1
|
Belli S, Esposito D, Servetto A, Pesapane A, Formisano L, Bianco R. c-Src and EGFR Inhibition in Molecular Cancer Therapy: What Else Can We Improve? Cancers (Basel) 2020; 12:E1489. [PMID: 32517369 PMCID: PMC7352780 DOI: 10.3390/cancers12061489] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The proto-oncogene c-Src is a non-receptor tyrosine kinase playing a key role in many cellular pathways, including cell survival, migration and proliferation. c-Src de-regulation has been observed in several cancer types, making it an appealing target for drug discovery efforts. Recent evidence emphasizes its crucial role not only in promoting oncogenic traits, but also in the acquisition and maintenance of cancer resistance to various chemotherapeutic or molecular target drugs. c-Src modulates epidermal growth factor receptor (EGFR) activation and amplifies its downstream oncogenic signals. In this review, we report several studies supporting c-Src kinase role in the intricate mechanisms of resistance to EGFR tyrosine kinase inhibitors (TKIs). We further highlighted pre- and clinical progresses of combined treatment strategies made in recent years. Several pre-clinical data have encouraged the use of c-Src inhibitors in combination with EGFR inhibitors. However, clinical trials provided controversial outcomes in some cancer types. Despite c-Src inhibitors showed good tolerability in cancer patients, no incontrovertible and consistent clinical responses were recorded, supporting the idea that a better selection of patients is needed to improve clinical outcome. Currently, the identification of biological markers predictive of therapy response and the accurate molecular screening of cancer patients aimed to gain most clinical benefits become decisive and mandatory.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.B.); (D.E.); (A.S.); (A.P.)
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.B.); (D.E.); (A.S.); (A.P.)
| |
Collapse
|
2
|
Chen Z, Oh D, Dubey AK, Yao M, Yang B, Groves JT, Sheetz M. EGFR family and Src family kinase interactions: mechanics matters? Curr Opin Cell Biol 2018; 51:97-102. [PMID: 29289897 DOI: 10.1016/j.ceb.2017.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 01/23/2023]
|
3
|
Wang R, Wang X, Wu JQ, Ni B, Wen LB, Huang L, Liao Y, Tong GZ, Ding C, Mao X. Efficient porcine reproductive and respiratory syndrome virus entry in MARC-145 cells requires EGFR-PI3K-AKT-LIMK1-COFILIN signaling pathway. Virus Res 2016; 225:23-32. [DOI: 10.1016/j.virusres.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/16/2016] [Accepted: 09/08/2016] [Indexed: 01/24/2023]
|
4
|
Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci 2013; 14:10761-90. [PMID: 23702846 PMCID: PMC3709701 DOI: 10.3390/ijms140610761] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
The Src gene product (Src) and the epidermal growth factor receptor (EGFR) are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845) in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases) or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase). A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.
Collapse
|
5
|
Acute ligand-independent Src activation mimics low EGF-induced EGFR surface signalling and redistribution into recycling endosomes. Exp Cell Res 2010; 316:3239-53. [PMID: 20832399 DOI: 10.1016/j.yexcr.2010.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/12/2010] [Accepted: 09/02/2010] [Indexed: 01/09/2023]
Abstract
Src, a non-receptor tyrosine kinase, is a key signal transduction partner of epidermal growth factor (EGF) receptor (EGFR). In human breast cancer, EGFR and Src are frequently over-expressed and/or over-activated. Although reciprocal activation is documented, mechanisms underlying Src:EGFR interactions are incompletely understood. We here exploited ts/v-Src thermo-activation in MDCK monolayers to test whether acute Src activation impacts on signalling and trafficking of non-liganded EGFR. We found that thermo-activation caused rapid Src recruitment to the plasma membrane, concomitant association with EGFR, and its phosphorylation at Y845 and Y1173 predominantly at the cell surface. Like low EGF concentrations, activated Src (i) decreased EGF surface binding without affecting the total EGFR pool; (ii) triggered EGFR endocytosis via clathrin-coated vesicles; (iii) and led to its sequestration in perinuclear/recycling endosomes with avoidance of multivesicular bodies and lysosomal degradation. Combined Src activation and EGF were synergistic for EGFR-Y845 and -Y1173 phosphorylation at some endosomes. We conclude that acute effects of Src in MDCK cells may mimic those of low EGF on EGFR activation and redistribution. Src:EGFR interactions may be sufficient to trigger EGFR activation and might contribute to its local signalling, without requiring either soluble extracellular signal or receptor over-expression.
Collapse
|
6
|
Bromann PA, Korkaya H, Courtneidge SA. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 2004; 23:7957-68. [PMID: 15489913 DOI: 10.1038/sj.onc.1208079] [Citation(s) in RCA: 361] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Src family tyrosine kinases (SFKs) are involved in a diverse array of physiological processes, as highlighted in this review. An overview of how SFKs interact with, and participate in signaling from, receptor tyrosine kinases (RTKs) is discussed. And also, how SFKs are activated by RTKs, and how SFKs, in turn, can activate RTKs, as well as how SFKs can promote signaling from growth factor receptors in a number of ways including participation in signaling pathways required for DNA synthesis, control of receptor turnover, actin cytoskeleton rearrangements and motility, and survival are discussed.
Collapse
Affiliation(s)
- Paul A Bromann
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
7
|
Habib AA, Chatterjee S, Park SK, Ratan RR, Lefebvre S, Vartanian T. The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-kappa B (NF-kappa B)-inducing kinase to activate NF-kappa B. Identification of a novel receptor-tyrosine kinase signalosome. J Biol Chem 2001; 276:8865-74. [PMID: 11116146 DOI: 10.1074/jbc.m008458200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) is activated by a diverse number of stimuli including tumor necrosis factor-alpha, interleukin-1, UV irradiation, viruses, as well as receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR). NF-kappaB activation by the tumor necrosis factor receptor (TNFR) involves the formation of a multiprotein complex termed a signalosome. Although previous studies have shown that the activated EGFR can induce NF-kappaB, the mechanism of this activation remains unknown. In this study, we identify components of the signalosome formed by the activated EGFR required to activate NF-kappaB and show that, although the activated EGFR uses mechanisms similar to the TNFR, it recruits a distinct signalosome. We show the EGFR forms a complex with a TNFR-interacting protein (RIP), which plays a key role in TNFR-induced NF-kappaB activation, but not with TRADD, an adaptor protein which serves to recruit RIP to the TNFR. Furthermore, we show that the EGFR associates with NF-kappaB-inducing kinase (NIK) and provide evidence suggesting multiprotein complex formation between the EGFR, RIP, and NIK. Using a dominant negative NIK mutant, we show that NIK activation is required for EGFR-mediated NF-kappaB induction. We also show that a S32/36 IkappaBalpha mutant blocks EGFR-induced NF-kappaB activation. Our studies also suggest that a high level of EGFR expression, a frequent occurrence in human tumors, is optimal for epidermal growth factor-induced NF-kappaB activation. Finally, although protein kinase B/Akt has been implicated in tumor necrosis factor and PDGF-induced NF-kappaB activation, our studies do not support a role for this protein in EGFR-induced NF-kappaB activation.
