1
|
Manczinger M, Kemény L. Peptide presentation by HLA-DQ molecules is associated with the development of immune tolerance. PeerJ 2018; 6:e5118. [PMID: 30002966 PMCID: PMC6034589 DOI: 10.7717/peerj.5118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
HLA class II proteins are important elements of human adaptive immune recognition and are associated with numerous infectious and immune-mediated diseases. These highly variable molecules can be classified into DP, DQ and DR groups. It has been proposed that in contrast with DP and DR, epitope binding by DQ variants rather results in immune tolerance. However, the pieces of evidence are limited and controversial. We found that DQ molecules bind more human epitopes than DR. Pathogen-associated epitopes bound by DQ molecules are more similar to human proteins than the ones bound by DR. Accordingly, DQ molecules bind epitopes of significantly different pathogen species. Moreover, the binding of autoimmunity-associated epitopes by DQ confers protection from autoimmune diseases. Our results suggest a special role of HLA-DQ in immune homeostasis and help to better understand the association of HLA molecules with infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Máté Manczinger
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary.,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Zajacova M, Kotrbova-Kozak A, Cerna M. Expression of HLA-DQA1 and HLA-DQB1 genes in B lymphocytes, monocytes and whole blood. Int J Immunogenet 2018; 45:128-137. [PMID: 29663655 DOI: 10.1111/iji.12367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/23/2018] [Accepted: 03/22/2018] [Indexed: 11/28/2022]
Abstract
Differential expression of HLA-DQA1 and HLA-DQB1 gene alleles was analysed in three different cell populations isolated from peripheral blood-B lymphocytes, monocytes and whole-blood cells. Interallelic differences in mRNA levels were observed: DQA1*03 alleles were among the most expressed in all cell types, whereas DQA1*05 alleles were least expressed in whole blood and monocytes and among the most expressed in B cells. For DQB1 gene, DQB1*06 group of alleles were the most expressed, and DQB1*02 group the least expressed within all cell populations examined. In comparison with the rest alleles, DQB1*06 and DQB1*05:02 alleles have higher expression in monocytes than in B cells, professional antigen-presenting cells. Cell type-specific regulation of expression was observed as well, with higher and more balanced expression of alleles in B lymphocytes compared to monocytes.
Collapse
Affiliation(s)
- M Zajacova
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Kotrbova-Kozak
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Cerna
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Julien L, Chassagne J, Peccate C, Lorain S, Piétri-Rouxel F, Danos O, Benkhelifa-Ziyyat S. RFX1 and RFX3 Transcription Factors Interact with the D Sequence of Adeno-Associated Virus Inverted Terminal Repeat and Regulate AAV Transduction. Sci Rep 2018; 8:210. [PMID: 29317724 PMCID: PMC5760533 DOI: 10.1038/s41598-017-18604-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Adeno-associated virus (AAV) transduction efficiency depends on the way in which cellular proteins process viral genomes in the nucleus. In this study, we have investigated the binding of nuclear proteins to the double stranded D (dsD) sequence of the AAV inverted terminal repeat (ITRs) by electromobility shift assay. We present here several lines of evidence that transcription factors belonging to the RFX protein family bind specifically and selectively to AAV2 and AAV1 dsD sequences. Using supershift experiments, we characterize complexes containing RFX1 homodimers and RFX1/RFX3 heterodimers. Following transduction of HEK-293 cells, the AAV genome can be pulled-down by RFX1 and RFX3 antibodies. Moreover, our data suggest that RFX proteins which interact with transcriptional enhancers of several mammalian DNA viruses, can act as regulators of AAV mediated transgene expression.
Collapse
Affiliation(s)
- Laura Julien
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Julie Chassagne
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Cécile Peccate
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Stéphanie Lorain
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - France Piétri-Rouxel
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Olivier Danos
- REGENXBIO, 9600 Blackwell Rd, Rockville, MD, 20850, USA
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France.
| |
Collapse
|
4
|
Liu HY, Xue F, Wan QH, Ge YF. MHC Class II Genes in the Endangered Hainan Eld's Deer (Cervus eldi hainanus). J Hered 2013; 104:874-80. [DOI: 10.1093/jhered/est062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Structure, Expression, and Function of ICAM-5. Comp Funct Genomics 2012; 2012:368938. [PMID: 22312318 PMCID: PMC3270525 DOI: 10.1155/2012/368938] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/20/2011] [Accepted: 10/07/2011] [Indexed: 01/28/2023] Open
Abstract
Cell adhesion is of utmost importance in normal development and cellular functions. ICAM-5 (intercellular adhesion molecule-5, telencephalin, TLN) is a member of the ICAM family of adhesion proteins. As a novel cell adhesion molecule, ICAM-5 shares many structural similarities with the other members of IgSF, especially the ICAM subgroup; however, ICAM-5 has several unique properties compared to the other ICAMs. With its nine extracellular Ig domains, ICAM-5 is the largest member of ICAM subgroup identified so far. Therefore, it is much more complex than the other ICAMs. The expression of ICAM-5 is confined to the telencephalic neurons of the central nervous system whereas all the other ICAM members are expressed mostly by cells in the immune and blood systems. The developmental appearance of ICAM-5 parallels the time of dendritic elongation and branching, and synapse formation in the telencephalon. As a somatodendrite-specific adhesion molecule, ICAM-5 not only participates in immune-nervous system interactions, it could also participate in neuronal activity, Dendrites' targeting signals, and cognition. It would not be surprising if future investigations reveal more binding partners and other related functions of ICAM-5.
