1
|
An PNT, Yamaguchi M, Bamba T, Fukusaki E. Metabolome analysis of Drosophila melanogaster during embryogenesis. PLoS One 2014; 9:e99519. [PMID: 25121768 PMCID: PMC4133167 DOI: 10.1371/journal.pone.0099519] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/15/2014] [Indexed: 02/02/2023] Open
Abstract
The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.
Collapse
Affiliation(s)
- Phan Nguyen Thuy An
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
2
|
Hayashi Y, Kato M, Seto H, Yamaguchi M. Drosophila distal-less negatively regulates dDREF by inhibiting its DNA binding activity. ACTA ACUST UNITED AC 2006; 1759:359-66. [PMID: 16949685 DOI: 10.1016/j.bbaexp.2006.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/01/2006] [Accepted: 07/19/2006] [Indexed: 11/21/2022]
Abstract
The Drosophila DNA replication-related element binding factor (dDREF) is required for expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Over-expression of dDREF in the eye imaginal disc induces ectopic DNA synthesis, apoptosis and inhibition of photoreceptor cell specification, and results in rough eye phenotype in adults. In the present study, half dose reduction of the Distal-less (Dll) gene enhanced the dDREF-induced rough eye phenotype, suggesting that Dll negatively regulates dDREF activity in eye imaginal disc cells. Biochemical analyses revealed the N-terminal (30aa to 124aa) and C-terminal (190aa to 327aa) regions of Dll to interact with the DNA binding domain (16aa to 125aa) of dDREF, although it is not clear yet whether the interaction is direct or indirect. Electrophoretic mobility shift assays showed that Dll thereby inhibits DNA binding. The repression of this dDREF-function by a homeodomain protein like Dll may contribute to the differentiation-coupled repression of cell proliferation during development.
Collapse
Affiliation(s)
- Yuko Hayashi
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | | | | | | |
Collapse
|
3
|
Seto H, Hayashi Y, Kwon E, Taguchi O, Yamaguchi M. Antagonistic regulation of the Drosophila PCNA gene promoter by DREF and Cut. Genes Cells 2006; 11:499-512. [PMID: 16629902 DOI: 10.1111/j.1365-2443.2006.00956.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The gene promoter of Drosophila proliferating cell nuclear antigen (dPCNA) contains several transcriptional regulatory elements, such as upstream regulatory element (URE), DNA replication-related element (DRE, 5'-TATCGATA), and E2F recognition sites. In the present study, a yeast one-hybrid screen using three tandem repeats of DRE in dPCNA promoter as the bait allowed isolation of a cDNA encoding Cut, a Drosophila homolog of mammalian CCAAT-displacement protein (CDP)/Cux. Electrophoretic mobility shift assays showed that Cut bound to both DRE and the sequence 5'-AATCAAAC in URE, with much higher affinity to the former. Measurement of dPCNA promoter activity by transient luciferase expression assays in Drosophila S2 cells after an RNA interference for Cut or DREF showed DREF activates the dPCNA promoter while Cut functions as a repressor. Chromatin immunoprecipitation assays in the presence or absence of 20-hydroxyecdysone further showed both DREF and Cut proteins to be localized in the genomic region containing the dPCNA promoter in S2 cells, especially in the Cut case upon induction of differentiation. These results indicate that Cut functions as a transcriptional repressor of dPCNA gene by binding to the promoter region in the differentiated state, while DREF binds to DRE to promote expression of dPCNA during cell proliferation.
Collapse
Affiliation(s)
- Hirokazu Seto
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | |
Collapse
|
4
|
Renault AD, Zhang XH, Alphey LS, Frenz LM, Glover DM, Saunders RDC, Axton JM. giant nuclei is essential in the cell cycle transition from meiosis to mitosis. Development 2003; 130:2997-3005. [PMID: 12756181 DOI: 10.1242/dev.00501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the transition from meiosis to cleavage mitoses, Drosophila requires the cell cycle regulators encoded by the genes, giant nuclei (gnu), plutonium (plu) and pan gu (png). Embryos lacking Gnu protein undergo DNA replication and centrosome proliferation without chromosome condensation or mitotic segregation. We have identified the gnu gene encoding a novel phosphoprotein dephosphorylated by Protein phosphatase 1 at egg activation. Gnu is normally expressed in the nurse cells and oocyte of the ovary and is degraded during the embryonic cleavage mitoses. Ovarian death and sterility result from gnu gain of function. gnu function requires the activity of pan gu and plu.
