1
|
Guin K, Chen Y, Mishra R, Muzaki SRBM, Thimmappa BC, O'Brien CE, Butler G, Sanyal A, Sanyal K. Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres. eLife 2020; 9:e58556. [PMID: 32469306 PMCID: PMC7292649 DOI: 10.7554/elife.58556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Centromeres of Candida albicans form on unique and different DNA sequences but a closely related species, Candida tropicalis, possesses homogenized inverted repeat (HIR)-associated centromeres. To investigate the mechanism of centromere type transition, we improved the fragmented genome assembly and constructed a chromosome-level genome assembly of C. tropicalis by employing PacBio sequencing, chromosome conformation capture sequencing (3C-seq), chromoblot, and genetic analysis of engineered aneuploid strains. Further, we analyzed the 3D genome organization using 3C-seq data, which revealed spatial proximity among the centromeres as well as telomeres of seven chromosomes in C. tropicalis. Intriguingly, we observed evidence of inter-centromeric translocations in the common ancestor of C. albicans and C. tropicalis. Identification of putative centromeres in closely related Candida sojae, Candida viswanathii and Candida parapsilosis indicates loss of ancestral HIR-associated centromeres and establishment of evolutionary new centromeres (ENCs) in C. albicans. We propose that spatial proximity of the homologous centromere DNA sequences facilitated karyotype rearrangements and centromere type transitions in human pathogenic yeasts of the CUG-Ser1 clade.
Collapse
Affiliation(s)
- Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Yao Chen
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radha Mishra
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | | | - Bhagya C Thimmappa
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Caoimhe E O'Brien
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Geraldine Butler
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| |
Collapse
|
2
|
Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, Vadnala RN, Sun S, Siddharthan R, Tellgren-Roth C, Dawson TL, Heitman J, Sanyal K. Loss of centromere function drives karyotype evolution in closely related Malassezia species. eLife 2020; 9:e53944. [PMID: 31958060 PMCID: PMC7025860 DOI: 10.7554/elife.53944] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3-5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.
Collapse
Affiliation(s)
- Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Bhagya C Thimmappa
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Promit Ganguly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | | | - Christian Tellgren-Roth
- National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Thomas L Dawson
- Skin Research Institute Singapore, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Drug Discovery, Medical University of South Carolina, School of PharmacyCharlestonUnited States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| |
Collapse
|
3
|
Lee PD, Wei H, Tan D, Harrison SC. Structure of the Centromere Binding Factor 3 Complex from Kluyveromyces lactis. J Mol Biol 2019; 431:4444-4454. [PMID: 31425683 PMCID: PMC7004469 DOI: 10.1016/j.jmb.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 01/21/2023]
Abstract
Kinetochores are the multiprotein complexes that link chromosomal centromeres to mitotic-spindle microtubules. Budding yeast centromeres comprise three sequential "centromere-determining elements", CDEI, II, and III. CDEI (8 bp) and CDEIII (∼25 bp) are conserved between Kluyveromyces lactis and Saccharomyces cerevisiae, but CDEII in the former is twice as long (160 bp) as CDEII in the latter (80 bp). The CBF3 complex recognizes CDEIII and is required for assembly of a centromeric nucleosome, which in turn recruits other kinetochore components. To understand differences in centromeric nucleosome assembly between K. lactis and S. cerevisiae, we determined the structure of a K. lactis CBF3 complex by electron cryomicroscopy at ∼4 Å resolution and compared it with published structures of S. cerevisiae CBF3. We show differences in the pose of Ndc10 and discuss potential models of the K. lactis centromeric nucleosome that account for the extended CDEII length.
Collapse
Affiliation(s)
- Phong D. Lee
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA,Graduate Program in Virology Harvard Medical School Boston MA 02115 USA
| | - Hui Wei
- The National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center New York Structural Biology Center New York NY 10027 USA
| | - Dongyan Tan
- Department of Pharmacological Sciences Stony Brook University School of Medicine Stony Brook NY 11794 USA
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA,Howard Hughes Medical Institute Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
4
|
Samejima I, Platani M, Earnshaw WC. Use of Mass Spectrometry to Study the Centromere and Kinetochore. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:3-27. [PMID: 28840231 DOI: 10.1007/978-3-319-58592-5_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A number of paths have led to the present list of centromere proteins, which is essentially complete for constitutive structural proteins, but still may be only partial if we consider the many other proteins that briefly visit the centromere and kinetochore to fine-tune the chromatin and adjust other functions. Elegant genetics led to the description of the budding yeast point centromere in 1980. In the same year was published the serendipitous discovery of antibodies that stained centromeres of human mitotic chromosomes in antisera from CREST patients. Painstaking biochemical analyses led to the identification of the human centromere antigens several years later, with the first yeast proteins being described 6 years after that. Since those early days, the discovery and cloning of centromere and kinetochore proteins has largely been driven by improvements in technology. These began with expression cloning methods, which allowed antibodies to lead to cDNA clones. Next, functional screens for kinetochore proteins were made possible by the isolation of yeast centromeric DNAs. Ultimately, the completion of genome sequences for humans and model organisms permitted the coupling of biochemical fractionation with protein identification by mass spectrometry. Subsequent improvements in mass spectrometry have led to the current state where virtually all structural components of the kinetochore are known and where a high-resolution map of the entire structure will likely emerge within the next several years.
Collapse
Affiliation(s)
- Itaru Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Melpomeni Platani
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
5
|
Mis16 Switches Function from a Histone H4 Chaperone to a CENP-A Cnp1-Specific Assembly Factor through Eic1 Interaction. Structure 2018; 26:960-971.e4. [PMID: 29804820 DOI: 10.1016/j.str.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/11/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022]
Abstract
The Mis18 complex, composed of Mis16, Eic1, and Mis18 in fission yeast, selectively deposits the centromere-specific histone H3 variant, CENP-ACnp1, at centromeres. How the intact Mis18 holo-complex oligomerizes and how Mis16, a well-known ubiquitous histone H4 chaperone, plays a centromere-specific role in the Mis18 holo-complex, remain unclear. Here, we report the stoichiometry of the intact Mis18 holo-complex as (Mis16)2:(Eic1)2:(Mis18)4 using analytical ultracentrifugation. We further determine the crystal structure of Schizosaccharomyces pombe Mis16 in complex with the C-terminal portion of Eic1 (Eic1-CT). Notably, Mis16 accommodates Eic1-CT through the binding pocket normally occupied by histone H4, indicating that Eic1 and H4 compete for the same binding site, providing a mechanism for Mis16 to switch its binding partner from histone H4 to Eic1. Thus, our analyses not only determine the stoichiometry of the intact Mis18 holo-complex but also uncover the molecular mechanism by which Mis16 plays a centromere-specific role through Eic1 association.
