1
|
Zhang Y, Qin P, Tian L, Yan J, Zhou Y. The role of mediator complex subunit 19 in human diseases. Exp Biol Med (Maywood) 2021; 246:1681-1687. [PMID: 34038190 PMCID: PMC8719036 DOI: 10.1177/15353702211011701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mediator is an evolutionarily conserved multi-protein complex that mediates the interaction between different proteins as a basic linker in the transcription mechanism of eukaryotes. It interacts with RNA polymerase II and participates in the process of gene expression. Mediator complex subunit 19 or regulation by oxygen 3, or lung cancer metastasis-related protein 1 is located at the head of the mediator complex; it is a multi-protein co-activator that induces the transcription of RNA polymerase II by DNA transcription factors. It is a tumor-related gene that plays an important role in transcriptional regulation, cell proliferation, and apoptosis and is closely related to the occurrence and development of the cancers of the lung, bladder, skin, etc. Here, we used the structure of mediator complex subunit 19 to review its role in tumor progression, fat metabolism, drug therapy, as well as the novel coronavirus, which has attracted much attention at present, suggesting that mediator complex subunit 19 has broad application in the occurrence and development of clinical diseases. As a tumor-related gene, the role and mechanism of mediator complex subunit 19 in the regulation of tumor growth could be of great significance for the diagnosis, prognosis, and treatment of mediator complex subunit 19 -related tumors.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Peifang Qin
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Linlin Tian
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
2
|
Yuan H, Yu S, Cui Y, Men C, Yang D, Gao Z, Zhu Z, Wu J. Knockdown of mediator subunit Med19 suppresses bladder cancer cell proliferation and migration by downregulating Wnt/β-catenin signalling pathway. J Cell Mol Med 2017. [PMID: 28631286 PMCID: PMC5706513 DOI: 10.1111/jcmm.13229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Hejia Yuan
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Shengqiang Yu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Changping Men
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Diandong Yang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhenli Gao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhe Zhu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
3
|
Zhao Y, Meng Q, Gao X, Zhang L, An L. Down-regulation of mediator complex subunit 19 (Med19) induces apoptosis in human laryngocarcinoma HEp2 cells in an Apaf-1-dependent pathway. Am J Transl Res 2017; 9:755-761. [PMID: 28337304 PMCID: PMC5340711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Mediator 19 (Med19) is a component of the mediator complex which is a co-activator for DNA-binding factors that activate transcription via RNA polymerase II. Accumulating evidence has shown that Med19 plays important roles in cancer cell proliferation and tumorigenesis. The physiological mechanism by which Med19 exerts its promoting effects in laryngocarcinoma is not yet fully understood. Here, we found that the expression of Med19 was increased in laryngocarcinoma samples from patients compared to normal bone tissues. Med19 knockdown significantly induced growth inhibition and suppressed migration in the HEp2 cell lines. Med19 knockdown also induced apoptosis in HEp2 cells via activation of caspase-3, 9 and Apaf-1. In addition, The tumorigenicity of Med19 short hairpin RNA (shRNA)-expressing cells were decreased after inoculating into nude mice. Taken together, our data suggest that Med19 acts as an oncogene in laryngocarcinoma via a possible caspase modulation pathway.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Qingfeng Meng
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry, Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Lihua Zhang
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Lixin An
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| |
Collapse
|
4
|
Med19 promotes breast cancer cell proliferation by regulating CBFA2T3/HEB expression. Breast Cancer 2016; 24:433-441. [PMID: 27572702 DOI: 10.1007/s12282-016-0722-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mediator complex 19 (Med19) is a pivotal subunit of the Mediator complex, and its aberrant expression is involved in tumourigenesis. We aimed to explore the mechanism by which Med19 promotes the proliferation of breast cancer. METHODS Lentivirus-mediated inhibition of Med19, ectopic expression of Med19 and ectopic expression of core-binding factor subunit alpha 2 to translocation 3 (CBFA2T3) were applied in human breast cancer cell lines. Human breast cancer cell proliferation was determined using CCK8 and colony formation assays after lentivirus infection. The expression of Med19, CBFA2T3 and HEB was measured by real-time reverse transcription polymerase chain reaction and Western blotting. The correlation between Med19 and CBFA2T3 expression in tissue from 25 cases of human breast cancer was analysed. RESULTS In this study, we demonstrate that cell proliferation and colony formation capacity were significantly inhibited after Med19 inhibition in vitro. The expression of CBFA2T3 was distinctly up-regulated in MDA-MB-231 and MCF-7 human breast cancer cells when Med19 was knocked down; however, the expression of HEB, which is targeted by CBFA2T3, was down-regulated. Meanwhile, ectopic expression of Med19 in BT-549 and Hs578T human breast cancer cells inhibited CBFA2T3 expression but enhanced HEB expression. The proliferation capacity of human breast cancer cells was increased when Med19 was overexpressed, but the effect of Med19 up-regulation could be reversed by CBFA2T3 overexpression. Furthermore, a negative correlation between Med19 and CBFA2T3 expression was demonstrated by Western blotting in human breast cancer tissue. CONCLUSIONS These results suggest that Med19 promotes breast cancer cell proliferation and that this effect is associated with CBFA2T3 and HEB. These results provide new insights into the potential role of Med19 in the regulation of breast carcinogenesis, and Med19 may be a useful therapeutic target in breast cancer therapy.
Collapse
|
5
|
Crona F, Holmqvist PH, Tang M, Singla B, Vakifahmetoglu-Norberg H, Fantur K, Mannervik M. The Brakeless co-regulator can directly activate and repress transcription in early Drosophila embryos. Dev Biol 2015; 407:173-81. [PMID: 26260775 DOI: 10.1016/j.ydbio.2015.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/22/2015] [Accepted: 08/06/2015] [Indexed: 11/25/2022]
Abstract
The Brakeless protein performs many important functions during Drosophila development, but how it controls gene expression is poorly understood. We previously showed that Brakeless can function as a transcriptional co-repressor. In this work, we perform transcriptional profiling of brakeless mutant embryos. Unexpectedly, the majority of affected genes are down-regulated in brakeless mutants. We demonstrate that genomic regions in close proximity to some of these genes are occupied by Brakeless, that over-expression of Brakeless causes a reciprocal effect on expression of these genes, and that Brakeless remains an activator of the genes upon fusion to an activation domain. Together, our results show that Brakeless can both repress and activate gene expression. A yeast two-hybrid screen identified the Mediator complex subunit Med19 as interacting with an evolutionarily conserved part of Brakeless. Both down- and up-regulated Brakeless target genes are also affected in Med19-depleted embryos, but only down-regulated targets are influenced in embryos depleted of both Brakeless and Med19. Our data provide support for a Brakeless activator function that regulates transcription by interacting with Med19. We conclude that the transcriptional co-regulator Brakeless can either activate or repress transcription depending on context.