Collapse
Affiliation(s)
- Andrew D Renault
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
Kwon E, Seto H, Hirose F, Ohshima N, Takahashi Y, Nishida Y, Yamaguchi M. Transcription control of a gene for Drosophila transcription factor, DREF by DRE and cis-elements conserved between Drosophila melanogaster and virilis. Gene 2003; 309:101-16. [PMID: 12758126 DOI: 10.1016/s0378-1119(03)00493-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DNA replication-related element (DRE)-binding factor (DREF) has been revealed to be an important transcription factor for activating promoters of cell proliferation and differentiation related genes. The amino acid sequences of DREF are conserved in evolutionary separate Drosophila species, Drosophila melanogaster (Dm) and Drosophila virilis (Dv) in three regions. In the present study, evidence was obtained that there are several highly conserved regions in the 5' flanking region between the DmDREF and DvDREF genes. Band mobility shift assays using oligonucleotides corresponding to these conserved regions revealed that specific trans-acting factors can bind to at least three regions -554 to -543 (5'-TTTGTTCTTGCG), -81 to -70 (5'-GCCCACGTGGCT) and +225 to +234 (5'-GCAATCAGTG). Using a transient luciferase expression assay, we demonstrated that the region -554 to -543 functions as a negative regulatory element for DmDREF promoter activity, while the regions -77 to -70 (5'-ACGTGGCT) and +225 to +236 (5'-GCAATCAGTGTT) function as positive regulatory elements. In previous studies, we observed that expression of the homeodomain protein Zerknüllt (Zen) represses PCNA gene transcription, by reducing the DNA binding activity of DREF. Here we show Zen downregulates DREF gene promoter activity through action on the region between +241 and +254 (5'-AGAATACTCAACA). In addition, the DmDREF promoter contains five DREs. Using a double stranded RNA-mediated interference method, we generated evidence that expression of DmDREF could be auto-regulated by DREF through the third DRE located at +211 to +218. In living flies we obtained results consistent with those obtained in vitro and in cultured cells. The study thus indicates that DmDREF is effectively regulated via highly conserved regions between the DmDREF and DvDREF promoters, suggesting the existence of common regulatory factors, and that DmDREF can be positively regulated by itself via the third DRE located in its most highly conserved region.
Collapse
Affiliation(s)
- Eunjeong Kwon
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Sekiguchi K, Kurabayashi M, Oyama Y, Aihara Y, Tanaka T, Sakamoto H, Hoshino Y, Kanda T, Yokoyama T, Shimomura Y, Iijima H, Ohyama Y, Nagai R. Homeobox protein Hex induces SMemb/nonmuscle myosin heavy chain-B gene expression through the cAMP-responsive element. Circ Res 2001; 88:52-8. [PMID: 11139473 DOI: 10.1161/01.res.88.1.52] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent studies have shown that the homeobox gene Hex plays an important role in inducing differentiation of vascular endothelial cells. In this study, we examined the expression of Hex in vascular smooth muscle cells (VSMCs) in vitro and in vivo. Immunohistochemistry showed a marked induction of Hex protein in neointimal VSMCs after balloon injury in rat aorta. Western and reverse transcriptase-polymerase chain reaction analyses demonstrated that Hex was abundantly expressed in cultured VSMCs, whereas it was undetectable in other cell types or in normal aorta. The expression pattern of Hex was similar to that of SMemb/NMHC-B, a nonmuscle isoform of myosin heavy chain that we have previously reported to be a molecular marker of dedifferentiated VSMCs. We next examined the role of Hex in SMemb gene transcription. Promoter analysis demonstrated that the sequence identical to consensus cAMP-responsive element (CRE) located at -481 of the SMemb promoter was critical for Hex responsiveness. Mutant Hex expression vector, which lacks the homeodomain, failed to stimulate SMemb gene transcription, suggesting the requirement of the homeodomain for its transactivation. Elecrophoretic mobility shift assay showed that Hex binds to a consensus binding sequence for homeobox proteins, but not to CRE. Cotransfection of protein kinase A expression vector increased the ability of Hex to stimulate SMemb promoter activity in a CRE-dependent manner. Overexpression of CRE binding protein (CREB), but not Mut-CREB which contains mutation at Ser133, strongly activated Hex-induced SMemb promoter activity. These results suggest that Hex mediates transcriptional induction of the SMemb/NMHC-B gene via its homeodomain, and Hex can function as a transcriptional modulator of CRE-dependent transcription in VSMCs.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Animals, Newborn
- Base Sequence
- Binding Sites/genetics
- Blotting, Western
- COS Cells
- Catheterization
- Cattle
- Cell Line
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Gene Expression Regulation
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Nonmuscle Myosin Type IIB
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
- Transcription Factors
- Transcriptional Activation
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- K Sekiguchi
- Second Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ohno K, Takahashi Y, Hirose F, Inoue YH, Taguchi O, Nishida Y, Matsukage A, Yamaguchi M. Characterization of a Drosophila homologue of the human myelodysplasia/myeloid leukemia factor (MLF). Gene 2000; 260:133-43. [PMID: 11137299 DOI: 10.1016/s0378-1119(00)00447-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor DREF regulates proliferation-related genes in Drosophila. With two-hybrid screening using DREF as a bait, we have obtained a clone encoding a protein homologous to human myelodysplasia/myeloid leukemia factor 1 (hMLF1). We termed the protein Drosophila MLF (dMLF); it consists of a polypeptide of 309 amino acid residues, whose sequence shares 23.1% identity with hMLF1. High conservation of 54.2% identity over 107 amino acids was found in the central region. The dMLF gene was mapped to 52D on the second chromosome by in situ hybridization. Interaction between dMLF and DREF in vitro could be confirmed by glutathione S-transferase pull-down assay, with the conserved central region appearing to play an important role in this. Northern blot hybridization analysis revealed dMLF mRNA levels to be high in unfertilized eggs, early embryos, pupae and adult males, and relatively low in adult females and larvae. This fluctuation of mRNA during Drosophila development is similar to that observed for DREF mRNA, except in the pupa and adult male. Using a specific antibody against the dMLF, we performed immunofluorescent staining of Drosophila Kc cells and showed a primarily cytoplasmic staining, whereas DREF localizes in the nucleus. However, dMLF protein contains a putative 14-3-3 binding motif involved in the subcellular localization of various regulatory molecules, and interaction with DREF could be regulated through this motif. The transgenic fly data suggesting the genetic interaction between DREF and dMLF support this possibility. Characterization of dMLF in the present study provides the molecular basis for analysis of its significance in Drosophila.