Collapse
|
6
|
Using human artificial chromosomes to study centromere assembly and function. Chromosoma 2017; 126:559-575. [DOI: 10.1007/s00412-017-0633-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
|
7
|
Chatterjee G, Sankaranarayanan SR, Guin K, Thattikota Y, Padmanabhan S, Siddharthan R, Sanyal K. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis. PLoS Genet 2016; 12:e1005839. [PMID: 26845548 PMCID: PMC4741521 DOI: 10.1371/journal.pgen.1005839] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species--Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast.
Collapse
Affiliation(s)
- Gautam Chatterjee
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Yogitha Thattikota
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sreedevi Padmanabhan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Rahul Siddharthan
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| |
Collapse
|
8
|
Abstract
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280;
| |
Collapse
|
9
|
Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res 2014; 21:587-600. [PMID: 24254230 DOI: 10.1007/s10577-013-9394-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA,
| |
Collapse
|
10
|
Rosandić M, Glunčić M, Paar V. Start/stop codon like trinucleotides extensions in primate alpha satellites. J Theor Biol 2012; 317:301-9. [PMID: 23026763 DOI: 10.1016/j.jtbi.2012.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 09/07/2012] [Accepted: 09/19/2012] [Indexed: 11/28/2022]
Abstract
The centromeres remain "the final frontier" in unexplored segments of genome landscape in primate genomes, characterized by 2-5 Mb arrays of evolutionary rapidly evolving alpha satellite (AS) higher order repeats (HORs). Alpha satellites as specific noncoding sequences may be also significant in light of regulatory role of noncoding sequences. Using the Global Repeat Map (GRM) algorithm we identify in NCBI assemblies of chromosome 5 the species-specific alpha satellite HORs: 13mer in human, 5mer in chimpanzee, 14mer in orangutan and 3mers in macaque. The suprachromosomal family (SF) classification of alpha satellite HORs and surrounding monomeric alpha satellites is performed and specific segmental structure was found for major alpha satellite arrays in chromosome 5 of primates. In the framework of our novel concept of start/stop Codon Like Trinucleotides (CLTs) as a "new DNA language in noncoding sequences", we find characteristics and differences of these species in CLT extensions, in particular the extensions of stop-TGA CLT. We hypothesize that these are regulators in noncoding sequences, acting at a distance, and that they can amplify or weaken the activity of start/stop codons in coding sequences in protein genesis, increasing the richness of regulatory phenomena.
Collapse
Affiliation(s)
- Marija Rosandić
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia.
| | | | | |
Collapse
|
11
|
Cho US, Harrison SC. Ndc10 is a platform for inner kinetochore assembly in budding yeast. Nat Struct Mol Biol 2011; 19:48-55. [PMID: 22139014 PMCID: PMC3252399 DOI: 10.1038/nsmb.2178] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/20/2011] [Indexed: 01/21/2023]
Abstract
Kinetochores link centromeric DNA to spindle microtubules and ensure faithful chromosome segregation during mitosis. In point-centromere yeasts, the CBF3 complex, Skp1:Ctf13:(Cep3)2:(Ndc10)2, recognizes a conserved centromeric DNA element through contacts made by Cep3 and Ndc10. We describe here the five-domain organization of Kluyveromyces lactis Ndc10 and the structure at 2.8 Å resolution of domains I–II (residues 1–402) bound to DNA. The structure resembles tyrosine DNA recombinases, although it lacks both endonuclease and ligase activities. Structural and biochemical data demonstrate that each subunit of the Ndc10 dimer binds a separate fragment of DNA, suggesting that Ndc10 stabilizes a DNA loop at the centromere. We describe in vitro association experiments showing that specific domains of Ndc10 interact with each of the known inner-kinetochore proteins or protein complexes in budding yeast. We propose that Ndc10 provides a central platform for inner-kinetochore assembly.
Collapse
Affiliation(s)
- Uhn-Soo Cho
- Jack and Eileen Connors Structural Biology Laboratory and Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
12
|
Malik HS. The centromere-drive hypothesis: a simple basis for centromere complexity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:33-52. [PMID: 19521811 DOI: 10.1007/978-3-642-00182-6_2] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are far more complex and evolutionarily labile than expected based on their conserved, essential function. The rapid evolution of both centromeric DNA and proteins strongly argue that centromeres are locked in an evolutionary conflict to increase their odds of transmission during asymmetric (female) meiosis. Evolutionary success for "cheating" centromeres can result in highly deleterious consequences for the species, either in terms of skewed sex ratios or male sterility. Centromeric proteins evolve rapidly to suppress the deleterious effects of "centromere-drive." This chapter summarizes the mounting evidence in favor of the centromere-drive model, and its implications for centromere evolution in taxa with variations in meiosis.
Collapse
Affiliation(s)
- Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA.
| |
Collapse
|
13
|
Panchenko T, Black BE. The epigenetic basis for centromere identity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:1-32. [PMID: 19521810 DOI: 10.1007/978-3-642-00182-6_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The centromere serves as the control locus for chromosome segregation at mitosis and meiosis. In most eukaryotes, including mammals, the location of the centromere is epigenetically defined. The contribution of both genetic and epigenetic determinants to centromere function is the subject of current investigation in diverse eukaryotes. Here we highlight key findings from several organisms that have shaped the current view of centromeres, with special attention to experiments that have elucidated the epigenetic nature of their specification. Recent insights into the histone H3 variant, CENP-A, which assembles into centromeric nucleosomes that serve as the epigenetic mark to perpetuate centromere identity, have added important mechanistic understanding of how centromere identity is initially established and subsequently maintained in every cell cycle.