Collapse
Affiliation(s)
- A A Habib
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Högnason T, Chatterjee S, Vartanian T, Ratan RR, Ernewein KM, Habib AA. Epidermal growth factor receptor induced apoptosis: potentiation by inhibition of Ras signaling. FEBS Lett 2001; 491:9-15. [PMID: 11226409 DOI: 10.1016/s0014-5793(01)02166-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that certain tumor cell lines which naturally express high levels of the epidermal growth factor receptor (EGFR) undergo apoptosis when exposed to epidermal growth factor. Whether this phenomenon is a direct result of receptor overexpression or some other genetic alteration renders these cells sensitive to apoptosis is yet to be established. We show that experimentally increasing the level of EGFR expression predictably leads to apoptosis in a variety of cell types which requires an active tyrosine kinase but not EGFR autophosphorylation sites. Expression of a dominant negative Ras mutant in EGFR overexpressing cells results in a significant potentiation of EGFR induced apoptosis suggesting that Ras activation is a key survival signal generated by the EGFR. We propose that potentiation of EGFR induced apoptosis by dominant negative Ras results, at least in part, by a block of Akt activation.
Collapse
Affiliation(s)
- T Högnason
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
9
|
Hernández M, Barrero MJ, Crespo MS, Nieto ML. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem 2000; 75:1575-82. [PMID: 10987838 DOI: 10.1046/j.1471-4159.2000.0751575.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of the lysophospholipid mediators lysophosphatidic acid (LPA) and sphingosine 1-phosphate and the polypeptide growth factor epidermal growth factor (EGF) on the human astrocytoma cell line 1321N1 was assessed. These agonists produced a rapid and transient increase of the intracellular Ca(2+) concentration. When LPA was perfused before addition of EGF, the EGF-dependent Ca(2+) transient was abrogated, whereas this was not observed when EGF preceded LPA addition. This inhibitory effect was not found for other EGF-mediated responses, e.g., activation of the mitogen-activated protein kinase cascade and cell proliferation, thus pointing to the existence of cross-talk between LPA and EGF for only a branch of EGF-induced responses. As 1321N1 cells expressed mRNA encoding the LPA receptors endothelial differentiation gene (Edg)-2, Edg-4, and Edg-7 and as sphingosine 1-phosphate did not interfere with LPA signaling, Edg-2, Edg-4, and/or Edg-7 could be considered as the LPA receptors mediating the aforementioned cross-talk. Attempts to address the biochemical mechanism involved in the cross-talk between the receptors were conducted by the immunoprecipitation approach using antibodies reacting with the EGF receptor (EGFR), phosphotyrosine, phospholipase Cgamma (PLCgamma)-1, and G(alphai) protein. LPA was found to induce coupling of PLCgamma-1 to the EGFR by a mechanism involving a G(alphai) protein, in the absence of tyrosine phosphorylation of both PLCgamma and the EGFR. These data show a cross-talk between LPA and EGF limited to a branch of EGFR-mediated signaling, which may be explained by a LPA-induced, G(alphai)-protein-mediated translocation of PLCgamma-1 to EGFR in the absence of detectable tyrosine phosphorylation of both proteins.
Collapse
Affiliation(s)
- M Hernández
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | | | | | | |
Collapse
|
10
|
Sato K, Kimoto M, Kakumoto M, Horiuchi D, Iwasaki T, Tokmakov AA, Fukami Y. Adaptor protein Shc undergoes translocation and mediates up-regulation of the tyrosine kinase c-Src in EGF-stimulated A431 cells. Genes Cells 2000; 5:749-64. [PMID: 10971656 DOI: 10.1046/j.1365-2443.2000.00358.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Shc is the adaptor protein that exists in three isoforms, P46, P52 and P66, and acts as a bridge between activated cell surface receptors and downstream signalling molecules which act in extracellular signal-regulated cell events such as cell cycle progression. In our previous studies, Shc was shown to be a substrate of the tyrosine kinase c-Src in vitro and in vivo. RESULTS Using green fluorescent protein-fusion Shc (GFP-Shc), we have shown that following epidermal growth factor (EGF) stimulation of A431 cells, all Shc isoforms were rapidly recruited from the cytoplasm to the plasma membrane (within 5 min) and then redistributed to the cytoplasmic vesicle structures (in the next 10-20 min). Indirect immunofluorescent study demonstrated that all Shc isoforms co-localize with EGF receptor (EGFR) and activated c-Src in both plasma membranes and cytoplasmic vesicle structures. Our previous study has shown that EGF induces the indirect association of EGFR and c-Src and activation of c-Src in A431 cells. An immunoprecipitation study demonstrated that the EGFR-Src association and c-Src activation are augmented in cells expressing GFP-Shc P52 or P66, but not P46. In addition, P52 and P66, but not P46, are in association with EGFR-Src complex. We also found that EGFR and Shc can be dissociated from c-Src by the addition of a synthetic peptide that corresponds to the autophosphorylation site of c-Src. Interestingly, the peptide-induced dissociation of the complex was not affected by the tyrosine phosphorylation state of the peptide. CONCLUSION These results demonstrated a dynamic subcellular movement of Shc in response to EGF, and suggested a hitherto unknown scheme whereby Shc can work not only as a substrate of c-Src but also as a mediator of the EGF-induced activation of c-Src in an isoform-specific manner.
Collapse
Affiliation(s)
- K Sato
- Laboratory of Molecular Biology, Biosignal Research Center, and; Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhu D, Bourguignon LY. The ankyrin-binding domain of CD44s is involved in regulating hyaluronic acid-mediated functions and prostate tumor cell transformation. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:209-22. [PMID: 9519902 DOI: 10.1002/(sici)1097-0169(1998)39:3<209::aid-cm4>3.0.co;2-#] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CD44 isoforms, such as CD44s (the standard form), contain at least one ankyrin-binding site within the 70-amino acid (aa) cytoplasmic domain and several hyaluronic acid (HA)-binding sites within the extracellular domain. To study the role of CD44s-ankyrin interaction in regulating human prostate tumor cells, we have constructed several CD44s cytoplasmic deletion mutants that lack the ankyrin-binding site(s). These truncated cDNAs were stably transfected into CD44-negative human prostate tumor cells (LNCaP). Our results indicate that a critical region of 15-amino acids (aa) between aa 304 and aa 318 of CD44s is required for ankyrin binding. Biochemical analyses, using competition binding assays with a synthetic peptide containing the 15 aa between aa 304 and aa 318 (NSGNGAVEDRKPSGL), further support the conclusion that this region contains the ankyrin-binding domain of CD44s. Deletion of this 15-aa ankyrin-binding sequence from CD44s results in a drastic reduction of HA-mediated binding/cell adhesion, Src p60 kinase(s) interaction and anchorage-independent growth in soft agar. These findings suggest that the binding of cytoskeletal proteins, such as ankyrin, to the cytoplasmic domain of CD44s plays a pivotal role in regulating HA-mediated functions as well as Src kinase activity and prostate tumor cell transformation.
