1
|
Schalamun M, Hinterdobler W, Schinnerl J, Brecker L, Schmoll M. The transcription factor STE12 influences growth on several carbon sources and production of dehydroacetic acid (DHAA) in Trichoderma reesei. Sci Rep 2024; 14:9625. [PMID: 38671155 PMCID: PMC11053031 DOI: 10.1038/s41598-024-59511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The filamentous ascomycete Trichoderma reesei, known for its prolific cellulolytic enzyme production, recently also gained attention for its secondary metabolite synthesis. Both processes are intricately influenced by environmental factors like carbon source availability and light exposure. Here, we explore the role of the transcription factor STE12 in regulating metabolic pathways in T. reesei in terms of gene regulation, carbon source utilization and biosynthesis of secondary metabolites. We show that STE12 is involved in regulating cellulase gene expression and growth on carbon sources associated with iron homeostasis. STE12 impacts gene regulation in a light dependent manner on cellulose with modulation of several CAZyme encoding genes as well as genes involved in secondary metabolism. STE12 selectively influences the biosynthesis of the sorbicillinoid trichodimerol, while not affecting the biosynthesis of bisorbibutenolide, which was recently shown to be regulated by the MAPkinase pathway upstream of STE12 in the signaling cascade. We further report on the biosynthesis of dehydroacetic acid (DHAA) in T. reesei, a compound known for its antimicrobial properties, which is subject to regulation by STE12. We conclude, that STE12 exerts functions beyond development and hence contributes to balance the energy distribution between substrate consumption, reproduction and defense.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Yu L, Yang Y, Qiu X, Xiong D, Tian C. The mitogen-activated protein kinase module CcSte11-CcSte7-CcPmk1 regulates pathogenicity via the transcription factor CcSte12 in Cytospora chrysosperma. STRESS BIOLOGY 2024; 4:4. [PMID: 38225467 PMCID: PMC10789715 DOI: 10.1007/s44154-023-00142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
The pathogen Cytospora chrysosperma is the causal agent of poplar canker disease and causes considerable economic losses in China. Mitogen-activated protein kinase (MAPK) cascades play a crucial role in mediating cellular responses and Pmk1-MAPKs are indispensable for pathogenic related processes in plant pathogenic fungi. In previous studies, we demonstrated that the CcPmk1 acts as a core regulator of fungal pathogenicity by modulating a small number of master downstream targets, such as CcSte12. In this study, we identified and characterized two upstream components of CcPmk1: MAPKKK CcSte11 and MAPKK CcSte7. Deletion of CcSte11 and CcSte7, resulted in slowed growth, loss of sporulation and virulence, similar to the defects observed in the CcPmk1 deletion mutant. In addition, CcSte11, CcSte7 and CcPmk1 interact with each other, and the upstream adaptor protein CcSte50 interact with CcSte11 and CcSte7. Moreover, we explored the global regulation network of CcSte12 by transcriptional analysis between CcSte12 deletion mutants and wild-type during the simulated infection process. Two hydrolase activity GO terms (GO:0004553 and GO:0016798) and starch and sucrose metabolism (mgr00500) KEGG pathway were significantly enriched in the down-regulated genes of CcSte12 deletion mutants. In addition, a subset of glycosyl hydrolase genes and putative effector genes were significantly down-regulated in the CcSte12 deletion mutant, which might be important for fungal pathogenicity. Especially, CcSte12 bound to the CcSp84 promoter region containing the TGAAACA motif. Moreover, comparison of CcSte12-regulated genes with CcPmk1-regulated genes revealed 116 overlapping regulated genes in both CcSte12 and CcPmk1, including some virulence-associated genes. Taken together, the protein complexes CcSte11-CcSte7-CcPmk1 receive signals transmitted by upstream CcSte50 and transmit signals to downstream CcSte12, which regulates hydrolase, effectors and other genes to promote virulence. Overall, these results indicate that the CcPmk1-MAPK signaling pathway of C. chrysosperma plays a key role in the pathogenicity.
Collapse
Affiliation(s)
- Lu Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Yuchen Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolin Qiu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China.
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| | - Chengming Tian
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China.
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Fan Y, Zhang W, Chen Y, Xiang M, Liu X. DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides. Appl Microbiol Biotechnol 2021; 105:7379-7393. [PMID: 34536100 DOI: 10.1007/s00253-021-11455-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Ste12 transcription factors, downstream of mitogen-activated protein kinase (MAPK) signalling pathways, are exclusively found in the fungal kingdom and regulate fungal mating, development, and pathogenicity. The nematode-trapping fungus Drechslerella dactyloides can capture free-living nematodes using constricting rings by cell inflation within 1 s when stimulated by nematodes entering the rings. The MAPK signalling pathways are involved in the trap formation of nematode-trapping fungi, but their downstream regulation is not clearly understood. In this study, disruption of the DdaSTE12 gene in D. dactyloides disabled cell inflation of constricting rings and led to an inability to capture nematodes. The number of septa of constricting rings and the ring cell vacuoles were changed in ΔDdaSTE12. Compared with the wild type, ΔDdaSTE12 reduced trap formation, conidiation, and vegetative growth by 79.3%, 80.3%, and 21.5%, respectively. The transcriptomes of ΔDdaSTE12-3, compared with those of the wild type, indicated that the expression of genes participating in trap formation processes, including signal transduction (Gpa2 and a 7-transmembrane receptor), vesicular transport and cell fusion (MARVEL domain-containing proteins), and nematode infection (PEX11 and CFEM domain-containing proteins), is regulated by DdaSTE12. The results suggest that DdaSTE12 is involved in trap formation and ring cell inflation, as well as conidiation and vegetative growth, by regulating a wide range of downstream functions. Our findings expanded the roles of Ste12 homologous transcription factors in the development of constricting rings and provided new insights into the downstream regulation of the MAPK signalling pathway involved in nematode predation. KEY POINTS: • DdaSTE12 was the first gene disrupted in D. dactyloides. • DdaSTE12 is related to ring cell inflation, vegetative growth, and conidiation. • DdaSTE12 deletion resulted in defects in trap formation and ring development.