Collapse
Affiliation(s)
- Tanya Panchenko
- Department of Biochemistry, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
14
|
Epigenetic Silencing of Pericentromeric Heterochromatin by RNA Interference in Schizosaccharomyces pombe. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
15
|
Artificial chromosome formation in maize (Zea mays L.). Chromosoma 2008; 118:157-77. [DOI: 10.1007/s00412-008-0191-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/11/2022]
|
16
|
Fedyanina OS, Mardanov PV, Tokareva EM, McIntosh JR, Grishchuk EL. Chromosome segregation in fission yeast with mutations in the tubulin folding cofactor D. Curr Genet 2006; 50:281-94. [PMID: 17004072 DOI: 10.1007/s00294-006-0095-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Faithful chromosome segregation requires the combined activities of the microtubule-based mitotic spindle and the multiple proteins that form mitotic kinetochores. Here, we show that the fission yeast mitotic mutant, tsm1-512, is an allele of the tubulin folding chaperone, cofactor D. Chromosome segregation in this and in an additional cofactor D mutant depends on growth conditions that are monitored specifically by the mitotic checkpoint proteins Mad1, 2, 3 and Bub3. The temperature-sensitive mutants we have used disrupt the function of cofactor D to different extents, but both strains form a mitotic spindle in which the poles separate in anaphase. However, chromosome segregation is often unequal, apparently due to a defect in kinetochore-microtubule interactions. Mutations in cofactor D render cells particularly sensitive to the expression levels of a CENP-B-like protein, Abp1p, which works as an allele-specific, high-copy suppressor of cofactor D. This and other genetic interactions between cofactor D mutants and specific kinetochore and spindle components suggest their critical role in establishing the normal kinetochore-microtubule interface.
Collapse
|
17
|
Lopandic K, Molnár O, Suzuki M, Pinsker W, Prillinger H. Estimation of phylogenetic relationships within the Ascomycota on the basis of 18S rDNA sequences and chemotaxonomy. Mycol Prog 2005. [DOI: 10.1007/s11557-006-0124-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Takahashi K, Takayama Y, Masuda F, Kobayashi Y, Saitoh S. Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle. Philos Trans R Soc Lond B Biol Sci 2005; 360:595-606; discussion 606-7. [PMID: 15897182 PMCID: PMC1569465 DOI: 10.1098/rstb.2004.1614] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CENP-A is a centromere-specific histone H3 variant that is- essential for faithful chromosome segregation in all eukaryotes thus far investigated. We genetically identified two factors, Ams2 and Mis6, each of which is required for the correct centromere localization of SpCENP-A (Cnp1), the fission yeast homologue of CENP-A. Ams2 is a cell-cycle-regulated GATA factor that localizes on the nuclear chromatin, including on centromeres, during the S phase. Ams2 may be responsible for the replication-coupled loading of SpCENP-A by facilitating nucleosomal formation during the S phase. Consistently, overproduction of histone H4, but not that of H3, suppressed the defect of SpCENP-A localization in Ams2-deficient cells. We demonstrated the existence of at least two distinct phases for SpCENP-A loading during the cell cycle: the S phase and the late-G2 phase. Ectopically induced SpCENP-A was efficiently loaded onto the centromeres in G2-arrested cells, indicating that SpCENP-A probably undergoes replication-uncoupled loading after the completion of S phase. This G2 loading pathway of SpCENP-A may require Mis6, a constitutive centromere-binding protein that is also implicated in the Mad2-dependent spindle attachment checkpoint response. Here, we discuss the functional relationship between the flexible loading mechanism of CENP-A and the plasticity of centromere chromatin formation in fission yeast.
Collapse
Affiliation(s)
- Kohta Takahashi
- Division of Cell Biology, Institute of Life Science, Kurume University, 1-1 Hyakunen-kohen, Kurume, Fukuoka 839-0864, Japan.
| | | | | | | | | |
Collapse
|
19
|
Xhemalce B, Seeler JS, Thon G, Dejean A, Arcangioli B. Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 2004; 23:3844-53. [PMID: 15359282 PMCID: PMC522793 DOI: 10.1038/sj.emboj.7600394] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 08/12/2004] [Indexed: 11/08/2022] Open
Abstract
Sumoylation represents a conserved mechanism of post-translational protein modification. We report that Pli1p, the unique fission yeast member of the SP-RING family, is a SUMO E3 ligase in vivo and in vitro. pli1Delta cells display no obvious mitotic growth defects, but are sensitive to the microtubule-destabilizing drug TBZ and exhibit enhanced minichromosome loss. The weakened centromeric function of pli1Delta cells may be related to the defective heterochromatin structure at the central core, as shown by the reduced silencing of an ura4 variegation reporter gene inserted at cnt and imr. Interestingly, pli1Delta cells also exhibit enhanced loss of the ura4 reporter at these loci, likely by gene conversion using homologous sequences as information donors. Moreover, pli1Delta cells exhibit consistent telomere length increase, possibly achieved by a similar process. Point mutations within the RING finger of Pli1p totally or partially reproduce the pli1 deletion phenotypes, thus correlating with their sumoylation activity. Altogether, these results strongly suggest that Pli1p, and by extension sumoylation, is involved in mechanisms that regulate recombination in particular heterochromatic repeated sequences.