Collapse
Affiliation(s)
- D Zhu
- Department of Cell Biology and Anatomy, University of Miami Medical School, Florida 33101, USA
| | | |
Collapse
|
12
|
Venkatakrishnan G, Salgia R, Groopman JE. Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells. J Biol Chem 2000; 275:6868-75. [PMID: 10702246 DOI: 10.1074/jbc.275.10.6868] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ovarian cancer typically disseminates widely in the abdomen, a characteristic that limits curative therapy. The mechanisms that promote ovarian cancer cell migration are incompletely understood. We studied model SK-OV-3 ovarian cancer cells and observed robust expression of the alpha chemokine receptors CXCR-1 and CXCR-2. Interleukin-8 (IL-8) treatment caused shape changes in the cells, with membrane ruffling and formation/retraction of thin actin-like projections, as detected by time-lapse microscopy. Stimulation of the CXCR-1/2 receptors by human interleukin 8 (IL-8) rapidly activated the p44/42 mitogen-activated protein (extracellular signal-regulated kinase (Erk1/2)) kinase pathway. Treatment of SK-OV-3 cells with the inhibitors genestein and herbimycin A indicated that tyrosine kinases were involved in the IL-8 activation of Erk1 and Erk2. Of note, IL-8 induced transient phosphorylation of the epidermal growth factor (EGF) receptor and its association with the adaptor molecules Shc and Grb2. This transactivation of the EGF receptor was dependent on intracellular Ca(2+) mobilization. Furthermore AG1478, a specific inhibitor of the EGF receptor kinase, blocked Erk1 and Erk2 activation. c-Src kinase was not involved in the IL-8-mediated phosphorylation of the EGF receptor, but was critical for Shc phosphorylation and downstream Erk1/2 kinase activation. These results suggest important "cross-talk" between chemokine and growth factor pathways that may link signals of cell migration and proliferation in ovarian cancer.
Collapse
Affiliation(s)
- G Venkatakrishnan
- Divisions of Experimental Medicine and Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
13
|
Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE. ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem 1999; 274:17209-18. [PMID: 10358079 DOI: 10.1074/jbc.274.24.17209] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor (EGF) binding to its receptor, ErbB1, triggers various signal transduction pathways, one of which leads to the activation of signal transducer and activator of transcription (Stat) factors. The mechanism underlying ErbB1-induced Stat activation and whether Stats are downstream targets of other ErbB receptors have not been explored. In this report we show that ErbB2, ErbB3, and ErbB4 do not potentiate Stat5 phosphorylation by EGF. However, neu differentiation factor-induced heterodimers of ErbB2 and ErbB4 activated Stat5. In A431 cells, Stat1, Stat3, and Stat5, were constitutively complexed with ErbB1 and rapidly phosphorylated on tyrosine in response to EGF. Neither mutation of the conserved tyrosine residue (Tyr694) nor inactivation of the Stat5a SH2 domain disrupted this association. However, an intact SH2 domain was necessary for EGF-induced Stat5a phosphorylation. In contrast to prolactin, which induced only Tyr694 phosphorylation of Stat5a, EGF promoted phosphorylation on Tyr694 and additional tyrosine residue(s). Janus kinases (Jaks) were also constitutively associated with ErbB receptors and were phosphorylated in response to EGF-related ligands. However, we provide evidence that EGF- and neu differentiation factor-induced Stat activation are dependent on Src but not Jak kinases. Upon EGF stimulation, c-Src was rapidly recruited to Stat/ErbB receptor complexes. Pharmacological Src kinase inhibitors and a dominant negative c-Src ablated both Stat and Jak tyrosine phosphorylation. However, dominant negative Jaks did not affect EGF-induced Stat phosphorylation. Taken together, the experiments establish two independent roles for Src kinases: (i) key molecules in ErbB receptor-mediated Stat signaling and (ii) potential upstream regulators of Jak kinases.
Collapse
Affiliation(s)
- M A Olayioye
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 1999; 274:8335-43. [PMID: 10075741 DOI: 10.1074/jbc.274.12.8335] [Citation(s) in RCA: 529] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that interactions between the epidermal growth factor receptor (EGFR) and the nonreceptor tyrosine kinase c-Src may contribute to an aggressive phenotype in multiple human tumors. Previous work from our laboratory demonstrated that murine fibroblasts which overexpress both these tyrosine kinases display synergistic increases in DNA synthesis, soft agar growth, and tumor formation in nude mice, and increased phosphorylation of the receptor substrates Shc and phospholipase gamma as compared with single overexpressors. These parameters correlated with the ability of c-Src and EGFR to form an EGF-dependent heterocomplex in vivo. Here we provide evidence that association between c-Src and EGFR can occur directly, as shown by receptor overlay experiments, and that it results in the appearance of two novel tyrosine phosphorylations on the receptor that are seen both in vitro and in vivo following EGF stimulation. Edman degradation analyses and co-migration of synthetic peptides with EGFR-derived tryptic phosphopeptides identify these sites as Tyr845 and Tyr1101. Tyr1101 lies within the carboxyl-terminal region of the EGFR among sites of receptor autophosphorylation, while Tyr845 resides in the catalytic domain, in a position analogous to Tyr416 of c-Src. Phosphorylation of Tyr416 and homologous residues in other tyrosine kinase receptors has been shown to be required for or to increase catalytic activity, suggesting that c-Src can influence EGFR activity by mediating phosphorylation of Tyr845. Indeed, EGF-induced phosphorylation of Tyr845 was increased in MDA468 human breast cancer cells engineered to overexpress c-Src as compared with parental MDA 468 cells. Furthermore, transient expression of a Y845F variant EGFR in murine fibroblasts resulted in an ablation of EGF-induced DNA synthesis to nonstimulated levels. Together, these data support the hypothesis that c-Src-mediated phosphorylation of EGFR Tyr845 is involved in regulation of receptor function, as well as in tumor progression.
Collapse
Affiliation(s)
- J S Biscardi
- Department of Microbiology and Cancer Center, Box 441, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Hinterding K, Knebel A, Herrlich P, Waldmann H. Synthesis and biological evaluation of aeroplysinin analogues: a new class of receptor tyrosine kinase inhibitors. Bioorg Med Chem 1998; 6:1153-62. [PMID: 9784857 DOI: 10.1016/s0968-0896(98)00070-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor (PDGFR), are critically involved in the transduction of mitogenic signals across the plasma membrane and therefore in the regulation of cell growth and proliferation. Enhanced RTK activity is associated with proliferative diseases such as cancer, psoriasis and atherosclerosis, while decreased function may be associated for instance with diabetes. EGFR and PDGFR are selectively inhibited by analogues of the marine natural product aeroplysinin. The synthetic inhibitors display IC50 values in the low micromolar range and in contrast to the natural product show pronounced inhibitory activity in cultured cells in vivo. The mechanism of inhibition is likely based on a covalent modification of the target enzymes by reaction of epoxy ketone 8 with various nucleophiles.