Collapse
Affiliation(s)
- Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Chen
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Xu T, Li J, Yu B, Liu L, Zhang X, Liu J, Pan H, Zhang Y. Transcription Factor SsSte12 Was Involved in Mycelium Growth and Development in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:2476. [PMID: 30386319 PMCID: PMC6200020 DOI: 10.3389/fmicb.2018.02476] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Sclerotinia sclerotiorum is a challenging agricultural pathogen for management, causing large global economic losses annually. The sclerotia and infection cushions are critical for its long-term survival and successful penetration on a wide spectrum of hosts. The mitogen-activated protein kinase (MAPK) cascades serve as central signaling complexes that are involved in various aspects of sclerotia development and infection. In this study, the putative downstream transcription factor of MAPK pathway, SsSte12, was analyzed in S. sclerotiorum. Silencing SsSte12 in S. sclerotiorum resulted in phenotypes of delayed vegetative growth, reduced size of sclerotia, and fewer appressoria formation. Consequently, the SsSte12 RNAi mutants showed attenuated pathogenicity on the host plants due to the defect compound appressorium. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays demonstrated that the SsSte12 interacts with SsMcm1. However, the SsMcm1 expression is independent of the regulation of SsSte12 as revealed by qRT-PCR analysis in SsSte12 RNAi mutants. Together with high accumulation of SsSte12 transcripts in the early development of S. sclerotiorum, our results demonstrated that SsSte12 function was essential in the vegetative mycelial growth, sclerotia development, appressoria formation and penetration-dependent pathogenicity. Moreover, the SsSte12-SsMcm1 interaction might play a critical role in the regulation of the genes encoding these traits in S. sclerotiorum.
Collapse
Affiliation(s)
- Tingtao Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baodong Yu
- Department of Emergency of Xinmin, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Preferences in a trait decision determined by transcription factor variants. Proc Natl Acad Sci U S A 2018; 115:E7997-E8006. [PMID: 30068600 DOI: 10.1073/pnas.1805882115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Few mechanisms are known that explain how transcription factors can adjust phenotypic outputs to accommodate differing environments. In Saccharomyces cerevisiae, the decision to mate or invade relies on environmental cues that converge on a shared transcription factor, Ste12. Specificity toward invasion occurs via Ste12 binding cooperatively with the cofactor Tec1. Here, we determine the range of phenotypic outputs (mating vs. invasion) of thousands of DNA-binding domain variants in Ste12 to understand how preference for invasion may arise. We find that single amino acid changes in the DNA-binding domain can shift the preference of yeast toward either mating or invasion. These mutations define two distinct regions of this domain, suggesting alternative modes of DNA binding for each trait. We characterize the DNA-binding specificity of wild-type Ste12 to identify a strong preference for spacing and orientation of both homodimeric and heterodimeric sites. Ste12 mutants that promote hyperinvasion in a Tec1-independent manner fail to bind cooperative sites with Tec1 and bind to unusual dimeric Ste12 sites composed of one near-perfect and one highly degenerate site. We propose a model in which Ste12 alone may have evolved to activate invasion genes, which could explain how preference for invasion arose in the many fungal pathogens that lack Tec1.
Collapse
|
6
|
Gruber S, Zeilinger S. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride. PLoS One 2014; 9:e111636. [PMID: 25356841 PMCID: PMC4214791 DOI: 10.1371/journal.pone.0111636] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022] Open
Abstract
Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12.
Collapse
Affiliation(s)
- Sabine Gruber
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Wien, Austria
| | - Susanne Zeilinger
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Wien, Austria
- * E-mail:
| |
Collapse
|
7
|
Abstract
Vegetative fusion is essential for the development of an interconnected colony in many filamentous fungi. In the ascomycete fungus Neurospora crassa, vegetative fusion occurs between germinated conidia (germlings) via specialized structures termed "conidial anastomosis tubes" (CATs) and between hyphae within a mature colony. In N. crassa, both CAT and hyphal fusion are under the regulation of a conserved MAP kinase cascade (NRC1, MEK2, and MAK2). Here we show that the predicted downstream target of the MAK2 kinase pathway, a Ste12-like transcription factor known as PP1, regulates elements required for CAT and hyphal fusion. The PP1 regulatory network was revealed by expression profiling of wild type and the Δpp-1 mutant during conidial germination and colony establishment. To identify targets required for cell fusion more specifically, expression-profiling differences were assessed via inhibition of MAK2 kinase activity during chemotropic interactions and cell fusion. These approaches led to the identification of new targets of the cell fusion pathway that, when mutated, showed alterations in chemotropic signaling and cell fusion. In particular, conidial germlings carrying a deletion of NCU04732 (Δham-11) failed to show chemotropic interactions and cell fusion. However, signaling (as shown by oscillation of MAK2 and SO to CAT tips), chemotropism, and cell fusion were restored in Δham-11 germlings when matched with wild-type partner germlings. These data reveal novel insights into the complex process of self-signaling, germling fusion, and colony establishment in filamentous fungi.
Collapse
|
8
|
Pincus D, Ryan CJ, Smith RD, Brent R, Resnekov O. Assigning quantitative function to post-translational modifications reveals multiple sites of phosphorylation that tune yeast pheromone signaling output. PLoS One 2013; 8:e56544. [PMID: 23554854 PMCID: PMC3595240 DOI: 10.1371/journal.pone.0056544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/15/2013] [Indexed: 12/19/2022] Open
Abstract
Cell signaling systems transmit information by post-translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-protein coupled receptor (GPCR). We used published mass spectrometry-based proteomics data to identify putative sites of phosphorylation on pheromone pathway components, and we used evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of putative phosphorylation events that contribute to adjust the input-output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results suggest that relatively small quantitative influences from individual phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.
