1
|
Sato A, Kimura T, Hondo K, Kawano-Kawada M, Sekito T. The vacuolar amino acid transport system is a novel, direct target of GATA transcription factors. Biosci Biotechnol Biochem 2021; 85:587-599. [PMID: 33624780 DOI: 10.1093/bbb/zbaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/20/2020] [Indexed: 01/21/2023]
Abstract
In Saccharomyces cerevisiae, Avt4 exports neutral and basic amino acids from vacuoles. Previous studies have suggested that the GATA transcription factors, Gln3 and Gat1, which are key regulators that adapt cells in response to changes in amino acid status, are involved in the AVT4 transcription. Here, we show that mutations in the putative GATA-binding sites of the AVT4 promoter reduced AVT4 expression. Consistently, a chromatin immunoprecipitation (ChIP) assay revealed that Gat1-Myc13 binds to the AVT4 promoter. Previous microarray results were confirmed that gln3∆gat1∆ cells showed a decrease in expression of AVT1 and AVT7, which also encode vacuolar amino acid transporters. Additionally, ChIP analysis revealed that the AVT6 encoding vacuolar acidic amino acid exporter represents a new direct target of the GATA transcription factor. The broad effect of the GATA transcription factors on the expression of AVT transporters suggests that vacuolar amino acid transport is integrated into cellular amino acid homeostasis.
Collapse
Affiliation(s)
- Akane Sato
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Takumi Kimura
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Kana Hondo
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.,Proteo-Science Center (PROS), Ehime University, Matsuyama, Ehime, Japan.,Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Ehime, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.,Proteo-Science Center (PROS), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
2
|
Wei T, Jiao Z, Hu J, Lou H, Chen Q. Chinese Yellow Rice Wine Processing with Reduced Ethyl Carbamate Formation by Deleting Transcriptional Regulator Dal80p in Saccharomyces cerevisiae. Molecules 2020; 25:E3580. [PMID: 32781689 PMCID: PMC7464398 DOI: 10.3390/molecules25163580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
Ethyl carbamate (EC) is a potential carcinogen that forms spontaneously during Chinese rice wine fermentation. The primary precursor for EC formation is urea, which originates from both external sources and arginine degradation. Urea degradation is suppressed by nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. The regulation of NCR is mediated by two positive regulators (Gln3p, Gat1p/Nil1p) and two negative regulators (Dal80p/Uga43p, Deh1p/Nil2p/GZF3p). DAL80 revealed higher transcriptional level when yeast cells were cultivated under nitrogen-limited conditions. In this study, when DAL80-deleted yeast cells were compared to wild-type BY4741 cells, less urea was accumulated, and genes involved in urea utilization were up-regulated. Furthermore, Chinese rice wine fermentation was conducted using dal80Δ cells; the concentrations of urea and EC were both reduced when compared to the BY4741 and traditional fermentation starter. The findings of this work indicated Dal80p is involved in EC formation possibly through regulating urea metabolism and may be used as the potential target for EC reduction.
Collapse
Affiliation(s)
| | | | | | | | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (T.W.); (Z.J.); (J.H.); (H.L.)
| |
Collapse
|
3
|
Amini S, Jacobsen A, Ivanova O, Lijnzaad P, Heringa J, Holstege FCP, Feenstra KA, Kemmeren P. The ability of transcription factors to differentially regulate gene expression is a crucial component of the mechanism underlying inversion, a frequently observed genetic interaction pattern. PLoS Comput Biol 2019; 15:e1007061. [PMID: 31083661 PMCID: PMC6532943 DOI: 10.1371/journal.pcbi.1007061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 05/23/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Genetic interactions, a phenomenon whereby combinations of mutations lead to unexpected effects, reflect how cellular processes are wired and play an important role in complex genetic diseases. Understanding the molecular basis of genetic interactions is crucial for deciphering pathway organization as well as understanding the relationship between genetic variation and disease. Several hypothetical molecular mechanisms have been linked to different genetic interaction types. However, differences in genetic interaction patterns and their underlying mechanisms have not yet been compared systematically between different functional gene classes. Here, differences in the occurrence and types of genetic interactions are compared for two classes, gene-specific transcription factors (GSTFs) and signaling genes (kinases and phosphatases). Genome-wide gene expression data for 63 single and double deletion mutants in baker's yeast reveals that the two most common genetic interaction patterns are buffering and inversion. Buffering is typically associated with redundancy and is well understood. In inversion, genes show opposite behavior in the double mutant compared to the corresponding single mutants. The underlying mechanism is poorly understood. Although both classes show buffering and inversion patterns, the prevalence of inversion is much stronger in GSTFs. To decipher potential mechanisms, a Petri Net modeling approach was employed, where genes are represented as nodes and relationships between genes as edges. This allowed over 9 million possible three and four node models to be exhaustively enumerated. The models show that a quantitative difference in interaction strength is a strict requirement for obtaining inversion. In addition, this difference is frequently accompanied with a second gene that shows buffering. Taken together, these results provide a mechanistic explanation for inversion. Furthermore, the ability of transcription factors to differentially regulate expression of their targets provides a likely explanation why inversion is more prevalent for GSTFs compared to kinases and phosphatases.
Collapse
Affiliation(s)
- Saman Amini
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Annika Jacobsen
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olga Ivanova
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jaap Heringa
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - K. Anton Feenstra
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Transcription-dependent spreading of the Dal80 yeast GATA factor across the body of highly expressed genes. PLoS Genet 2019; 15:e1007999. [PMID: 30818362 PMCID: PMC6413948 DOI: 10.1371/journal.pgen.1007999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/12/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
GATA transcription factors are highly conserved among eukaryotes and play roles in transcription of genes implicated in cancer progression and hematopoiesis. However, although their consensus binding sites have been well defined in vitro, the in vivo selectivity for recognition by GATA factors remains poorly characterized. Using ChIP-Seq, we identified the Dal80 GATA factor targets in yeast. Our data reveal Dal80 binding to a large set of promoters, sometimes independently of GATA sites, correlating with nitrogen- and/or Dal80-sensitive gene expression. Strikingly, Dal80 was also detected across the body of promoter-bound genes, correlating with high expression. Mechanistic single-gene experiments showed that Dal80 spreading across gene bodies requires active transcription. Consistently, Dal80 co-immunoprecipitated with the initiating and post-initiation forms of RNA Polymerase II. Our work suggests that GATA factors could play dual, synergistic roles during transcription initiation and post-initiation steps, promoting efficient remodeling of the gene expression program in response to environmental changes. GATA transcription factors are highly conserved among eukaryotes and play key roles in cancer progression and hematopoiesis. In budding yeast, four GATA transcription factors are involved in the response to the quality of nitrogen supply. Here, we have determined the whole genome binding profile of the Dal80 GATA factor, and revealed that it also associates with the body of promoter-bound genes. The observation that intragenic spreading correlates with high expression levels and exquisite Dal80 sensitivity suggests that GATA factors could play other, unexpected roles at post-initiation stages in eukaryotes.