Collapse
Affiliation(s)
- K Hinterding
- Universität Karlsruhe, Institut für Organische Chemie, Germany
| | | | | | | |
Collapse
|
17
|
Baxter RM, Secrist JP, Vaillancourt RR, Kazlauskas A. Full activation of the platelet-derived growth factor beta-receptor kinase involves multiple events. J Biol Chem 1998; 273:17050-5. [PMID: 9642269 DOI: 10.1074/jbc.273.27.17050] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of receptor tyrosine kinases is thought to involve ligand-induced dimerization, which promotes receptor transphosphorylation and thereby increases the receptor's phosphotransferase activity. We used two platelet-derived growth factor beta-receptor (beta-PDGFR) mutants to identify events that are required for full engagement (autophosphorylation and activation of the kinase activity) of the beta-PDGFR kinase. The F79/81 receptor (Tyr to Phe substitution at 579 and 581 in the juxtamembrane domain of the receptor) was capable of only very modest ligand-dependent autophosphorylation and also failed to associate with numerous SH2 domain-containing proteins. Furthermore, stimulation with platelet-derived growth factor (PDGF) did not increase the kinase activity of the F79/81 mutant toward exogenous substrates. However, the F79/81 receptor had basal kinase activity and could be artificially stimulated by incubation with ATP. Because the low kinase activity of the F857 mutant (Tyr to Phe substitution at 857 in the putative activation loop) could not be increased by incubation with ATP, failure to phosphorylate Tyr-857 may be the reason why the F79/81 mutant has low kinase activity. Surprisingly, the F857 mutant underwent efficient PDGF-dependent autophosphorylation. Thus the PDGF-dependent increase in the kinase activity of the receptor is not required for autophosphorylation. We conclude that full activation of the beta-PDGFR kinase requires at least two, apparently distinct events.
Collapse
Affiliation(s)
- R M Baxter
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
18
|
Cunnick JM, Dorsey JF, Standley T, Turkson J, Kraker AJ, Fry DW, Jove R, Wu J. Role of tyrosine kinase activity of epidermal growth factor receptor in the lysophosphatidic acid-stimulated mitogen-activated protein kinase pathway. J Biol Chem 1998; 273:14468-75. [PMID: 9603960 DOI: 10.1074/jbc.273.23.14468] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence indicates that the epidermal growth factor (EGF) receptor mediates a branch of lysophosphatidic acid (LPA)-induced signal transduction pathways that activate mitogen-activated protein (MAP) kinase. However, it is unclear whether the intrinsic tyrosine kinase activity of EGF receptor is involved. We previously showed that reactive oxygen species (ROS) were involved in the LPA-stimulated MAP kinase pathway. Here, we identify tyrosine phosphorylation of EGF receptor as an LPA signaling step that requires ROS. To evaluate the role of the tyrosine kinase activity of EGF receptor in the LPA-stimulated MAP kinase pathway, we examined the effects of an EGF receptor-specific tyrosine kinase inhibitor, PD158780. PD158780 potently inhibited the LPA-stimulated MAP kinase kinase 1/2 (MKK1/2) activation and EGF receptor tyrosine phosphorylation in HeLa cells, while it had no detectable effect on c-Src kinase activity. PD158780 also inhibited LPA-induced MKK1/2 activation and DNA synthesis in NIH 3T3 cells. Furthermore, we compared LPA-stimulated MKK1/2 and MAP kinase activation, transcriptional activity of the c-fos promoter, and DNA synthesis in B82L cells, which lack endogenous EGF receptor, and B82L cells expressing kinase-defective or wild-type human EGF receptor. Results obtained from analysis of these cell lines suggest that the EGF receptor tyrosine kinase contributes to the LPA-stimulated MAP kinase activation, c-fos transcription, and mitogenesis.
Collapse
Affiliation(s)
- J M Cunnick
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
van Oijen MG, Rijksen G, ten Broek FW, Slootweg PJ. Overexpression of c-Src in areas of hyperproliferation in head and neck cancer, premalignant lesions and benign mucosal disorders. J Oral Pathol Med 1998; 27:147-52. [PMID: 9563568 DOI: 10.1111/j.1600-0714.1998.tb01931.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To examine which proteins are responsible for the elevated protein tyrosine kinase (PTK) activity in human head and neck squamous cell carcinoma (HNSCC) and adjacent histologically normal epithelium, paraffin embedded sections of these tissues were stained for PTK c-Src. Using double labeling techniques and antibodies against both the proliferation marker Ki-67 and PTK c-Src, we have shown that c-Src is overexpressed in areas of hyperproliferation in HNSCC, dysplastic epithelium, benign papillomas and inflamed normal tissue. Our data indicate that c-Src is (one of) the protein(s) responsible for the increased PTK activity in HNSCC. We could not demonstrate that c-Src expression is responsible for the increased PTK activity in normal epithelium adjacent to tumour tissue. We assume that c-Src plays a role in the increased proliferation seen in (pre)malignant and benign epithelial lesions as well as in reactive inflammatory epithelial hyperplasia.
Collapse
Affiliation(s)
- M G van Oijen
- Department of Haematology, University Hospital Utrecht, The Netherlands
| | | | | | | |
Collapse
|
20
|
Habib AA, Högnason T, Ren J, Stefánsson K, Ratan RR. The epidermal growth factor receptor associates with and recruits phosphatidylinositol 3-kinase to the platelet-derived growth factor beta receptor. J Biol Chem 1998; 273:6885-91. [PMID: 9506992 DOI: 10.1074/jbc.273.12.6885] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor tyrosine kinases are classified into subfamilies, which are believed to function independently, with heterodimerization occurring only within the same subfamily. In this study, we present evidence suggesting a direct interaction between the epidermal growth factor (EGF) receptor (EGFR) and the platelet-derived growth factor beta (PDGFbeta) receptor (PDGFbetaR), members of different receptor tyrosine kinase subfamilies. We find that the addition of EGF to COS-7 cells and to human foreskin Hs27 fibroblasts results in a rapid tyrosine phosphorylation of the PDGFbetaR and results in the recruitment of phosphatidylinositol 3-kinase to the PDGFbetaR. In R1hER cells, which overexpress the EGFR, we find ligand-independent tyrosine phosphorylation of the PDGFbetaR and the constitutive binding of a substantial amount of PI-3 kinase activity to it, mimicking the effect of ligand in untransfected cells. In support of the possibility that this may be a direct interaction, we show that the two receptors can be coimmunoprecipitated from untransfected Hs27 fibroblasts and from COS-7 cells. This association can be reconstituted by introducing the two receptors into 293 EBNA cells. The EGFR/PDGFbetaR association is ligand-independent in all cell lines tested. We also demonstrate that the fraction of PDGFbetaR bound to the EGFR in R1hER cells undergoes an EGF-induced mobility shift on Western blots indicative of phosphorylation. Our findings indicate that direct interactions between receptor tyrosine kinases classified under different subfamilies may be more widespread than previously believed.