Collapse
Affiliation(s)
- David Pincus
- Molecular Sciences Institute, Berkeley, California, United States of America
| | - Christopher J. Ryan
- Molecular Sciences Institute, Berkeley, California, United States of America
| | - Richard D. Smith
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Roger Brent
- Molecular Sciences Institute, Berkeley, California, United States of America
| | - Orna Resnekov
- Molecular Sciences Institute, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Mol Syst Biol 2012; 8:578. [PMID: 22531118 PMCID: PMC3361003 DOI: 10.1038/msb.2012.12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An intuitive formalism for reconstructing cellular networks from empirical data is presented, and used to build a comprehensive yeast MAP kinase network. The accompanying rxncon software tool can convert networks to a range of standard graphical formats and mathematical models. ![]()
Network mapping at the granularity of empirical data that largely avoids combinatorial complexity Automatic visualisation and model generation with the rxncon open source software tool Visualisation in a range of formats, including all three SBGN formats, as well as contingency matrix or regulatory graph Comprehensive and completely references map of the yeast MAP kinase network in the rxncon format
Intracellular signalling systems are highly complex. This complexity makes handling, analysis and visualisation of available knowledge a major challenge in current signalling research. Here, we present a novel framework for mapping signal-transduction networks that avoids the combinatorial explosion by breaking down the network in reaction and contingency information. It provides two new visualisation methods and automatic export to mathematical models. We use this framework to compile the presently most comprehensive map of the yeast MAP kinase network. Our method improves previous strategies by combining (I) more concise mapping adapted to empirical data, (II) individual referencing for each piece of information, (III) visualisation without simplifications or added uncertainty, (IV) automatic visualisation in multiple formats, (V) automatic export to mathematical models and (VI) compatibility with established formats. The framework is supported by an open source software tool that facilitates integration of the three levels of network analysis: definition, visualisation and mathematical modelling. The framework is species independent and we expect that it will have wider impact in signalling research on any system.
Collapse
|
10
|
Coordinate control of gene expression noise and interchromosomal interactions in a MAP kinase pathway. Nat Cell Biol 2010; 12:954-62. [PMID: 20852627 PMCID: PMC2948760 DOI: 10.1038/ncb2097] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 08/19/2010] [Indexed: 11/29/2022]
Abstract
In the Saccharomyces cerevisiae pheromone-response pathway, the transcription factor Ste12 is inhibited by two MAP kinase-responsive regulators, Dig1 and Dig2. These two related proteins bind to distinct regions of Ste12 but are redundant in their inhibition of Ste12-dependent gene expression. Here we describe three unexpected functions for Dig1 that are non-redundant with those of Dig2. First, the removal of Dig1 results in a specific increase in intrinsic and extrinsic noise in the transcriptional outputs of the mating pathway. Second, in dig1Δ cells, Ste12 relocalizes from the nucleoplasmic distribution seen in wild-type cells into discrete subnuclear foci. Third, genome-wide iChIP studies revealed that Ste12-dependent genes display increased interchromosomal interactions in dig1Δ cells. These findings suggest that the regulation of gene expression through long-range gene interactions, a widely-observed phenomenon, comes at the cost of increased noise. Consequently, cells may have evolved mechanisms to suppress noise by controlling these interactions.
Collapse
|
11
|
Ste12 and Ste12-like proteins, fungal transcription factors regulating development and pathogenicity. EUKARYOTIC CELL 2010; 9:480-5. [PMID: 20139240 DOI: 10.1128/ec.00333-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ste12 and Ste12-like proteins are transcription factors found exclusively in the fungal kingdom. In the yeast model Saccharomyces cerevisiae, where the first member was identified, Ste12p was shown to regulate mating and invasive/pseudohyphal growth. In recent literature, there have been several reports of Ste12-like factors in multiple fungal systems, yeasts or filamentous fungi, with saprophytic or parasitic life-styles. In all these models, Ste12 and Ste12-like factors are involved in the regulation of fungal development and pathogenicity. In this review, we discuss the features, the regulation, and the role of Ste12 and Ste12-like factors by highlighting the similarities and dissimilarities that occur within this group.
Collapse
|
12
|
The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and -independent mechanisms. EUKARYOTIC CELL 2010; 9:514-31. [PMID: 20118212 DOI: 10.1128/ec.00251-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.
Collapse
|
13
|
Kim S, Park SY, Kim KS, Rho HS, Chi MH, Choi J, Park J, Kong S, Park J, Goh J, Lee YH. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet 2009; 5:e1000757. [PMID: 19997500 PMCID: PMC2779367 DOI: 10.1371/journal.pgen.1000757] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/06/2009] [Indexed: 11/29/2022] Open
Abstract
The appropriate development of conidia and appressoria is critical in the disease cycle of many fungal pathogens, including Magnaporthe oryzae. A total of eight genes (MoHOX1 to MoHOX8) encoding putative homeobox transcription factors (TFs) were identified from the M. oryzae genome. Knockout mutants for each MoHOX gene were obtained via homology-dependent gene replacement. Two mutants, ΔMohox3 and ΔMohox5, exhibited no difference to wild-type in growth, conidiation, conidium size, conidial germination, appressorium formation, and pathogenicity. However, the ΔMohox1 showed a dramatic reduction in hyphal growth and increase in melanin pigmentation, compared to those in wild-type. ΔMohox4 and ΔMohox6 showed significantly reduced conidium size and hyphal growth, respectively. ΔMohox8 formed normal appressoria, but failed in pathogenicity, probably due to defects in the development of penetration peg and invasive growth. It is most notable that asexual reproduction was completely abolished in ΔMohox2, in which no conidia formed. ΔMohox2 was still pathogenic through hypha-driven appressoria in a manner similar to that of the wild-type. However, ΔMohox7 was unable to form appressoria either on conidial germ tubes, or at hyphal tips, being non-pathogenic. These factors indicate that M. oryzae is able to cause foliar disease via hyphal appressorium-mediated penetration, and MoHOX7 is mutually required to drive appressorium formation from hyphae and germ tubes. Transcriptional analyses suggest that the functioning of M. oryzae homeobox TFs is mediated through the regulation of gene expression and is affected by cAMP and Ca2+ signaling and/or MAPK pathways. The divergent roles of this gene set may help reveal how the genome and regulatory pathways evolved within the rice blast pathogen and close relatives. Pathogens have evolved diverse strategies to cause disease. Magnaporthe oryzae is the fungal phytopathogen that causes rice blast and is considered an important model for understanding mechanisms in fungal development and pathogenicity. Asexual reproduction and infection-related development play key roles in M. oryzae disease development. The conidium of M. oryzae differentiates a specialized structure, an appressorium. The appressorium generates turgor pressure that allows penetration through the mechanical rupture of host cuticle layers. After colonizing host cells, the fungus produces massive conidia via conidiogenesis, serving as secondary propagules for the polycyclic disease. To elucidate molecular mechanisms in asexual reproduction and appressorium-mediated disease development, we identified eight homeobox transcription factors through a genome-wide in silico analysis. Characterization using deletion mutants revealed that each homeobox TF functions as a stage-specific regulator for conidial shape, hyphal growth, conidiation, appressorium development, and invasive growth during M. oryzae development. Notably, conidiation and appressorium development were entirely abolished in ΔMohox2 and ΔMohox7, respectively. This study also provides evidence that M. oryzae is able to cause rice blast by means of hypha-driven appressoria upon responses to host signaling factors. This study will aid in the understanding of regulatory networks associated with fungal development and pathogenicity.