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Blotting, Southern
- Cell Cycle Proteins
- Chromosome Mapping
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins
- Drosophila Proteins
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Eye/metabolism
- Eye/ultrastructure
- Female
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Humans
- Immunoblotting
- In Situ Hybridization
- Male
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Protein Binding
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- K Ohno
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, 464-8681, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Choi T, Cho N, Oh Y, Yoo M, Matsukage A, Ryu Y, Han K, Yoon J, Baek K. The DNA replication-related element (DRE)-DRE-binding factor (DREF) system may be involved in the expression of the Drosophila melanogaster TBP gene. FEBS Lett 2000; 483:71-7. [PMID: 11033359 DOI: 10.1016/s0014-5793(00)02085-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The TATA box binding protein (TBP) is a general transcription factor required for initiation by all three eukaryotic RNA polymerases. Previously, we found that the promoter region of the Drosophila melanogaster TBP gene contains three sequences similar to the DNA replication-related element (DRE) (5'-TATCGATA). In the present study, we found that the DRE-like sequences are also present in the promoter of the Drosophila virilis TBP gene, suggesting a role for these sequences in TBP expression. Band mobility shift assays revealed that oligonucleotides containing sequences similar to the DRE of D. melanogaster TBP gene promoter form specific complexes with a factor in a Kc cell nuclear extract and with recombinant DRE-binding factor (DREF). Furthermore, these complexes were either supershifted or diminished by monoclonal antibodies to DREF. Transient luciferase assays demonstrated that induction of mutations in two DRE-related sequences at positions -223 and -63 resulted in an extensive reduction of promoter activity. Thus, the DRE-DREF system appears to be involved in the expression of the D. melanogaster TBP gene.
Collapse
Affiliation(s)
- T Choi
- Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan 609-735, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mutai H, Toyoshima Y, Sun W, Hattori N, Tanaka S, Shiota K. PAL31, a novel nuclear protein, expressed in the developing brain. Biochem Biophys Res Commun 2000; 274:427-33. [PMID: 10913355 DOI: 10.1006/bbrc.2000.3133] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned a cDNA encoding a novel protein (PAL31) predominantly expressed in the fetal rat brain by differential display. PAL31 contains leucine-rich repeat domains, a highly acidic region and a putative nuclear localization signal. PAL31 has 50-70% similarity to SSP29, APRIL, LANP, PHAP I, and PP32. Expression of PAL31 mRNA in the brain was high during the fetal period and decreased after birth. Immunohistochemical studies showed that PAL31 is expressed in the entire embryonic brain, whereas in the adult brain its expression is restricted to the subventricular zone where there are neural progenitor cells. It was also revealed that PAL31 is colocalized with PCNA in the nucleus, indicating that the PAL31 expression is developmentally regulated. Considering the primary structure of PAL31 and its spatiotemporal expression pattern, PAL31 is a novel nuclear protein related to the development of the brain through the proliferation of neuronal cells.
Collapse
Affiliation(s)
- H Mutai
- Laboratory of Cellular Biochemistry, University of Tokyo, Tokyo, 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Hayashi Y, Yamagishi M, Nishimoto Y, Taguchi O, Matsukage A, Yamaguchi M. A binding site for the transcription factor Grainyhead/Nuclear transcription factor-1 contributes to regulation of the Drosophila proliferating cell nuclear antigen gene promoter. J Biol Chem 1999; 274:35080-8. [PMID: 10574988 DOI: 10.1074/jbc.274.49.35080] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila proliferating cell nuclear antigen promoter contains multiple transcriptional regulatory elements, including upstream regulatory element (URE), DNA replication-related element, E2F recognition sites, and three common regulatory factor for DNA replication and DNA replication-related element-binding factor genes recognition sites. In nuclear extracts of Drosophila embryos, we detected a protein factor, the URE-binding factor (UREF), that recognizes the nucleotide sequence 5'-AAACCAGTTGGCA located within URE. Analyses in Drosophila Kc cells and transgenic flies revealed that the UREF-binding site plays an important role in promoter activity both in cultured cells and in living flies. A yeast one-hybrid screen using URE as a bait allowed isolation of a cDNA encoding a transcription factor, Grainyhead/nuclear transcription factor-1 (GRH/NTF-1). The nucleotide sequence required for binding to GRH was indistinguishable from that for UREF detected in embryo nuclear extracts. Furthermore, a specific antibody to GRH reacted with UREF in embryo nuclear extracts. From these results we conclude that GRH is identical to UREF. Although GRH has been thought to be involved in regulation of differentiation-related genes, this study demonstrates, for the first time, involvement of a GRH-binding site in regulation of the DNA replication-related proliferating cell nuclear antigen gene.