Collapse
|
5
|
Georis I, Isabelle G, Tate JJ, Vierendeels F, Cooper TG, Dubois E. Premature termination of GAT1 transcription explains paradoxical negative correlation between nitrogen-responsive mRNA, but constitutive low-level protein production. RNA Biol 2016; 12:824-37. [PMID: 26259534 PMCID: PMC4615157 DOI: 10.1080/15476286.2015.1058476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The first step in executing the genetic program of a cell is production of mRNA. In yeast, almost every gene is transcribed as multiple distinct isoforms, differing at their 5′ and/or 3′ termini. However, the implications and functional significance of the transcriptome-wide diversity of mRNA termini remains largely unexplored. In this paper, we show that the GAT1 gene, encoding a transcriptional activator of nitrogen-responsive catabolic genes, produces a variety of mRNAs differing in their 5′ and 3′ termini. Alternative transcription initiation leads to the constitutive, low level production of 2 full length proteins differing in their N-termini, whereas premature transcriptional termination generates a short, highly nitrogen catabolite repression- (NCR-) sensitive transcript that, as far as we can determine, is not translated under the growth conditions we used, but rather likely protects the cell from excess Gat1.
Collapse
Affiliation(s)
| | - Georis Isabelle
- a Yeast Physiology ; Institut de Recherches Microbiologiques J. M. Wiame ; Laboratoire de Microbiologie Université Libre de Bruxelles ; Brussels , Belgium
| | | | | | | | | |
Collapse
|
6
|
Milias-Argeitis A, Oliveira AP, Gerosa L, Falter L, Sauer U, Lygeros J. Elucidation of Genetic Interactions in the Yeast GATA-Factor Network Using Bayesian Model Selection. PLoS Comput Biol 2016; 12:e1004784. [PMID: 26967983 PMCID: PMC4788432 DOI: 10.1371/journal.pcbi.1004784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/02/2016] [Indexed: 12/03/2022] Open
Abstract
Understanding the structure and function of complex gene regulatory networks using classical genetic assays is an error-prone procedure that frequently generates ambiguous outcomes. Even some of the best-characterized gene networks contain interactions whose validity is not conclusively proven. Founded on dynamic experimental data, mechanistic mathematical models are able to offer detailed insights that would otherwise require prohibitively large numbers of genetic experiments. Here we attempt mechanistic modeling of the transcriptional network formed by the four GATA-factor proteins, a well-studied system of central importance for nitrogen-source regulation of transcription in the yeast Saccharomyces cerevisiae. To resolve ambiguities in the network organization, we encoded a set of five interactions hypothesized in the literature into a set of 32 mathematical models, and employed Bayesian model selection to identify the most plausible set of interactions based on dynamic gene expression data. The top-ranking model was validated on newly generated GFP reporter dynamic data and was subsequently used to gain a better understanding of how yeast cells organize their transcriptional response to dynamic changes of nitrogen sources. Our work constitutes a necessary and important step towards obtaining a holistic view of the yeast nitrogen regulation mechanisms; on the computational side, it provides a demonstration of how powerful Monte Carlo techniques can be creatively combined and used to address the great challenges of large-scale dynamical system inference. Gene regulatory networks underlie all key processes that enable a cell to maintain long-term homeostasis in a changing environment. Understanding the structure and function of complex gene networks is an experimentally difficult and error-prone procedure. Mechanistic mathematical modeling promises to alleviate these problems, as we demonstrate here for the yeast GATA-factor network, the central controller of the cellular response to nitrogen source quality. Despite years of targeted studies, the interaction pattern of this network is still not known precisely. To resolve several still-remaining ambiguities, we generated a set of alternative mathematical models, and compared them against each other using Bayesian model selection based on dynamic gene expression data. The top-ranking model was then validated on a separate, newly generated dataset. Our work thus provides new insights to the mechanism of nitrogen regulation in yeast, while at the same time overcoming some key computational inference problems for large models in systems biology.
Collapse
Affiliation(s)
| | | | - Luca Gerosa
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Laura Falter
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Schaefke B, Wang TY, Wang CY, Li WH. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus. Genome Biol Evol 2015. [PMID: 26220934 PMCID: PMC4558856 DOI: 10.1093/gbe/evv138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains).
Collapse
Affiliation(s)
- Bernhard Schaefke
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan National Yang-Ming University, Taipei, Taiwan Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | | | | | - Wen-Hsiung Li
- National Yang-Ming University, Taipei, Taiwan China Medical University Hospital, Taichung, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
8
|
Ogata T. Hydrogen sulphide production by bottom-fermenting yeast is related to nitrogen starvation signalling. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/jib.96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoo Ogata
- Research Laboratories for Brewing; Asahi Breweries Ltd; Ibaraki Japan
| |
Collapse
|
9
|
Comparative real-time analysis of Saccharomyces cerevisiae cell viability, injury and death induced by ultrasound (20kHz) and heat for the application of hurdle technology. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.04.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Wong KH, Hynes MJ, Todd RB, Davis MA. Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy. MICROBIOLOGY-SGM 2009; 155:3868-3880. [PMID: 19628561 DOI: 10.1099/mic.0.031252-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Aspergillus nidulans transcription factor AreA is a key regulator of nitrogen metabolic gene expression. AreA contains a C-terminal GATA zinc finger DNA-binding domain and activates expression of genes necessary for nitrogen acquisition. Previous studies identified AreB as a potential negative regulator of nitrogen catabolism showing similarity with Penicillium chrysogenum NreB and Neurospora crassa ASD4. The areB gene encodes multiple products containing an N-terminal GATA zinc finger and a leucine zipper motif. We deleted the areB gene and now show that AreB negatively regulates AreA-dependent nitrogen catabolic gene expression under nitrogen-limiting or nitrogen-starvation conditions. AreB also acts pleiotropically, with functions in growth, conidial germination and asexual development, though not in sexual development. AreB overexpression results in severe growth inhibition, aberrant cell morphology and reduced AreA-dependent gene expression. Deletion of either the DNA-binding domain or the leucine zipper domain results in loss of both nitrogen and developmental phenotypes.
Collapse
Affiliation(s)
- Koon Ho Wong
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| | - Michael J Hynes
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Hall, Manhattan, KS 66506-5502 USA.,Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| | - Meryl A Davis
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
11
|
Tai SL, Daran-Lapujade P, Walsh MC, Pronk JT, Daran JM. Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Mol Biol Cell 2007; 18:5100-12. [PMID: 17928405 DOI: 10.1091/mbc.e07-02-0131] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Effects of suboptimal temperatures on transcriptional regulation in yeast have been extensively studied in batch cultures. To eliminate indirect effects of specific growth rates that are inherent to batch-cultivation studies, genome-wide transcriptional responses to low temperatures were analyzed in steady-state chemostats, grown at a fixed specific growth rate (0.03 h(-1)). Although in vivo metabolic fluxes were essentially the same in cultures grown at 12 and at 30 degrees C, concentrations of the growth-limiting nutrients (glucose or ammonia) were higher at 12 degrees C. This difference was reflected by transcript levels of genes that encode transporters for the growth-limiting nutrients. Several transcriptional responses to low temperature occurred under both nutrient-limitation regimes. Increased transcription of ribosome-biogenesis genes emphasized the importance of adapting protein-synthesis capacity to low temperature. In contrast to observations in cold-shock and batch-culture studies, transcript levels of environmental stress response genes were reduced at 12 degrees C. Transcription of trehalose-biosynthesis genes and intracellular trehalose levels indicated that, in contrast to its role in cold-shock adaptation, trehalose is not involved in steady-state low-temperature adaptation. Comparison of the chemostat-based transcriptome data with literature data revealed large differences between transcriptional reprogramming during long-term low-temperature acclimation and the transcriptional responses to a rapid transition to low temperature.