Collapse
Affiliation(s)
- Blerta Xhemalce
- Unité de la Dynamique du Génome, Institut Pasteur, Paris Cedex, France
- These authors contributed equally to this work
- Unité de la Dynamique du Génome, URA1664 du CNRS, Jacques Monod Building, Institut Pasteur, 25, rue du Dr Roux, 75724, Paris Cedex 15, France. Tel.: +33 1 4568 8454; Fax: +33 1 4568 8960; E-mail:
| | - Jacob-S Seeler
- Unité Organisation Nucléaire et Oncogénèse, Institut Pasteur, Paris Cedex, France
- These authors contributed equally to this work
| | - Geneviève Thon
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Copenhagen K, Denmark
| | - Anne Dejean
- Unité Organisation Nucléaire et Oncogénèse, Institut Pasteur, Paris Cedex, France
| | - Benoît Arcangioli
- Unité de la Dynamique du Génome, Institut Pasteur, Paris Cedex, France
- Unité de la Dynamique du Génome, URA1664 du CNRS, Jacques Monod Building, Institut Pasteur, 25, rue du Dr Roux, 75724, Paris Cedex 15, France. Tel.: +33 1 4568 8454; Fax: +33 1 4568 8960;
| |
Collapse
|
20
|
Appelgren H, Kniola B, Ekwall K. Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells. J Cell Sci 2003; 116:4035-42. [PMID: 12928332 DOI: 10.1242/jcs.00707] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fission yeast (Saccharomyces pombe) centromere DNA is organized in a central core region flanked on either side by a region of outer repeat (otr) sequences. The otr region is known to be heterochromatic and bound by the Swi6 protein whereas the central core region contains an unusual chromatin structure involving the histone H3 variant Cnp1 (S. pombe CENP-A). The central core is the base for formation of the kinetochore structure whereas the flanking region is important for sister centromere cohesion. We have previously shown that the ultrastructural domain structure of S. pombe centromeres in interphase is similar to that of human centromeres. Here we demonstrate that S. pombe centromeres are organized in cytologically distinct domains even in mitosis. Fluorescence in situ hybridization of fixed metaphase cells revealed that the otr regions of the centromere were still held together by cohesion even after the sister kinetochores had separated. In live cells, the central cores and kinetochores of sister chromosomes could be distinguished from one another when they were subjected to mitotic tension. The function of the different centromeric domains was addressed. Transacting mutations affecting the kinetochore (nuf2) central core domain (mis6) and the heterochromatin domain (rik1) were analyzed in live cells. In interphase, both nuf2 and mis6 caused declustering of centromeres from the spindle pole body whereas centromere clustering was normal in rik1 despite an apparent decondensation defect. The declustering of centromeres in mis6 cells correlated with loss the Ndc80 kinetochore marker protein from the centromeres. Interestingly the declustered centromeres were still restricted to the nuclear periphery thus revealing a kinetochore-independent peripheral localization mechanism for heterochromatin. Time-lapse microscopy of live mis6 and nuf2-1 mutant cells in mitosis showed similar severe misaggregation phenotypes whereas the rik1 mutants showed a mild cohesion defect. Thus, S. pombe centromeres have two distinguishable domains even during mitosis, and our functional analyses support the previous observations that the kinetochore/central core and the heterochromatin domains have distinct functions both in interphase and mitosis.
Collapse
Affiliation(s)
- Henrik Appelgren
- Karolinska Institute, Department of Biosciences, University College Sodertorn, Sweden
| | | | | |
Collapse
|
21
|
Abstract
Recent advances in the identification of molecular components of centromeres have demonstrated a crucial role for chromatin proteins in determining both centromere identity and the stability of kinetochore-microtubule attachments. Although we are far from a complete understanding of the establishment and propagation of centromeres, this review seeks to highlight the contribution of histones, histone deposition factors, histone modifying enzymes, and heterochromatin proteins to the assembly of this sophisticated, highly specialized chromatin structure. First, an overview of DNA sequence elements at centromeric regions will be presented. We will then discuss the contribution of chromatin to kinetochore function in budding yeast, and pericentric heterochromatin domains in other eukaryotic systems. We will conclude with discussion of specialized nucleosomes that direct kinetochore assembly and propagation of centromere-defining chromatin domains.
Collapse
Affiliation(s)
- J A Sharp
- University of California, Berkeley, Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA.
| | | |
Collapse
|
22
|
Smirnova JB, McFarlane RJ. The unique centromeric chromatin structure of Schizosaccharomyces pombe is maintained during meiosis. J Biol Chem 2002; 277:19817-22. [PMID: 11909862 DOI: 10.1074/jbc.m200765200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In meiosis I sister centromeres are unified in their polarity on the spindle, and this unique behavior is known to require the function of meiosis-specific factors that set some intrinsic property of the centromeres. The fission yeast, Schizosaccharomyces pombe, possesses complex centromeres consisting of repetitive DNA elements, making it an excellent model in which to study the behavior of complex centromeres. In mitosis, during which sister centromeres mediate chromosome segregation by establishing bipolar chromosome attachments to the spindle, the central core of the S. pombe centromere chromatin has a unique irregular nucleosome pattern. Deletion of repeats flanking this core structure have no effect on mitotic chromosome segregation, but have profound effects during meiosis. While this demonstrates that the outer repeats are critical for normal meiotic sister centromere behavior, exactly how they function and how monopolarity is established remains unclear. In this study we provide the first analysis of the chromatin structure of a complex centromere during meiosis. We show that the nature and extent of the unique central core chromatin structure is maintained with no measurable expansion. This demonstrates that monopolarity of sister centromeres, and subsequent reversion to bipolarity, does not involve a global change to the centromeric chromatin structure.
Collapse
Affiliation(s)
- Julia B Smirnova
- Molecular and Cell Biology Group, School of Biological Sciences, Memorial Building, University of Wales-Bangor, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom
| | | |
Collapse
|
23
|
Abstract
Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromatin domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histones and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes.
Collapse
Affiliation(s)
- P Bjerling
- Karolinska Institute, Sodertorn University College, S-141 04 Huddinge, Sweden
| | | |
Collapse
|
24
|
Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, et alWood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P, Cerrutti L. The genome sequence of Schizosaccharomyces pombe. Nature 2002; 415:871-80. [PMID: 11859360 DOI: 10.1038/nature724] [Show More Authors] [Citation(s) in RCA: 1151] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.
Collapse
Affiliation(s)
- V Wood
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kniola B, O'Toole E, McIntosh JR, Mellone B, Allshire R, Mengarelli S, Hultenby K, Ekwall K. The domain structure of centromeres is conserved from fission yeast to humans. Mol Biol Cell 2001; 12:2767-75. [PMID: 11553715 PMCID: PMC59711 DOI: 10.1091/mbc.12.9.2767] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The centromeric DNA of fission yeast is arranged with a central core flanked by repeated sequences. The centromere-associated proteins, Mis6p and Cnp1p (SpCENP-A), associate exclusively with central core DNA, whereas the Swi6 protein binds the surrounding repeats. Here, electron microscopy and immunofluorescence light microscopy reveal that the central core and flanking regions occupy distinct positions within a heterochromatic domain. An "anchor" structure containing the Ndc80 protein resides between this heterochromatic domain and the spindle pole body. The organization of centromere-associated proteins in fission yeast is reminiscent of the multilayered structures of human kinetochores, indicating that such domain structure is conserved in eukaryotes.