Collapse
|
6
|
Nekrep N, Jabrane-Ferrat N, Wolf HM, Eibl MM, Geyer M, Peterlin BM. Mutation in a winged-helix DNA-binding motif causes atypical bare lymphocyte syndrome. Nat Immunol 2002; 3:1075-81. [PMID: 12368908 DOI: 10.1038/ni840] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 08/26/2002] [Indexed: 11/08/2022]
Abstract
Bare lymphocyte syndrome (BLS) is an autosomal recessive severe-combined immunodeficiency that can result from mutations in four different transcription factors that regulate the expression of major histocompatibility complex (MHC) class II genes. We have identified here the defective gene that is responsible for the phenotype of the putative fifth BLS complementation group. The mutation was found in the regulatory factor that binds X-box 5 (RFX5) and was mapped to one of the arginines in a DNA-binding surface of this protein. Its wild-type counterpart restored binding of the RFX complex to DNA, transcription of all MHC class II genes and the appearance of these determinants on the surface of BLS cells.
Collapse
Affiliation(s)
- Nada Nekrep
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chang LS, Akhmametyeva EM, Wu Y, Zhu L, Welling DB. Multiple transcription initiation sites, alternative splicing, and differential polyadenylation contribute to the complexity of human neurofibromatosis 2 transcripts. Genomics 2002; 79:63-76. [PMID: 11827459 DOI: 10.1006/geno.2001.6672] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Northern blot analysis has shown that the human neurofibromatosis type 2 (NF2) cDNA hybridizes to multiple RNA species. To examine whether these hybridizing RNA species represent NF2 transcripts, we cloned the complete NF2 cDNA by a combination of techniques: 5' and 3' rapid amplification of cDNA ends, RT-PCR, and searching and sequencing the NF2-related cDNA clones from the IMAGE consortium. We showed that human NF2 transcripts initiate at multiple positions. Analogous to those reported previously, NF2 transcripts undergo alternative splicing in the coding exons. We isolated eight alternatively spliced NF2 cDNA isoforms, including one that contains a new exon termed exon 2', which potentially could encode proteins of different sizes. We assembled the overlapping cDNA fragments, and the longest NF2 cDNA, containing all 17 exons, consists of 6067 nucleotides, which is consistent with the size of the major RNA species hybridized to the NF2 probe. The cDNA has a 425-nucleotide 5' untranslated region upstream from the ATG start codon, and a long 3' untranslated region of 3869 nucleotides. We also isolated two shorter NF2 cDNAs that were terminated by different polyadenylation signal sequences, which indicates that differential usage of multiple polyadenylation sites also contributes to the complexity of human NF2 transcripts. By reference to the transcription initiation site mapped, we analyzed the 5' flanking sequence of the human NF2 gene. Transient transfection analysis in human 293 kidney, SK-N-AS neuroblastoma, and NT2/D1 teratocarcinoma cells with NF2 promoter-luciferase chimeric constructs revealed a core promoter region extending 400 base pairs from the major transcription initiation site. Although multiple regions are required for full promoter activity, a site-directed mutagenesis experiment identified a GC-rich sequence (position -58 to -46), which could be bound by transcription factor Sp1, as a positive cis-acting regulatory element. Cotransfection studies in Drosophila melanogaster SL2 cells showed that Sp1 could activate the NF2 promoter through the GC-rich sequence.
Collapse
Affiliation(s)
- Long-Sheng Chang
- Children's Research Institute, Children's Hospital, The Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA.
| | | | | | | | | |
Collapse
|
8
|
Rakoff-Nahoum S, Chen H, Kraus T, George I, Oei E, Tyorkin M, Salik E, Beuria P, Sperber K. Regulation of class II expression in monocytic cells after HIV-1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2331-42. [PMID: 11490022 DOI: 10.4049/jimmunol.167.4.2331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human macrophage hybridoma cells were used to study HLA-DR expression after HIV-1 infection. HLA-DR surface expression was lost 2 wk after infection that was associated with decreased mRNA transcription. Transfecting HLA-DR-alpha and HLA-DR-beta cDNA driven by a nonphysiological CMV promoter restored expression, suggesting that regulatory DNA-binding proteins may be affected by HIV-1 infection. There was no protein binding to conserved class II DNA elements (W/Z/S box, X-1 and X-2 boxes, and Y box) in a HIV-1-infected human macrophage hybridoma cell line, 43(HIV), and in primary monocytes that lost HLA-DR expression after HIV-1(BaL) infection. PCR analysis of the HIV-1-infected cells that lost HLA-DR expression revealed mRNA for W/Z/S (RFX-5), X-1 (RFX-5), X-2 (hX-2BP), and one Y box DNA-binding protein (NF-YB), and CIITA, a non-DNA-binding protein necessary for class II transcription. There was no mRNA for the Y box-binding protein, NF-YA. However, HLA-DR expression could be restored by transfection with NF-YA driven by a CMV promoter, although HLA-DR failed to localize in either the late endosomes, lysosomes, or acidic compartments. This was associated with a loss of class II-associated invariant chain peptide and leupeptin-induced protein in the 43(HIV) cells. To address this further, non-HIV-1-infected 43 cells were infected with vaccinia virus containing HIV-1 gag, nef, pol, and env proteins. HLA-DR failed to localize in neither the late endosomes, lysosomes, or acidic compartments in the vaccinia-infected cells containing HIV-1 env protein. HIV-1 appears to have multiple effects on class II expression in monocytic cells that may contribute to the immune defects seen in HIV-1-infected patients.