Collapse
Affiliation(s)
- Siew Leng Tai
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MDW, de Winde JH, Pronk JT, Daran JM. Transcriptional responses ofSaccharomyces cerevisiaeto preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res 2007; 7:604-20. [PMID: 17419774 DOI: 10.1111/j.1567-1364.2007.00220.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae grown with six different nitrogen sources were subjected to transcriptome analysis. The use of chemostats enabled an analysis of nitrogen-source-dependent transcriptional regulation at a fixed specific growth rate. A selection of preferred (ammonium and asparagine) and nonpreferred (leucine, phenylalanine, methionine and proline) nitrogen sources was investigated. For each nitrogen source, distinct sets of genes were induced or repressed relative to the other five nitrogen sources. In total, 131 such 'signature transcripts' were identified in this study. In addition to signature transcripts, genes were identified that showed a transcriptional coresponse to two or more of the six nitrogen sources. For example, 33 genes were transcriptionally upregulated in leucine-grown, phenylalanine-grown and methionine-grown cultures; this was partly attributed to the involvement of common enzymes in the dissimilation of these amino acids. In addition to specific transcriptional responses elicited by individual nitrogen sources, their impact on global regulatory mechanisms such as nitrogen catabolite repression (NCR) were monitored. NCR-sensitive gene expression in the chemostat cultures showed that ammonium and asparagine were 'rich' nitrogen sources. By this criterion, leucine, proline and methionine were 'poor' nitrogen sources, and phenylalanine showed an 'intermediate' NCR response.
Collapse
Affiliation(s)
- Viktor M Boer
- Department of Biotechnology, Delft University of Technology, Julianalaan, Delft, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boer VM, Daran JM, Almering MJH, de Winde JH, Pronk JT. Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures. FEMS Yeast Res 2005; 5:885-97. [PMID: 15949974 DOI: 10.1016/j.femsyr.2005.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/23/2005] [Accepted: 04/04/2005] [Indexed: 11/19/2022] Open
Abstract
Transcriptional regulation of branched-chain amino-acid metabolism in Saccharomyces cerevisiae involves two key regulator proteins, Leu3p and Gcn4p. Leu3p is a pathway-specific regulator, known to regulate six genes involved in branched-chain amino-acid metabolism and one gene in nitrogen assimilation. Gcn4p is a global regulator, involved in the general response to amino-acid and purine starvation. To investigate the contribution of Leu3p in regulation of gene expression, a leu3Delta strain was compared to an isogenic reference strain using DNA-microarray analysis. This comparison was performed for both glucose-grown/ammonium-limited and ethanol-limited/ammonium-excess chemostat cultures. In ethanol-limited cultures, absence of Leu3p led to reduced transcript levels of six of the seven established Leu3p target genes, but did not affect key physiological parameters. In ammonium-limited cultures, absence of Leu3p caused a drastic decrease in storage carbohydrate content. mRNA levels of genes involved in storage carbohydrate metabolism were also found reduced. Under N-limited conditions, the leu3Delta genotype elicited an amino-acid starvation response, leading to increased transcript levels of many amino-acid biosynthesis genes. By combining the transcriptome data with data from earlier studies that measured DNA binding of Leu3p both in vitro and in vivo, BAT1, GAT1 and OAC1 were identified as additional Leu3p-regulated genes. This study demonstrates that unravelling of transcriptional regulation networks should preferably include several cultivation conditions and requires a combination of experimental approaches.
Collapse
Affiliation(s)
- Viktor M Boer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Winderickx J, Holsbeeks I, Lagatie O, Giots F, Thevelein J, de Winde H. From feast to famine; adaptation to nutrient availability in yeast. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/3-540-45611-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
15
|
Teakle GR, Manfield IW, Graham JF, Gilmartin PM. Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics. PLANT MOLECULAR BIOLOGY 2002; 50:43-57. [PMID: 12139008 DOI: 10.1023/a:1016062325584] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many light-responsive promoters contain GATA motifs and a number of nuclear proteins have been defined that interact with these elements. Type-IV zinc-finger proteins have been extensively characterised in animals and fungi and are referred to as GATA factors by virtue of their affinity for promoter elements containing this sequence. We previously identified cDNA sequences representing four Arabidopsis thaliana type-TV zinc-finger proteins. Here we define the organisation and expression of GATA-1, GATA-2, GATA-3 and GATA-4 as well as DNA-binding characteristics of their encoded proteins. Transcripts from all four genes can be detected in all tissues examined suggesting that they are not developmentally regulated at the level of transcription. In vitro binding experiments with Escherichia coli-derived recombinant proteins were performed using motifs previously defined as targets for nuclear GATA-binding proteins. These studies reveal differences in DNA binding specificity of GATA-1 as compared to the other three proteins. In vivo protein-DNA interactions monitored by yeast one-hybrid assays reveal different binding characteristics as compared to those defined with E. coli-derived recombinant protein. Trans-activation of gene expression by the four Arabidopsis proteins via some, but not all, DNA elements tested indicates that the Arabidopsis proteins can form functional interactions with previously defined promoter elements containing GATA motifs. We conclude that the Arabidopsis type-IV zinc-finger proteins may represent the previously defined family of nuclear GATA-binding proteins implicated in light-responsive transcription.
Collapse
|
16
|
Abstract
Yeast cells can respond to growth on relatively poor nitrogen sources by increasing expression of the enzymes for the synthesis of glutamate and glutamine and by increasing the activities of permeases responsible for the uptake of amino acids for use as a source of nitrogen. These general responses to the quality of nitrogen source in the growth medium are collectively termed nitrogen regulation. In this review, we discuss the historical foundations of the study of nitrogen regulation as well as the current understanding of the regulatory networks that underlie nitrogen regulation. One focus of the review is the array of four GATA type transcription factors which are responsible for the regulation the expression of nitrogen-regulated genes. They are the activators Gln3p and Nil1p and their antagonists Nil2p and Dal80p. Our discussion includes consideration of the DNA elements which are the targets of the transcription factors and of the regulated translocation of Gln3p and Nil1p from the cytoplasm to the nucleus. A second focus of the review is the nitrogen regulation of the general amino acid permease, Gap1p, and the proline permease, Put4p, by ubiquitin mediated intracellular protein sorting in the secretory and endosomal pathways.