Collapse
MESH Headings
- Cell Cycle Proteins
- Centromere/chemistry
- Centromere/genetics
- Centromere/ultrastructure
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Fungal/chemistry
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/ultrastructure
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- Evolution, Molecular
- Fungal Proteins/chemistry
- Fungal Proteins/metabolism
- Heterochromatin/chemistry
- Heterochromatin/genetics
- Heterochromatin/ultrastructure
- Humans
- Kinetochores
- Microscopy, Electron
- Microscopy, Fluorescence
- Nuclear Proteins/metabolism
- Protein Structure, Tertiary
- Repetitive Sequences, Nucleic Acid/genetics
- Saccharomyces cerevisiae Proteins
- Schizosaccharomyces/cytology
- Schizosaccharomyces/genetics
- Schizosaccharomyces pombe Proteins/chemistry
- Schizosaccharomyces pombe Proteins/metabolism
- Transcription Factors/chemistry
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- B Kniola
- Karolinska Institutet, Department of Biosciences Novum/University College Sodertorn, Department of Natural Sciences, S-141 04 Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Vernis L, Poljak L, Chasles M, Uchida K, Casarégola S, Käs E, Matsuoka M, Gaillardin C, Fournier P. Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica. J Mol Biol 2001; 305:203-17. [PMID: 11124900 DOI: 10.1006/jmbi.2000.4300] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transformation to a plasmid-borne ORI. Our results confirm a cooperation between ORI and CEN sequences to form an ARS, since all sequences identified in this screen displayed features of centromeric DNA and included the previously characterized CEN1-1, CEN3-1 and CEN5-1 fragments. Two new centromeric DNAs were identified as they are unique, map to different chromosomes (II and IV) and induce chromosome breakage after genomic integration. A third sequence, which is adjacent to, but distinct from the previously characterized CEN1-1 region was isolated from chromosome I. Although these CEN sequences do not share significant sequence similarities, they display a complex pattern of short repeats, including conserved blocks of 9 to 14 bp and regions of dyad symmetry. Consistent with their A+T-richness and strong negative roll angle, Y. lipolytica CEN-derived sequences, but not ORIs, were capable of binding isolated Drosophila nuclear scaffolds. However, a Drosophila scaffold attachment region that functions as an ARS in other yeasts was unable to confer autonomous replication to an ORI-containing plasmid. Deletion analysis of CEN1-1 showed that the sequences responsible for the induction of chromosome breakage could be eliminated without compromising extrachromosomal maintenance. We propose that, while Y. lipolytica CEN DNA is essential for plasmid maintenance, this function can be supplied by several sub-fragments which, together, form the active chromosomal centromere. This complex organization of Y. lipolytica centromeres is reminiscent of the regional structures described in the yeast Schizosaccharomyces pombe or in multicellular eukaryotes.
Collapse
Affiliation(s)
- L Vernis
- Laboratoire de Génétique Moléculaire et Cellulaire, INRA-CNRS, Thiverval-Grignon, 78850, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ekwall K, Cranston G, Allshire RC. Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. Genetics 1999; 153:1153-69. [PMID: 10545449 PMCID: PMC1460827 DOI: 10.1093/genetics/153.3.1153] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe genes are transcriptionally silenced when placed within centromeres, within or close to the silent mating-type loci or adjacent to telomeres. Factors required to maintain mating-type silencing also affect centromeric silencing and chromosome segregation. We isolated mutations that alleviate repression of marker genes in the inverted repeats flanking the central core of centromere I. Mutations csp1 to 13 (centromere: suppressor of position effect) defined 12 loci. Ten of the csp mutants have no effect on mat2/3 or telomere silencing. All csp mutants allow some expression of genes in the centromeric flanking repeat, but expression in the central core is undetectable. Consistent with defective centromere structure and function, chromosome loss rates are elevated in all csp mutants. Mutants csp1 to 6 are temperature-sensitive lethal and csp3 and csp6 cells are defective in mitosis at 36 degrees. csp7 to 13 display a high incidence of lagging chromosomes on late anaphase spindles. Thus, by screening for mutations that disrupt silencing in the flanking region of a fission yeast centromere a novel collection of mutants affecting centromere architecture and chromosome segregation has been isolated.
Collapse
Affiliation(s)
- K Ekwall
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland
| | | | | |
Collapse
|
28
|
Freeman-Cook LL, Sherman JM, Brachmann CB, Allshire RC, Boeke JD, Pillus L. The Schizosaccharomyces pombe hst4(+) gene is a SIR2 homologue with silencing and centromeric functions. Mol Biol Cell 1999; 10:3171-86. [PMID: 10512858 PMCID: PMC25575 DOI: 10.1091/mbc.10.10.3171] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although silencing is a significant form of transcriptional regulation, the functional and mechanistic limits of its conservation have not yet been established. We have identified the Schizosaccharomyces pombe hst4(+) gene as a member of the SIR2/HST silencing gene family that is defined in organisms ranging from bacteria to humans. hst4Delta mutants grow more slowly than wild-type cells and have abnormal morphology and fragmented DNA. Mutant strains show decreased silencing of reporter genes at both telomeres and centromeres. hst4(+) appears to be important for centromere function as well because mutants have elevated chromosome-loss rates and are sensitive to a microtubule-destabilizing drug. Consistent with a role in chromatin structure, Hst4p localizes to the nucleus and appears concentrated in the nucleolus. hst4Delta mutant phenotypes, including growth and silencing phenotypes, are similar to those of the Saccharomyces cerevisiae HSTs, and at a molecular level, hst4(+) is most similar to HST4. Furthermore, hst4(+) is a functional homologue of S. cerevisiae HST3 and HST4 in that overexpression of hst4(+) rescues the temperature-sensitivity and telomeric silencing defects of an hst3Delta hst4Delta double mutant. These results together demonstrate that a SIR-like silencing mechanism is conserved in the distantly related yeasts and is likely to be found in other organisms from prokaryotes to mammals.
Collapse
Affiliation(s)
- L L Freeman-Cook
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
29
|
Saitoh S, Takahashi K, Yanagida M. Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 1997; 90:131-43. [PMID: 9230309 DOI: 10.1016/s0092-8674(00)80320-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Disorder in sister chromatid separation can lead to genome instability and cancer. A temperature-sensitive S. pombe mis6-302 frequently loses a minichromosome at 26 degrees C and abolishes equal segregation of regular chromosomes at 36 degrees C. The mis6+ gene is essential for viability, and its deletion results in missegregation identical to mis6-302. Mis6 acts before or at the onset of S phase, and mitotic missegregation defects are produced only after the passage of G1/S at 36 degrees C. Mis6 locates at the centromeres throughout the cell cycle. In the mutant, positioning of the centromeres becomes abnormal, and specialized chromatin in the inner centromeres, which give the smear micrococcal nuclease pattern in wild type, is disrupted. The ability to establish correct biorientation of sister centromeres in metaphase cells requires the Mis6-containing chromatin and originates during the passage of G1/S.