Collapse
Affiliation(s)
- S Rakoff-Nahoum
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 2000; 14:1156-66. [PMID: 10809673 PMCID: PMC316580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
By virtue of its control over major histocompatibility complex class II (MHC-II) gene expression, CIITA represents a key molecule in the regulation of adaptive immune responses. It was first identified as a factor that is defective in MHC-II deficiency, a hereditary disease characterized by the absence of MHC-II expression. CIITA is a highly regulated transactivator that governs all spatial, temporal, and quantitative aspects of MHC-II expression. It has been proposed to act as a non-DNA-binding transcriptional coactivator, but evidence that it actually functions at the level of MHC-II promoters was lacking. By means of chromatin immunoprecipitation assays, we show here for the first time that CIITA is physically associated with MHC-II, as well as HLA-DM, Ii, MHC-I, and beta(2)m promoters in vivo. To dissect the mechanism by which CIITA is recruited to the promoter, we have developed a DNA-dependent coimmunoprecipitation assay and a pull-down assay using immobilized promoter templates. We demonstrate that CIITA recruitment depends on multiple, synergistic protein-protein interactions with DNA-bound factors constituting the MHC-II enhanceosome. CIITA therefore represents a paradigm for a novel type of regulatory and gene-specific transcriptional cofactor.
Collapse
Affiliation(s)
- K Masternak
- Department of Genetics and Microbiology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Douek DC, Altmann DM. T-cell apoptosis and differential human leucocyte antigen class II expression in human thymus. Immunology 2000; 99:249-56. [PMID: 10692044 PMCID: PMC2327152 DOI: 10.1046/j.1365-2567.2000.00940.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relatively little is known of the details of human leucocyte antigen (HLA) expression and thymocyte selection in human thymus. In both humans and mice major histocompatibility complex (MHC) molecules have been described which show a highly restricted thymic expression. Such patterns may offer clues about cellular interactions in thymic selection because transgenic mice with MHC expression targeted to specific thymic sites show altered T-cell receptor (TCR) repertoire selection. We have analysed human thymic HLA class II expression, relating the expression pattern to sites of thymocyte apoptosis. While HLA-DQ is poorly expressed by most peripheral antigen-presenting cells (APC), thymus stains strongly for HLA-DQ as well as for HLA-DR. HLA-DM is abundant in medulla but weakly expressed by cortical cells. Class II expression in Hassall's corpuscles (HC) is unusual in several respects: we have previously shown them to be encircled by HLA-DO+ epithelial cells and here further demonstrate that HC are negative for HLA-DR and HLA-DP, but often positive for HLA-DQ and HLA-DM. Transcriptional control of HLA class II products at this site is thus unlike cells that have previously been studied. Apoptotic thymocytes are restricted to the cortex and the corticomedullary junction. However, a minority of apoptotic cells are visible in the medulla, these being found in the HLA-DQ positive HC. The apoptotic thymocytes in HC can be CD4+ single positive (SP), CD8+ SP or CD4+CD8+ double-positive (DP). This study thus shows that the HC within human thymic medulla are noteworthy both for their unusual hierarchy of HLA class II expression and because they are the only medullary site of thymocyte apoptosis. We propose that HC are a site at which mature thymocytes receive activation/tolerization signals from peptides reprocessed from apoptotic cells. The differential HLA transcriptional control at this site may indicate that specific T-cell subpopulations are affected.
Collapse
Affiliation(s)
- D C Douek
- Transplantation Biology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | |
Collapse
|
11
|
van den Elsen PJ, Gobin SJ. The common regulatory pathway of MHC class I and class II transactivation. Microbes Infect 1999; 1:887-92. [PMID: 10614006 DOI: 10.1016/s1286-4579(99)00229-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- P J van den Elsen
- Division of Molecular Biology, Department of Immunohematology and Blood Bank, Leiden University Medical Center, the Netherlands
| | | |
Collapse
|
12
|
Beaty JS, Sukiennicki TL, Nepom GT. Allelic variation in transcription modulates MHC class II expression and function. Microbes Infect 1999; 1:919-27. [PMID: 10614010 DOI: 10.1016/s1286-4579(99)00225-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J S Beaty
- Virginia Mason Research Center, Seattle, Washington 98101, USA
| | | | | |
Collapse
|
13
|
Indovina P, Megiorni F, Ferrante P, Apollonio I, Petronzelli F, Mazzilli MC. Different binding of NF-Y transcriptional factor to DQA1 promoter variants. Hum Immunol 1998; 59:758-67. [PMID: 9831131 DOI: 10.1016/s0198-8859(98)00082-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polymorphism in the HLA-DQA1 promoter (QAP) sequences could influence the gene expression through a differential binding of transcriptional factors. Considering the main role played by the Y-box in the transcription, we focused on the QAP4 variants differing for a G vs A transition from the QAP Y-box consensus sequence. Electrophoretic Mobility Shift Assay using the two Y-box sequences was performed to determine whether this mutation could be reflected in an allele-specific binding of transcriptional factors. Indeed, the NF-Y specific band, recognised by supershift experiments, was clearly observed using the Y-box consensus probe but it was barely detectable with the QAP4 one. On the contrary, two other complexes were found to more strongly interact with QAP4 Y-box in comparison to the consensus sequence. The analysis of a selected panel of HLA homozygous lymphoblastoid cell lines by competitive RT-PCR and by Northern blotting revealed that the DQA1 *0401, *0501,*0601 alleles regulated by the QAP4 promoters were less expressed at the mRNA level than the DQA1* 0201 allele regulated by the QAP2.1 variant. In conclusion, these results show an evident reduction of NF-Y binding to the mutated QAP4 Y-box and a decreased mRNA accumulation of the DQA1 alleles regulated by these variants.