Collapse
Affiliation(s)
- Filip Crona
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, Arrheniuslaboratories E3, Stockholm, Sweden
| | - Per-Henrik Holmqvist
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, Arrheniuslaboratories E3, Stockholm, Sweden
| | - Min Tang
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, Arrheniuslaboratories E3, Stockholm, Sweden
| | - Bhumica Singla
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, Arrheniuslaboratories E3, Stockholm, Sweden
| | - Helin Vakifahmetoglu-Norberg
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, Arrheniuslaboratories E3, Stockholm, Sweden
| | - Katrin Fantur
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, Arrheniuslaboratories E3, Stockholm, Sweden
| | - Mattias Mannervik
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, Arrheniuslaboratories E3, Stockholm, Sweden.
| |
Collapse
|
6
|
Yu W, Zhang Z, Min D, Yang Q, Du X, Tang L, Lin F, Sun Y, Zhao H, Zheng S, He A, Li H, Yao Y, Shen Z. Mediator of RNA polymerase II transcription subunit 19 promotes osteosarcoma growth and metastasis and associates with prognosis. Eur J Cancer 2014; 50:1125-36. [PMID: 24565852 DOI: 10.1016/j.ejca.2014.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant tumour of bone. Nearly 30-40% of OS patients have a poor prognosis despite multimodal treatments. Because the carcinogenesis of OS remains unclear, the identification of new oncogenes that control the tumourigenesis and progression of OS is crucial for developing new therapies. Here, we found that the expression of Mediator of RNA polymerase II transcription subunit 19 (Med19) was increased in OS samples from patients compared to normal bone tissues. Cyclin D1 and cyclin B1 are upregulated in Med19 positive OS tissues. Importantly, among 97 OS patients of Enneking stage IIB or IIIB, Med19 expression was correlated with metastasis (P<0.05) and poor prognosis (P<0.01). Med19 knockdown significantly induced growth inhibition, reduced colony-forming ability and suppressed migration in the OS cell lines Saos-2 and U2OS, along with the downregulated expression of cyclin D1 and cyclin B1. Med19 knockdown also induced apoptosis in Saos-2 cells via induction of caspase-3 and poly ADP-ribose polymerase (PARP). In addition, Med19 knockdown significantly suppressed tumour growth in an OS xenograft nude mouse model via suppression of cyclin D1 and cyclin B1. Simultaneously, Med19 downregulation decreased the expression of Ki67 and proliferating cell nuclear antigen (PCNA) in tumour samples from OS xenograft nude mice. Med19 depletion remarkably reduced tumour metastasis in a model of OS metastatic spreading. Taken together, our data suggest that Med19 acts as an oncogene in OS via a possible cyclin D1/cyclin B1 modulation pathway.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Zhichang Zhang
- Department of Orthopedics, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Daliu Min
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Qingcheng Yang
- Department of Orthopedics, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Xuefei Du
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Lina Tang
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Feng Lin
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Yuanjue Sun
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Hui Zhao
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Shuier Zheng
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Aina He
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Hongtao Li
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Yang Yao
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China
| | - Zan Shen
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, 200233 Shanghai, People's Republic of China.
| |
Collapse
|
7
|
A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 2013; 11:e1001732. [PMID: 24339748 PMCID: PMC3858237 DOI: 10.1371/journal.pbio.1001732] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022] Open
Abstract
HaRxL44, a secreted effector from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis, enhances disease susceptibility by interacting with and degrading Mediator subunit MED19a, thereby perturbing plant defense gene transcription. Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)–triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression. The highly conserved Mediator complex plays an essential role in transcriptional regulation by providing a molecular bridge between transcription factors and RNA polymerase II. Recent studies in Arabidopsis have revealed that it also performs an essential role in plant defence. However, it remains unknown how pathogens manipulate Mediator function in order to increase a plant's susceptibility to infection. In this article, we show that a secreted effector, HaRxL44, from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa), interacts with and degrades the Mediator subunit MED19a, resulting in the alteration of plant defence gene transcription. This effector-mediated interference with host transcriptional regulation perturbs the balance between jasmonic acid/ethylene (JA/ET) and salicylic acid (SA)–dependent defence. HaRxL44 interaction with MED19a results in reduced SA-regulated gene expression, indicating that this pathogen effector modulates host transcription to promote virulence. The resulting alteration in defence transcription patterns compromises the plant's ability to defend itself against pathogens, such as Hpa, that establish long-term parasitic interactions with living host cells via haustoria (a pathogen structure that creates an expanded host/parasite interface to extract nutrients) but not against necrotrophic pathogens that kill host cells. HaRxL44 is unlikely to be the sole effector that accomplishes this shift in hormonal balance, and other nuclear HaRxL proteins were reported by other researchers to interact with Mediator components, as well as with other regulators of the JA/ET signalling pathway. Functional analyses of these effectors should facilitate the discovery of new components of the plant immune system. These data show that pathogens can target fundamental mechanisms of host regulation in order to tip the balance of signalling pathways to suppress defence and favour parasitism.
Collapse
|
8
|
Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JDG. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 2013. [PMID: 24339748 DOI: 10.1371/journal.pbio] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)-triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.
Collapse
|
9
|
Liu Y, Tao X, Fan L, Jia L, Gu C, Feng Y. Knockdown of mediator complex subunit 19 inhibits the growth of ovarian cancer. Mol Med Rep 2012; 6:1050-6. [PMID: 22961438 DOI: 10.3892/mmr.2012.1065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/24/2012] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer causes more deaths than any other type of female reproductive cancer. The development of new therapeutic approaches is required due to the low survival rate using routine methods. The goal of this study was to investigate the effect of the gene silencing of mediator complex subunit 19 (MED19) on cell viability and tumor growth in ovarian cancer. Immunohistochemistry was used to characterize the expression of MED19 in human ovarian cancer tissues. Lentivirus-mediated RNAi was employed to downregulate endogenous MED19 expression in SKOV-3 and HEY ovarian cancer cells. MTT assay, BrdU incorporation assay, colony formation assay, cell cycle analysis and tumor xenografts in nude mice were performed to determine the effects of MED19 silencing on cell viability and tumor growth in vitro and in vivo. The data showed that the expression of MED19 in human ovarian cancer tissues correlated with the level of tumor malignancy. The downregulation of MED19 in ovarian cancer cells significantly inhibited cell proliferation and colony formation in vitro and led to cell cycle arrest in the G0/G1 phase. MED19 RNAi significantly inhibited ovarian cancer tumor growth in engrafted nude mice. Our findings reveal that the knockdown of MED19 by lentivirus-mediated RNAi may be useful in the treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Yingtao Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Ding XF, Huang GM, Shi Y, Li JA, Fang XD. Med19 promotes gastric cancer progression and cellular growth. Gene 2012; 504:262-7. [DOI: 10.1016/j.gene.2012.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/25/2012] [Accepted: 04/11/2012] [Indexed: 01/19/2023]
|
11
|
Cui X, Xu D, Lv C, Qu F, He J, Chen M, Liu Y, Gao Y, Che J, Yao Y, Yu H. Suppression of MED19 expression by shRNA induces inhibition of cell proliferation and tumorigenesis in human prostate cancer cells. BMB Rep 2011; 44:547-52. [DOI: 10.5483/bmbrep.2011.44.8.547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Conaway RC, Conaway JW. Origins and activity of the Mediator complex. Semin Cell Dev Biol 2011; 22:729-34. [PMID: 21821140 DOI: 10.1016/j.semcdb.2011.07.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022]
Abstract
The Mediator is a large, multisubunit RNA polymerase II transcriptional regulator that was first identified in Saccharomyces cerevisiae as a factor required for responsiveness of Pol II and the general initiation factors to DNA binding transactivators. Since its discovery in yeast, Mediator has been shown to be an integral and highly evolutionarily conserved component of the Pol II transcriptional machinery with critical roles in multiple stages of transcription, from regulation of assembly of the Pol II initiation complex to regulation of Pol II elongation. Here we provide a brief overview of the evolutionary origins of Mediator, its subunit composition, and its remarkably diverse collection of activities in Pol II transcription.