Collapse
Affiliation(s)
- Seryun Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Sook-Young Park
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Kyoung Su Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Hee-Sool Rho
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Myoung-Hwan Chi
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jaehyuk Choi
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jongsun Park
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Sunghyung Kong
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jaejin Park
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jaeduk Goh
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
14
|
Hu B, Rappel WJ, Levine H. Mechanisms and constraints on yeast MAPK signaling specificity. Biophys J 2009; 96:4755-63. [PMID: 19527636 DOI: 10.1016/j.bpj.2009.02.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 12/22/2008] [Accepted: 02/11/2009] [Indexed: 02/02/2023] Open
Abstract
The survival of cells relies on their ability to respond specifically to diverse environmental signals. Surprisingly, intracellular signaling pathways often share the same or homologous protein components, yet undesirable crosstalk is, in general, suppressed. This signaling specificity has been well studied in the yeast model system Saccharomyces cerevisiae, where the mitogen-activated protein kinase (MAPK) cascades are repeatedly employed in mediating distinct biological processes including pheromone-induced mating and filamentous growth under starvation. Although various mechanisms have been proposed to interpret the yeast MAPK signaling specificity, a consistent theory is still lacking. Here, we present a mathematical model that shows signaling specificity can arise through asymmetric hierarchical inhibition. The parameters of our model are, where possible, based on experimental data that allow us to determine the constraints imposed by signaling specificity on these parameters. Our model is in broad agreement with experimental observations to date and generates testable predictions that may stimulate further research.
Collapse
Affiliation(s)
- Bo Hu
- Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
15
|
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1311-40. [PMID: 17604854 PMCID: PMC2031910 DOI: 10.1016/j.bbamcr.2007.05.003] [Citation(s) in RCA: 469] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.
Collapse
Affiliation(s)
- Raymond E Chen
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
16
|
Bickel KS, Morris DR. Role of the transcription activator Ste12p as a repressor of PRY3 expression. Mol Cell Biol 2006; 26:7901-12. [PMID: 16940175 PMCID: PMC1636733 DOI: 10.1128/mcb.01004-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating pheromone represses synthesis of full-length PRY3 mRNA, and a new transcript appears simultaneously with its 5' terminus 452 nucleotides inside the open reading frame (ORF). Synthesis of this shorter transcript results from activation of a promoter within the PRY3 locus, and its production is concomitant with the rapid disappearance of the full-length transcript. Evidence is consistent with the pheromone-induced transcription factor Ste12p binding two pheromone response elements within the PRY3 promoter, directly impeding transcription of the full-length mRNA while simultaneously inducing initiation of the short transcript. This process depends on a TATA box within the PRY3 ORF. Expression of full-length PRY3 inhibited mating, while no disadvantage was detectable for cells unable to make the short transcript. Therefore, Ste12p is utilized as a repressor of full-length PRY3 transcription, ensuring efficient mating. There is no evidence that production of the short PRY3 transcript is anything more than an adventitious by-product of this mechanism. It is possible that cryptic binding sites for transcriptional activators may occur frequently within genomes and have the potential of evolving for rapid, gene-specific repression by mechanisms analogous to PRY3. PRY3 regulation provides a model for the coordination of both inductive and repressive activities within a regulatory network.
Collapse
Affiliation(s)
- Kellie S Bickel
- Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195, USA
| | | |
Collapse
|
17
|
Lockhart SR, Zhao R, Daniels KJ, Soll DR. Alpha-pheromone-induced "shmooing" and gene regulation require white-opaque switching during Candida albicans mating. EUKARYOTIC CELL 2004; 2:847-55. [PMID: 14555467 PMCID: PMC219372 DOI: 10.1128/ec.2.5.847-855.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 14-mer alpha-pheromone peptide of Candida albicans was chemically synthesized and used to analyze the role of white-opaque switching in the mating process. The alpha-pheromone peptide blocked cell multiplication and induced "shmooing" in a/a cells expressing the opaque-phase phenotype but not in a/a cells expressing the white-phase phenotype. The alpha-pheromone peptide induced these effects at 25 degrees C but not at 37 degrees C. An analysis of mating-associated gene expression revealed several categories of gene regulation, including (i) MTL-homozygous-specific, pheromone stimulated, switching-independent (CAG1 and STE4); (ii) mating type-specific, pheromone-induced, switching-independent (STE2); and (iii) pheromone-induced, switching-dependent (FIG1, KAR4, and HWP1). An analysis of switching-regulated genes revealed an additional category of opaque-phase-specific genes that are downregulated by alpha-pheromone only in a/a cells (OP4, SAP1, and SAP3). These results demonstrate that alpha-pheromone causes shmooing, the initial step in the mating process, only in a/a cells expressing the opaque phenotype and only at temperatures below that in the human host. These results further demonstrate that although some mating-associated genes are stimulated by the alpha-pheromone peptide in both white- and opaque-phase cells, others are stimulated only in opaque-phase cells, revealing a category of gene regulation unique to C. albicans in which alpha-pheromone induction requires the white-opaque transition. These results demonstrate that in C. albicans, the mating process and associated gene regulation must be examined within the context of white-opaque switching.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242-1324, USA
| | | | | | | |
Collapse
|
18
|
Köhler T, Wesche S, Taheri N, Braus GH, Mösch HU. Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. EUKARYOTIC CELL 2002; 1:673-86. [PMID: 12455687 PMCID: PMC126755 DOI: 10.1128/ec.1.5.673-686.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Accepted: 07/31/2002] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the transcription factors Tec1p and Ste12p are required for haploid invasive and diploid pseudohyphal growth. Tec1p and Ste12p have been postulated to regulate these developmental processes primarily by cooperative binding to filamentous and invasion-responsive elements (FREs), which are combined enhancer elements that consist of a Tec1p-binding site (TCS) and an Stel2p-binding site (PRE). They are present in the promoter regions of target genes, e.g., FLO11. Here, we show that Tec1p efficiently activates target gene expression and cellular development in the absence of Stel2p. We further demonstrate that TCS elements alone are sufficient to mediate Tec1p-driven gene expression by a mechanism termed TCS control that is operative even when Stel2p is absent. Mutational analysis of TEC1 revealed that TCS control, FLO11 expression, and haploid invasive growth require the C terminus of Tec1p. In contrast, the Ste12p-dependent FRE control mechanism is sufficiently executed by the N-terminal portion of Tec1p, which contains the TEA/ATTS DNA-binding domain. Our study suggests that regulation of haploid invasive and diploid pseudohyphal growth by Stel2p and Tec1p is not only executed by combinatorial control but involves additional control mechanisms in which Stel2p activates TEC1 expression via clustered PREs and where Tec1p regulates expression of target genes, e.g., FLO11, by TCS control.