Collapse
Affiliation(s)
- P Indovina
- Department of Experimental Medicine and Pathology, La Sapienza University of Rome, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Muhlethaler-Mottet A, Di Berardino W, Otten LA, Mach B. Activation of the MHC class II transactivator CIITA by interferon-gamma requires cooperative interaction between Stat1 and USF-1. Immunity 1998; 8:157-66. [PMID: 9491997 DOI: 10.1016/s1074-7613(00)80468-9] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CIITA is the mediator of MHC class II gene induction by interferon-gamma (IFNgamma). The CIITA gene is itself selectively activated via one of its four promoters (PIV). We show here that three cis-acting elements, the GAS, the E box, and the IRF-1-binding site, as well as the transacting factors Stat1 and IRF-1, are essential for activation of CIITA promoter IV by IFNgamma. Stat1 binds to the GAS site only in the presence of the ubiquitous factor USF-1, which binds to the adjacent E box. Indeed, Stat1 and USF-1 bind to the GAS/E box motif in a cooperative manner. The specificity for CIITA activation by IFNgamma is thus dictated by the GAS/E box motif and by the selective interaction of IFNgamma-activated Stat1 and USF-1. This clarifies the missing link in the overall pathway of IFNgamma activation of MHC-II expression.
Collapse
Affiliation(s)
- A Muhlethaler-Mottet
- Louis Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
15
|
Sugino H, Yoshihara Y, Copeland NG, Gilbert DJ, Jenkins NA, Mori K. Genomic organization and chromosomal localization of the mouse telencephalin gene, a neuronal member of the ICAM family. Genomics 1997; 43:209-15. [PMID: 9244438 DOI: 10.1006/geno.1997.4812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Telencephalin is a cell adhesion molecule belonging to the immunoglobulin (Ig) superfamily, whose expression is restricted to subsets of neurons in the telencephalon, the most rostral segment of brain. Of all the Ig superfamily molecules so far identified, the structure of telencephalin is most closely related to those of intercellular adhesion molecules (ICAMs)-1 and -3. Here we report the cloning, characterization, and chromosomal localization of the mouse telencephalin gene (Tlcn). The Tlcn gene spanned about 6.3 kb and consisted of 11 exons. A signal peptide and individual nine Ig-like domains of telencephalin were encoded by a single exon, while the transmembrane and cytoplasmic regions were fused in a same exon. The primer extension technique was used to establish that the transcription initiation sites were located 92-95 bp upstream from the ATG start codon. DNA sequencing of the 5'-flanking region revealed the presence of a strong initiator element for TATA-less genes, two CAAT boxes, and numerous potential transcription factor binding sites including four E-box and two N-box sequences. Interspecific backcross analysis demonstrated that the Tlcn gene was mapped in the proximal region of mouse chromosome 9 in close vicinity to the Icam-1 gene, suggesting that Tlcn and Icam-1 are derived from a common ancestral gene by gene duplication.
Collapse
Affiliation(s)
- H Sugino
- Laboratory for Neuronal Recognition Molecules, Frontier Research Program, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Guardiola J, Maffei A, Lauster R, Mitchison NA, Accolla RS, Sartoris S. Functional significance of polymorphism among MHC class II gene promoters. TISSUE ANTIGENS 1996; 48:615-25. [PMID: 9008303 DOI: 10.1111/j.1399-0039.1996.tb02684.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The functional significance of polymorphism among MHC class II promoters in man and mouse is here reviewed, mainly in terms of the hypothesis of differential expression. The hypothesis proposes that differences between antigen-presenting cells in MHC class II expression exert a co-dominant effect on the Th1-Th2 cytokine balance, such that class II molecules of one type come to control to a greater extent the production of one group of cytokines, and those of another type the production of the alternative group. The survey deals with the influence of signal strength and antigen-presenting cell type on T-cell subset differentiation; functional differences between MHC class II molecules not obviously related to determinant selection; disease protection mediated by HLA alleles; mechanisms possibly responsible for allotypic and isotypic bias; overdominance (heterozygous advantage) in selection for expression of class II alleles; MHC class II promoter structure and function; inter-locus and inter-allele variability within human MHC class II gene upstream regulatory regions; a comparison of these polymorphisms in mouse and man; read-out of class II promoter function; and a comparison with expression of MHC class I. We conclude that the evidence that this variation is functionally active (i.e. controls expression) is increasing, but is not yet compelling. The crucial test still to come, we suggest, is whether or not the biological effects attributable to this polymorphism will line up with molecular studies on expression.
Collapse
Affiliation(s)
- J Guardiola
- Istituto Internazionale di Genetica e Biofisica, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Leen MP, Gorski J. Differential expression of isomorphic HLA-DR beta genes is not a sole function of transcription. Hum Immunol 1996; 50:111-20. [PMID: 8891734 DOI: 10.1016/0198-8859(96)00154-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cells expressing HLA DR7 contain two functional DR beta genes, DRB1 and DRB4, whose mRNA is present at different levels. We examined whether the mRNA levels are due to differential transcriptional regulation or post-transcriptional regulation. As part of this analysis, a novel series of upstream elements was identified. Analysis of the proximal promoter activity, using a transient expression system, showed that the isomorphic promoter activities of B1 and B4 are about equal. RNase protection analysis of steady-state pre-mRNA and mRNA levels shows that the DR7 B1 pre-mRNA levels are 3 to 4 fold higher than B4 pre-mRNA levels. However, the B1 mRNA levels are increased seven fold relative to the B4 mRNA levels. The disproportionate increase of the mRNA levels relative to the corresponding pre-mRNA levels indicates that regulation also occurs at the post-transcriptional level.