Collapse
Affiliation(s)
- Ronald C Conaway
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| | | |
Collapse
|
13
|
Ji-Fu E, Xing JJ, Hao LQ, Fu CG. Suppression of lung cancer metastasis-related protein 1 (LCMR1) inhibits the growth of colorectal cancer cells. Mol Biol Rep 2011; 39:3675-81. [DOI: 10.1007/s11033-011-1142-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/24/2011] [Indexed: 12/31/2022]
|
14
|
Zhang H, Jiang H, Wang W, Gong J, Zhang L, Chen Z, Ding Q. Expression of Med19 in bladder cancer tissues and its role on bladder cancer cell growth. Urol Oncol 2011; 30:920-7. [PMID: 21478038 DOI: 10.1016/j.urolonc.2010.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The human Med19 gene encodes a critical subunit that stabilizes the whole mediator complex. To understand the role of Med19 in bladder cancer, we studied the effects of lentivirus-mediated suppression of Med19 expression on bladder cancer cells in vitro and in vivo. METHODS AND MATERIALS In this study, immunohistochemical analysis was used to demonstrate the expression of Med19 in human bladder cancer. The lentivirus vectors containing a small hairpin RNA (shRNA) to target Med19 were constructed. After bladder cancer cells (5637 and T24) were infected, RT-PCR and Western blotting were used to measure Med19 expression. The influence of Med19 on the proliferation of bladder cancer cells were assessed using MTT, BrdU, colony formation and tumorigenicity experiments. Cell cycle was analyzed with flow cytometric assay. RESULTS Med19 was up-regulated in human bladder cancers compared with adjacent benign tissues by immunohistochemical analysis, but was strongly inhibited in 5637 and T24 bladder cancer cells infected with lentiviruses delivering shRNA against Med19. The down-regulation of Med19 increased the proportion of cells in G0/G1 phases and attenuated the growth of 5637 and T24 cells in vitro. The tumorigenicity of Med19-suppressed T24 cells was decreased after inoculation into nude mice. CONCLUSIONS Our results suggested that lentiviruses delivering shRNA against Med19 may be a promising tool for bladder cancer therapy.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Li LH, He J, Hua D, Guo ZJ, Gao Q. Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother Pharmacol 2010; 68:207-15. [PMID: 20890603 DOI: 10.1007/s00280-010-1468-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 09/10/2010] [Indexed: 12/20/2022]
Abstract
PURPOSE The mediator is a large multiprotein complex vital for transcription regulation. Human Med19 is a critical subunit of the mediator complex and plays an important role in stabilizing the whole mediator. To understand the role and mechanism of Med19 in breast cancer, we carried out studies on the impacts of lentivirus-mediated inhibition of Med19 on breast cancer cells in vitro. METHOD The expression of Med19 in breast cancer tissue was detected using immunohistochemical analysis. The impacts of lentivirus-mediated inhibition of Med19 on breast cancer cells were detected using flow cytometric, cell proliferation, BrdU incorporation, and colony formation assays. RESULTS The upregulated expression of Med19 was found in breast cancer tissues. Med19 expression was significantly associated with tumor grade (p = 0.026). The expression of Med19 was strongly suppressed in human breast cancer MDA-MB-231 and MCF-7 cells infected with lentiviruses delivering small hairpin RNA (shRNA) against Med19. The inhibition of Med19 elicited augmentation of G0/G1 phase proportion and significantly attenuated the growth of MDA-MB-231 and MCF-7 cells in vitro. CONCLUSION Med19 plays an important role in the proliferation of human breast cancer cells, which suggested that the lentiviruses delivering shRNA against Med19 could be a promising tool for breast cancer therapy.
Collapse
Affiliation(s)
- Li-Hua Li
- Oncology Institute, The Fourth Affiliated Hospital of Soochow University, 200 Huihe Road, Wuxi 214062, China.
| | | | | | | | | |
Collapse
|
16
|
Seoane S, Lamas-Maceiras M, Rodríguez-Torres AM, Freire-Picos MA. Involvement of Pta1, Pcf11 and a KlCYC1 AU-rich element in alternative RNA 3'-end processing selection in yeast. FEBS Lett 2009; 583:2843-8. [PMID: 19646984 DOI: 10.1016/j.febslet.2009.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/24/2022]
Abstract
This work reports the involvement of yeast RNA processing factors Pta1 and Pcf11 in alternative 3'-end RNA processing. The pta1-1 and pcf11-2 mutations changed the predominance of KlCYC1 1.14 and 1.5 kb transcript isoforms. Mutation of the KlCYC1 3'-UTR AU-rich sequence at positions 679-690 (mutant M1) altered transcript predominance. Moreover, expression of M1 in the yeast mutants partially suppressed their effects in the predominance pattern. The combination of the M1 and M2 (694-698 deletion) mutations abolished the alternative processing. Pta1 involvement in this selection was confirmed using the Pta1-td degron strain.
Collapse
Affiliation(s)
- Silvia Seoane
- Universidade da Coruña, Facultad de Ciencias, Campus da Zapateira S/N, 15071 A Coruña, Spain
| | | | | | | |
Collapse
|
17
|
Rosende SS, Becerra M, Salgado M, Lamas-Maceiras M, González M, Picos MF. Growth phase-dependent expression of Kluyveromyces lactis genes and involvement of 3′-UTR elements. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
van de Peppel J, Kettelarij N, van Bakel H, Kockelkorn TTJP, van Leenen D, Holstege FCP. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol Cell 2005; 19:511-22. [PMID: 16109375 DOI: 10.1016/j.molcel.2005.06.033] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 06/21/2005] [Accepted: 06/30/2005] [Indexed: 11/17/2022]
Abstract
Mediator is an evolutionarily conserved coregulator of RNA polymerase II transcription. Microarray structure-function analysis of S. cerevisiae Mediator reveals functional antagonism between the cyclin-dependent kinase (Cdk) submodule and components from the Tail (Med15, Med2, Med3), Head (Med20, Med18), and Middle (Med31). Certain genes exhibit increased or decreased expression, depending on which subunit is deleted. Epistasis analysis with expression-profile phenotypes shows that MED2 and MED18 are downstream of CDK8. Strikingly, Cdk8-mediated modification of a single amino acid within Mediator represses the regulon of a single transcription factor, Rcs1/Aft1. Highly specific gene regulation is thought to be determined by activators and combinatorial use of cofactors. Here, subtle modification of the general transcription machinery through one of its own components is shown to determine highly specific expression patterns. Expression profiling can therefore precisely map regulatory cascades, and our findings support a role for Mediator as a direct processor of signaling pathways for determining specificity.
