterpart from higher plants (150-154 nt), and contains stem IV and loop D which are absent, with the exception of the Tetrahymena U4 RNA, from the U4 RNAs of other unicellular organisms studied to date. Base-pairing interactions between U6 and U4 RNAs and between U6 and U2 RNAs, identical to those described for mammalian and yeast systems, are structurally feasible in the Cre system. In addition, based on comparative analyses of the predicted U4/U6 RNA duplex from various species, an evolutionary conserved third putative U6-U4 interaction was found. Interestingly, it can also be formed with the recently discovered U6atac and U4atac RNAs. This is a strong support in favor of the possible biological significance of this third putative interaction. Based on comparative analysis, an extension of the earlier described U6-U2 interaction patterns is also proposed.
Collapse
Affiliation(s)
- G Jakab
- Institute of Plant Biology, Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Affiliation(s)
- J D Beggs
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| |
Collapse
|
12
|
Duronio RJ, Gordon JI, Boguski MS. Comparative analysis of the beta transducin family with identification of several new members including PWP1, a nonessential gene of Saccharomyces cerevisiae that is divergently transcribed from NMT1. Proteins 1992; 13:41-56. [PMID: 1594577 DOI: 10.1002/prot.340130105] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While investigating the expression of the Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase gene (NMT: E.C. 2.3.1.97) by Northern blot analysis, we observed another RNA transcript whose expression resembled that of NMT1 during meiosis and was derived from a gene located less than 1 kb immediately upstream of NMT1. This new gene, designated PWP1 (for periodic tryptophan protein), is divergently transcribed from NMT1 and encodes a 576-residue protein. Null mutants of PWP1 are viable, but their growth is severely retarded and steady-state levels of several cellular proteins (including at least two proteins that label with exogenous [3H]myristic acid) are drastically reduced. New methods for database searching and assessing the statistical significance of sequence similarities identify PWP1 as a member of the beta-transducin protein superfamily. Two other previously unrecognized beta-transducin-like proteins (S. cerevisiae MAK11 and D. discoideum AAC3) were also identified, and an unexpectedly high degree of sequence homology was found between a Chlamydomonas beta-like polypeptide and the C12.3 gene of chickens. A systematic and quantitative comparative analysis resulted in classifying all beta-transducin-like sequences into 11 nonorthologous families. Based on specific sequence attributes, however, not all beta-transducin-like sequences are expected to be functionally similar, and quantitative criteria for inferring functional analogies are discussed. Possible roles of repetitive tryptophan residues in proteins are also considered.
Collapse
Affiliation(s)
- R J Duronio
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
13
|
Schappert K, Friesen JD. Genetic studies of the PRP11 gene of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:277-82. [PMID: 2034220 DOI: 10.1007/bf00273613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PRP11 is a gene that encodes an essential function for pre-messenger RNA (mRNA) processing in Saccharomyces cerevisiae. We have carried out a mutational study to locate essential and non-essential regions of the PRP11 protein. The existing temperature-sensitive (ts) mutation (prp11-1) was isolated from the chromosome of the original mutant and its position in the gene was determined. When the prp11-1 gene was transcribed from the GAL1 promoter, the overproduced protein was able to reverse the ts prp11-1 phenotype; this is compatible with the possibility that the defect in the prp11-1 gene product affects its binding to the spliceosome. Thirteen linker-insertion mutations were constructed. Only five (prp11-4, 11-6, 11-10, -13 and -14) resulted in a null phenotype. One of these became temperature-sensitive when the insertion was reduced in size from four (prp11-10) to two (prp11-15) amino acids. A sequence of ten amino acids of which also occurs in the human U1 small nuclear ribonucleoprotein particle (snRNP) A protein and the U2 snRNP B" protein, when deleted from PRP11, had no phenotype and thus appears to be nonessential for PRP11 function. However, a linker-insertion mutation (prp11-10) immediately adjacent to this region resulted in a null phenotype.
Collapse
Affiliation(s)
- K Schappert
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Abstract
Splicing of introns from nuclear precursor messenger RNAs (pre-mRNAs) occurs in all eukaryotes. Two aspects of the splicing mechanism need to be understood: how intron sequences are recognized and aligned and how splicing is catalysed. Recent genetic and biochemical studies in the simple eukaryote Saccharomyces cerevisiae are revealing some of the features of the splicing mechanism.
Collapse
Affiliation(s)
- S W Ruby
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
15
|
Lührmann R, Kastner B, Bach M. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1087:265-92. [PMID: 2147394 DOI: 10.1016/0167-4781(90)90001-i] [Citation(s) in RCA: 293] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Lührmann
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg F.R.G
| | | | | |
Collapse
|