Collapse
Affiliation(s)
- Tim Köhler
- Institute for Microbiology and Genetics, Georg-August University, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
19
|
Heiman MG, Walter P. Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J Cell Biol 2000; 151:719-30. [PMID: 11062271 PMCID: PMC2185589 DOI: 10.1083/jcb.151.3.719] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell fusion occurs throughout development, from fertilization to organogenesis. The molecular mechanisms driving plasma membrane fusion in these processes remain unknown. While yeast mating offers an excellent model system in which to study cell fusion, all genes previously shown to regulate the process act at or before cell wall breakdown; i.e., well before the two plasma membranes have come in contact. Using a new strategy in which genomic data is used to predict which genes may possess a given function, we identified PRM1, a gene that is selectively expressed during mating and that encodes a multispanning transmembrane protein. Prm1p localizes to sites of cell-cell contact where fusion occurs. In matings between Deltaprm1 mutants, a large fraction of cells initiate zygote formation and degrade the cell wall separating mating partners but then fail to fuse. Electron microscopic analysis reveals that the two plasma membranes in these mating pairs are tightly apposed, remaining separated only by a uniform gap of approximately 8 nm. Thus, the phenotype of Deltaprm1 mutants defines a new step in the mating reaction in which membranes are juxtaposed, possibly through a defined adherence junction, yet remain unfused. This phenotype suggests a role for Prm1p in plasma membrane fusion.
Collapse
Affiliation(s)
- M G Heiman
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
20
|
Olson KA, Nelson C, Tai G, Hung W, Yong C, Astell C, Sadowski I. Two regulators of Ste12p inhibit pheromone-responsive transcription by separate mechanisms. Mol Cell Biol 2000; 20:4199-209. [PMID: 10825185 PMCID: PMC85789 DOI: 10.1128/mcb.20.12.4199-4209.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces cerevisiae transcription factor Ste12p is responsible for activating genes in response to MAP kinase cascades controlling mating and filamentous growth. Ste12p is negatively regulated by two inhibitor proteins, Dig1p (also called Rst1p) and Dig2p (also called Rst2p). The expression of a C-terminal Ste12p fragment (residues 216 to 688) [Ste12p(216-688)] from a GAL promoter causes FUS1 induction in a strain expressing wild-type STE12, suggesting that this region can cause the activation of endogenous Ste12p. Residues 262 to 594 are sufficient to cause STE12-dependent FUS1 induction when overexpressed, and this region of Ste12p was found to bind Dig1p but not Dig2p in yeast extracts. In contrast, recombinant glutathione S-transferase-Dig2p binds to the Ste12p DNA-binding domain (DBD). Expression of DIG2, but not DIG1, from a GAL promoter inhibits transcriptional activation by an Ste12p DBD-VP16 fusion. Furthermore, disruption of dig1, but not dig2, causes elevated transcriptional activation by a LexA-Ste12p(216-688) fusion. Ste12p has multiple regions within the C terminus (flanking residue 474) that can promote multimerization in vitro, and we demonstrate that these interactions can contribute to the activation of endogenous Ste12p by overproduced C-terminal fragments. These results demonstrate that Dig1p and Dig2p do not function by redundant mechanisms but rather inhibit pheromone-responsive transcription through interactions with separate regions of Ste12p.
Collapse
Affiliation(s)
- K A Olson
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19:2435-44. [PMID: 10082509 PMCID: PMC84036 DOI: 10.1128/mcb.19.4.2435] [Citation(s) in RCA: 1236] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- H J Schaeffer
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
22
|
Bardwell L, Cook JG, Zhu-Shimoni JX, Voora D, Thorner J. Differential regulation of transcription: repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 and Dig2 proteins. Proc Natl Acad Sci U S A 1998; 95:15400-5. [PMID: 9860980 PMCID: PMC28054 DOI: 10.1073/pnas.95.26.15400] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1998] [Accepted: 10/21/1998] [Indexed: 11/18/2022] Open
Abstract
Kss1, a yeast mitogen-activated protein kinase (MAPK), in its unphosphorylated (unactivated) state binds directly to and represses Ste12, a transcription factor necessary for expression of genes whose promoters contain filamentous response elements (FREs) and genes whose promoters contain pheromone response elements (PREs). Herein we show that two nuclear proteins, Dig1 and Dig2, are required cofactors in Kss1-imposed repression. Dig1 and Dig2 cooperate with Kss1 to repress Ste12 action at FREs and regulate invasive growth in a naturally invasive strain. Kss1-imposed Dig-dependent repression of Ste12 also occurs at PREs. However, maintenance of repression at PREs is more dependent on Dig1 and/or Dig2 and less dependent on Kss1 than repression at FREs. In addition, derepression at PREs is more dependent on MAPK-mediated phosphorylation than is derepression at FREs. Differential utilization of two types of MAPK-mediated regulation (binding-imposed repression and phosphorylation-dependent activation), in combination with distinct Ste12-containing complexes, contributes to the mechanisms by which separate extracellular stimuli that use the same MAPK cascade can elicit two different transcriptional responses.