Collapse
Affiliation(s)
- Jeroen van de Peppel
- Department of Physiological Chemistry, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Conaway JW, Florens L, Sato S, Tomomori-Sato C, Parmely TJ, Yao T, Swanson SK, Banks CAS, Washburn MP, Conaway RC. The mammalian Mediator complex. FEBS Lett 2005; 579:904-8. [PMID: 15680972 DOI: 10.1016/j.febslet.2004.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 11/27/2022]
Abstract
The multiprotein Mediator (Med) complex is an evolutionarily conserved transcriptional regulator that plays important roles in activation and repression of RNA polymerase II transcription. Prior studies identified a set of more than twenty distinct polypeptides that compose the Saccharomyces cerevisiae Mediator. Here we discuss efforts to characterize the subunit composition and associated activities of the mammalian Med complex.
Collapse
|
20
|
Lamas-Maceiras M, Cerdán ME, Lloret A, Freire-Picos MA. Characterization of a gene similar to BIK1 in the yeast Kluyveromyces lactis. Yeast 2004; 21:1067-75. [PMID: 15484289 DOI: 10.1002/yea.1140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In Saccharomyces cerevisiae, Bik1p is a microtubule plus-end-tracking protein that plays several roles in mitosis and ploidy. KlBik1p (from Kluyveromyces lactis) maintains the same structural-domain organization as does S. cerevisiae Bik1p. As part of its characterization, we constructed a stable klbik1 mutant which is sensitive to benomyl only at 14 degrees C and has a higher frequency of crescent-shaped nuclei than S. cerevisiae bik1 mutants. This phenotype is partially rescued by S. cerevisiae BIK1. Other phenotypes associated with bik1 are not present in the K. lactis mutant. By fusion to GFP we were able to show the functionality of the KlBik1p CAP-Gly domain and found that the fusion protein changes its cellular location during the cell cycle.
Collapse
Affiliation(s)
- M Lamas-Maceiras
- Facultad de Ciencias, Dpto. de Biología Celular y Molecular, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Stefan Björklund
- Department of Medical Biochemistry, Umeå University, S-901 87 Umeå, Sweden
| | | |
Collapse
|
22
|
Khanday FA, Saha M, Bhat PJ. Molecular characterization of MRG19 of Saccharomyces cerevisiae. Implication in the regulation of galactose and nonfermentable carbon source utilization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5840-50. [PMID: 12444972 DOI: 10.1046/j.1432-1033.2002.03303.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have reported previously that multiple copies of MRG19 suppress GAL genes in a wild-type but not in a gal80 strain of Saccharomyces cerevisiae. In this report we show that disruption of MRG19 leads to a decrease in GAL induction when S. cerevisiae is induced with 0.02% but not with 2.0% galactose. Disruption of MRG19 in a gal3 background (this strain shows long-term adaptation phenotype) further delays the GAL induction, supporting the notion that its function is important only under low inducing signals. As a corollary, disruption of MRG19 in a gal80 strain did not decrease the constitutive expression of GAL genes. These results suggest that MRG19 has a role in GAL regulation only when the induction signal is weak. Unlike the effect on GAL gene expression, disruption of MRG19 leads to de-repression of CYC1-driven beta-galactosidase activity. MRG19 disruptant also showed a twofold increase in the rate of oxygen uptake as compared with the wild-type strain. ADH2, CTA1, DLD1, and CYC7 promoters that are active during nonfermentative growth did not show any de-repression of beta-galactosidase activity in the MRG19 disruptant. Western blot analysis indicated that MRG19 is a glucose repressible gene and is expressed in galactose and glycerol plus lactate. Experiments using green fluorescent protein fusion constructs indicate that Mrg19p is localized in the nucleus consistent with the presence of a consensus nuclear localization signal sequence. Based on the above results, we propose that Mrg19p is a regulator of galactose and nonfermentable carbon utilization.
Collapse
Affiliation(s)
- Firdous A Khanday
- Laboratory of Molecular Genetics, Biotechnology Center, Indian Institute of Technology, Powai, Mumbai, India
| | | | | |
Collapse
|
23
|
Abstract
The last two decades have witnessed a tremendous expansion in our knowledge of the mechanisms employed by eukaryotic cells to control gene activity. A critical insight to transcriptional control mechanisms was provided by the discovery of coactivators, a diverse array of cellular factors that connect sequence-specific DNA binding activators to the general transcriptional machinery, or that help activators and the transcriptional apparatus to navigate through the constraints of chromatin. A number of coactivators have been isolated as large multifunctional complexes, and biochemical, genetic, molecular, and cellular strategies have all contributed to uncovering many of their components, activities, and modes of action. Coactivator functions can be broadly divide into two classes: (a) adaptors that direct activator recruitment of the transcriptional apparatus, (b) chromatin-remodeling or -modifying enzymes. Strikingly, several distinct coactivator complexes nonetheless share many subunits and appear to be assembled in a modular fashion. Such structural and functional modularity could provide the cell with building blocks from which to construct a versatile array of coactivator complexes according to its needs. The extent of functional interplay between these different activities in gene-specific transcriptional regulation is only now becoming apparent, and will remain an active area of research for years to come.
Collapse
Affiliation(s)
- A M Näär
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
24
|
Becerra M, Lombardía-Ferreira LJ, Hauser NC, Hoheisel JD, Tizon B, Cerdán ME. The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol 2002; 43:545-55. [PMID: 11929514 DOI: 10.1046/j.1365-2958.2002.02724.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptome of Saccharomyces cerevisiae was screened using the high-density membrane hybridization method, under aerobic and hypoxic conditions, in wild-type and mutant backgrounds obtained by the disruption of the genes encoding the regulatory proteins Hap1, Rox1 and the Srb10 and Rox3 subunits of RNA polymerase II holoenzyme. None of the mutations studied was able to fully overcome the wild-type hypoxic response. Deletion of the hap1 gene changed the expression profiles of individual open reading frames (ORFs) under both aerobic and hypoxic conditions. Major changes associated with rox3 deletion were related to the hypoxic activation. Rox3 also caused a repressor effect (oxygen-independent) on a subset of genes related to subtelomeric proteins. With regard to the effect brought about by the deletion of rox1 and srb10, correspondence cluster analysis revealed that the transcriptome profile in aerobic conditions is very similar in the wild-type and both deletion strains. In contrast, however, differences were found during hypoxia between the subgroup formed by wild-type and the Deltarox1 deletant compared with the Deltasrb10 deletant. An analysis of selected ORFs responding to hypoxia, in association with a dependence on the regulatory factors studied, made it possible to identify the clusters that are related to different regulatory circuits.