Collapse
Affiliation(s)
- M P Leen
- Blood Research Institute of the Blood Center of S.E. Wisconsin, Department of Immunogenetics, Milwaukee, 53201, USA
| | | |
Collapse
|
18
|
Badenhoop K, Tönjes RR, Rau H, Donner H, Rieker W, Braun J, Herwig J, Mytilineos J, Kurth R, Usadel KH. Endogenous retroviral long terminal repeats of the HLA-DQ region are associated with susceptibility to insulin-dependent diabetes mellitus. Hum Immunol 1996; 50:103-10. [PMID: 8891733 DOI: 10.1016/0198-8859(96)00146-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HLA-DQ genes are the main inherited factors predisposing to IDDM. This gene region harbors long terminal repeat (DQ LTR) elements of the human endogenous retrovirus HER V-K, which we analyzed for a possible association with disease. We first investigated whether LTR segregate with DQ alleles in families. Members (n = 110) of 29 families with at least one diabetic child, unrelated patients with IDDM (n = 159), and healthy controls (n = 173) were analyzed. Genomic DNA was amplified for DQ LTR3 by a nested primer approach as well as for DQA1 and DQB1 second exons, to assign DQA1 and DQB1 alleles. DQ LTR segregated in 24 families along with DQ alleles. Of the 29 families, 20 index patients were positive for DQ LTR. The DQ LTR was in all patients on the haplotype carrying the DQA1 *0301 and DQB1 *0302 alleles. A majority of patients had DQ LTR (62%) compared with controls (38%) (p < 1.3 x 10(-5)), even after matching for the high-risk alleles DQA1 *0501, DQB1 *0201-DQA1 *0301, and DQB1 *0302 (79% of patients and 48% of controls; p < 0.02). Subtyping for DRB1 *04 alleles in all DQB1 *0302+ individuals showed 56% DRB1 *0401, DQB1 *0302 [LTR' patients vs. 29% controls with the same haplotype (p < 0.002)]. In conclusion, these data demonstrate the segregation of DQ LTR with DQA1, DQB1 alleles on HLA haplotypes. Furthermore their presence on DRB1 *0401-, DQA1 *0301-, and DQB1 *0302-positive haplotypes suggest that they contribute to DQ-related susceptibility for IDDM.
Collapse
Affiliation(s)
- K Badenhoop
- Medical Department, University Hospital, Frankfurt/Main, Federal Republic of Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mach B, Steimle V, Martinez-Soria E, Reith W. Regulation of MHC class II genes: lessons from a disease. Annu Rev Immunol 1996; 14:301-31. [PMID: 8717517 DOI: 10.1146/annurev.immunol.14.1.301] [Citation(s) in RCA: 372] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Precise regulation of major histocompatibility complex class II (MHC-II) gene expression plays a crucial role in the control of the immune response. A major breakthrough in the elucidation of the molecular mechanisms involved in MHC-II regulation has recently come from the study of patients that suffer from a primary immunodeficiency resulting from regulatory defects in MHC-II expression. A genetic complementation cloning approach has led to the isolation of CIITA and RFX5, two essential MHC-II gene transactivators. CIITA and RFX5 are mutated in these patients, and the wild-type genes are capable of correcting their defect in MHC-II expression. The identification of these regulatory factors has furthered our understanding of the molecular mechanisms that regulate MHC-II genes. CIITA was found to be a non-DNA binding transactivator that functions as a molecular switch controlling both constitutive and inducible MHC-II expression. The finding that RFX5 is a subunit of the nuclear RFX-complex has confirmed that a deficiency in the binding of this complex is indeed the molecular basis for MHC-II deficiency in the majority of patients. Furthermore, the study of RFX has demonstrated that MHC-II promoter activity is dependent on the binding of higher-order complexes that are formed by highly specific cooperative binding interactions between certain MHC-II promoter-binding proteins. Two of these proteins belong to families of which the other members, although capable of binding to the same DNA motifs, are probably not directly involved in the control of MHC-II expression. Finally, the facts that CIITA and RFX5 are both essential and highly specific for MHC-II genes make possible novel strategies designed to achieve immunomodulation via transcriptional intervention.
Collapse
Affiliation(s)
- B Mach
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
20
|
De Lerma Barbaro A, Rigaud G, Sartoris S, Nicolis M, Cestari T, Accolla RS. Divergent evolution in the mechanisms controlling major histocompatibility complex class II gene transcription in mouse and human. Eur J Immunol 1996; 26:259-62. [PMID: 8566076 DOI: 10.1002/eji.1830260140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of the major histocompatibility complex (MHC) class II gene family is developmentally regulated and, in general, in a coordinate manner. In this study, we show that the expression of the entire repertoire of human class II genes, otherwise transcriptionally silent in the bare lymphocyte syndrome-derived BLS1 cell line, can be rescued by somatic cell hybridization with normal mouse spleen cells. The analysis of the interspecies cell hybrids revealed a particularly important and unprecedented aspect. A return to the BLS1-like, human MHC class II-negative phenotype due to segregation of mouse chromosomes was accompanied in certain hybrids by loss of IE, but not IA cell surface antigen expression. At the molecular level, this was the result of lack of E alpha-specific mRNA in the presence of E beta-, A alpha- and A beta-specific mRNA. Thus, the mouse trans-acting function operating across species barriers and able to complement the defect of human BLS1 cells diverged in mice to control Ea, but not Eb, Aa and Ab gene expression. These findings suggest that evolutionary pressure has maintained the expression of the MHC class II multigene family under the control of quite distinct species-specific transcriptional mechanisms.