Collapse
Affiliation(s)
- Boris Magasanik
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
17
|
Conlon H, Zadra I, Haas H, Arst HN, Jones MG, Caddick MX. The Aspergillus nidulans GATA transcription factor gene areB encodes at least three proteins and features three classes of mutation. Mol Microbiol 2001; 40:361-75. [PMID: 11309119 DOI: 10.1046/j.1365-2958.2001.02399.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Aspergillus nidulans, the principal transcription factor regulating nitrogen metabolism, AREA, belongs to the GATA family of DNA-binding proteins. In seeking additional GATA factors, we have cloned areB, which was originally identified via a genetic screen for suppressors of areA loss-of-function mutations. Based on our analysis, areB is predicted to encode at least three distinct protein products. These arise from the use of two promoters, differential splicing and translation initiating at AUG and non-AUG start codons. All the putative products include a GATA domain and a putative Leu zipper. These regions show strong sequence similarity to regulatory proteins from Saccharomyces cerevisiae (Dal80p and Gzf3p), Penicillium chrysogenum (NREB) and Neurospora crassa (ASD4). We have characterized three classes of mutation in areB; the first are loss-of-function mutations that terminate the polypeptides within or before the GATA domain. The second class truncates the GATA factor either within or upstream of the putative Leu zipper but retains the GATA domain. The third class fuses novel gene sequences to areB with the potential to produce putative chimeric polypeptides. These novel gene fusions transform the putative negative-acting transcription factor into an activator that can partially replace areA.
Collapse
Affiliation(s)
- H Conlon
- Plant Science and Fungal Molecular Biology Research Group, School of Biological Sciences, Donnan Laboratories, The University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | | | | | | | | | | |
Collapse
|
18
|
Cunningham TS, Andhare R, Cooper TG. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J Biol Chem 2000; 275:14408-14. [PMID: 10799523 PMCID: PMC4382002 DOI: 10.1074/jbc.275.19.14408] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA family activators (Gln3p and Gat1p) and repressors (Dal80p and Deh1p) regulate nitrogen catabolite repression (NCR)-sensitive transcription in Saccharomyces cerevisiae presumably via their competitive binding to the GATA sequences upstream of NCR-sensitive genes. Ure2p, which is not a GATA family member, inhibits Gln3p/Gat1p from functioning in the presence of good nitrogen sources. We show that NCR-sensitive DAL80 transcription can be influenced by the relative levels of GAT1 and URE2 expression. NCR, normally observed with ammonia or glutamine, is severely diminished when Gat1p is overproduced, and this inhibition is overcome by simultaneously increasing URE2 expression. Further, overproduction of Ure2p nearly eliminates NCR-sensitive transcription under derepressive growth conditions, i.e. with proline as the sole nitrogen source. Enhanced green fluorescent protein-Gat1p is nuclear when Gat1p-dependent transcription is high and cytoplasmic when it is inhibited by overproduction of Ure2p.
Collapse
Affiliation(s)
| | | | - Terrance G. Cooper
- To whom correspondence should be addressed. Tel.: 901-448-6175; Fax: 901-448-8462;
| |
Collapse
|
19
|
ter Schure EG, van Riel NA, Verrips CT. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 2000; 24:67-83. [PMID: 10640599 DOI: 10.1111/j.1574-6976.2000.tb00533.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae is able to use a wide variety of nitrogen sources for growth. Not all nitrogen sources support growth equally well. In order to select the best out of a large diversity of available nitrogen sources, the yeast has developed molecular mechanisms. These mechanisms consist of a sensing mechanism and a regulatory mechanism which includes induction of needed systems, and repression of systems that are not beneficial. The first step in use of most nitrogen sources is its uptake via more or less specific permeases. Hence the first level of regulation is encountered at this level. The next step is the degradation of the nitrogen source to useful building blocks via the nitrogen metabolic pathways. These pathways can be divided into routes that lead to the degradation of the nitrogen source to ammonia and glutamate, and routes that lead to the synthesis of nitrogen containing compounds in which glutamate and glutamine are used as nitrogen donor. Glutamine is synthesized out of ammonia and glutamate. The expression of the specific degradation routes is also regulated depending on the availability of a particular nitrogen source. Ammonia plays a central role as intermediate between degradative and biosynthetic pathways. It not only functions as a metabolite in metabolic reactions but is also involved in regulation of metabolic pathways at several levels. This review describes the central role of ammonia in nitrogen metabolism. This role is illustrated at the level of enzyme activity, translation and transcription.
Collapse
Affiliation(s)
- E G ter Schure
- Unilever Research, Laboratorium Vlaardingen, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands.
| | | | | |
Collapse
|
20
|
Rai R, Daugherty JR, Cunningham TS, Cooper TG. Overlapping positive and negative GATA factor binding sites mediate inducible DAL7 gene expression in Saccharomyces cerevisiae. J Biol Chem 1999; 274:28026-34. [PMID: 10488154 DOI: 10.1074/jbc.274.39.28026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allantoin pathway gene expression in Saccharomyces cerevisiae responds to two different environmental stimuli. The expression of these genes is induced in the presence of allantoin or its degradative metabolites and repressed when a good nitrogen source (e. g. asparagine or glutamine) is provided. Three types of cis-acting sites and trans-acting factors are required for allantoin pathway gene transcription as follows: (i) UAS(NTR) element associated with the transcriptional activators Gln3p and Gat1p, (ii) URS(GATA) element associated with the repressor Dal80p, and (iii) UIS(ALL) element associated with the Dal82 and Dal81 proteins required for inducer-dependent transcription. Most of the work leading to the above conclusions has employed inducer-independent allantoin pathway genes (e.g. DAL5 and DAL3). The purpose of this work is to extend our understanding of these elements and their roles to inducible allantoin pathway genes using the DAL7 (encoding malate synthase) as a model. We show that eight distinct cis-acting sites participate in the process as follows: a newly identified GC-rich element, two UAS(NTR), two UIS(ALL), and three URS(GATA) elements. The two GATA-containing UAS(NTR) elements are coincident with two of the three GATA sequences that make up the URS(GATA) elements. The remaining URS(GATA) GATA sequence, however, is not a UAS(NTR) element but appears to function only in repression. The data provide insights into how these cis- and trans-acting factors function together to accomplish the regulated expression of the DAL7 gene that is observed in vivo.
Collapse
Affiliation(s)
- R Rai
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
21
|
Won M, Hoe KL, Cho YS, Song KB, Yoo HS. DNA-induced conformational change of Gaf1, a novel GATA factor in Schizosaccharomyces pombe. Biochem Cell Biol 1999; 77:127-32. [PMID: 10438147 DOI: 10.1139/o99-022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel GATA factor in Schizosaccharomyces pombe, Gaf1, containing one zinc-finger motif was studied for conformational change that was induced by DNA-binding. Gaf1 was shown to bind to the upstream activation sequence of a gene in Saccharomyces cerevisiae containing GATA element by gel mobility shift assay. Circular dichroism spectra of Gaf1 indicated an increase of alpha-helix content of Gaf1 occurred upon binding to the upstream activation sequence. These results suggest that the binding of Gaf1 to the GATA element is required for the conformational change that may precede transactivation of the target gene(s).