Collapse
Affiliation(s)
- Y Hayashi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, 464-8681, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Preservation of the structural integrity of DNA in any organism is crucial to its health and survival. Such preservation is achieved by an extraordinary cellular arsenal of damage surveillance and repair functions, many of which are now being defined at the gene and protein levels. Mutants hypersensitive to the killing effects of DNA-damaging agents have been instrumental in helping to identify DNA repair-related genes and to elucidate repair mechanisms. In Drosophila melanogaster, such strains are generally referred to as mutagen-sensitive (mus) mutants and currently define more than 30 genetic loci. Whereas most mus mutants have been recovered on the basis of hypersensitivity to the monofunctional alkylating agent methyl methanesulfonate, they nevertheless constitute a phenotypically diverse group, with many mutants having effects beyond mutagen sensitivity. These phenotypes include meiotic dysfunctions, somatic chromosome instabilities, chromatin abnormalities, and cell proliferation defects. Within the last few years numerous mus and other DNA repair-related genes of Drosophila have been molecularly cloned, providing new insights into the functions of these genes. This article outlines strategies for isolating mus mutations and reviews recent advances in the Drosophila DNA repair field, emphasizing mutant analysis and gene cloning.
Collapse
Affiliation(s)
- D S Henderson
- Department of Anatomy and Physiology, University of Dundee, Dundee, DD1 4HN, Scotland, United Kingdom
| |
Collapse
|
12
|
Takahashi Y, Hirose F, Matsukage A, Yamaguchi M. Identification of three conserved regions in the DREF transcription factors from Drosophila melanogaster and Drosophila virilis. Nucleic Acids Res 1999; 27:510-6. [PMID: 9862973 PMCID: PMC148208 DOI: 10.1093/nar/27.2.510] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genes for a DNA replication-related element-binding factor (DREF) were isolated from Drosophila melanogaster and Drosophila virilis, and their nucleotide sequences were determined. Drosophila virilis DREF consists of 742 amino acid residues, which is 33 amino acids longer than D.melanogaster DREF. Comparison of the amino acid sequences revealed that D.virilis DREF is 71% identical to its D. melanogaster homolog. Three highly conserved regions were identified at amino acid positions 14-182 (CR1), 432-568 (CR2) and 636-730 (CR3) of the D.virilis DREF, with 86.4, 86.1 and 83.3% identities, respectively. Transgenic flies in which expression of three conserved regions of D.melanogaster DREF was targeted to the eye imaginal disc were established. Expression of CR1 in the developing eye imaginal discs resulted in a severe rough eye phenotype in adult flies. Expression of CR3 also caused a rough eye phenotype, while that of CR2 had no apparent effect on eye morphology. Expression of either CR1 or CR3 in eye imaginal disc cells inhibited cell cycle progression and reduced incorporation of 5-bromo-2'-deoxyuridine into the S-phase zone (the second mitotic wave) behind the morphogenetic furrow. The results indicate that both CR1 and CR3 are important for DREF functions.
Collapse
Affiliation(s)
- Y Takahashi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | | | | | | |
Collapse
|
13
|
Yamaguchi M, Hayashi Y, Hirose F, Nishimoto Y, Matsukage A. Distinct roles of E2F recognition sites as positive or negative elements in regulation of the DNA polymerase alpha 180 kDa catalytic subunit gene promoter during Drosophila development. Nucleic Acids Res 1997; 25:3847-54. [PMID: 9380507 PMCID: PMC146973 DOI: 10.1093/nar/25.19.3847] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factor E2F plays a key role in transcriptional control during the growth cycle of higher eukaryotic cells. The promoter region of the DrosophilaDNA polymerase alpha 180 kDa catalytic subunit gene contains three E2F recognition sequences located at positions -353 to -342 (E2F site 1), -21 to -14 (E2F site 2) and -12 to -5 (E2F site 3) with respect to the transcription initiation site. Various base substitutions were generated in each or all of the three E2F sites in vitro to allow examination of their effects on E2F binding and promoter function in cultured Kc cells as well as in living flies. Glutathione S-transferase (GST)-E2F and GST-DP fusion proteins were found to cooperate in binding to the three E2F sites in the DNA polymerase alpha gene promoter in vitro. In contrast, an E2F-specific activity detected in nuclear extracts of Kc cells showed little affinity for E2F site 1 but strong binding to sites 2 and 3. Transient expression of Drosophila E2F in Kc cells activated the DNA polymerase alpha gene promoter and the target sites for activation coincided with E2F sites 2 and 3. However, analyses with transgenic flies indicate that E2F site 3 functions positively in terms of DNA polymerase alpha gene promoter activity, while E2F sites 1 and 2 rather have a negative control function. Thus E2F sites play distinct roles as positive or negative elements in regulation of the DNA polymerase alpha gene promoter during Drosophila development.