Collapse
|
21
|
Steimle V, Reith W, Mach B. Major histocompatibility complex class II deficiency: a disease of gene regulation. Adv Immunol 1996; 61:327-40. [PMID: 8834499 DOI: 10.1016/s0065-2776(08)60870-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- V Steimle
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|
22
|
Reith W, Steimle V, Mach B. Molecular defects in the bare lymphocyte syndrome and regulation of MHC class II genes. IMMUNOLOGY TODAY 1995; 16:539-46. [PMID: 7495492 DOI: 10.1016/0167-5699(95)80048-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The complex pattern of expression of major histocompatibility complex (MHC) class II molecules plays an essential role in the control of the immune response. Our understanding of the molecular mechanisms controlling this expression has benefited greatly from the identification of the regulatory factors defective in two forms of a hereditary disease of MHC class II regulation: bare lymphocyte syndrome. This has also provided new tools for the experimental modulation of MHC class II expression.
Collapse
Affiliation(s)
- W Reith
- Louis Jeantet Laboratory of Molecular Genetics, Dept of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|
23
|
Sartoris S, Accolla RS. Transcriptional regulation of MHC class II genes. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1995; 25:71-8. [PMID: 7663008 DOI: 10.1007/bf02592360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MHC class II molecules play a fundamental role in the homeostasis of the immune response, functioning as receptors for antigenic peptides to be presented to regulatory T cells. Both quantitative and qualitative alterations in the expression of these molecules on the cell surface dramatically affect the onset of the immune response, and may be the basis of a wide variety of disease states, such as autoimmunity, immunodeficiencies, and cancer. Most regulation of MHC class II molecule expression is under the control of transcription mechanisms which are both cell type and development specific. In the last few years classical genetics together with molecular biology have greatly contributed to the widening of our knowledge on the regulatory mechanisms operating in the control of class II gene expression. This review deals with the latest developments in this fundamental area of immunology.
Collapse
Affiliation(s)
- S Sartoris
- Istituto di Immunologia e Malattie Infettive, Università di Verona, Policlinico di Borgo Roma, Italy
| | | |
Collapse
|
24
|
Petronzelli F, Kimura A, Ferrante P, Mazzilli MC. Polymorphism in the upstream regulatory region of DQA1 gene in the Italian population. TISSUE ANTIGENS 1995; 45:258-63. [PMID: 7638862 DOI: 10.1111/j.1399-0039.1995.tb02449.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polymorphism in the 5'-upstream regulatory region of the DQA1 gene has been recently described. Using PCR-SSO method and SSCP analysis we have investigated this polymorphism in a group of 111 Italian blood donors which had been oligotyped for DRB1, DQA1 and DQB1 genes. Eight allelic variants were detected. Looking at the relationships among QAP sequences and DQA1 and DRB1 genes, three alternative situations were found: 1. a one-to-one relation between QAP and DQA1 alleles, independently of the other class II genes; 2. the same QAP allele in association with different DQA1-DRB1 haplotypes; 3. the same DQA1 allele with different QAP sequences according to the DRB1 specificity. No unexpected associations with DQB1 gene were found. These results must be interpreted considering that DQA1 and DRB1 genes are transcribed in opposite directions so that the promoter region of DQA1 gene lies between DQA1 and DRB1, close to the former but several hundreds kb away from the latter.
Collapse
Affiliation(s)
- F Petronzelli
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | | | | | | |
Collapse
|
25
|
Ono SJ, Song Z. Mapping of the interaction site of the defective transcription factor in the class II major histocompatibility complex mutant cell line clone-13 to the divergent X2-box. J Biol Chem 1995; 270:6396-402. [PMID: 7890777 DOI: 10.1074/jbc.270.11.6396] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously described a mutant B lymphoblastoid cell line, Clone-13, that expresses HLA-DQ in the absence of HLA-DR and -DP. Several criteria indicated that the defect in this cell line influences the activity of an isotype-specific transcription factor. Indeed, transient transfection of HLA-DRA and DQB reporter constructs indicated that the affected factor operates via cis-elements located between -141 base pairs and the transcription initiation site. A series of hybrid DRA/DQB reporter constructs was generated to further map the relevant cis-elements in this system. Insertion of oligonucleotides spanning the DQB X-box (but not the DQB-W region or the DQB Y-box) upstream of -141 in a DRA reporter plasmid rescued expression to nearly wild-type levels. Substitution promoters were then generated where the entire X-box, or only the X1- or X2-boxes of HLA-DRA were replaced with the analogous regions of HLA-DQB. The DQB X2-box was able to restore expression to the silent DRA reporter construct. Moreover, replacement of the DQB X2-box with the DRA X2-box markedly diminished the activity of the DQB promoter in the mutant cell. None of the hybrid reporter constructs were defective when transfected into the wild-type, HLA-DR/-DQ positive parental cell line, Jijoye. These studies suggest that the divergent X2-box of the class II major histocompatibility complex promoters plays an important role in influencing differential expression of the human class II isotypes.
Collapse
Affiliation(s)
- S J Ono
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | | |
Collapse
|
26
|
Morel C, Cordier-Bussat M, Philippe J. The upstream promoter element of the glucagon gene, G1, confers pancreatic alpha cell-specific expression. J Biol Chem 1995; 270:3046-55. [PMID: 7852385 DOI: 10.1074/jbc.270.7.3046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The glucagon gene is expressed in the endocrine pancreas, the intestine, and the brain. In the endocrine pancreas, expression of the glucagon gene is restricted to the alpha cells of the islets of Langerhans. We previously showed that 168 base pairs of the promoter was critical for this restricted expression. To further characterize the mechanisms involved in alpha cell specificity, we analyzed the responsible DNA sequences by transient transfection studies into glucagon- and insulin-producing cell lines. We localized alpha cell-specific sequences between nt 100 and 52, a region that corresponds to the upstream promoter element G1. Four protein complexes, B1, B2, B3, and B6 interact with G1; B6 requires most of G1 to be formed. B1, B2, and B3, by contrast, bind on closely overlapping sequences, display similar methylation interference patterns, and appear to be related complexes. Point mutations of G1 indicate, however, that their binding specificities are different. All four complexes are islet-specific, and impairment of their binding results in decreased transcription. We conclude that G1 interacts with islet cell-specific proteins to restrict glucagon gene expression to the alpha cells.