Collapse
Affiliation(s)
- S Saitoh
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashiraka-Oiwakecho, Sakyo-ku, Japan
| | | | | |
Collapse
|
30
|
Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 1997; 15:345-55. [PMID: 9090378 DOI: 10.1038/ng0497-345] [Citation(s) in RCA: 459] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have combined long synthetic arrays of alpha satellite DNA with telomeric DNA and genomic DNA to generate artificial chromosomes in human HT1080 cells. The resulting linear microchromosomes contain exogenous alpha satellite DNA, are mitotically and cytogenetically stable in the absence of selection for up to six months in culture, bind centromere proteins specific for active centromeres, and are estimated to be 6-10 megabases in size, approximately one-fifth to one-tenth the size of endogenous human chromosomes. We conclude that this strategy results in the formation of de novo centromere activity and that the microchromosomes so generated contain all of the sequence elements required for stable mitotic chromosome segregation and maintenance. This first-generation system for the construction of human artificial chromosomes should be suitable for dissecting the sequence requirements of human centromeres, as well as developing constructs useful for therapeutic applications.
Collapse
Affiliation(s)
- J J Harrington
- Department of Genetics and Center for Human Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
31
|
Halverson D, Baum M, Stryker J, Carbon J, Clarke L. A centromere DNA-binding protein from fission yeast affects chromosome segregation and has homology to human CENP-B. J Cell Biol 1997; 136:487-500. [PMID: 9024682 PMCID: PMC2134285 DOI: 10.1083/jcb.136.3.487] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1996] [Revised: 12/09/1996] [Indexed: 02/03/2023] Open
Abstract
Genetic and biochemical strategies have been used to identify Schizosaccharomyces pombe proteins with roles in centromere function. One protein, identified by both approaches, shows significant homology to the human centromere DNA-binding protein, CENP-B, and is identical to Abp1p (autonomously replicating sequence-binding protein 1) (Murakami, Y., J.A. Huberman, and J. Hurwitz. 1996. Proc. Natl. Acad. Sci. USA. 93:502-507). Abp1p binds in vitro specifically to at least three sites in centromeric central core DNA of S. pombe chromosome II (cc2). Overexpression of abp1 affects mitotic chromosome stability in S. pombe. Although inactivation of the abp1 gene is not lethal, the abp1 null strain displays marked mitotic chromosome instability and a pronounced meiotic defect. The identification of a CENP-B-related centromere DNA-binding protein in S. pombe strongly supports the hypothesis that fission yeast centromeres are structurally and functionally related to the centromeres of higher eukaryotes.
Collapse
Affiliation(s)
- D Halverson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | | | | | |
Collapse
|
32
|
Murakami S, Niwa O. Fission yeast sta mutations that stabilize an unstable minichromosome are novel cdc2-interacting suppressors and are involved in regulation of spindle dynamics. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:391-9. [PMID: 8552043 DOI: 10.1007/bf00287100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytological observations have shown that the presence of unstable minichromosomes can delay progression through the early stages of mitosis in fission yeast (Schizosaccharomyces pombe), suggesting that such minichromosomes may provide a useful tool for examining the system that regulates the coordinated segregation of chromosomes. One such unstable minichromosome is a large circular minichromosome. We previously showed that the mitotic instability of this minichromosome is probably due to the frequent occurrence of catenated forms of DNA after replication. To identify genes involved in the regulation of chromosome behavior in mitosis, we isolated mutants which stabilized this minichromosome. Three loci (sta1, sta2, and sta3) were identified. Two of them were found to be suppressors of temperature-sensitive mutations in cdc2, which encodes the catalytic subunit of muturation promoting factor (MPF). They show no linkage to, and are thus different from, suc1, and cdc13, previously identified as genes that interact with cdc2. The other mutation mapped to a gene previously identified as being required for the correct formation of the mitotic spindle. Data provided in this study suggest that the sta genes are involved in the regulation of spindle dynamics to ensure proper chromosome segregation during mitosis.
Collapse
Affiliation(s)
- S Murakami
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | |
Collapse
|
33
|
Murphy TD, Karpen GH. Interactions between the nod+ kinesin-like gene and extracentromeric sequences are required for transmission of a Drosophila minichromosome. Cell 1995; 81:139-48. [PMID: 7720069 DOI: 10.1016/0092-8674(95)90378-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we demonstrate a role for extracentromeric sequences in chromosome inheritance. Genetic analyses indicate that transmission of the Drosophila minichromosome Dp1187 is sensitive to the dosage of nod+, a kinesin-like gene required for the meiotic transmission of achiasmate chromosomes. Minichromosome deletions displayed increased loss rates in females heterozygous for a loss-of-function allele of nod (nod/+). We have analyzed the structures of nod-sensitive deletions and conclude that multiple regions of Dp1187 interact genetically with nod+ to promote normal chromosome transmission. Most nod+ interactions are observed with regions that are not essential for centromere function. We propose that normal chromosome transmission requires forces generated outside the kinetochore, perhaps to maintain tension on kinetochore microtubules and stabilize the attachment of achiasmate chromosomes to the metaphase spindle.
Collapse
Affiliation(s)
- T D Murphy
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
34
|
Murakami S, Yanagida M, Niwa O. A large circular minichromosome of Schizosaccharomyces pombe requires a high dose of type II DNA topoisomerase for its stabilization. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:671-9. [PMID: 7898434 DOI: 10.1007/bf00290712] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have constructed circular minichromosomes, ranging in size from 36 to 110 kb, containing the centromeric repeats of Schizosaccharomyces pombe cen3. Comparison of their mitotic stability showed that the circular minichromosomes became more unstable with increasing in size, however, a linear cen3 minichromosome, which is almost the same size as the largest circular one tested, does not show such instability. High levels of expression of the top2+ (type II DNA topoisomerase; topo II) but not top1+ gene (type I DNA topoisomerase) suppressed the instability of the largest circular minichromosome, whereas partial inactivation of topo II dramatically destabilized the minichromosome. A mutant topo II, defective in nuclear localization but still retaining its in vitro relaxation activity, did not stabilize the circular minichromosome. These results indicate that endogenous type II DNA topoisomerase is insufficient for accurate segregation of the circular minichromosome. In addition, the replication of the minichromosomal DNA appears to proceed normally, because the presence of the unstable minichromosome did not cause G2 delay. A likely cause of the instability is intertwining of the minichromosome DNA possibly occurring after DNA replication. An interaction between topo II and the centromeric repeats is implied by the finding that multiple copies of the centromeric repeat, dg-dh, affect stability of the minichromosome similarly to top2+ gene dosage.