Collapse
Affiliation(s)
- M Yamaguchi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464, Japan.
| | | | | | | | | |
Collapse
|
14
|
Hayashi Y, Hirose F, Nishimoto Y, Shiraki M, Yamagishi M, Matsukage A, Yamaguchi M. Identification of CFDD (common regulatory factor for DNA replication and DREF genes) and role of its binding site in regulation of the proliferating cell nuclear antigen gene promoter. J Biol Chem 1997; 272:22848-58. [PMID: 9278447 DOI: 10.1074/jbc.272.36.22848] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Drosophila proliferating cell nuclear antigen (PCNA) gene promoter contains at least three transcriptional regulatory elements, the URE (upstream regulatory element), DRE (DNA replication-related element), and E2F recognition sites. In nuclear extracts of Drosophila Kc cells, we detected a novel protein factor(s), CFDD (common regulatory factor for DNA replication and DREF genes) that appeared to recognize two unique nucleotide sequences (5'-CGATA and 5'-CAATCA) and bind to three sites in the PCNA gene promoter. These sites were located at positions -84 to -77 (site 1), -100 to -93 (site 2) and -134 to -127 (site 3) with respect to the transcription initiation sites. Sites 2 and 3 overlapped with DRE and URE, respectively, and the 5'-CGATA matched with the reported recognition sequence of BEAF-32 (boundary element-associated factor of 32 kDa). Detailed analyses of CFDD recognition sequences and experiments with specific antibodies to DREF (DRE-binding factor) and BEAF-32 suggest that CFDD is different from DREF, UREF (URE-binding factor) and BEAF-32. A UV cross-linking experiment revealed that polypeptides of approximately 76 kDa in the nuclear extract interact directly with the CFDD site 1 sequence. Transient expression assays of chloramphenicol acetyltransferase (CAT) in Kc cells transfected with PCNA promoter-CAT fusion genes carrying mutations in CFDD site 1 and examination of lacZ expression from PCNA promoter-lacZ fusion genes carrying mutations in site 1, introduced into flies by germ line transformation, revealed that CFDD site 1 plays an important role for the promoter activity both in cultured cells and in living flies. In addition to the PCNA gene, multiple CFDD sites were found in promoters of the DNA polymerase alpha and DREF genes, and CFDD binding to the DREF promoter was confirmed. Therefore, CFDD may play important roles in regulation of Drosophila DNA replication-related genes.
Collapse
Affiliation(s)
- Y Hayashi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Ryu JR, Choi TY, Kwon EJ, Lee WH, Nishida Y, Hayashi Y, Matsukage A, Yamaguchi M, Yoo MA. Transcriptional regulation of the Drosophila-raf proto-oncogene by the DNA replication-related element (DRE)/DRE-binding factor (DREF) system. Nucleic Acids Res 1997; 25:794-9. [PMID: 9016631 PMCID: PMC146497 DOI: 10.1093/nar/25.4.794] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The DRE/DREF system plays an important role in transcription of DNA replication genes such as those encoding the 180 and 73 kDa subunits of DNA polymerase alpha as well as that for encoding PCNA. In this study, we found two sequences homologous to DRE (5'-TATCGATA-3') in the 5'-flanking region (-370 to -357 with respect to the transcription initiation site) of the D-raf gene and confirmed transcriptional activity through gel mobility shift assays, transient CAT assays, and spatial patterns of lacZ expression in transgenic larval tissues carrying D-raf and lacZ fusion genes. Further, we demonstrated that the D-raf gene is another target of the Zerknüllt (Zen) protein with observation of D-raf repression by Zen protein in cultured cells and its ectopic expression in the dorsal region of the homozygous zen mutant embryo. The evidence of DRE/DREF involvement in regulation of the D-raf gene obtained in this study strongly supports the idea that the DRE/DREF system is responsible for the coordinated regulation of cell proliferation-related genes in Drosophila.