Collapse
Affiliation(s)
- A A Habib
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
21
|
Gelderloos JA, Rosenkranz S, Bazenet C, Kazlauskas A. A role for Src in signal relay by the platelet-derived growth factor alpha receptor. J Biol Chem 1998; 273:5908-15. [PMID: 9488729 DOI: 10.1074/jbc.273.10.5908] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that Src is required for platelet-derived growth factor (PDGF)-dependent cell cycle progression in fibroblasts. Since fibroblasts usually express both PDGF receptors (PDGFRs), these findings suggested that Src was mandatory for signal relay by both the alpha and betaPDGFRs. In this study, we have focused on the role of Src in signal relay by the alphaPDGFR. In response to stimulation with PDGF-AA, which selectively engages the alphaPDGFR, Src family members (Src) associated with the alphaPDGFR and Src kinase were activated. A mutant receptor, in which tyrosines 572 and 574 were replaced with phenylalanine (F72/74), failed to efficiently associate with Src or activate Src. The wild type (WT) and F72/74 receptors induced the expression of c-myc and c-fos to comparable levels. Furthermore, an equivalent extent of PDGF-dependent soft agar growth was observed in cells expressing the WT or the F72/74 alphaPDGFR. Comparing the ability of these two receptors to initiate tyrosine phosphorylation of signaling molecules indicated that both receptors mediated phosphorylation of the receptor itself, phospholipase Cgamma 1, and SHP-2 to similar levels. In contrast, the F72/74 receptor triggered phosphorylation of Shc to 1 and 20% of the WT levels for the 55- and 46-kDa Shc isoforms, respectively. These findings indicate that after exposure of cells to PDGF-AA, Src stably associates with the alphaPDGFR, and Src activity is increased. Furthermore, Src is required for the PDGF-dependent phosphorylation of signaling molecules such as Shc. Finally, activation of Src during the G0/G1 transition does not appear to be required for latter cell cycle events such as induction of c-myc or cell proliferation.
Collapse
Affiliation(s)
- J A Gelderloos
- The Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
22
|
Polk DB. Epidermal growth factor receptor-stimulated intestinal epithelial cell migration requires phospholipase C activity. Gastroenterology 1998; 114:493-502. [PMID: 9496939 DOI: 10.1016/s0016-5085(98)70532-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Ulceration of intestinal mucosa is rapidly followed by enterocyte migration via restitution. The aim of this study was to investigate signaling mechanisms of epidermal growth factor (EGF) receptor-stimulated monolayer restitution in a mouse intestinal epithelial cell line. METHODS EGF-stimulated cell migration was determined using a wound model in the presence of agonists and/or antagonists of tyrosine kinase, phospholipase C, phosphatidylinositol 3-kinase, or protein kinase C. The tyrosine phosphorylation state of the EGF receptor, phosphatidylinositol phospholipase C gamma1 (PLCgamma1), focal adhesion kinase, and cellular lysates was determined by immunodetection. RESULTS EGF stimulated cell migration twofold at 4, 8, and 24 hours. Inhibition of EGF receptor tyrosine kinase activity, phospholipase C, or phosphatidylinositol 3-kinase attenuated EGF-induced intestinal cell migration. Pretreatment of cells with phorbol 12-myristate 13-acetate, known to down-regulate protein kinase C expression, blocked EGF-induced cell migration. Increased tyrosine phosphorylation of the EGF receptor and PLCgamma1 was detected within 5 minutes after wounding. CONCLUSIONS EGF-stimulated intestinal cell migration requires intact EGF receptor tyrosine kinase, phospholipase, and protein kinase C activities. PLCgamma1 may be a key regulatory molecule in the initial EGF receptor signal transduction pathway of EGF-stimulated cell migration.
Collapse
Affiliation(s)
- D B Polk
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2576, USA.
| |
Collapse
|
23
|
Curto M, Frankel P, Carrero A, Foster DA. Novel recruitment of Shc, Grb2, and Sos by fibroblast growth factor receptor-1 in v-Src-transformed cells. Biochem Biophys Res Commun 1998; 243:555-60. [PMID: 9480847 DOI: 10.1006/bbrc.1997.7982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In response to fibroblast growth factor (FGF), FGF receptor-1 (FGFR-1) (flg) becomes tyrosine phosphorylated and associates with phospholipase C gamma (PLC gamma) and a 90 kDa protein. We report here that in cells transformed by v-Src, FGFR-1 becomes phosphorylated on tyrosine; however, neither PLC gamma nor p90 was found to be associated with tyrosine-phosphorylated FGFR-1. Instead, there was a strong constitutive association of FGFR-1 with the adaptor proteins Shc and Grb2 and the Ras guanine nucleotide exchange factor Sos. Association with Shc and Grb2 and Sos was not observed in response to FGF. Suramin did not prevent either tyrosine phosphorylation or Shc/Grb2/Sos association, indicating a non-autocrine mechanism. Thus, in cells transformed by v-Src, tyrosine phosphorylation of FGFR-1 results not in the expected association with PLC gamma and p90, but rather in the recruitment of the Ras activating Shc/Grb2/Sos complex. These data suggest a mechanism for Ras activation by v-Src involving phosphorylation of novel tyrosine(s) on FGFR-1.
Collapse
Affiliation(s)
- M Curto
- Department of Biological Sciences, Hunter College of the City University of New York, New York 10021, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Src family protein tyrosine kinases are activated following engagement of many different classes of cellular receptors and participate in signaling pathways that control a diverse spectrum of receptor-induced biological activities. While several of these kinases have evolved to play distinct roles in specific receptor pathways, there is considerable redundancy in the functions of these kinases, both with respect to the receptor pathways that activate these kinases and the downstream effectors that mediate their biological activities. This chapter reviews the evidence implicating Src family kinases in specific receptor pathways and describes the mechanisms leading to their activation, the targets that interact with these kinases, and the biological events that they regulate.
Collapse
Affiliation(s)
- S M Thomas
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
25
|
Zwick E, Daub H, Aoki N, Yamaguchi-Aoki Y, Tinhofer I, Maly K, Ullrich A. Critical role of calcium- dependent epidermal growth factor receptor transactivation in PC12 cell membrane depolarization and bradykinin signaling. J Biol Chem 1997; 272:24767-70. [PMID: 9312072 DOI: 10.1074/jbc.272.40.24767] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PC12 cells respond to a variety of external stimuli such as growth factors, neurotransmitters, and membrane depolarization by activating the Ras/mitogen-activated protein kinase pathway. Here we demonstrate that both depolarization-induced calcium influx and treatment with bradykinin stimulate tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). Using a tetracycline-controlled expression system in conjunction with a dominant-negative EGFR mutant, we demonstrate that depolarization and bradykinin triggered signals involve EGFR function upstream of SHC and MAP kinase. Furthermore, bradykinin-stimulated EGFR transactivation is critically dependent on the presence of extracellular calcium, and when triggered by ionophore treatment, calcium influx is already sufficient to induce EGFR tyrosine phosphorylation. Taken together, our results establish calcium-dependent EGFR transactivation as a signaling mechanism mediating activation of the Ras/mitogen-activated protein kinase pathway in neuronal cell types.