Collapse
Affiliation(s)
- C Morel
- Department of Genetics and Microbiology, Centre Médical Universitaire, Geneva, Switzerland
| | | | | |
Collapse
|
27
|
Philippe J, Morel C, Cordier-Bussat M. Islet-specific proteins interact with the insulin-response element of the glucagon gene. J Biol Chem 1995; 270:3039-45. [PMID: 7531697 DOI: 10.1074/jbc.270.7.3039] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glucagon gene expression is negatively regulated by insulin at the transcriptional level. G3, a DNA control element located in the 5'-flanking sequence of the rat glucagon gene mediates the inhibition of transcription, which occurs in response to insulin. We show here that two islet-specific protein complexes C1A and C1B, bind to the A domain of G3, which is critical for the insulin response. These two complexes bind to overlapping sequences of the A domain and display very similar binding specificities. Point mutations in the A domain that affect binding of C1A and C1B result in both decreased G3 enhancer activity and insulin-mediated inhibitory effects with a close correlation between diminution of binding and function. One of the two complexes, C1A, is similar or identical to B1, a protein complexes interacting with the upstream promoter element of the glucagon gene, G1, implicated in the A cell-specific expression of the glucagon gene. Our data indicate that islet-specific proteins are involved in glucagon gene regulation by insulin.
Collapse
Affiliation(s)
- J Philippe
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|
28
|
Reith W, Kobr M, Emery P, Durand B, Siegrist C, Mach B. Cooperative binding between factors RFX and X2bp to the X and X2 boxes of MHC class II promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32121-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
29
|
Mach B, Steimle V, Reith W. MHC class II-deficient combined immunodeficiency: a disease of gene regulation. Immunol Rev 1994; 138:207-21. [PMID: 8070816 DOI: 10.1111/j.1600-065x.1994.tb00853.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- B Mach
- Department of Genetics and Microbiology, University of Geneva Medical School, C.M.U., Switzerland
| | | | | |
Collapse
|
30
|
Sukiennicki TL, Shewey LM, Nepom GT. Locus- and allele-specific DNA-protein interactions in the HLA-DQB1 X box. Immunol Res 1993; 12:317-29. [PMID: 8151156 DOI: 10.1007/bf02935505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Expression of MHC class II genes is regulated by a complex series of protein-DNA interactions which lead to the initiation of transcription. Although the different MHC class II loci are generally coordinately expressed, important differences in expression can be seen among loci and among individual alleles. The major sites of transcriptional control in the human MHC consist of several highly conserved nucleotide sequence elements located upstream of each MHC class II gene. We have analyzed the interlocus and interallelic variation in one of these key regulatory regions of the HLA-DQB1 promoter, the X box, and identified several sites of protein-DNA interaction. Two protein-DNA complexes were found which differ between the DQ and DR loci as well as two distinct complexes which differed between DQ alleles. These nuclear protein-X box interactions are likely to influence the differential expression of the MHC class II loci and alleles in tissue-specific or developmentally regulated pathways.
Collapse
|
31
|
Sáfrány G, Perry RP. Transcription factor RFX1 helps control the promoter of the mouse ribosomal protein-encoding gene rpL30 by binding to its alpha element. Gene 1993; 132:279-83. [PMID: 8224874 DOI: 10.1016/0378-1119(93)90208-k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The factor that binds to the most upstream element (alpha) of the mouse rpL30 promoter was identified as RFX1, a novel 105-kDa protein that recognizes an important element of MHC class-II promoters. Identification was based on competition between rpL30 alpha and an RFX1-binding site for nuclear protein complex formation and on the ability of RFX1 antibody to supershift the electrophoretic mobility of the DNA-protein complexes. A mutation in the alpha-element that abolished its interaction with RFX1 reduced rpL30 promoter activity to about 43% of the wild-type level, indicating that RFX1 plays an important role in determining the strength of the rpL30 promoter. A search of a eukaryotic promoter database revealed candidate RFX1-binding sites in a variety of other promoters, suggesting that this protein may be implicated in the transcriptional regulation of a wide variety of genes.
Collapse
Affiliation(s)
- G Sáfrány
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
32
|
Morzycka-Wroblewska E, Harwood JI, Smith JR, Kagnoff MF. Structure and evolution of the promoter regions of the DQA genes. Immunogenetics 1993; 37:364-72. [PMID: 8428769 DOI: 10.1007/bf00216801] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
HLA-DQ antigens are unique among the class II antigens in that their alpha chains are highly polymorphic. In the present study, we characterized the general structure of the promoter regions of the DQA genes derived from different DR haplotypes and defined their nucleotide sequence polymorphisms. The promoter of each DQA1 allele contains three sequence motifs which are not present in non-DQA related class II genes: one identical to a tumor necrosis factor (TNF alpha) response element, one similar to an NF kappa B binding element, and one similar to a W motif. All DQA alleles lack TATA and CCAAT boxes in the proximal promoter region but carry other sequence elements characteristic of MHC class II genes, including S, X, X2, and Y boxes, and a pyrimidine-rich tract upstream of the X box. Nucleotide sequence polymorphisms among the various DQA1 alleles were noted within the promoter region, with some of the differences mapping within, or close to, regulatory elements that are important for the expression of MHC class II genes. All DQA1 alleles carry an unrearranged, full length, Alu-Sx related repeat immediately upstream of the proximal promoter region. This repeat was not present in the DQA2 (DXA) genes analyzed, confirming that DQ locus duplication probably occurred before integration of the Alu repeat into the primordial DQA1 locus, some 31-43 million years (myr) ago. The DQA2 promoter region is highly conserved between DR4 and DR3 haplotypes, with the degree of conservation exceeding that expected from the neutral mutation rate.