Collapse
Affiliation(s)
- J R Ryu
- Department of Molecular Biology, College of Natural Science, Pusan National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Takahashi Y, Yamaguchi M, Hirose F, Cotterill S, Kobayashi J, Miyajima S, Matsukage A. DNA replication-related elements cooperate to enhance promoter activity of the drosophila DNA polymerase alpha 73-kDa subunit gene. J Biol Chem 1996; 271:14541-7. [PMID: 8662923 DOI: 10.1074/jbc.271.24.14541] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An analysis was carried out on the promoter region of the Drosophila DNA polymerase alpha 73-kDa subunit gene and the factor(s) activating the promoter. Transcription initiation sites were newly identified in the region downstream of the previously determined sites. Full promoter activity resided within the region from -285 to +129 base pairs with respect to the newly determined major site. Within this region, we found three sequences identical or similar to the DNA replication-related element (DRE), 5'-TATCGATA, which is known as a common promoter-activating element for the Drosophila DNA polymerase alpha 180-kDa subunit gene and the proliferating cell nuclear antigen gene. These sites were located at positions -77 to -70 (DREalpha-I), -44 to -37 (DREalpha-II), and +3 to +10 (DREalpha-III). Footprinting analysis using the recombinant DRE-binding factor (DREF) or Kc cell nuclear extract demonstrated that DREF can bind to all three DRE-related sites. Introduction of mutation in even one of the three DRE-related sequences caused extensive reductions of the promoter activity and also the DREF-binding activity of the promoter-containing fragment. The results indicate that the three DREF-binding sites cooperate to enhance promoter activity of the DNA polymerase alpha 73-kDa subunit gene.
Collapse
Affiliation(s)
- Y Takahashi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Hirose F, Yamaguchi M, Kuroda K, Omori A, Hachiya T, Ikeda M, Nishimoto Y, Matsukage A. Isolation and characterization of cDNA for DREF, a promoter-activating factor for Drosophila DNA replication-related genes. J Biol Chem 1996; 271:3930-7. [PMID: 8632015 DOI: 10.1074/jbc.271.7.3930] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DREF, a transcription regulatory factor which specifically binds to the promoter-activating element DRE (DNA replication-related element) of DNA replication-related genes, was purified to homogeneity from nuclear extracts of Drosophila Kc cells. cDNA for DREF was isolated with the reverse-transcriptase polymerase chain reaction method using primers synthesized on the basis of partial amino acid sequences and following screening of cDNA libraries. Deduced from the nucleotide sequences of cDNA, DREF is a polypeptide of 701 amino acid residues with a molecular weight of 80,096, which contains three characteristic regions, rich in basic amino acids, proline, and acidic amino acids, respectively. Deletion analysis of bacterially expressed DREF fused with glutathione S-transferase (GST-DREF) indicated that a part of the N-terminal basic amino acid region (16-115 amino acids) is responsible for the specific binding to DRE. A polyclonal and four monoclonal antibodies were raised against the GST-DREF fusion protein. The antibodies inhibited specifically the transcription of DNA polymerase alpha promoter in vitro. Cotransfection experiments using Kc cells demonstrated that overproduction of DREF protein overcomes the repression of the proliferating cell nuclear antigen gene promoter by the zerknüllt gene product. These results confirmed that DREF is a trans-activating factor for DNA replication-related genes. Immunocytochemical analysis demonstrated the presence of DREF polypeptide in nuclei after the eighth nuclear division cycle, suggesting that nuclear accumulation of DREF is important for the coordinate zygotic expression of DNA replication-related genes carrying DRE sequences.
Collapse
Affiliation(s)
- F Hirose
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Matsukage A, Hirose F, Hayashi Y, Hamada K, Yamaguchi M. The DRE sequence TATCGATA, a putative promoter-activating element for Drosophila melanogaster cell-proliferation-related genes. Gene 1995; 166:233-6. [PMID: 8543167 DOI: 10.1016/0378-1119(95)00586-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have confirmed that the DNA replication-related element (DRE) consisting of an 8-bp palindrome, TATCGATA, and not neighboring sequences, are responsible for activating promoters of the Drosophila melanogaster (Dm) PCNA (proliferating cell nuclear antigen)- and DNA polymerase alpha-encoding genes in both cultured cell and transgenic fly systems. We have so far found 153 copies of DRE in the Dm gene database. 73 of them are concentrated within the 600-bp upstream regions from the transcription start points of 61 genes. Interestingly, many of these genes are involved in either DNA replication, transcription, translation, signal transduction, cell cycle or other putative regulatory functions, and are possibly related to cell proliferation. It seems likely that DRE is an element common to the regulation of cell-proliferation-related genes, although their expression patterns may be different depending on which of regulatory elements other than the DRE are combined.