Collapse
Affiliation(s)
- E Zwick
- Department of Molecular Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Waldmann H, Hinterding K, Herrlich P, Rahmsdorf HJ, Knebel A. Selektive Inhibierung von Rezeptor-Tyrosinkinasen mit Aeroplysinin-Analoga. Angew Chem Int Ed Engl 1997. [DOI: 10.1002/ange.19971091328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Blankenship A, Matsumura F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes an Ah receptor-dependent and ARNT-independent increase in membrane levels and activity of p60(Src). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1997; 3:211-220. [PMID: 21781780 DOI: 10.1016/s1382-6689(97)00016-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/1996] [Revised: 04/16/1997] [Accepted: 04/21/1997] [Indexed: 05/31/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to affect various cellular activities including growth factor signal transduction, hormone responses, and cell differentiation. The purpose of this study was to examine more closely the very early effects of TCDD on protein tyrosine kinase activity, specifically p60(Src). We found that TCDD causes rapid changes in the plasma-microsomal membrane levels and activity of p60(Src) in Hepa 1c1c7, Hepa c4 cells, and SR3Y1 cells, a p60(v-Src) overexpressing cell line. Such cellular changes occur within 30 minutes after 10 nM TCDD treatment, as measured by Western blot analysis. TCDD's ability to increase p60(Src) levels was found to be: (1) dose-dependent, with an estimated EC(50) between 10(-10) and 10(-11) M TCDD; (2) Ah receptor (AhR)-dependent, since TCDD's effect was blocked by co-administration with 1 μM α-naphthoflavone, an AhR antagonist; and interestingly (3) ARNT-independent, since TCDD's effect was observed in Hepa c4 cells, an ARNT(-) mutant cell line. Since ARNT is a heterodimerization partner of the AhR required for binding of the ligand-activated AhR to dioxin-responsive elements on DNA in the nucleus to transactivate genes controlled by the AhR, an alternative mechanism for TCDD's action is discussed which does not require ARNT. Along with increased membrane levels of p60(Src), we observed a corresponding increase in the activity of a 60 kDa protein tyrosine kinase using two different kinase detection assays. This effect of TCDD was also found to be AhR-dependent, ARNT-independent, and independent of de novo protein synthesis since cycloheximide was unable to completely abolish TCDD's effect. The present findings provide a potentially important mechanism by which TCDD can alter cell growth and differentiation.
Collapse
Affiliation(s)
- A Blankenship
- Department of Environmental Toxicology and the Center for Environmental Health Sciences, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
28
|
Presnell SC, Stolz DB, Mars WM, Jo M, Michalopoulos GK, Strom SC. Modifications of the hepatocyte growth factor/c-met pathway by constitutive expression of transforming growth factor-alpha in rat liver epithelial cells. Mol Carcinog 1997; 18:244-255. [PMID: 9142219 DOI: 10.1002/(sici)1098-2744(199704)18:4<244::aid-mc8>3.0.co;2-d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously shown that rat liver epithelial cells (RLEC) transfected with and constitutively expressing transforming growth factor-alpha (TGF-alpha) have an enhanced mitogenic response to hepatocyte growth factor (HGF). In the study reported here, we examined tumor clones derived from the TGF-alpha transfectants with respect to mitogenic response to HGF. Tumor cell lines that expressed TGF-alpha responded to HGF with a greater increase in DNA synthesis than did the nontransfected parental RLEC (pRLEC). The tumor clones had also acquired a lower threshold for HGF response, which enabled them to undergo significant DNA synthesis at a low concentration of HGF that did not evoke a response in the pRLEC or TGF-alpha transfectants. We investigated the mechanisms by which TGF-alpha expression may influence the HGF/c-met pathway. We showed that most TGF-alpha transfectants and tumor cells displayed increases in c-met mRNA and protein, indicating that the enhanced HGF response may be due in part to an increase in the amount of receptor present. However, in all transfectants and tumor clones that constitutively expressed TGF-alpha, c-met was tyrosine phosphorylated in the absence of ligand (HGF) or other exogenous growth factors. These data suggest that induction of c-met mRNA and transactivation of c-met may be a sequela of the constitutive expression of TGF-alpha and that constitutive activation of the epidermal growth factor receptor pathway leads to phosphorylation and activation of c-met. These studies provide evidence for a novel mechanism of communication between epidermal growth factor receptor and c-met pathways that may partially explain the synergistic effects reported between TGF-alpha and HGF.
Collapse
Affiliation(s)
- S C Presnell
- Department of Pathology, Virginia Commonwealth University, Richmond, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Recent findings shed new light on the process of receptor tyrosine kinase (RTK) activation and signal definition. In extension to the established mechanism of ligand-induced homodimeric receptor complex formation, recent findings highlight heterodimeric receptor aggregation as a powerful means of signal diversification. Promiscuous receptor interactions involve different ligand binding kinetics and generate divergent receptor phosphorylation sites that could allow enhanced or modified signal generation. Besides activation by a specific ligand, a newly defined RTK function involves signal integration of a variety of stimuli, including calcium-dependent responses in neuronal cells, activation of G-protein-coupled receptors or cellular stress such as UV irradiation. On the basis of existing evidence for such crossactivation pathways, RTKs must be considered as representing critical foci and switch points for multiple environmental and internal stimuli.
Collapse
Affiliation(s)
- F U Weiss
- Department of Molecular Biology, Max Planck Institut für Biochemie, AmKlopferspitz 18A, 82512 Martinsried, Germany.
| | | | | |
Collapse
|
30
|
Hansen K, Johnell M, Siegbahn A, Rorsman C, Engström U, Wernstedt C, Heldin CH, Rönnstrand L. Mutation of a Src phosphorylation site in the PDGF beta-receptor leads to increased PDGF-stimulated chemotaxis but decreased mitogenesis. EMBO J 1996; 15:5299-313. [PMID: 8895575 PMCID: PMC452274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ligand induced activation of the beta-receptor for platelet-derived growth factor (PDGF) leads to activation of Src family tyrosine kinases. We have explored the possibility that the receptor itself is a substrate for Src. We show that Tyr934 in the kinase domain of the PDGF receptor is phosphorylated by Src. Cell lines expressing a beta-receptor mutant, in which Tyr934 was replaced with a phenyalanine residue, showed reduced mitogenic signaling in response to PDGF-BB. In contrast, the mutant receptor mediated increased signals for chemotaxis and actin reorganization. Whereas the motility responses of cells expressing wild-type beta-receptors were attenuated by inhibition of phosphatidylinositol 3'-kinase, those of cells expressing the mutant receptor were only slightly influenced. In contrast, PDGF-BB-induced chemotaxis of the cells with the mutant receptor was attenuated by inhibition of protein kinase C, whereas the chemotaxis of cells expressing the wild-type beta-receptor was less affected. Moreover, the PDGF-BB-stimulated tyrosine phosphorylation of phospholipase C-gamma was increased in the mutant receptor cells compared with wild-type receptor cells. In conclusion, the characteristics of the Y934F mutant suggest that the phosphorylation of Tyr934 by Src negatively modulates a signal transduction pathway leading to motility responses which involves phospholipase C-gamma, and shifts the response to increased mitogenicity.