Collapse
Affiliation(s)
- S Murakami
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | |
Collapse
|
35
|
Abstract
Chromatin structure at Schizosaccharomyces pombe centromeres is unusual. The insertion of the ura4 gene within these centromeres resulted in genetically identical cells mosaic for its expression. Placement of the ade6 gene within cen1 or cen3 resulted in red-white sectored colonies, demonstrating the instability of gene expression. The occurrence of pink colonies implied that intermediate levels of repression were established. Repression of both genes within centromeres was temperature sensitive. The chromatin structure of the ura4 gene at centromeres was altered, suggesting that the unusual chromatin encroaches into the gene and inhibits normal expression. These repressive effects at S. pombe centromeres resemble the classical phenomenon of position effect variegation imposed by Drosophila heterochromatin on nearby genes. However, since the epigenetic states can be set at intermediate levels of expression, a purely euchromatin-heterochromatin dichotomy does not apply. A model for the epigenetic regulation of genes placed within S. pombe centromeres is presented.
Collapse
Affiliation(s)
- R C Allshire
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, Scotland
| | | | | | | |
Collapse
|
36
|
Ueki N, Momoi H, Yamada H, Mizuno T. Distribution of bent DNA structures in the fission yeast centromere. Gene X 1993; 132:247-50. [PMID: 8224870 DOI: 10.1016/0378-1119(93)90202-e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To gain a clue as to the functional significance of DNA curvature, we experimentally characterized the distribution of bent DNA structures throughout the 35-kb cen1 sequence, one of the isolated functional centromeric DNA of the fission yeast, Schizosaccharomyces pombe. It was revealed that a relatively large central portion of cen1, covering a 2.2-kb DNA sequence, displays a remarkable DNA curvature.
Collapse
Affiliation(s)
- N Ueki
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
37
|
Ouspenski II, Brinkley BR. Centromeric DNA cloned from functional kinetochore fragments in mitotic cells with unreplicated genomes. J Cell Sci 1993; 105 ( Pt 2):359-67. [PMID: 8408270 DOI: 10.1242/jcs.105.2.359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of cells arrested in the cell cycle at the G1/S-phase boundary with 5 mM caffeine induces premature mitosis, resulting in chromosomal fragmentation and detachment of centromere-kinetochore fragments, which are subsequently attached to the mitotic spindle and segregated in anaphase. Taking advantage of this in vivo separation of the centromere, we have developed a procedure for isolation of a centromere-enriched fraction of mitotic chromatin. Using this method, we have isolated and cloned DNA from the centromere-enriched material of Chinese hamster cells. One of the clones thus obtained was characterized in detail. It contains 6 kb of centromere-associated sequence that exhibits no recognizable homology with other mammalian centromeric sequences and is devoid of any extensive repetitive structure. This sequence is present in a single copy on chromosome 1 and is species-specific. Distinctive features of the clone include the presence of several A+T-rich regions and clusters of multiple topoisomerase II consensus cleavage sites and other sequence motifs characteristic of nuclear matrix-associated regions. We hypothesize that these features might be related to the more compact packaging of centromeric chromatin in interphase nuclei and mitotic chromosomes.
Collapse
Affiliation(s)
- I I Ouspenski
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
38
|
Abstract
A mitotically unstable chromosome, detectable because of mosaic expression of marker genes, was generated by X-ray mutagenesis in Drosophila. Nondisjunction of this chromosome is evident in mitotic chromosome preparations, and premature sister chromatid separation is frequent. The mosaic phenotype is modified by genetic elements that are thought to alter chromatin structure. We hypothesize that the mitotic defects result from a breakpoint deep in the pericentric heterochromatin, within or very near to the DNA sequences essential for centromere function. This unique chromosome may provide a tool for the genetic and molecular dissection of a higher eukaryotic centromere.
Collapse
Affiliation(s)
- D R Wines
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
39
|
Abstract
Centromeres and telomeres are both composed of specific DNA sequences and unique chromosomal proteins. Isolation and characterization of some of these sequences and proteins has greatly increased our knowledge of centromere and telomere structure. This information is allowing us to determine how centromeres and telomeres perform their various roles in a cell.
Collapse
Affiliation(s)
- C M Price
- Department of Chemistry, University of Nebraska, Lincoln 68588
| |
Collapse
|
40
|
Kerrebrock AW, Miyazaki WY, Birnby D, Orr-Weaver TL. The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics 1992; 130:827-41. [PMID: 1582560 PMCID: PMC1204932 DOI: 10.1093/genetics/130.4.827] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Drosophila mei-S332 gene acts to maintain sister-chromatid cohesion before anaphase II of meiosis in both males and females. By isolating and analyzing seven new alleles and a deficiency uncovering the mei-S332 gene we have demonstrated that the onset of the requirement for mei-S332 is not until late anaphase I. All of our alleles result primarily in equational (meiosis II) nondisjunction with low amounts of reductional (meiosis I) nondisjunction. Cytological analysis revealed that sister chromatids frequently separate in late anaphase I in these mutants. Since the sister chromatids remain associated until late in the first division, chromosomes segregate normally during meiosis I, and the genetic consequences of premature sister-chromatid dissociation are seen as nondisjunction in meiosis II. The late onset of mei-S332 action demonstrated by the mutations was not a consequence of residual gene function because two strong, and possibly null, alleles give predominantly equational nondisjunction both as homozygotes and in trans to a deficiency. mei-S332 is not required until after metaphase I, when the kinetochore differentiates from a single hemispherical kinetochore jointly organized by the sister chromatids into two distinct sister kinetochores. Therefore, we propose that the mei-S322 product acts to hold the doubled kinetochore together until anaphase II. All of the alleles are fully viable when in trans to a deficiency, thus mei-S332 is not essential for mitosis. Four of the alleles show an unexpected sex specificity.