Collapse
Affiliation(s)
- A Matsukage
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | |
Collapse
|
19
|
Yamaguchi M, Hayashi Y, Matsukage A. Essential role of E2F recognition sites in regulation of the proliferating cell nuclear antigen gene promoter during Drosophila development. J Biol Chem 1995; 270:25159-65. [PMID: 7559650 DOI: 10.1074/jbc.270.42.25159] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have found sequences similar to the transcription factor E2F recognition site within the Drosophila proliferating cell nuclear antigen (PCNA) gene promoter. These sequences are located at positions -43 to -36 (site I). and -56 to -49 (site II) with respect to the cap site Glutathione S-transferase (GST)-E2F and GST-DP fusion proteins cooperate and bind to the potential E2F sites in the PCNA promoter in vitro. A binding factor(s) to these sequences that has similar binding specificity to that of E2F was detected in nuclear extracts of Drosophila Kc cells. Furthermore, transient expression of target site for the activation coincided with the E2F sites. These results indicate that the PCNA gene is a likely target gene of E2F. Examination of lacZ expression from PCNA-lacZ fusion genes carrying mutations in either or both of two E2F sites introduced into flies by germ line transformation revealed that site II plays a major role in the PCNA promoter activity during embryogenesis and larval development, although both sites are required for optimal promoter activity. However, for maternal expression in ovaries, either one of the two sites is essentially sufficient to direct optimal promoter activity. These results demonstrate, for the first time, an essential role for E2F sites in regulation of PCNA promoter activity during development of a multicellular organism.
Collapse
Affiliation(s)
- M Yamaguchi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | |
Collapse
|
20
|
Yamaguchi M, Hayashi Y, Nishimoto Y, Hirose F, Matsukage A. A nucleotide sequence essential for the function of DRE, a common promoter element for Drosophila DNa replication-related genes. J Biol Chem 1995; 270:15808-14. [PMID: 7797583 DOI: 10.1074/jbc.270.26.15808] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Promoter regions of the Drosophila proliferating cell nuclear antigen (PCNA) gene and the DNA polymerase alpha 180-kDa catalytic subunit gene contain a common 8 base pair (bp) promoter element, 5'-TATCGATA (DRE, Drosophila DNA replication-related element). We have generated various base substitutions and internal deletions in and around DRE (nucleotide positions -93 to -100 with respect to the transcription initiation site) of the PCNA gene in vitro and subsequently examined their effects on the binding to DREF (DRE-binding factor) and PCNA gene promote activity in cultured Drosophila Kc cells as well as in living flies. Gel mobility shift assays using nuclear extracts of Kc cells with and without competitor DNA fragments carrying the mutations indicated that the 10-bp sequence from positions -91 to -100 is essential for complex formation with DREF. Transient expression assays of chloramphenicol acetyl-transferase (CAT) in Kc cells transfected with PCNA promoter-CAT fusion genes carrying the mutations revealed that the 8-bp sequence from -93 to -100 is essential for activation of the promoter in Kc cells. Examination of lacZ expression from PCNA promoter-lacZ fusion genes carrying the mutations, introduced into flies by germ-line transformation, revealed that the 8-bp sequence is also important for DRE function during development. However, we obtained two exceptional mutations in the 8-bp sequence that did not or only marginally affected the PCNA gene promoter activity in transgenic flies. Both of these mutations effectively reduced the promoter activity in CAT transient expression assay in Kc cells and the binding to DREF in vitro. Therefore, the 8-bp sequence requirement for DRE function appears to be less stringent in living flies than in the cultured cell or in vitro cases.
Collapse
Affiliation(s)
- M Yamaguchi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | |
Collapse
|
21
|
López I, Khan S, Vázquez-Ramos J, Hussey PJ. Molecular cloning of a maize cDNA clone encoding a putative proliferating cell nuclear antigen. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:119-21. [PMID: 7999788 DOI: 10.1016/0167-4781(94)00192-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the isolation and sequence of a maize cDNA clone which encodes a protein homologous to proliferating cell nuclear antigen (PCNA). The deduced amino acid sequence predicts a protein of 263 amino acids in length. The amino acid sequence shares 62% identity with the human PCNA and 95% identity with the rice homologue of PCNA.
Collapse
Affiliation(s)
- I López
- Department of Biochemistry, University of London, Egham, Surrey, UK
| | | | | | | |
Collapse
|
22
|
Yamaguchi M, Nishida Y, Matsukage A. Role of homeodomain protein binding region in the expression of Drosophila proliferating cell nuclear antigen gene: analysis with transgenic flies. Gene Expr 1995; 4:183-93. [PMID: 7787411 PMCID: PMC6134388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1994] [Accepted: 11/01/1994] [Indexed: 01/27/2023]
Abstract
The regulatory region of Drosophila proliferating cell nuclear antigen (PCNA) gene consists of a promoter region (-168 to +24 with respect to the transcription initiation site) and an upstream region containing three homeodomain protein binding sites (HDB) (-357 to -165). The PCNA gene regulatory regions with HDB (-607 to +137) or without HDB (-168 to +137) were fused with the lacZ and transgenic flies were established by P-element-mediated transformation. Male transgenic flies were crossed with wild-type females, and zygotic expression of the lacZ was monitored by quantitative beta-galactosidase assay, at various stages of development. Expression of the lacZ was high in embryos, first and second instar larvae, and adult females, and low at other stages of development. Only a marginal difference in expression was observed between flies carrying the homeodomain protein binding region and those not carrying it. Spatial pattern of the lacZ expression in the embryo visualized by immunostaining with the anti-lacZ antibody was similar to the distribution of the endogenous PCNA protein. Here, too, only a marginal difference was observed between transgenic flies carrying two different constructs of the PCNA lacZ. In genetic crossing experiments of transgenic flies with those carrying mutation in homeobox genes, no significant change in the lacZ expression pattern was observed. However, when male transgenic flies were crossed with female flies homozygous for a torso gain-of-function allele, repression of the lacZ expression was observed in the central region of the embryo. Because these local changes in the lacZ expression depend on the homeodomain protein binding region, unidentified homeodomain proteins are probably involved. Our results suggest that the promoter region is practically sufficient for expression of the PCNA gene and that the homeodomain protein binding region functions as a silencer when torso is activated ectopically.