Collapse
Affiliation(s)
- M Won
- Cell Cycle and Signal Transduction Research Unit, Korea Research Institute of Bioscience & Biotechnology, Taejon
| | | | | | | | | |
Collapse
|
22
|
Soussi-Boudekou S, André B. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol 1999; 31:753-62. [PMID: 10048020 DOI: 10.1046/j.1365-2958.1999.01187.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the transcription factors Gln3p and Nil1p of the GATA family play a determinant role in expression of genes that are subject to nitrogen catabolite repression. Here we report the isolation of a new yeast mutant, gan1-1, exhibiting dramatically decreased NAD-linked glutamate dehydrogenase (NAD-GDH) and glutamine synthetase (GS) activities. The GAN1 gene was cloned and found to encode a 488-amino-acid polypeptide bearing no typical DNA binding domain. Gan1p is required for full expression of GLN1, GDH2 and also other nitrogen utilization genes, including GAP1, PUT4, MEP2 and GDH1. The extent to which Gan1p is required, however, varies according to the gene and to the nitrogen source available. We show that Gan1p is in fact involved in Gln3p- and Nil1p-dependent transcription. In the case of Gln3p-dependent transcription, the degree to which Gan1p is required appears to be gene specific. The contribution of Gan1p to gene expression is also influenced by the nitrogen status of the cell. We found that GAN1 is identical to ADA1, which encodes a component of the ADA/GCN5 co-activator complex. Ada1/Gan1p thus represents the first reported case of an accessory protein (a co-activator) linking the GATA-binding proteins Gln3p and Nil1p, mediating nitrogen-regulated transcription, to the basal transcription machinery.
Collapse
Affiliation(s)
- S Soussi-Boudekou
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Université Libre de Bruxelles-Campus Plaine, Brussels, Belgium
| | | |
Collapse
|
23
|
Lorenz MC, Heitman J. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 1998; 150:1443-57. [PMID: 9832522 PMCID: PMC1460428 DOI: 10.1093/genetics/150.4.1443] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth.
Collapse
Affiliation(s)
- M C Lorenz
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
24
|
Hoe KL, Won MS, Chung KS, Park SK, Kim DU, Jang YJ, Yoo OJ, Yoo HS. Molecular cloning of gaf1, a Schizosaccharomyces pombe GATA factor, which can function as a transcriptional activator. Gene 1998; 215:319-28. [PMID: 9714831 DOI: 10.1016/s0378-1119(98)00301-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a first step to elucidate the functions of Schizosaccharomyces pombe (S. pombe) GATA factors, we have isolated the gaf1+ gene (GATA-factor like gene) in S. pombe. The predicted amino acid (aa) sequence of Gaf1 reveals a single zinc finger domain typical of fungal GATA factors, and the zinc finger exhibits 60% aa identity to that of human GATA-1. The open reading frame of Gaf1 predicts a protein of Mr 32 kDa consisting of 290 intronless amino acids. Disruption of this gene has no effect on cell viability and growth rate. The GST-Gaf1 fusion protein binds specifically to GATA motifs of its own promoter as well as DAL7 UAS, a canonical GATA motif of Saccharomyces cerevisiae (S. cerevisiae) The specific DNA-binding activity resides within the N-terminal half of Gaf1 (Gaf1N; aa 1-120) containing the zinc finger, whereas the C-terminal half (Gaf1C; aa 121-290) contains transactivation sequences that induce the expression of the lacZ reporter when fused to the GAL4 DNA binding domain. These results demonstrate that Gaf1 may function as a transcriptional activator consisting of DNA-binding and transactivation domains.
Collapse
Affiliation(s)
- K L Hoe
- Cell Cycle, Signal Transduction Research Unit, Korea Research Institute of Bioscience, Biotechnology, Taejon 305-606, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Haas H, Angermayr K, Zadra I, Stöffler G. Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J Biol Chem 1997; 272:22576-82. [PMID: 9278412 DOI: 10.1074/jbc.272.36.22576] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate the mechanism of nitrogen metabolite repression in the biotechnologically important fungus Penicillium chrysogenum a polymerase chain reaction approach was employed to identify transcription factors involved in this regulatory circuit, leading to the isolation of a new gene (nreB) encoding a 298 amino acid protein. Despite a low overall amino acid sequence identity of approximately 30%, it shares several features with Dal80p/Uga43p and Gzf3p/Nil2p, both repressors in nitrogen metabolism in Saccharomyces cerevisiae. All three proteins contain an N-terminal GATA-type zinc finger motif, displaying 86% amino acid sequence identity, and a putative leucine zipper motif in the C terminus. Northern blot analysis revealed the presence of two nreB transcripts, 1.8 and 1.5 kilobases in length, that differ in polyadenylation sites. The steady state level of both transcripts is subject to nitrogen metabolite repression. The putative DNA binding domain of NREB, expressed as a fusion protein in Escherichia coli, binds in vitro to GATA sites of its own 5'-upstream region as well as in the promoter of the nitrate assimilation gene cluster. Consistent with a role in the regulation of nitrogen metabolism, overexpression of nreB leads to repression of nitrate assimilatory genes. Hence, the simple view of nitrogen regulation by four GATA factors in yeast, but only one key regulator in filamentous ascomycetes seems no longer valid.
Collapse
Affiliation(s)
- H Haas
- Department of Microbiology (Medical School), University of Innsbruck, Fritz-Pregl Str. 3, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
26
|
Truong HN, Caboche M, Daniel-Vedele F. Sequence and characterization of two Arabidopsis thaliana cDNAs isolated by functional complementation of a yeast gln3 gdh1 mutant. FEBS Lett 1997; 410:213-8. [PMID: 9237632 DOI: 10.1016/s0014-5793(97)00590-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have isolated two Arabidopsis thaliana cDNAs by complementation of a yeast gln3 gdh1 strain that is affected in the regulation of nitrogen metabolism. The two clones (RGA1 and RGA2) are homologous to each other and to the SCARECROW (SCR) gene that is involved in regulating an asymmetric cell division in plants. RGA1, RGA2 and SCR share several structural features and may define a new family of genes. RGA1 and RGA2 have been mapped, respectively, to chromosome II and I, and their expression in plant is constitutive.
Collapse
Affiliation(s)
- H N Truong
- Laboratoire de Biologie Cellulaire, INRA-Versailles, France
| | | | | |
Collapse
|
27
|
|
28
|
MacNeill C, Ayres B, Laverriere AC, Burch JB. Transcripts for functionally distinct isoforms of chicken GATA-5 are differentially expressed from alternative first exons. J Biol Chem 1997; 272:8396-401. [PMID: 9079664 DOI: 10.1074/jbc.272.13.8396] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Our analysis of cDNA and genomic clones unexpectedly revealed that the chicken gata-5 gene is differentially expressed from alternative first exons. Moreover, we show that the respective transcripts are differentially processed to yield mRNAs for two distinct isoforms of GATA-5. The major isoform, which we described previously, has two CXNCX17CNXC zinc fingers typical of a vertebrate GATA factor. The minor isoform, on the other hand, has only one such zinc finger. We show that this novel isoform localizes within the nuclei of transfected cells and can bind to a consensus GATA site. This truncated isoform of GATA-5 is compromised in its ability to transactivate a simple target gene, however, and thus is functionally distinct from the major isoform of GATA-5.