Collapse
Affiliation(s)
- K Hansen
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 1996; 15:5314-25. [PMID: 8895576 PMCID: PMC452275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Several non-physiologic agents such as radiation, oxidants and alkylating agents induce ligand-independent activation of numerous receptor tyrosine kinases (RTKs) and of protein tyrosine kinases at the inner side of the plasma membrane (e.g. Dévary et al., 1992; Sachsenmaier et al., 1994; Schieven et al., 1994; Coffer et al., 1995). Here we show additional evidence for the activation of epidermal growth factor receptor (EGFR), and we show activation of v-ErbB, ErbB2 and platelet-derived growth factor receptor. As a common principle of action the inducing agents such as UVC, UVB, UVA, hydrogen peroxide and iodoacetamide inhibit receptor tyrosine dephosphorylation in a thiol-sensitive and, with the exception of the SH-alkylating agent, reversible manner. EGFR dephosphorylation can also be modulated by these non-physiologic agents in isolated plasma membranes in the presence of Triton X-100. Further, substrate (EGFR) and phosphatase have been separated: a membrane preparation of cells that have been treated with epidermal growth factor (EGF) and whose dephosphorylating enzymes have been permanently destroyed by iodoacetamide can be mixed with a membrane preparation from untreated cells which re-establishes EGFR dephosphorylation. This dephosphorylation can be modulated in vitro by UV and thiol agents. We conclude that RTKs exhibit significant spontaneous protein kinase activity; several adverse agents target (an) essential SH-group(s) carried by (a) membrane-bound protein tyrosine phosphatase(s).
Collapse
Affiliation(s)
- A Knebel
- Forschungszentrum Karlsruhe, Institut für Genetik, Universität Karlsruhe, Germany
| | | | | | | |
Collapse
|
32
|
Wright JD, Reuter CW, Weber MJ. Identification of sites on epidermal growth factor receptors which are phosphorylated by pp60src in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1312:85-93. [PMID: 8672543 DOI: 10.1016/0167-4889(96)00027-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Epidermal Growth Factor Receptor (EGF-R) becomes constitutively tyrosine phosphorylated on two novel sites in v-Src transformed cells, and these phosphorylations are associated with enhanced signaling activity [1]. To determine whether Src could directly phosphorylate these sites, we have examined the ability of the Src kinase to phosphorylate both wild-type and kinase-defective EGF-Rs in vitro. Although purified Src could phosphorylate EGF-Rs, the pattern of phosphorylation sites was not identical to what was previously found in vivo [1]: Src in vitro directly phosphorylated EGF-Rs on one autophosphorylation site (Tyr 1173) which was not a site of re-induced in vivo phosphorylation, suggesting the in vivo inaccessibility of this site. One Src-specific in vitro phosphorylation site (Tyr 03) appeared to correspond to one of the in vivo Src-induced sites (sPY2), but the other Src-specific in vivo site (sPY1) was not significantly phosphorylated in vitro, raising the possibility of a Src-induced tyrosine kinase cascade. The ability of Src to phosphorylate the EGF-R is consistent with the suggestion that the receptor can function as a kinase substrate independent of its intrinsic enzymatic activity, as implied by recent studies on signaling by kinase-defective EGF-Rs.
Collapse
Affiliation(s)
- J D Wright
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
33
|
Abstract
Src is the best understood member of a family of 9 tyrosine kinases that regulates cellular responses to extracellular stimuli. Activated mutants of Src are oncogenic. Using Src as an example, and referring to other Src family members where appropriate, this review describes the structure of Src, the functions of the individual domains, the regulation of Src kinase activity in the cell, the selection of substrates, and the biological functions of Src. The review concentrates on developments in the last 6-7 years, and cites data resulting from the isolation and characterization of Src mutants, crystallographic studies of the structures of SH2, SH3 and tyrosine kinase domains, biochemical studies of Src kinase activity and binding properties, and the biology of transgenic and knockout mouse strains.
Collapse
Affiliation(s)
- M T Brown
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | |
Collapse
|
34
|
Finkbeiner S, Greenberg ME. Ca(2+)-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 1996; 16:233-6. [PMID: 8789937 DOI: 10.1016/s0896-6273(00)80040-9] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Finkbeiner
- Department of Neurobiology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
35
|
Stover DR, Becker M, Liebetanz J, Lydon NB. Src phosphorylation of the epidermal growth factor receptor at novel sites mediates receptor interaction with Src and P85 alpha. J Biol Chem 1995; 270:15591-7. [PMID: 7797556 DOI: 10.1074/jbc.270.26.15591] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Following ligand binding, the epidermal growth factor receptor (EGF-R) autophosphorylates itself on tyrosine residues located in its carboxyl terminus; in vitro, three sites are highly phosphorylated, while two other sites are phosphorylated to lesser extents. In the presence of the Src protein-tyrosine kinase, in vitro phosphorylation of the minor autophosphorylation sites was increased, and four additional residues were phosphorylated. Following EGF stimulation, two (Tyr-891 and Tyr-920) were found to be phosphorylated in a colorectal cell line (DLD-1) and in a breast tumor cell line (MCF7). The remaining in vitro sites were not found to be highly phosphorylated in vivo. The sequences surrounding Tyr-891 and Tyr-920 match the reported consensus binding sequences for the SH2 domains of Src and the regulatory domain of phosphatidylinositol 3-kinase (p85 alpha), respectively. In vitro, both of these proteins were found to bind to Src-phosphorylated EGF-R with approximately 100-fold greater affinity than to autophosphorylated EGF-R, demonstrating that Src creates new sites for SH2 binding. Furthermore, Csk-inactivated Src was activated by interaction with Src-phosphorylated EGF-R but not by autophosphorylated EGF-R. Upon EGF treatment of MCF7 or three colorectal carcinoma cell lines (WiDr, DLD-1, and LS174T), the EGF-R coimmunoprecipitated with both p85 alpha and Src. Evidence is also presented that suggests that an EGF-R-related protein, ErbB2, may be involved in similar Src-mediated interactions. These data demonstrate that EGF-R is phosphorylated in vivo at non-autophosphorylation sites and that these novel sites can act as docking sites for Src, P85 alpha, and potentially other SH2-containing proteins. In addition, the data suggest a tyrosine phosphatase-independent mechanism for the elevation of Src activity in cells exposed to growth factors. Overexpression of Src, EGF-R, and/or ErbB2 in breast and colorectal tumor cells suggests the potential that such interactions may contribute to the transformed phenotype of these carcinomas.