Collapse
|
33
|
Affiliation(s)
- D M Altmann
- Transplantation Biology Section, Clinical Research Centre, Harrow, Middlesex
| |
Collapse
|
34
|
Shewey LM, Nepom GT. Allele-specific DNA-protein interactions associated with the X-box regulatory region of the DQB1*0302 gene. Autoimmunity 1993; 15 Suppl:8-11. [PMID: 8218847 DOI: 10.3109/08916939309008851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The X box is an essential transcriptional regulatory region for both constitutive and inducible expression of HLA-class II genes, and, while highly conserved among class II genes, both locus- and allele-specific polymorphisms exist. Using gel regardation analysis, we have analyzed the binding of B cell nuclear proteins to the X box regions of the DQB1*0302, *0301, and DRA genes and have identified two distinct X box binding complexes which differ for the diabetes-associated DQB1*0302 allele.
Collapse
Affiliation(s)
- L M Shewey
- Virginia Mason Research Center, Seattle, WA 98101
| | | |
Collapse
|
35
|
Kolk DP, Floyd-Smith G. The HXY box regulatory element modulates expression of the murine IA antigen-associated invariant chain in L fibroblasts. DNA Cell Biol 1992; 11:745-54. [PMID: 1457043 DOI: 10.1089/dna.1992.11.745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The murine invariant chain (Ii) gene has been shown to be interferon-gamma (IFN-gamma)-inducible in a number of nonlymphoid cell types. In mouse L cells, steady-state levels of Ii mRNA are barely detectable in untreated cells but increase sharply upon IFN-gamma treatment. In IFN-gamma treated L cells, transcription starts 23, 28, 38, and 40 bases downstream of the TATA box. To identify cis-acting elements regulating expression of the Ii gene, reporter plasmids containing deletions of the Ii promoter have been constructed and transfected into mouse L cells. Deletion of the H box results in a 50-100% increase in basal expression. Deletion of both the H and X boxes increases basal expression by 200-300% above that seen in constructs containing all three elements. A 25% decrease in basal level expression is seen for constructs that lack the Y-box element when compared to constructs containing the Y-box element but not the H- and X-box elements. DNase I footprinting analysis demonstrates protection of the H, X, and Y boxes as well as a nonconserved region between the H and X boxes. Mobility-shift experiments detect a factor specifically interacting with the Y box. Although the H-, X-, and Y-box elements interact with nuclear protein and are regulatory elements in L cells, these elements do not appear to play a role in IFN-gamma induction suggesting that other regulatory mechanisms must account for IFN-gamma's induction of the Ii in L cells.
Collapse
Affiliation(s)
- D P Kolk
- Department of Zoology, Arizona State University, Tempe 85287
| | | |
Collapse
|
36
|
Gaur LK, Heise ER, Ting JP. Conservation of the promoter region of DRA-like genes from nonhuman primates. Immunogenetics 1992; 35:136-9. [PMID: 1735559 DOI: 10.1007/bf00189524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- L K Gaur
- Department of Microbiology and Immunology, Bowman Gray School of Medicine, Winston-Salem, NC 27103
| | | | | |
Collapse
|
37
|
Liou HC, Eddy R, Shows T, Lisowska-Grospierre B, Griscelli C, Doyle C, Mannhalter J, Eibl M, Glimcher LH. An HLA-DR alpha promoter DNA-binding protein is expressed ubiquitously and maps to human chromosomes 22 and 5. Immunogenetics 1991; 34:286-92. [PMID: 1718857 DOI: 10.1007/bf00211992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The class II major histocompatibility complex antigens are a family of integral membrane proteins whose expression is tissue-specific and developmentally regulated. Three consensus sequences, X1, X2, and Y, separated by an interspace element, is found upstream from all class II genes. Deletion of each of these sequences eliminates expression of class II genes in vitro or in transgenic mice. Here we further characterize the expression of a cDNA encoding a DNA binding protein (human X-box binding protein, hXBP-1) which, like the proteins in whole nuclear extract, recognizes both the X2 promoter element of the human DR alpha and DP beta and mouse A alpha genes. The hXBP-1 cDNA hybridizes to human RNA species of approximately 2.2 kilobases (kb) and 1.6 kb, which are expressed in class II negative as well as class II positive cells. hXBP-1 transcripts are present in several class II deficient mutant B cell lines, although in one such line, 6.1.6, levels were somewhat reduced. Chromosome mapping studies demonstrate that hXBP-1 arises from a small gene family, two of whose members map to human chromosomes 5 and 22. Taken together, these data suggest a high degree of complexity in the transcriptional control of the class II gene family.
Collapse
Affiliation(s)
- H C Liou
- Department of Cancer Biology, Harvard School of Public Health, Boston, MA 02115
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Johnson DR, Pober JS. Tumor necrosis factor regulation of major histocompatibility complex gene expression. Immunol Res 1991; 10:141-55. [PMID: 1655923 DOI: 10.1007/bf02918161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D R Johnson
- Department of Pathology, Brigham and Women's Hospital, Boston, Mass
| | | |
Collapse
|
39
|
Abstract
The transcriptional regulation of MHC class II genes involves the interaction of DNA-binding proteins with specific DNA sequences. The cis elements of the promoter region have now been well delineated functionally, while the proteins that interact with these elements are just beginning to be identified and their functional importance assessed.
Collapse
Affiliation(s)
- C J Kara
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|