Collapse
Affiliation(s)
- C MacNeill
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- J Horák
- Department of Membrane Transport, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
30
|
Naik RR, Nebes V, Jones EW. Regulation of the proteinase B structural gene PRB1 in Saccharomyces cerevisiae. J Bacteriol 1997; 179:1469-74. [PMID: 9045801 PMCID: PMC178854 DOI: 10.1128/jb.179.5.1469-1474.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The expression of PRB1, the gene that encodes the precursor to the soluble vacuolar proteinase B (PrB) in Saccharomyces cerevisiae, is regulated by carbon and nitrogen sources and by growth phase. Little or no PRB1 mRNA is detectable during exponential growth on glucose as the carbon source; it begins to accumulate as cells exhaust the glucose. Previous work has shown that glucose repression of PRB1 transcription is not mediated by HXK2 or by the SNF1, SNF4, and SNF6 genes (C. M. Moehle and E. W. Jones, Genetics 124:39-55, 1990). We analyzed the effects of mutations in the MIG1, TUP1, and GRR1 genes on glucose repression of PRB1 and found that mutations in each partially alleviate glucose repression. tup1 and mig1 mutants fail to translocate all of the Prb1p into the lumen of the endoplasmic reticulum. A screen for new mutants revealed mutations in MIG1 and REG1, genes already known to regulate glucose repression, as well as in three new genes that we have named PBD1 to PBD3; all cause derepressed expression. Mutations that result in failure to completely derepress PRB1 were also identified in two new genes, named PND1 and PND2. Good nitrogen sources, like ammonia, repress PRB1 transcription; mutations in URE2 do not affect this response. Derepression upon transfer to a poor nitrogen source is dependent upon GLN3.
Collapse
Affiliation(s)
- R R Naik
- Department of Biological Sciences, Mellon Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
31
|
Haas H, Angermayr K, Stöffler G. Molecular analysis of a Penicillium chrysogenum GATA factor encoding gene (sreP) exhibiting significant homology to the Ustilago maydis urbs1 gene. Gene 1997; 184:33-7. [PMID: 9016950 DOI: 10.1016/s0378-1119(96)00570-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Employing a PCR-aided strategy, a Penicillium chrysogenum gene (sreP) encoding a putative GATA-transcription factor has been cloned and characterized. Comparison of the genomic and cDNA sequences revealed the presence of an open reading frame (ORF) encoding a protein of 532 amino acids (aa) which is interrupted by two introns. The deduced aa sequence of sreP reveals 50% identity to a regulator of siderophore biosynthesis (URBS1) from Ustilago maydis over a stretch of 200 aa containing two GATA-type zinc finger motifs and a Cys-rich intervening sequence. Northern blot analysis indicated two transcripts of 2.2 and 2.7 kb in approximately equivalent amount. due to two major transcription start sites.
Collapse
Affiliation(s)
- H Haas
- Institut für Mikrobiologie (Medizinische Fakultät), Universität Innsbruck, Austria.
| | | | | |
Collapse
|
32
|
Abstract
Using insertional mutagenesis, we have isolated a "stalky" mutant in which cells destined to become spores end up as stalk cells. Similar mutants were previously observed after chemical mutagenesis, but the affected gene could not be isolated. Our mutant, like the previous ones, is in stkA. Its defect is cell-autonomous and not overcome by overexpressing cAMP-dependent protein kinase. stkA is strongly expressed in the prespore region of aggregates but not in the anterior prestalk zone. The mutant expresses normal levels of prespore-cell transcripts but fails to produce the spore transcript spiA. stkA encodes a predicted 99 kDa protein (STKA) with two putative C4 zinc fingers, one of which is a GATA-type finger, indicating that it may be a transcription factor. This conclusion is supported by localization of STKA in the nucleus.
Collapse
Affiliation(s)
- W T Chang
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
33
|
Platt A, Langdon T, Arst HN, Kirk D, Tollervey D, Sanchez JM, Caddick MX. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3' untranslated region of its mRNA. EMBO J 1996; 15:2791-801. [PMID: 8654376 PMCID: PMC450215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AREA is a GATA transcription factor which mediates nitrogen metabolite repression in Aspergillus nidulans in response to intracellular glutamine levels. We have identified and localized three elements important to modulation of AREA function: a region of 13 residues within the DNA-binding GATA domain which forms a putative extended loop structure, the 12 C-terminal residues, and sequences within a 218 nucleotide region of the 3' UTR. The 12 C-terminal residues are also required for transcriptional activation at a subset of loci under areA control. Specific deletions within the 3' UTR and the C-terminus cause similar levels of derepression and the mutations are additive, implicating two principal signal transduction pathways. The contribution of the 3' UTR to AREA modulation is effected at the level of transcript stability such that the areA mRNA is at least five times more stable under nitrogen-derepressing conditions than it is under repressing growth conditions.
Collapse
Affiliation(s)
- A Platt
- Department of Genetics and Microbiology, Donnan Laboratories, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Cunningham TS, Svetlov VV, Rai R, Smart W, Cooper TG. G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae. J Bacteriol 1996; 178:3470-9. [PMID: 8655543 PMCID: PMC178115 DOI: 10.1128/jb.178.12.3470-3479.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When readily used nitrogen sources are available, the expression of genes encoding proteins needed to transport and metabolize poorly used nitrogen sources is repressed to low levels; this physiological response has been designated nitrogen catabolite repression (NCR). The cis-acting upstream activation sequence (UAS) element UAS(NTR) mediates Gln3p-dependent, NCR-sensitive transcription and consists of two separated dodecanucleotides, each containing the core sequence GATAA. Gln3p, produced in Escherichia coli and hence free of all other yeast proteins, specifically binds to wild-type UAS(NTR) sequences and DNA fragments derived from a variety of NCR-sensitive promoters (GDH2, CAR11 DAL3, PUT1, UGA4, and GLN1). A LexA-Gln3 fusion protein supported transcriptional activation when bound to one or more LexAp binding sites upstream of a minimal CYC1-derived promoter devoid of UAS elements. LexAp-Gln3p activation of transcription was largely independent of the nitrogen source used for growth. These data argue that Gln3p is capable of direct UAS(NTR) binding and participates in transcriptional activation of NCR-sensitive genes.
Collapse
Affiliation(s)
- T S Cunningham
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
35
|
Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 1996; 15:1650-7. [PMID: 8612589 PMCID: PMC450076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Neurospora crassa blind mutant white collar-1 (wc-1) is pleiotropically defective in all blue light-induced phenomena, establishing a role for the wc-1 gene product in the signal transduction pathway. We report the cloning of the wc-1 gene isolated by chromosome walking and mutant complementation. The elucidation of the wc-1 gene product provides a key piece of the blue light signal transduction puzzle. The wc-1 gene encodes a 125 kDa protein whose encoded motifs include a single class four, zinc finger DNA binding domain and a glutamine-rich putative transcription activation domain. We demonstrate that the wc-1 zinc finger domain, expressed in Escherichia coli, is able to bind specifically to the promoter of a blue light-regulated gene of Neurospora using an in vitro gel retardation assay. Furthermore, we show that wc-1 gene expression is autoregulated and is transcriptionally induced by blue light irradiation.
Collapse
Affiliation(s)
- P Ballario
- Dipartimento di Genetica e Biologia Molecolare, Centro di Studio per gli Acidi Nucleici, University of Rome La Sapienza, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Sil A, Herskowitz I. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 1996; 84:711-22. [PMID: 8625409 DOI: 10.1016/s0092-8674(00)81049-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
S. cerevisiae cells exhibit asymmetric determination of cell fate. Cell division yields a mother cell, which is competent to transcribe the HO gene and switch mating type, and a daughter cell, which is not. We have isolated a mutant in which daughters transcribe HO and switch mating type. This mutation defines the ASH1 gene (asymmetric synthesis of HO). Deletion and overexpression of ASH1 cause reciprocal cell fate transformations: im ash1delta strains, daughters switch mating type as efficiently as mothers. Conversely, overexpression of ASH1 inhibits switching in mother cells. Ash1p has a zinc finger motif related to those of GATA transcriptional regulators. Ash1p is localized to the daughter nucleus in cells that have undergone nuclear division. Thus, Ash1p is a cell fate determinant that is asymmetrically localized to the daughter nucleus where it inhibits HO transcription.