Collapse
Affiliation(s)
- Manuel Becerra
- Dpto. Biología Celular y Molecular, Universidad de La Coruña, F. Ciencias, Campus de La Zapateira s/n 15075, La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Freire-Picos MA, Lombardía-Ferreira LJ, Ramil E, González-Domínguez M, Cerdán ME. The KlCYC1 gene, a downstream region for two differentially regulated transcripts. Yeast 2001; 18:1347-55. [PMID: 11571759 DOI: 10.1002/yea.787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
KlCYC1 encodes for cytochrome c in the yeast Kluyveromyces lactis and is transcribed in two mRNAs with different 3'-processing points. This is an uncommon transcription mechanism in yeast mRNAs. The 3' sequence encompassing the whole region that is needed to produce both mRNAs is analysed. We have determined identical processing points in K.lactis and in Saccharomyces cerevisiae cells transformed with KlCYC1; positions 698 and 1092 (with respect to the TAA) are the major polyadenylation points. This shows that the cis-elements present in the KlCYC1 3'-untranslated region (3'-UTR) direct a processing mechanism that has been conserved in yeast. In K. lactis there is a high predominance of the shorter transcript (1.14 kb) only at the initial logarithmic growth phase. Interestingly, this growth phase-dependent regulation of 3'-UTR processing is lost when the gene is expressed in S. cerevisiae.
Collapse
Affiliation(s)
- M A Freire-Picos
- Facultad de Ciencias, Departamento de Biología Celular y Molecular, Universidad de La Coruña, Campus de La Zapateira s/n, 15071-La Coruña, Spain.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Three lines of evidence have converged on a multiprotein Mediator complex as a conserved interface between gene-specific regulatory proteins and the general transcription apparatus of eukaryotes. Mediator was discovered as an activity required for transcriptional activation in a reconstituted system from yeast. Upon resolution to homogeneity, the activity proved to reside in a 20-protein complex, which could exist in a free state or in a complex with RNA polymerase II, termed holoenzyme. A second line of evidence came from screens in yeast for mutations affecting transcription. Two-thirds of Mediator subunits are encoded by genes revealed by these screens. Five of the genetically defined subunits, termed Srbs, were characterized as interacting with the C-terminal domain of RNA polymerase II in vivo, and were shown to bind polymerase in vitro. A third line of evidence has come recently from studies in mammalian transcription systems. Mammalian counterparts of yeast Mediator were shown to interact with transcriptional activator proteins and to play an essential role in transcriptional regulation. Mediator evidently integrates and transduces positive and negative regulatory information from enhancers and operators to promoters. It functions directly through RNA polymerase II, modulating its activity in promoter-dependent transcription. Details of the Mediator mechanism remain obscure. Additional outstanding questions include the patterns of promoter-specificity of the various Mediator subunits, the possible cell-type-specificity of Mediator subunit composition, and the full structures of both free Mediator and RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- L C Myers
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
27
|
Lamas-Maceiras M, Cerdán ME, Freire-Picos MA. Kluyveromyces lactis HIS4 transcriptional regulation: similarities and differences to Saccharomyces cerevisiae HIS4 gene. FEBS Lett 1999; 458:72-6. [PMID: 10518937 DOI: 10.1016/s0014-5793(99)01105-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sequence analysis of the Kluyveromyces lactis HIS4 (KlHIS4) gene promoter reveals relevant differences in comparison to the Saccharomyces cerevisiae HIS4 homologous gene. Among them are the absence of a Rap1 binding site and the presence of only three putative Gcn4 binding consensus sites instead of the five described in the S. cerevisiae promoter. Since these factors are implicated in the general control, we investigated the transcriptional regulation of the KlHIS4 gene under conditions of amino acid starvation and discovered that the mechanisms previously described for S. cerevisiae HIS4 regulation and related to general control are not functional in K. lactis. The expression analysis of the KlHIS4 gene under phosphate starvation or high adenine supply shows that factors, such as Bas1 or Bas2, involved in the basal control may also operate in a different way in K. lactis. Interestingly, and also in contrast to the HIS4 regulation in S. cerevisiae, we found domains for Nit2-like and yeast-Ap1-like binding sequences. Northern analyses showed transcriptional activation under ammonia starvation and oxidative stress.
Collapse
Affiliation(s)
- M Lamas-Maceiras
- Facultad de Ciencias, Departamento de Biología Celular y Molecular, Universidad de La Coruña, Spain
| | | | | |
Collapse
|
28
|
Francia G, Poulsom R, Hanby AM, Mitchell SD, Williams G, Mckee P, Hart IR. Identification by differential display of a protein phosphatase-2A regulatory subunit preferentially expressed in malignant melanoma cells. Int J Cancer 1999; 82:709-13. [PMID: 10417769 DOI: 10.1002/(sici)1097-0215(19990827)82:5<709::aid-ijc14>3.0.co;2-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We described the occurrence of 4 transcripts differentially displayed between syngeneic murine B16F10 (metastatic melanoma) and Melan-a (immortalised melanocytes) cell lines. We now report that one such transcript, which is B16F10-specific, represents a protein phosphatase-2A B' regulatory subunit. No expression of this transcript was detected in the weakly metastatic B16F1 by Northern blotting. Moreover, the transcript was not expressed by spontaneously immortalised, non-tumorigenic, melanocytes (Melan-Ab and Melan-a2), nor was it expressed by ras-transformed, tumourigenic melanocytes (Melan-Ab-LTR-ras). Cloning of the 5'-end region of this transcript (termed band 8A) from B16F10 cells revealed an intracisternal A-particle insertion, including the long terminal repeat region, which could account for the observed high expression in B16F10 cells. Single cell clones of B16F10 manifested an experimental metastasis capacity, which correlated with band 8A expression with the lowest expressors being least metastatic. The human homologue of the B' regulatory subunit, B56gamma, is expressed preferentially at the mRNA level in human melanoma cell lines compared with normal epidermal melanocytes. In situ hybridisation studies on human clinical samples detected high expression of this gene in a number of malignant melanomas. Our results imply strongly that this protein phosphatase-2A regulatory subunit may have a role in melanoma tumour progression.
Collapse
Affiliation(s)
- G Francia
- Richard Dimbleby Department of Cancer Research/ICRF Laboratory, The Rayne Institute, UMDS, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Sartori G, Aldegheri L, Mazzotta G, Lanfranchi G, Tournu H, Brown AJ, Carignani G. Characterization of a new hemoprotein in the yeast Saccharomyces cerevisiae. J Biol Chem 1999; 274:5032-7. [PMID: 9988749 DOI: 10.1074/jbc.274.8.5032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae gene YNL234w encodes a 426-amino acid-long protein that shares significant similarities with the globin family. Compared with known globins from unicellular organisms, the Ynl234wp polypeptide is characterized by an unusual structure. In this protein, a central putative heme-binding domain of about 140 amino acids is flanked by two sequences of about 160 and 120 amino acids, respectively, which share no similarity with known polypeptides. Northern analysis indicates that YNL234w transcription is very low in cells grown under normal aerobic conditions but is induced by oxygen-limited growth conditions and by other stress conditions such as glucose repression, heat shock, osmotic stress, and nitrogen starvation. However, the deletion of the gene had no detectable effect on yeast growth. The Ynl234wp polypeptide has been expressed in Escherichia coli, and the hemoprotein nature of the recombinant protein was demonstrated by heme staining after SDS/polyacrylamide gel electrophoresis and spectroscopic analysis. Our data indicate that purified recombinant Ynl234wp possesses a noncovalently bound heme molecule that is predominantly found in a low spin form.