Collapse
Affiliation(s)
- L Bardwell
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
23
|
Casselton LA, Olesnicky NS. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 1998; 62:55-70. [PMID: 9529887 PMCID: PMC98906 DOI: 10.1128/mmbr.62.1.55-70.1998] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recognition of compatible mating partners in the basidiomycete fungi requires the coordinated activities of two gene complexes defined as the mating-type genes. One complex encodes members of the homeobox family of transcription factors, which heterodimerize on mating to generate an active transcription regulator. The other complex encodes peptide pheromones and 7-transmembrane receptors that permit intercellular signalling. Remarkably, a single species may have many thousands of cross-compatible mating types because the mating-type genes are multiallelic. Different alleles of both sets of genes are necessary for mating compatibility, and they trigger the initial stages of sexual development--the formation of a specialized filamentous mycelium termed the dikaryon, in which the haploid nuclei remain closely associated in each cell but do not fuse. Three species have been taken as models to describe the molecular structure and organization of the mating-type loci and the genes sequestered within them: the pathogenic smut fungus Ustilago maydis and the mushrooms Coprinus cinereus and Schizophyllum commune. Topics addressed in this review are the roles of the mating-type gene products in regulating sexual development, the molecular basis for multiple mating types, and the molecular interactions that permit different allelic products of the mating type genes to be discriminated. Attention is drawn to the remarkable conservation in the mechanisms that regulate sexual development in basidiomycetes and unicellular ascomycete yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, a theme which is developed in the general conclusion to include the filamentous ascomycetes Neurospora crassa and Podospora anserina.
Collapse
Affiliation(s)
- L A Casselton
- Department of Plant Sciences, University of Oxford, United Kingdom.
| | | |
Collapse
|
24
|
Pi H, Chien CT, Fields S. Transcriptional activation upon pheromone stimulation mediated by a small domain of Saccharomyces cerevisiae Ste12p. Mol Cell Biol 1997; 17:6410-8. [PMID: 9343403 PMCID: PMC232493 DOI: 10.1128/mcb.17.11.6410] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, Ste12p induces transcription of pheromone-responsive genes by binding to a DNA sequence designated the pheromone response element. We generated a series of hybrid proteins of Ste12p with the DNA-binding and activation domains of the transcriptional activator Gal4p to define a pheromone induction domain of Ste12p sufficient to mediate pheromone-induced transcription by these hybrid proteins. A minimal pheromone induction domain, delineated as residues 301 to 335 of Ste12p, is dependent on the pheromone mitogen-activated protein (MAP) kinase pathway for induction activity. Mutation of the three serine and threonine residues within the minimal pheromone induction domain did not affect transcriptional induction, indicating that the activity of this domain is not directly regulated by MAP kinase phosphorylation. By contrast, mutation of the two tyrosines or their preceding acidic residues led to a high level of transcriptional activity in the absence of pheromone and consequently to the loss of pheromone induction. This constitutively high activity was not affected by mutations in the MAP kinase cascade, suggesting that the function of the pheromone induction domain is normally repressed in the absence of pheromone. By two-hybrid analysis, this minimal domain interacts with two negative regulators, Dig1p and Dig2p (also designated Rst1p and Rst2p), and the interaction is abolished by mutation of the tyrosines. The pheromone induction domain itself has weak and inducible transcriptional activity, and its ability to potentiate transcription depends on the activity of an adjacent activation domain. These results suggest that the pheromone induction domain of Ste12p mediates transcriptional induction via a two-step process: the relief of repression and synergistic transcriptional activation with another activation domain.
Collapse
Affiliation(s)
- H Pi
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, 11794, USA
| | | | | |
Collapse
|
25
|
Baur M, Esch RK, Errede B. Cooperative binding interactions required for function of the Ty1 sterile responsive element. Mol Cell Biol 1997; 17:4330-7. [PMID: 9234690 PMCID: PMC232286 DOI: 10.1128/mcb.17.8.4330] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Ste12p transcription factor controls the expression of Ty1 transposable element insertion mutations and genes whose products are required for mating in Saccharomyces cerevisiae. The binding site for Ste12p is a consensus DNA sequence known as a pheromone response element (PRE). Upstream activating sequences (UASs) derived from known Ste12p-dependent genes have previously been characterized to require either multiple PREs or a single PRE coupled to a binding site for a second protein. The Ste12p-dependent UAS from Ty1, called a sterile response element (SRE), is of the second type and is comprised of a PRE and an adjacent TEA (TEF-1, Tec1, and AbaA motif) DNA consensus sequence (TCS). In this report, we show by UV cross-linking analysis that two proteins, Ste12p and a protein with an apparent size of 72 kDa, directly contact the Ty1 SRE. Other experiments show that Tec1p is required for formation of the Ty1 SRE protein-DNA complex and is physically present in the complex. These results establish a direct role for Tec1p in the Ty1 SRE and yet another set of combinatorial interactions that achieve a qualitatively distinct mode of transcriptional regulation with Ste12p.
Collapse
Affiliation(s)
- M Baur
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7260, USA
| | | | | |
Collapse
|
26
|
Spain BH, Bowdish KS, Pacal AR, Staub SF, Koo D, Chang CY, Xie W, Colicelli J. Two human cDNAs, including a homolog of Arabidopsis FUS6 (COP11), suppress G-protein- and mitogen-activated protein kinase-mediated signal transduction in yeast and mammalian cells. Mol Cell Biol 1996; 16:6698-706. [PMID: 8943324 PMCID: PMC231672 DOI: 10.1128/mcb.16.12.6698] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have isolated two novel human cDNAs, gps1-1 and gps2, that suppress lethal G-protein subunit-activating mutations in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Suppression of other pathway-activating events was examined. In wild-type cells, expression of either gps1-1 or gps2 led to enhanced recovery from cell cycle arrest induced by pheromone. Sequence analysis indicated that gps1-1 contains only the carboxy-terminal half of the gps1 coding sequence. The predicted gene product of gps1 has striking similarity to the protein encoded by the Arabidopsis FUS6 (COP11) gene, a negative regulator of light-mediated signal transduction that is known to be essential for normal development. A chimeric construct containing gps1 and FUS6 sequences also suppressed the yeast pheromone pathway, indicating functional conservation between these human and plant genes. In addition, when overexpressed in mammalian cells, gps1 or gps2 potently suppressed a RAS- and mitogen-activated protein kinase-mediated signal and interfered with JNK activity, suggesting that signal repression is part of their normal function. For gps1, these results are consistent with the proposed function of FUS6 (COP11) as a signal transduction repressor in plants.