Collapse
Affiliation(s)
- A Sil
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143-0448 USA
| | | |
Collapse
|
37
|
Bobola N, Jansen RP, Shin TH, Nasmyth K. Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 1996; 84:699-709. [PMID: 8625408 DOI: 10.1016/s0092-8674(00)81048-x] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell division in haploid yeast gives rise to a "mother" cell capable of mating-type switching and a "daughter" cell that is not. Switching is initiated by the HO endonuclease, whose gene is only transcribed in cells that have previously given birth to a bud (mother cells). HO expression depends on a minimyosin, She1p/Myo4p, which accumulates preferentially in growing buds. We describe a gene, ASH1, that is necessary to repress HO in daughters. ASH1 encodes a zinc finger protein whose preferential accumulation in daughter cell nuclei at the end of anaphase depends on She1p/Myo4p. The greater abundance of Ash1p in daughter cells is responsible for restricting HO expression to mother cells.
Collapse
Affiliation(s)
- N Bobola
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
38
|
Straffon MJ, Hynes MJ, Davis MA. Characterization of the ugatA gene of Ustilago maydis, isolated by homology to the gatA gene of Aspergillus nidulans. Curr Genet 1996; 29:360-9. [PMID: 8598057 DOI: 10.1007/bf02208617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A gene encoding a putative GABA aminotransferase (ugatA) was isolated from the basidiomycete Ustilago maydis via heterologous hybridization to the GABA aminotransferase gene (gatA) of Aspergillus nidulans . The derived amino-acid sequence of ugatA shows strong identity throughout the protein to the GABA aminotransferase enzymes from A. nidulans and Saccharomyces cerevisiae. Northern analysis in U. maydis indicated that the ugatA transcript is inducible by the omega-amino acids GABA and beta-alanine, and is not subject to nitrogen catabolite repression. With the use of ugatA promoter-lacZ fusion constructs, it was demonstrated that the removal of sequences located approximately 250 bp 5' to the translational start site of ugatA (including multiple copies of a 7-bp direct repeat) resulted in the loss of induction by omega-amino acids. While the ugatA gene under the control of the A. nidulans gatA promoter was able to fully complement a gatA- phenotype in A. nidulans, the full-length ugatA gene was not, suggesting a lack of expression from the U. maydis promoter in A. nidulans. A U. maydis strain with a gene disruption at the ugatA locus showed decreased growth on beta-alanine as a sole nitrogen source, but was able to grow on GABA as a sole nitrogen source, indicating an alternative pathway for the utilization of GABA in U. maydis.
Collapse
Affiliation(s)
- M J Straffon
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
39
|
Eki T, Naitou M, Hagiwara H, Ozawa M, Sasanuma SI, Sasanuma M, Tsuchiya Y, Shibata T, Hanaoka F, Murakami Y. Analysis of a 36·2 kb DNA sequence including the right telomere of chromosome VI fromSaccharomyces cerevisiae. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(199602)12:2<149::aid-yea893>3.0.co;2-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
40
|
Eki T, Naitou M, Hagiwara H, Abe M, Ozawa M, Sasanuma S, Sasanuma M, Tsuchiya Y, Shibata T, Watanabe K. Fifteen open reading frames in a 30.8 kb region of the right arm of chromosome VI from Saccharomyces cerevisiae. Yeast 1996; 12:177-90. [PMID: 8686381 DOI: 10.1002/(sici)1097-0061(199602)12:2%3c177::aid-yea896%3e3.0.co;2-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nucleotide sequence of cosmid clone 9765, which contains 30.8 kb of the right arm of chromosome VI, was determined. Both strands were sequenced, with an average redundancy of 8.17 per base pair by both dye primer and dye terminator cycle sequencing methods. The G+C content of the sequence was found to be 40.3%. Fifteen open reading frames (ORFs) greater than 100 amino acids and one tRNA-Tyr gene (SUP6) were detected. Seven of the ORFs were found to encode previously identified genes (HIS2, CDC14, MET10, SMC2, QCR6, PH04 and CDC26). One ORF, 9765orfF010, was found to encode a new member of the Snf2/Rad54 helicase family. Three ORFs (9765orfR002, 9765orfR011 and 9765orfR013) were found to be homologous with Schizosaccharomyces pombe polyadenylate binding protein, Escherichia coli hypothetical 38.1-kDa protein in the BCR 5' region, and transcription regulatory protein Swi3, respectively.
Collapse
Affiliation(s)
- T Eki
- Division of Human Genome Research and Gene Bank, Tsukuba Life Science Center, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Eki T, Naitou M, Hagiwara H, Ozawa M, Sasanuma SI, Sasanuma M, Tsuchiya Y, Shibata T, Hanaoka F, Murakami Y. Analysis of a 36.2 kb DNA sequence including the right telomere of chromosome VI from Saccharomyces cerevisiae. Yeast 1996; 12:149-67. [PMID: 8686379 DOI: 10.1002/(sici)1097-0061(199602)12:2%3c149::aid-yea893%3e3.0.co;2-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nucleotide sequence of a 36.2-kb distal region containing the right telomere of chromosome VI was determined. Both strands of DNA cloned into cosmid clone 9965 and plasmid clone pEL174P2 were sequenced with an average redundancy of 7.9 per base pair, by both dye primer and dye terminator cycle sequencing methods. The G+C content of the sequence was found to be 37.9%. Eighteen open reading frames (ORFs) longer than 100 amino acids were detected. Four of these ORFs (9965orfR017, 9965orfF016, 9965orfR009 and 9965orfF003) were found to encode previously identified genes (YMR31, PRE4, NIN1 and HXK1, respectively). Six ORFs (9965orfR013, 9965orfF018, 9965orfF006, 9965orfR014, 9965orfF013 and 9965orfR020) were found to be homologous to hypothetical 121.4-kDa protein in the BCK 5' region, Bacillus subtilis DnaJ protein, hypothetical Trp-Asp repeats containing protein in DBP3-MRPL27, putative mitochondrial carrier YBR291C protein, Salmonella typhimurium nicotinate-nucleotide pyrophosphorylase, and Escherichia coli cystathionine beta-lyase, respectively. The putative proteins encoded by 9965orfF018, 9965orfR014 and 9965orfR020 were found to be, respectively, a new member of the family of DnaJ-like proteins, the mitochondrial carrier protein and cystathionine lyase.