Collapse
Affiliation(s)
- M Yamaguchi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | |
Collapse
|
23
|
Hirose F, Yamaguchi M, Matsukage A. Repression of regulatory factor for Drosophila DNA replication-related gene promoters by zerknüllt homeodomain protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42031-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Matsukage A, Hirose F, Yamaguchi M. Transcriptional regulation of DNA replication-related genes in cell growth, differentiation and oncogenesis. Jpn J Cancer Res 1994; 85:1-8. [PMID: 7906262 PMCID: PMC5919335 DOI: 10.1111/j.1349-7006.1994.tb02878.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- A Matsukage
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Nagoya
| | | | | |
Collapse
|
25
|
Matsuoka S, Yamaguchi M, Hayashi Y, Matsukage A. Nucleotide sequence and promoter-specific effect of a negative regulatory region located upstream of the mouse proliferating cell nuclear antigen gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:173-81. [PMID: 7902277 DOI: 10.1111/j.1432-1033.1993.tb18363.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Different portions of the 5'-upstream region of the mouse proliferating cell-nuclear-antigen (PCNA) gene were combined with the bacterial chloramphenicol acetyltransferase (CAT) gene of a CAT vector. A transient expression assay of CAT activity in mouse neuroblastoma N18TG2 cells transfected with these recombinant plasmids and RNase protection analysis have revealed the existence of a negative regulatory region between nucleotides -1231 and -624 (+1 denotes the transcription initiation site). The CAT expression levels were gradually increased, depending on the extent of deletion from the 5'-terminus in this region, suggesting that the negative regulatory region consists of multiple elements with rather weak repressing activities. Significant sequence similarity was found between the negative regulatory region of the PCNA gene and those of the several reported genes. A 752-bp segment containing this negative regulatory region repressed the function of the PCNA gene promoter in an orientation-independent and position-independent manner. However, the negative regulatory region showed almost no repressing effect on the functions of the heterologous gene promoters such as the simian virus 40 enhancer promoter, the enhancer promoter in the Rous sarcoma virus long-terminal repeat and the mouse DNA polymerase beta gene promoter. These results suggest that the negative regulatory region of the mouse PCNA gene functions specifically to its own promoter. This unique property is discussed in comparison with that of the negative regulatory elements of the mouse DNA polymerase beta gene.
Collapse
Affiliation(s)
- S Matsuoka
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- D McCormick
- Division of Histopathology, United Medical and Dental School, London, UK
| | | |
Collapse
|
27
|
Novel 8-base pair sequence (Drosophila DNA replication-related element) and specific binding factor involved in the expression of Drosophila genes for DNA polymerase alpha and proliferating cell nuclear antigen. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53966-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Taniguchi Y, Fujii A, Moriuchi T. Cloning and sequencing of the human homeobox gene HOX4A. ACTA ACUST UNITED AC 1992; 1132:332-4. [PMID: 1358204 DOI: 10.1016/0167-4781(92)90173-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The HOX4A gene, one of the homeobox-containing genes on human chromosome 2, has been isolated by screening a genomic cosmid library with a HOX4B cDNA probe. The HOX4A gene consists of at least two exons separated by a long intron of 1860 bp. According to conceptual translation, the HOX4A protein is predicted to be composed of 416 amino acid residues. Interestingly, the HOX4A protein has a sequence, Pro-Ala-Ser-Gln-Ser-Pro-Glu-Arg-Ser, eight amino acids downstream from the homeodomain, which is similar to that containing a phosphorylation site in pp60c-src, Pro-Ala-Ser-Gln-Thr-Pro-Asn-Lys-Thr. However, the HOX2G protein, which exhibits a paralogous relationship with the HOX4A protein, does not possess the sequence which is similar to that in pp60c-src. A comparison of the predicted HOX4A protein with the HOX2G protein revealed four regions of amino acid sequence similarities: an N-terminal tetrapeptide, a pentapeptide (pre-box) upstream of the homeodomain, the homeodomain and a C-terminal octapeptide.
Collapse
Affiliation(s)
- Y Taniguchi
- Division of Molecular Life Science (Cell Biology), Tokai University School of Medicine, Kanagawa, Japan
| | | | | |
Collapse
|