Collapse
Affiliation(s)
- B H Spain
- Department of Biological Chemistry and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kurihara LJ, Stewart BG, Gammie AE, Rose MD. Kar4p, a karyogamy-specific component of the yeast pheromone response pathway. Mol Cell Biol 1996; 16:3990-4002. [PMID: 8754797 PMCID: PMC231395 DOI: 10.1128/mcb.16.8.3990] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Karyogamy is the process whereby two haploid nuclei fuse to form a diploid nucleus during mating in Saccharomyces cerevisiae. Here, we describe the characterization of the KAR4 gene, previously identified in a screen for new nuclear fusion-defective mutants. During mating, kar4 mutants were defective for the microtubule-dependent movement of nuclei, a phenotype identical to that of mutations in KAR3 and CIK1. Consistent with its mutant phenotype, we found that the kar4 mutation resulted in failure to induce KAR3 and CIK1 mRNA during mating. Expression of KAR3 and CIK1 under independent regulatory control suppressed the kar4 defect, indicating that KAR4 is required primarily for the induction of KAR3 and CIK1. KAR4 was also required for meiosis, during which it may regulate KAR3; however, mitotic expression of KAR3 and CIK1 during S/G2 phase was independent of KAR4. A 30-bp region upstream of KAR3 conferred both KAR4- and STE12-dependent induction by mating pheromone. This region contained one moderate and two weak matches to the consensus pheromone response element to which the Ste12p transcriptional activator binds and five repeats of the sequence CAAA(A). Overproduction of Ste12p suppressed the kar4 defect in KAR3 induction and nuclear fusion. In contrast, Ste12p-independent expression of Kar4p did not alleviate the requirement for Ste12p during KAR3 induction. We propose that Kar4p assists Ste12p in the pheromone-dependent expression of KAR3 and CIK1. KAR4 defines a novel level of regulation for the pheromone response pathway, acting at a subset of Stel2p-inducible genes required for karyogamy.
Collapse
Affiliation(s)
- L J Kurihara
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | | | | | |
Collapse
|
28
|
Couve A, Hirsch JP. Loss of sustained Fus3p kinase activity and the G1 arrest response in cells expressing an inappropriate pheromone receptor. Mol Cell Biol 1996; 16:4478-85. [PMID: 8754848 PMCID: PMC231446 DOI: 10.1128/mcb.16.8.4478] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The yeast pheromone response pathway is mediated by two G protein-linked receptors, each of which is expressed only in its specific cell type. The STE3DAF mutation results in inappropriate expression of the a-factor receptor in MATa cells. Expression of this receptor in the inappropriate cell type confers resistance to pheromone-induced G1 arrest, a phenomenon that we have termed receptor inhibition. The ability of STE3DAF cells to cycle in the presence of pheromone was found to correlate with reduced phosphorylation of the cyclin-dependent kinase inhibitor Far1p. Measurement of Fus3p mitogen-activated protein (MAP) kinase activity in wild-type and STE3DAF cells showed that induction of Fus3p activity was the same in both strains at times of up to 1 h after pheromone treatment. However, after 2 or more hours, Fus3p activity declined in STE3DAF cells but remained high in wild-type cells. The level of inducible FUS1 RNA paralleled the changes seen in Fus3p activity. Short-term activation of the Fus3p MAP kinase is therefore sufficient for the early transcriptional induction response to pheromone, but sustained activation is required for cell cycle arrest. Escape from the cell cycle arrest response was not seen in wild-type cells treated with low doses of pheromone, indicating that receptor inhibition is not simply a result of weak signaling but rather acts selectively at late times during the response. STE3DAF was found to inhibit the pheromone response pathway at a step between the G beta subunit and Ste5p, the scaffolding protein that binds the components of the MAP kinase phosphorylation cascade. Overexpression of Ste20p, a kinase thought to act between the G protein and the MAP kinase cascade, suppressed the STE3DAF phenotype. These findings are consistent with a model in which receptor inhibition acts by blocking the signaling pathway downstream of G protein dissociation and upstream of MAP kinase cascade activation, at a step that could directly involve Ste20p.
Collapse
Affiliation(s)
- A Couve
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
29
|
La Roche SD, Shafer BK, Strathern JN. A ste12 allele having a differential effect on a versus alpha cells. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:80-90. [PMID: 7823915 DOI: 10.1007/bf00290136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcriptional activator Ste12p is a key component of the yeast pheromone response pathway: phosphorylated as a consequence of signal transduction, it activates transcription of genes that promote mating and the subsequent fusion of the two cell types a and alpha. Activation by Ste12p requires three types of protein-protein interaction between DNA-binding activator proteins: (1) Ste12p by itself can induce non-cell-type-specific genes involved in mating; (2) cooperation of the transactivator Mcm1p with Ste12p induces a-specific genes; and (3) formation of a complex of the activator proteins Mcm1p and alpha 1 (a transcriptional activator of alpha-specific genes) with Ste12p is believed to induce alpha-specific genes. We isolated and characterized a partially functional ste12 allele (ste12-T50), that is defective only in the activation of alpha-specific genes. ste12-T50 was isolated as a second-site mutation conferring the a mating phenotype on mat alpha 2 mutant cells. In mat alpha 2 cells, where due to the lack of repressor, alpha 2, both sets of cell-type-specific genes are expressed, ste12-T50 apparently tips the balance in favor of a-specific gene expression. Thus, mat alpha 2 ste12-T50 cells mate like a cells. Additional ste12 mutants that confer the a mating phenotype on mat alpha 2 cells have also been isolated.