Collapse
Affiliation(s)
- G Sartori
- Dipartimento di Chimica Biologica, viale G. Colombo, 3, 35121 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Haynes JG, Hartung AJ, Hendershot JD, Passingham RS, Rundle SJ. Molecular characterization of the B' regulatory subunit gene family of Arabidopsis protein phosphatase 2A. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:127-36. [PMID: 10091592 DOI: 10.1046/j.1432-1327.1999.00154.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type 2A serine/threonine protein phosphatases (PP2A) have been implicated as important mediators of a diverse array of reversible protein phosphorylation events in plants. We have identified a novel Arabidopsis gene (AtB' delta) which encodes a 55-kDa B' type regulatory subunit of PP2A. The protein encoded by this gene is 57-63% identical and 69-74% similar to the previously identified AtB' genes. The AtB' delta gene appears to be expressed in all Arabidopsis organs indicating its protein product has a basic housekeeping function in plant cells. Unlike certain mRNAs derived from the AtB' gamma gene, AtB' delta mRNAs do not fluctuate significantly in response to heat stress. Further analysis of cDNA sequences derived from the AtB' genes identified an alternatively spliced cDNA derived from AtB' gamma. This cDNA differs from the previously identified AtB' gamma cDNA by the absence of a 133-bp region in its 5' untranslated region. The missing 133-bp region appears to constitute an unspliced intron and its presence in the AtB' gamma gene was confirmed by PCR using Arabidopsis genomic DNA as a template. AtB' gamma mRNA containing the 133-bp intron accumulate in all Arabidopsis organs and their levels fluctuate differentially in response to heat stress. The 133-bp insert contains two short open reading frames and hence might serve as a translational control mechanism affecting AtB' gamma protein synthesis. Finally we show, using both the yeast two hybrid system and in vitro binding assays, that the B' subunit of Arabidopsis PP2A is able to associate with other PP2A subunits, supporting the notion that the B' protein serves as a regulator of PP2A activity in plants.
Collapse
Affiliation(s)
- J G Haynes
- Department of Biology, Western Carolina University, Cullowhee, NC 28723, USA
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- V E Myer
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
32
|
Abstract
The Kluyveromyces lactis HIS4 gene was cloned by complementation of a Saccharomyces cerevisiae his4 mutant. Sequence analysis revealed a 2388 bp open reading frame encoding a single polypeptide predicted to encompass three distinct enzymatic activities (phosphoribosyl-AMP cyclohydrolase, phosphoribosyl-ATP pyrophosphohydrolase and histidinol dehydrogenase). This structural organization is strikingly similar to that of the His4 proteins from S. cerevisiae and Pichia pastoris. Transcript analysis detected a single mRNA species of 2.5 kb.
Collapse
Affiliation(s)
- M A Freire-Picos
- Departamento de Biologia Celular y Molecular, Facultad de Ciencias, Universidad de La Coruña, Spain
| | | | | |
Collapse
|
33
|
Carlson M. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu Rev Cell Dev Biol 1998; 13:1-23. [PMID: 9442866 DOI: 10.1146/annurev.cellbio.13.1.1] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcriptional regulation is important in all eukaryotic organisms for cell growth, development, and responses to environmental change. Saccharomyces cerevisiae, or bakers' yeast, has provided a powerful system for genetic analysis of transcriptional regulation, and findings from the study of this model system have proven broadly applicable to higher organisms. Transcriptional regulation requires the interactions of regulatory proteins with various components of the transcription machinery. Recently, genetic analysis of a diverse set of transcriptional regulatory responses has converged with studies of the function of the RNA polymerase II carboxy-terminal domain (CTD) to reveal regulatory roles for proteins associated with the CTD. These proteins, designated Srb/mediator proteins, are broadly involved in both positive and negative regulatory responses in vivo. This review focuses on the connections between genetic analysis of transcriptional regulation and the functions of the Srb/mediator proteins associated with the RNA polymerase II CTD.
Collapse
Affiliation(s)
- M Carlson
- Department of Genetics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
34
|
Sertil O, Cohen BD, Davies KJ, Lowry CV. The DAN1 gene of S. cerevisiae is regulated in parallel with the hypoxic genes, but by a different mechanism. Gene 1997; 192:199-205. [PMID: 9224891 DOI: 10.1016/s0378-1119(97)00028-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The DAN1 gene is expressed under anaerobic conditions in yeast and completely repressed during aerobic growth. The function of the gene is unknown, and genetic disruption had no effect on fitness which could be detected, even upon prolonged anaerobic growth. Expression of DAN1 was constitutive in a heme-deficient strain, indicating that heme participates in repression. Expression was blocked by heme in anaerobic medium, suggesting that heme acts as a negative co-effector rather than through its metabolic functions, i.e., in the production of a co-effector. Expression of DAN1 was regulated in parallel with the hypoxic gene ANB1, showing identical kinetics of induction and dose response to heme. However, unlike ANB1, DAN1 is not regulated by the repressor of the hypoxic regulon, ROX1, as shown by observation of normal aerobic repression of DAN1 in a strain carrying a deletion of ROX1. These results indicate the existence of a parallel regulatory system which produces an identical response to oxygen by a different mechanism than that controlling the hypoxic regulon.
Collapse
Affiliation(s)
- O Sertil
- Department of Biochemistry and Molecular Biology, Albany Medical College, NY 12208, USA
| | | | | | | |
Collapse
|
35
|
Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 1997; 16:2179-87. [PMID: 9171333 PMCID: PMC1169820 DOI: 10.1093/emboj/16.9.2179] [Citation(s) in RCA: 383] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The two homologous genes GPD1 and GPD2 encode the isoenzymes of NAD-dependent glycerol 3-phosphate dehydrogenase in the yeast Saccharomyces cerevisiae. Previous studies showed that GPD1 plays a role in osmoadaptation since its expression is induced by osmotic stress and gpd1 delta mutants are osmosensitive. Here we report that GPD2 has an entirely different physiological role. Expression of GPD2 is not affected by changes in external osmolarity, but is stimulated by anoxic conditions. Mutants lacking GPD2 show poor growth under anaerobic conditions. Mutants deleted for both GPD1 and GPD2 do not produce detectable glycerol, are highly osmosensitive and fail to grow under anoxic conditions. This growth inhibition, which is accompanied by a strong intracellular accumulation of NADH, is relieved by external addition of acetaldehyde, an effective oxidizer of NADH. Thus, glycerol formation is strictly required as a redox sink for excess cytosolic NADH during anaerobic metabolism. The anaerobic induction of GPD2 is independent of the HOG pathway which controls the osmotic induction of GPD1. Expression of GPD2 is also unaffected by ROX1 and ROX3, encoding putative regulators of hypoxic and stress-controlled gene expression. In addition, GPD2 is induced under aerobic conditions by the addition of bisulfite which causes NADH accumulation by inhibiting the final, reductive step in ethanol fermentation and this induction is reversed by addition of acetaldehyde. We conclude that expression of GPD2 is controlled by a novel, oxygen-independent, signalling pathway which is required to regulate metabolism under anoxic conditions.