Collapse
Affiliation(s)
- D R Stover
- Research Department, Ciba Geigy Limited, Basel, Switzerland
| | | | | | | |
Collapse
|
36
|
Loo LW, Berestecky JM, Kanemitsu MY, Lau AF. pp60src-mediated phosphorylation of connexin 43, a gap junction protein. J Biol Chem 1995; 270:12751-61. [PMID: 7539006 DOI: 10.1074/jbc.270.21.12751] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Several laboratories have demonstrated a decrease in gap junctional communication in cells transformed by the src oncogene of the Rous sarcoma virus. The decrease in gap junctional communication was associated with tyrosine phosphorylation of the gap junction protein, connexin 43 (Cx43). This study was initiated to determine if the phosphorylation of Cx43 is the result of a direct kinase-substrate interaction between the highly active tyrosine kinase, pp60v-src, and Cx43. Previous biochemical studies have been limited by the low levels of Cx43 protein in fibroblast cell lines. To obtain larger quantities of Cx43, we constructed a recombinant baculovirus expressing Cx43 in Spodoptera frugiperda (Sf-9) cells and subsequently purified the expressed Cx43 by immunoaffinity chromatography. We observed that this partially purified Cx43 was phosphorylated on tyrosine in vitro in the presence of kinase-active pp60src. Phosphotryptic peptide mapping indicated that the in vitro phosphorylated Cx43 contained phosphopeptides which comigrated with a subset of tryptic peptides prepared from Cx43 phosphorylated in vivo. Furthermore, coinfection of Sf-9 cells with recombinant baculoviruses encoding pp60v-src and Cx43 resulted in the accumulation of phosphotyrosine in Cx43. Taken together, the evidence presented in this paper demonstrates that kinase active pp60c-src is capable of phosphorylating Cx43 in a direct manner. Since the presence of phosphotyrosine on Cx43 is correlated with the down-regulation of gap-junctional communication, these results suggest that pp60v-src regulates gap junctional gating activity via tyrosine phosphorylation of Cx43.
Collapse
Affiliation(s)
- L W Loo
- Molecular Carcinogenesis Program, Cancer Research Center of Hawaii, Honolulu, USA
| | | | | | | |
Collapse
|
37
|
Zhang QX, Walker F, Burgess AW, Baldwin GS. Reduction in platelet-derived growth factor receptor mRNA in v-src-transformed fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1266:9-15. [PMID: 7718626 DOI: 10.1016/0167-4889(94)00232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The status of the platelet-derived growth factor (PDGF) receptor in normal rat kidney (NRK) fibroblasts and in NRK fibroblasts transformed by the v-src oncogene or the polyoma middle T (pmt) antigen has been compared. v-src-NRK cells have 7-fold fewer surface binding sites for PDGF than NRK cells, but the affinity of the residual receptors for PDGF is reduced only 2-fold. Levels of the PDGF receptor measured by Western blotting or in an autophosphorylation assay in vitro are 8- and 4-fold lower respectively in v-src-NRK cells than in NRK cells. No PDGF-induced phosphorylation of the PDGF receptor is apparent after 32P-labelling of intact v-src-NRK cells, implying that the reduction in PDGF receptor levels is not a consequence of production of autocrine PDGF. A 10-fold reduction in the amount of mRNA for the PDGF receptor is also observed in v-src-NRK cells. No decrease in PDGF receptor protein or mRNA levels is observed in pmt-NRK cells. We conclude that levels of the PDGF receptor in v-src-transformed NRK fibroblasts are modulated by reduction in the level of PDGF receptor mRNA.
Collapse
Affiliation(s)
- Q X Zhang
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology, Royal Melbourne Hospital, Vic., Australia
| | | | | | | |
Collapse
|
38
|
Peterson JE, Jelinek T, Kaleko M, Siddle K, Weber MJ. c phosphorylation and activation of the IGF-I receptor in src-transformed cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46987-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Abstract
The activity of the proto-oncogene encoded c-Src product is tightly regulated in vivo. In recent years, a model has emerged of how this regulation is achieved. In particular, protein kinases and phosphatases that are potential regulators of c-Src activity in the cell cycle have been identified and characterized.
Collapse
Affiliation(s)
- S J Taylor
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
40
|
|
41
|
Schaller MD, Bouton AH, Flynn DC, Parsons JT. Identification and characterization of novel substrates for protein tyrosine kinases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 44:205-27. [PMID: 8434124 DOI: 10.1016/s0079-6603(08)60221-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M D Schaller
- Department of Microbiology and Cancer Center, School of Medicine, University of Virginia, Charlottesville 22908
| | | | | | | |
Collapse
|
42
|
Church JG, Richardson VJ, Lockwood AG. Atypical receptor-mediated signal transduction events in the EGF-dependent growth-inhibited cell line, MDA-468. J Cell Physiol 1992; 153:373-80. [PMID: 1331123 DOI: 10.1002/jcp.1041530217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is now generally considered that early signalling from tyrosine kinases that induce mitogenesis is initiated through the formation of heteromeric complexes consisting of the autophosphorylated tyrosine kinase and a number of tyrosylphosphorylated proteins, including phospholipase C-gamma (PLC-gamma) and GTPase activating protein (GAP). However, since much of this work has been performed on proliferative, chimeric cell lines expressing heterologous receptor molecules, we examined the nature of the epidermal growth factor receptor (EGFR) signalling complex formation in the human breast cancer cell line, MDA-468. This cell line has an amplified, native EGFR gene, correspondingly overexpresses the EGFR, and its growth in culture is inversely related to the EGF concentration. Our results indicate that in MDA-468 cells, both the EGFR and PLC-gamma are phosphorylated on tyrosine residues and can be co-immunoprecipitated. This occurs at both high and low EGF concentrations regardless of the proliferative endpoint. The molecular association is correlated with a significant increase in total inositol phosphates formed in response to the growth factor treatment. In contrast, however, there is no evidence that GAP is either phosphorylated on tyrosine residues or forms a complex with the activated EGFR in EGF-treated MDA-468 cells. These observations suggest that as a model for growth factor action, the formation of heteromeric protein signalling complexes may demonstrate considerable diversity depending upon both cell type and physiology.
Collapse
Affiliation(s)
- J G Church
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | | | | |
Collapse
|
43
|
Selective amplification of endothelin-stimulated inositol 1,4,5-trisphosphate and calcium signaling by v-src transformation of rat-1 fibroblasts. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42541-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Niklinska B, Yamada H, O'Shea J, June C, Ashwell J. Tyrosine kinase-regulated and inositol phosphate-independent Ca2+ elevation and mobilization in T cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50551-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
45
|
Blackmore PF. Role of p21ras in hormone signalling and cell growth/transformation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 321:143-6. [PMID: 1333165 DOI: 10.1007/978-1-4615-3448-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- P F Blackmore
- Eastern Virginia Medical School, Department of Pharmacology, Norfolk 23501
| |
Collapse
|