Collapse
Affiliation(s)
- S D La Roche
- Laboratory of Eukaryotic Gene Expression, NCI-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Maryland 21702-1201
| | | | | |
Collapse
|
30
|
Dhawale SS, Lane AC. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res 1993; 21:5537-46. [PMID: 8284197 PMCID: PMC310513 DOI: 10.1093/nar/21.24.5537] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- S S Dhawale
- Indiana University, Purdue University at Fort Wayne 46805
| | | |
Collapse
|
31
|
Cooperative DNA binding of the human HoxB5 (Hox-2.1) protein is under redox regulation in vitro. Mol Cell Biol 1993. [PMID: 8101633 DOI: 10.1128/mcb.13.8.4609] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human HoxB5 (Hox-2.1) gene product is a sequence-specific DNA binding protein. Cooperative interactions stabilize in vitro DNA binding of the HoxB5 protein to tandem binding sites by at least 100-fold relative to binding to a single site. The HoxB5 homeodomain is sufficient for sequence-specific DNA binding but not for cooperative DNA binding. Here we report that the additional protein sequence required for cooperativity is a small domain adjacent to the homeodomain on the amino-terminal side. We further show that cooperative DNA binding is under redox regulation. The HoxB5 protein binds to DNA in vitro both when oxidized or reduced but binds cooperatively only when oxidized. Mutational analysis has revealed that the cysteine residue in the turn between homeodomain helices 2 and 3 is necessary for cooperative binding and redox regulation. The enhanced DNA binding of oxidized HoxB5 protein is the opposite of the redox regulation reported for other mammalian transcription factors such as Fos, Jun, USF, NF-kappa B, c-Myb, and v-Rel, in which oxidation of cysteine residues inhibits DNA binding. Thus, specific oxidation of nuclear proteins is a potential regulatory mechanism that can act to either decrease or increase their DNA binding activity.
Collapse
|
32
|
Galang CK, Hauser CA. Cooperative DNA binding of the human HoxB5 (Hox-2.1) protein is under redox regulation in vitro. Mol Cell Biol 1993; 13:4609-17. [PMID: 8101633 PMCID: PMC360087 DOI: 10.1128/mcb.13.8.4609-4617.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human HoxB5 (Hox-2.1) gene product is a sequence-specific DNA binding protein. Cooperative interactions stabilize in vitro DNA binding of the HoxB5 protein to tandem binding sites by at least 100-fold relative to binding to a single site. The HoxB5 homeodomain is sufficient for sequence-specific DNA binding but not for cooperative DNA binding. Here we report that the additional protein sequence required for cooperativity is a small domain adjacent to the homeodomain on the amino-terminal side. We further show that cooperative DNA binding is under redox regulation. The HoxB5 protein binds to DNA in vitro both when oxidized or reduced but binds cooperatively only when oxidized. Mutational analysis has revealed that the cysteine residue in the turn between homeodomain helices 2 and 3 is necessary for cooperative binding and redox regulation. The enhanced DNA binding of oxidized HoxB5 protein is the opposite of the redox regulation reported for other mammalian transcription factors such as Fos, Jun, USF, NF-kappa B, c-Myb, and v-Rel, in which oxidation of cysteine residues inhibits DNA binding. Thus, specific oxidation of nuclear proteins is a potential regulatory mechanism that can act to either decrease or increase their DNA binding activity.
Collapse
Affiliation(s)
- C K Galang
- La Jolla Cancer Research Foundation, California 92037
| | | |
Collapse
|
33
|
Functional domains of the yeast STE12 protein, a pheromone-responsive transcriptional activator. Mol Cell Biol 1993. [PMID: 8497278 DOI: 10.1128/mcb.13.6.3765] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pheromone response pathway of the yeast Saccharomyces cerevisiae is necessary for the basal level of transcription of cell-type-specific genes, as well as the induced level observed after pheromone treatment. The STE12 protein binds to the DNA sequence designated the pheromone response element and is a target of the pheromone-induced signal. We generated 6-nucleotide linker insertion mutants, internal-deletion mutants, and carboxy-terminal truncation mutants of STE12 and assayed them for their ability to restore mating and transcriptional activity to a ste12 delta strain. Two of these mutant proteins retain the capacity to mediate basal transcription but show little or no induced transcription upon pheromone treatment. Cells producing these proteins cannot mate, formally demonstrating that the ability to respond to pheromone by increasing gene expression is essential for the mating process. Since distinct domains of STE12 appear to be required for basal versus induced transcription, we suggest that the pheromone-induced signal is likely to target residues of the protein different from those targeted by the basal signal because of the constitutive activity of the response pathway. Our analysis of mutant STE12 proteins also indicates that only the DNA-binding domain is sensitive to the small changes caused by the linker insertions. In addition, we show that, while the carboxy-terminal sequences necessary for STE12 to form a complex with the transcription factor MCM1 are not essential for mating, these sequences are required for optimal transcriptional activity.
Collapse
|
34
|
Elion EA, Satterberg B, Kranz JE. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. Mol Biol Cell 1993; 4:495-510. [PMID: 8334305 PMCID: PMC300953 DOI: 10.1091/mbc.4.5.495] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mitogen-activated protein (MAP) kinase homologue FUS3 mediates both transcription and G1 arrest in a pheromone-induced signal transduction cascade in Saccharomyces cerevisiae. We report an in vitro kinase assay for FUS3 and its use in identifying candidate substrates. The assay requires catalytically active FUS3 and pheromone induction. STE7, a MAP kinase kinase homologue, is needed for maximal activity. At least seven proteins that specifically associate with FUS3 are phosphorylated in the assay. Many of these substrates are physiologically relevant and are affected by in vivo levels of numerous signal transduction components. One substrate is likely to be the transcription factor STE12. A second is likely to be FAR1, a protein required for G1 arrest. FAR1 was isolated as a multicopy suppressor of a nonarresting fus3 mutant and interacts with FUS3 in a two hybrid system. Consistent with this FAR1 is a good substrate in vitro and generates a FUS3-associated substrate of expected size. These data support a model in which FUS3 mediates transcription and G1 arrest by direct activation of STE12 and FAR1 and phosphorylates many other proteins involved in the response to pheromone.
Collapse
Affiliation(s)
- E A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|