Collapse
|
41
|
Abstract
Meiosis is too complex to have arisen at once full blown and a stepwise scheme is proposed for its evolution, where each step is believed to have provided an immediate selective advantage: (1) The first step in this tentative sequence is the development of a haploidization process by means of a rapid series of mitotic non-disjunctions, turned on under conditions where haploidy is favored. The non-disjunctions may have resulted from a conditional mutation which caused sister centromere cohesiveness in the past mitotic metaphase. (2) Next probably came the formation of rudimentary synaptonemal complex type structures, first at Holliday-type configurations and later extending from these along chromosome pairs. These structures between homologues, though costly to produce and maintain, may have directly served the disjunctive function by setting the stage for the production of haploidy in one division, under conditions where it was advantageous. (3) Then secondarily acquired functions of the synaptonemal complex or structures associated with it may have promoted greatly increased crossover frequency, in part at least by increasing the frequency of the isomerization-type reaction. The resulting recombination of linked genes could have been advantageous under some conditions. (4) Finally, it is proposed that the capability was acquired for enhanced association of sister chromatids during the period between pachytene and anaphase I to give rise to chiasma-mediated disjunction, so that the relatively costly synaptonemal complex maintenance until anaphase I could be abandoned without losing disjunctive capability. It is implied that the modern synaptonemal complex is a structure which embodies a number of separately encoded proteins and that secondary structures and functions are associated with close homologue pairing. This scheme is based upon observable cytological and molecular characteristics of modern organisms.
Collapse
Affiliation(s)
- M P Maguire
- Zoology Department, University of Texas, Austin 78712
| |
Collapse
|
42
|
Allshire RC. Manipulation of large minichromosomes in Schizosaccharomyces pombe with liposome-enhanced transformation. Methods Enzymol 1992; 216:614-31. [PMID: 1479919 DOI: 10.1016/0076-6879(92)16053-m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R C Allshire
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland
| |
Collapse
|
43
|
von Sternberg RM, Novick GE, Gao GP, Herrera RJ. Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica 1992; 86:215-46. [PMID: 1334910 DOI: 10.1007/bf00133722] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transposable and interspersed repetitive elements (TIREs) are ubiquitous features of both prokaryotic and eukaryotic genomes. However, controversy has arisen as to whether these sequences represent useless 'selfish' DNA elements, with no cellular function, as opposed to useful genetic units. In this review, we selected two insect species, the Dipteran Drosophila and the Lepidopteran Bombyx mori (the silkmoth), in an attempt to resolve this debate. These two species were selected on the basis of the special interest that our laboratory has had over the years in Bombyx with its well known molecular and developmental biology, and the wealth of genetic data that exist for Drosophila. In addition, these two species represent contrasting repetitive element types and patterns of distribution. On one hand, Bombyx exhibits the short interspersion pattern in which Alu-like TIREs predominate while Drosophila possesses the long interspersion pattern in which retroviral-like TIREs are prevalent. In Bombyx, the main TIRE family is Bm-1 while the Drosophila group contains predominantly copia-like elements, non-LTR retroposons, bacterial-type retroposons and fold-back transposable elements sequences. Our analysis of the information revealed highly non-random patterns of both TIRE biology and evolution, more indicative of these sequences acting as genomic symbionts under cellular regulation rather than useless or selfish junk DNA. In addition, we extended our analysis of potential TIRE functionality to what is known from other eukaryotic systems. From this study, it became apparent that these DNA elements may have originated as innocuous or selfish sequences and then adopted functions. The mechanism for this conversion from non-functionality to specific roles is a process of coevolution between the repetitive element and other cellular DNA often times in close physical proximity. The resulting interdependence between repetitive elements and other cellular sequences restrict the number of evolutionarily successful mutational changes for a given function or cistron. This mutual limitation is what we call genome canalization. Well documented examples are discussed to support this hypothesis and a mechanistic model is presented for how such genomic canalization can occur. Also proposed are empirical studies which would support or invalidate aspects of this hypothesis.
Collapse
Affiliation(s)
- R M von Sternberg
- Department of Biological Sciences, Florida International University, Miami 33199
| | | | | | | |
Collapse
|
44
|
Murakami S, Matsumoto T, Niwa O, Yanagida M. Structure of the fission yeast centromere cen3: direct analysis of the reiterated inverted region. Chromosoma 1991; 101:214-21. [PMID: 1773660 DOI: 10.1007/bf00365153] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We determined the structure of the Schizosaccharomyces pombe centromere cen3 using direct genomic mapping and cosmid walking. The repetitive region of cen3 is approximately 110 kb, much longer than that of the previously determined cen1 and cen2 regions. The approximately 30 kb long left and approximately 60 kb right repetitive sequences are arranged with an inverted symmetry and flank the 15 approximately 20 kb central domain. The repeat motifs in cen3, although they consist of the common centromeric repeat elements, are slightly different from those in cen1 and cen2. The cen3 repeat motifs appear to be reiterated four times in the left and nine times in the right side repetitive regions. We found that the central domain consists of the common approximately 5 kb core sequence associated with the pair of innermost inverted sequences, most of which are reiterated only twice in the genome. Although their sizes differ significantly, the general features of cen1, cen2 and cen3 are similar, and a prototype, consensus structure for the fission yeast centromere may be deduced.
Collapse
Affiliation(s)
- S Murakami
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
45
|
Arn PH, Li X, Smith C, Hsu M, Schwartz DC, Jabs EW. Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes. Mamm Genome 1991; 1:249-54. [PMID: 1665375 DOI: 10.1007/bf00352332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pulsed electrophoresis was used to study the organization of the human centromeric region. Genomic DNA was digested with rare-cutting enzymes. DNA fragments from 0.2 to greater than 5.7 Mb were separated by electrophoresis and hybridized with alphoid and simple DNA repeats. Rare-cutting enzymes (Mlu I, Nar I, Not I, Nru I, Sal I, Sfi I, Sst II) demonstrated fewer restriction sites at centromeric regions than elsewhere in the genome. The enzyme Not I had the fewest restriction sites at centromeric regions. As much as 70% of these sequences from the centromeric region are present in Not I DNA fragments greater than 5.7 and estimated to be as large as 10 Mb in size. Other repetitive sequences such as short interspersed repeated segments (SINEs), long interspersed repeated segments (LINEs), ribosomal DNA, and mini-satellite DNA that are not enriched at the centromeric region, are not enriched in Not I fragments of greater than 5.7 Mb in size.
Collapse
Affiliation(s)
- P H Arn
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|
46
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1990; 18:5587-605. [PMID: 2216753 PMCID: PMC332285 DOI: 10.1093/nar/18.18.5587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|