Collapse
Affiliation(s)
- R Ansell
- Department of General and Marine Microbiology, Gothenburg University, Sweden
| | | | | | | | | |
Collapse
|
36
|
Redd MJ, Arnaud MB, Johnson AD. A complex composed of tup1 and ssn6 represses transcription in vitro. J Biol Chem 1997; 272:11193-7. [PMID: 9111019 DOI: 10.1074/jbc.272.17.11193] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Saccharomyces cerevisiae Tup1 protein is a member of a family of WD repeat containing proteins that are involved in repression of transcription. Tup1, along with the Ssn6 protein, represses a wide variety of genes in yeast including cell type-specific and glucose-repressed genes. Tup1 and Ssn6 are recruited to these specific gene sets by interaction with sequence-specific DNA binding proteins. In this work, a protein complex containing Ssn6 and Tup1 was purified to determine its composition. The size of the complex is estimated to be 440 kDa. Tup1 and Ssn6, which are both phosphoproteins, are the only proteins present in stoichiometric amounts in the complex. We also demonstrate that this purified complex represses transcription in an in vitro assay.
Collapse
Affiliation(s)
- M J Redd
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0414, USA
| | | | | |
Collapse
|
37
|
Latorre KA, Harris DM, Rundle SJ. Differential expression of three Arabidopsis genes encoding the B' regulatory subunit of protein phosphatase 2A. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:156-63. [PMID: 9128737 DOI: 10.1111/j.1432-1033.1997.00156.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Numerous plant processes ranging from signal transduction to metabolism appear to be mediated, in part, by type 2A protein serine/threonine phosphatases (PP2A). In an effort to identify factors that control the activity of this enzyme in plants, we have isolated and characterized DNA sequences encoding the B' regulatory subunit of PP2A from Arabidopsis thaliana. Specifically, we used PCR to amplify a segment of Arabidopsis cDNA that encodes a conserved section of the B' polypeptide. This PCR fragment was subsequently used as a probe to screen an Arabidopsis cDNA library and cDNA clones derived from three distinct genes were identified. The AtB' alpha and AtB' beta genes encode highly similar 57-kDa B' regulatory subunits while the third gene, AtB' gamma, encodes a more divergent 59-kDa B' protein. A comparison of the three Arabidopsis B' polypeptides to those of yeast and animals shows the core region of this protein to be the most conserved while the amino and carboxy termini vary both in length and sequence. Genomic Southern blots indicate that at most the Arabidopsis genome contains five genes encoding the B' regulatory subunit. The three genes identified in this study are expressed in all Arabidopsis organs, albeit at varying levels. In addition, mRNAs derived from the three genes accumulate differentially in response to heat shock. Our results indicate that the activity of plant PP2A might be regulated by a B' type regulatory subunit similar to those found in animals and yeast, and suggest possible roles for B'-containing PP2A complexes within plant cells.
Collapse
Affiliation(s)
- K A Latorre
- Department of Biology, Western Carolina University, Cullowhee NC, USA
| | | | | |
Collapse
|
38
|
Abstract
Baker's yeast, Saccharomyces cerevisiae, can adapt to growth under severe oxygen limitation. Two regulatory systems are described here that control this adaptation. The first involves a heme-dependent repression mechanism. Cells sense hypoxia through the inability to maintain oxygen-dependent heme biosynthesis. Under aerobic conditions, heme accumulates and serves as an effector for the transcriptional activator Hap1. The heme-Hap1 complex activates transcription of the ROX1 gene that encodes a repressor of one set of hypoxic genes. Under hypoxic conditions, heme levels fall, and a heme-deficient Hap1 complex represses ROX1 expression. As a consequence, the hypoxic genes are derepressed. The second regulatory system activates gene expression in response to a variety of stress conditions, including oxygen limitation. Oxygen sensing in this system is heme-independent. The same DNA sequence mediates transcriptional activation of each stress signal.
Collapse
Affiliation(s)
- R S Zitomer
- Department of Biological Sciences, University at Albany/SUNY, USA.
| | | | | |
Collapse
|
39
|
Gustafsson CM, Myers LC, Li Y, Redd MJ, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD. Identification of Rox3 as a component of mediator and RNA polymerase II holoenzyme. J Biol Chem 1997; 272:48-50. [PMID: 8995225 DOI: 10.1074/jbc.272.1.48] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Yeast Rox3 protein, implicated by genetic evidence in both negative and positive transcriptional regulation, is identified as a mediator subunit by peptide sequence determination and is shown to copurify and co-immunoprecipitate with RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- C M Gustafsson
- Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
González Siso M, Ramil E, Cerdán M, Freire-Picos M. Respirofermentative metabolism in Kluyveromyces lactis: Ethanol production and the Crabtree effect. Enzyme Microb Technol 1996. [DOI: 10.1016/0141-0229(95)00151-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Evangelista CC, Rodriguez Torres AM, Limbach MP, Zitomer RS. Rox3 and Rts1 function in the global stress response pathway in baker's yeast. Genetics 1996; 142:1083-93. [PMID: 8846889 PMCID: PMC1207109 DOI: 10.1093/genetics/142.4.1083] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Yeast respond to a variety of stresses through a global stress response that is mediated by a number of signal transduction pathways and the cis-acting STRE DNA sequence. The CYC7 gene, encoding iso-2-cytochrome c, has been demonstrated to respond to heat shock, glucose starvation, approach-to-stationary phase, and, as we demonstrate here, to osmotic stress. This response was delayed in a the hog1-delta 1 strain implicating the Hog1 mitogen-activated protein kinase cascade, a known component of the global stress response. Deletion analysis of the CYC7 regulatory region suggested that three STRE elements were each capable of inducing the stress response. Mutations in the ROX3 gene prevented CYC7 RNA accumulation during heat shock and osmotic stress. ROX3 RNA levels were shown to be induced by stress through a novel regulatory element. A selection for high-copy suppressors of a ROX3 temperature-sensitive allele resulted in the isolation of RTS1, encoding a protein with homology to the B' regulatory subunit of protein phosphatase 2A0. Deletion of RTS1 caused temperature and osmotic sensitivity and increased accumulation of CYC7 RNA under all conditions. Over-expression of this gene caused increased CYC7 RNA accumulation in rox3 mutants but not in wild-type cells.