Collapse
Affiliation(s)
- T Eki
- Division of Human Genome Research and Gene Bank, Tsukuba Life Science Center, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Eki T, Naitou M, Hagiwara H, Abe M, Ozawa M, Sasanuma SI, Sasanuma M, Tsuchiya Y, Shibata T, Watanabe K, Ono A, Yamazaki MA, Tashiro H, Hanaoka F, Murakami Y. Fifteen open reading frames in a 30·8 kb region of the right arm of chromosome VI fromSaccharomyces cerevisiae. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(199602)12:2<177::aid-yea896>3.0.co;2-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
43
|
Elefanty AG, Antoniou M, Custodio N, Carmo-Fonseca M, Grosveld FG. GATA transcription factors associate with a novel class of nuclear bodies in erythroblasts and megakaryocytes. EMBO J 1996; 15:319-33. [PMID: 8617207 PMCID: PMC449947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nuclear distribution of GATA transcription factors in murine haemopoietic cells was examined by indirect immunofluorescence. Specific bright foci of GATA-1 fluorescence were observed in erythroleukaemia cells and primary murine erythroblasts and megakaryocytes, in addition to diffuse nucleoplasmic localization. These foci, which were preferentially found adjacent to nucleoli or at the nuclear periphery, did not represent sites of active transcription or binding of GATA-1 to consensus sites in the beta-globin loci. Immunoelectron microscopy demonstrated the presence of intensely labelled structures likely to represent the GATA-1 foci seen by immunofluorescence. The GATA-1 nuclear bodies differed from previously described nuclear structures and there was no co-localization with nuclear antigens involved in RNA processing or other ubiquitous (Spl, c-Jun and TBP) or haemopoietic (NF-E2) transcription factors. Interestingly, GATA-2 and GATA-3 proteins also localized to the same nuclear bodies in cell lines co-expressing GATA-1 and -2 or GATA-1 and -3 gene products. This pattern of distribution is, thus far, unique to the GATA transcription factors and suggests a protein-protein interaction with other components of the nuclear bodies via the GATA zinc finger domain.
Collapse
|
44
|
Naitou M, Ozawa M, Sasanuma SI, Kobayashi M, Hagiwara H, Shibata T, Hanaoka F, Watanabe K, Ono A, Yamazaki M, Tashiro H, Eki T, Murakami Y. Sequencing of a 23 kb fragment from Saccharomyces cerevisiae chromosome VI. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(199601)12:1<77::aid-yea887>3.0.co;2-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
45
|
Naitou M, Ozawa M, Sasanuma SI, Kobayashi M, Hagiwara H, Shibata T, Hanaoka F, Watanabe K, Ono A, Yamazaki M, Tashiro H, Eki T, Murakami Y. Sequencing of a 23 kb fragment from Saccharomyces cerevisiae chromosome VI. Yeast 1996; 12:77-84. [PMID: 8789262 DOI: 10.1002/(sici)1097-0061(199601)12:1%3c77::aid-yea887%3e3.0.co;2-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Plasmid clone gapB and lambda phage clone 4682, which contain fragments of Saccharomyces cerevisiae chromosome VI, were analysed. A 23 kb sequence was determined and ten open reading frames (ORFs) were revealed. Among them, five ORFs were identical to five yeast genes (SEC4, MSH4, SPB4, DEG1 and NIC96), two were identical to transposable elements (TYA and TYB), one (gapBorfF003) was highly homologous to a yeast expressed sequence tag, and another (4682orfF002) was predicted to be a nuclear protein. Sequence data have been submitted to DDBJ/EMBL/GenBank data library under Accession Number D44604 (clone gapB) and D44600 (clone 4682), respectively.
Collapse
Affiliation(s)
- M Naitou
- Division of Human Genome Research, Institute of Physical and Chemical Research, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ushio K, Otsuka H, Yoshikawa S, Taguchi G, Shimosaka M, Mitsui N, Okazaki M. Cloning of the SAT1 gene concerned with salt tolerance of the yeast Zygosaccharomyces rouxii. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)89448-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Naitou M, Ozawa M, Sasanuma S, Kobayashi M, Hagiwara H, Shibata T, Hanaoka F, Watanabe K, Ono A, Yamazaki M. Sequencing of an 18.8 kb fragment from Saccharomyces cerevisiae chromosome VI. Yeast 1995; 11:1525-32. [PMID: 8750241 DOI: 10.1002/yea.320111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The nucleotide sequence of lambda phage clone 4121, which contains the 18.8 kb fragment of Saccharomyces cerevisiae chromosome VI left arm, was determined. This sequence had seven open reading frames (ORFs), four of which were identical to known genes (ACT1, YPT1, TUB2 and RPO41). Another three ORFs (4121orfR003, 4121orfR004 and 4121orfRN001) were highly homologous to FET3 multi-copper oxidase, glucose transport protein, and hypothetical protein of YIL106w on chromosome IX, respectively. 4121orfRN01 is suggested to contain an intron.
Collapse
Affiliation(s)
- M Naitou
- Division of Human Genome Research, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
49
|
Rasmussen SW. A 37.5 kb region of yeast chromosome X includes the SME1, MEF2, GSH1 and CSD3 genes, a TCP-1-related gene, an open reading frame similar to the DAL80 gene, and a tRNA(Arg). Yeast 1995; 11:873-83. [PMID: 7483851 DOI: 10.1002/yea.320110909] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The complete DNA sequence of cosmid clone p59 comprising 37,549 bp derived from chromosome X was determined from an ordered set of subclones. The sequence contains 14 open reading frames (ORFs) containing at least 100 consecutive sense codons. Four of the ORFs represent already known and sequenced yeast genes: B645 is identical to the SME1 gene encoding a protein kinase, required for induction of meiosis in yeast, D819 represents the MEF2 gene probably encoding a second mitochondrial elongation factor-like protein, D678 is identical to the yeast GSH1 gene encoding gamma-glutamylcysteine synthetase and B746 is identical to the CSD3 gene, which plays an as yet unidentified role in chitin biosynthesis and/or its regulation. The deduced amino acid sequence of A550 is 63% identical to the Cc eta subunit of a murine TCP-1-containing chaperonin and more than 35% identical to thermophilic factor 55 from Sulfolobus shibatae, as well as to a number of proteins belonging to the chaperonin TCP-1 family. Open reading frame F551 exhibits homology to two regions of the DAL80 gene located on yeast chromosome XI encoding a pleiotropic negative regulatory protein. In addition, extensive homology was detected in three regions including parts of ORFs A560, B746/CSD3 and the incomplete ORF C852 to three consecutive ORFs of unknown function in the middle of the right arm of chromosome XI. Finally, the sequence contained a tRNA(Arg3) (AGC) gene.
Collapse
Affiliation(s)
- S W Rasmussen
- Department of Physiology, Carlsberg Laboratory, Copenhagen, Denmark
| |
Collapse
|
50
|
Avila J, Pérez MD, Brito N, González C, Siverio JM. Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett 1995; 366:137-42. [PMID: 7789531 DOI: 10.1016/0014-5793(95)00511-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nitrate reductase gene (YNR1) from the yeast H. polymorpha was isolated from a lambda EMBL3 genomic DNA library. As probe a 350 bp DNA fragment synthesized by PCR from H. polymorpha cDNA was used. By DNA sequencing an ORF of 2,577 bp was found. The predicted protein has 859 amino acids and presents high identity with nitrate reductases from other organisms. Chromosomal disruption of YNR1 causes inability to grow in nitrate. Northern blot analysis showed that YNR1 expression is induced by nitrate and repressed by ammonium.
Collapse
Affiliation(s)
- J Avila
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, Tenerife, Canarias, Spain
| | | | | | | | | |
Collapse
|