Collapse
Affiliation(s)
- C C Evangelista
- Department of Biological Sciences, State University of New York, Albany 12222, USA
| | | | | | | |
Collapse
|
42
|
Tanabe O, Nagase T, Murakami T, Nozaki H, Usui H, Nishito Y, Hayashi H, Kagamiyama H, Takeda M. Molecular cloning of a 74-kDa regulatory subunit (B" or delta) of human protein phosphatase 2A. FEBS Lett 1996; 379:107-11. [PMID: 8566219 DOI: 10.1016/0014-5793(95)01500-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Based on amino acid sequence data of a 74-kDa regulatory subunit (B" or delta) of a human heterotrimeric protein phosphatase 2A, a cDNA encoding the subunit was isolated from a human cerebral cortex library. The cDNA had an open reading frame encoding an M(r) 66,138 protein of 570 amino acids. Bacterial expression of the cDNA yielded a protein immunoreactive with antisera specific to the 74-kDa subunit. The predicted primary structure of the subunit had no similarity to already reported sequences of PP2A regulatory subunits including A, B, and PR72. Potential phosphorylation sites for protein kinases A and C, a bipartite motif of putative nuclear localization signal, and SH3 accessible proline-rich domain, and a unique PQ repeat were found in the sequence. The subunit mRNA of about 2.9 kb was ubiquitously expressed in rat tissues.
Collapse
Affiliation(s)
- O Tanabe
- Department of Biochemistry, Hiroshima University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Obermaier B, Gassenhuber J, Piravandi E, Domdey H. Sequence analysis of a 78.6 kb segment of the left end of Saccharomyces cerevisiae chromosome II. Yeast 1995; 11:1103-12. [PMID: 7502586 DOI: 10.1002/yea.320111112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We report the sequence analysis of a 78,601 bp DNA segment on the left arm of chromosome II of Saccharomyces cerevisiae. This 78.6 kb segment spans the region from the start of a subtelomeric Y' element up to the ILS1 gene. It contains 49 open reading frames (ORFs) with more than 100 amino acids length including 14 internal and five overlapping ORFs. The gene density, excluding the internal ORFs, was calculated as one ORF per 2.2 kb. Eight ORFs (PKC1, TyA, TyB, ATP1, ROX3, RPL17a, PET112 and ILS1) correspond to previously characterized genes. ORF YBL0718 was identified as CDC27; YBL0706 as TEL1. Four other ORFs show strong similarities to already known genes. The gene product of YBL0838 is 60% identical to the ribosomal protein RPL32 from rat, mouse and man. YBL0701 encodes a protein with significant similarity to the initiation factor eIF2 associated p67 glycoprotein from rat. Eight ORFs were disrupted and the resulting yeast strains analysed with respect to their phenotype.
Collapse
Affiliation(s)
- B Obermaier
- Institut für Biochemie, LMU München, Germany
| | | | | | | |
Collapse
|
44
|
Freire-Picos MA, González-Siso MI, Rodríguez-Belmonte E, Rodríguez-Torres AM, Ramil E, Cerdán ME. Codon usage in Kluyveromyces lactis and in yeast cytochrome c-encoding genes. Gene X 1994; 139:43-9. [PMID: 8112587 DOI: 10.1016/0378-1119(94)90521-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Codon usage (CU) in Kluyveromyces lactis has been studied. Comparison of CU in highly and lowly expressed genes reveals the existence of 21 optimal codons; 18 of them are also optimal in other yeasts like Saccharomyces cerevisiae or Candida albicans. Codon bias index (CBI) values have been recalculated with reference to the assignment of optimal codons in K. lactis and compared to those previously reported in the literature taking as reference the optimal codons from S. cerevisiae. A new index, the intrinsic codon deviation index (ICDI), is proposed to estimate codon bias of genes from species in which optimal codons are not known; its correlation with other index values, like CBI or effective number of codons (Nc), is high. A comparative analysis of CU in six cytochrome-c-encoding genes (CYC) from five yeasts is also presented and the differences found in the codon bias of these genes are discussed in relation to the metabolic type to which the corresponding yeasts belong. Codon bias in the CYC from K. lactis and S. cerevisiae is correlated to mRNA levels.
Collapse
Affiliation(s)
- M A Freire-Picos
- Departamento de Biología Celular y Molecular, Universidad de La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Anderson GR, Stoler DL. Anoxia, wound healing, VL30 elements, and the molecular basis of malignant conversion. Bioessays 1993; 15:265-72. [PMID: 8390832 DOI: 10.1002/bies.950150407] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although VL30 retrotransposable elements have been associated with certain cancers for nearly twenty years, because of their expression in rodent malignancies and recombination into murine sarcoma viruses, their causative role, if any, in cancer has been uncertain and enigmatic. Recent findings suggest loss of normal transcriptional control of specific VL30 element expression may make a critical contribution to tumor progression at a step associated with malignant conversion, by bringing into play a cellular program normally involved in wound healing. This program, the fibroblast anoxic response system, includes an adaptation to glycolytic metabolism, secretion of metalloproteinases, and activation of an endonuclease. While appropriate for facilitating debris removal during wound healing, loss of control of this program in a cell which has already progressed to the benign neoplastic state has the potential to simultaneously produce the invasiveness and genomic instability characteristic of malignancy. Examination of tumors and tumor derived cell lines has confirmed that key aspects of this system are in fact activated in cancer.
Collapse
Affiliation(s)
- G R Anderson
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030-3498
| | | |
Collapse
|
46
|
Abstract
The oxygen regulation of two broad categories of yeast genes is discussed in this review. The first is made up of genes regulated by heme, and the second is made up of genes whose regulation is heme independent. Heme-regulated genes fall into two classes: heme-activated and heme-repressed genes. Activation is achieved through one of two transcriptional activators, the heme-dependent HAP1 protein or the heme-activated, glucose-repressed HAP2/3/4 complex. Some of the properties and the DNA-binding sites of these activators are discussed. Heme repression is achieved through the action of the ROX1 repressor, the expression of which is transcriptionally activated by heme. Once ROX1 is synthesized, its function is heme independent. Evidence that ROX1 binds to DNA or is part of a DNA-binding complex is described. Factors which modulate the function of these regulatory proteins are discussed, and a schematic of heme activation and repression is presented. The mitochondrial subunits of cytochrome c oxidase are induced by oxygen in a heme-independent fashion. The translation of one, cytochrome c oxidase subunit III, is dependent upon three nucleus-encoded initiation factors. One of these, PET494, is itself translationally regulated by oxygen in a heme-independent fashion. The expression of at least four other mitochondrially encoded cytochrome subunits is dependent upon specific translation factors, raising the potential for translational regulation as a general mechanism. Finally, a number of anaerobic genes that show heme-independent, oxygen-repressed expression have been identified. These fall into two kinetic classes, suggesting that there are at least two different regulatory circuitries.
Collapse
Affiliation(s)
- R S Zitomer
- Department of Biological Sciences, State University of New York, Albany 12222
| | | |
Collapse
|