1
|
RNA Polymerase II Transcription Attenuation at the Yeast DNA Repair Gene, DEF1, Involves Sen1-Dependent and Polyadenylation Site-Dependent Termination. G3-GENES GENOMES GENETICS 2018; 8:2043-2058. [PMID: 29686108 PMCID: PMC5982831 DOI: 10.1534/g3.118.200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Termination of RNA Polymerase II (Pol II) activity serves a vital cellular role by separating ubiquitous transcription units and influencing RNA fate and function. In the yeast Saccharomyces cerevisiae, Pol II termination is carried out by cleavage and polyadenylation factor (CPF-CF) and Nrd1-Nab3-Sen1 (NNS) complexes, which operate primarily at mRNA and non-coding RNA genes, respectively. Premature Pol II termination (attenuation) contributes to gene regulation, but there is limited knowledge of its prevalence and biological significance. In particular, it is unclear how much crosstalk occurs between CPF-CF and NNS complexes and how Pol II attenuation is modulated during stress adaptation. In this study, we have identified an attenuator in the DEF1 DNA repair gene, which includes a portion of the 5′-untranslated region (UTR) and upstream open reading frame (ORF). Using a plasmid-based reporter gene system, we conducted a genetic screen of 14 termination mutants and their ability to confer Pol II read-through defects. The DEF1 attenuator behaved as a hybrid terminator, relying heavily on CPF-CF and Sen1 but without Nrd1 and Nab3 involvement. Our genetic selection identified 22 cis-acting point mutations that clustered into four regions, including a polyadenylation site efficiency element that genetically interacts with its cognate binding-protein Hrp1. Outside of the reporter gene context, a DEF1 attenuator mutant increased mRNA and protein expression, exacerbating the toxicity of a constitutively active Def1 protein. Overall, our data support a biologically significant role for transcription attenuation in regulating DEF1 expression, which can be modulated during the DNA damage response.
Collapse
|
2
|
RNA polymerase II mutations conferring defects in poly(A) site cleavage and termination in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:167-80. [PMID: 23390594 PMCID: PMC3564978 DOI: 10.1534/g3.112.004531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/27/2012] [Indexed: 01/06/2023]
Abstract
Transcription termination by RNA polymerase (Pol) II is an essential but poorly understood process. In eukaryotic nuclei, the 3′ ends of mRNAs are generated by cleavage and polyadenylation, and the same sequence elements that specify that process are required for downstream release of the polymerase from the DNA. Although Pol II is known to bind proteins required for both events, few studies have focused on Pol II mutations as a means to uncover the mechanisms that couple polyadenylation and termination. We performed a genetic screen in the yeast Saccharomyces cerevisiae to isolate mutations in the N-terminal half of Rpb2, the second largest Pol II subunit, that conferred either a decreased or increased response to a well-characterized poly(A) site. Most of the mutant alleles encoded substitutions affecting either surface residues or conserved active site amino acids at positions important for termination by other RNA polymerases. Reverse transcription polymerase chain reaction experiments revealed that transcript cleavage at the poly(A) site was impaired in both classes of increased readthrough mutants. Transcription into downstream sequences beyond where termination normally occurs was also probed. Although most of the tested readthrough mutants showed a reduction in termination concomitant with the reduced poly(A) usage, these processes were uncoupled in at least one mutant strain. Several rpb2 alleles were found to be similar or identical to published mutants associated with defective TFIIF function. Tests of these and additional mutations known to impair Rpb2−TFIIF interactions revealed similar decreased readthrough phenotypes, suggesting that TFIIF may have a role in 3′ end formation and termination.
Collapse
|
3
|
Bucheli ME, Buratowski S. Npl3 is an antagonist of mRNA 3' end formation by RNA polymerase II. EMBO J 2005; 24:2150-60. [PMID: 15902270 PMCID: PMC1150882 DOI: 10.1038/sj.emboj.7600687] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 04/28/2005] [Indexed: 11/09/2022] Open
Abstract
Proper 3' end formation is critical for the production of functional mRNAs. Termination by RNA polymerase II is linked to mRNA cleavage and polyadenylation, but it is less clear whether earlier stages of mRNA production also contribute to transcription termination. We performed a genetic screen to identify mutations that decreased transcriptional readthrough of a defective GAL10 poly(A) terminator. A partial deletion of the GAL10 downstream region leads to transcription through the downstream GAL7 promoter, resulting in the inability of cells to grow on galactose. Mutations in elongation factors Spt4 and Spt6 suppress the readthrough phenotype, presumably by decreasing the amount of polymerase transcribing through the downstream GAL7 promoter. Interestingly, mutations in the mRNA-binding protein Npl3 improve transcription termination. Both in vivo and in vitro experiments suggest that Npl3 can antagonize 3' end formation by competing for RNA binding with polyadenylation/termination factors. These results suggest that elongation rate and mRNA packaging can influence polyadenylation and termination.
Collapse
Affiliation(s)
- Miriam E Bucheli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. Tel.: +1 617 432 0696; Fax: +1 617 738 0516; E-mail:
| |
Collapse
|
4
|
Wu X, Rossettini A, Hanes SD. TheESS1Prolyl Isomerase and Its SuppressorBYE1Interact With RNA Pol II to Inhibit Transcription Elongation inSaccharomyces cerevisiae. Genetics 2003; 165:1687-702. [PMID: 14704159 PMCID: PMC1462908 DOI: 10.1093/genetics/165.4.1687] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractTranscription by RNA polymerase II (pol II) requires the ordered binding of distinct protein complexes to catalyze initiation, elongation, termination, and coupled mRNA processing events. One or more proteins from each complex are known to bind pol II via the carboxy-terminal domain (CTD) of the largest subunit, Rpb1. How binding is coordinated is not known, but it might involve conformational changes in the CTD induced by the Ess1 peptidyl-prolyl cis/trans isomerase. Here, we examined the role of ESS1 in transcription by studying one of its multicopy suppressors, BYE1. We found that Bye1 is a negative regulator of transcription elongation. This led to the finding that Ess1 also inhibits elongation; Ess1 opposes elongation factors Dst1 and Spt4/5, and overexpression of ESS1 makes cells more sensitive to the elongation inhibitor 6-AU. In reporter gene assays, ess1 mutations reduce the ability of elongation-arrest sites to stall polymerase. We also show that Ess1 acts positively in transcription termination, independent of its role in elongation. We propose that Ess1-induced conformational changes attenuate pol II elongation and help coordinate the ordered assembly of protein complexes on the CTD. In this way, Ess1 might regulate the transition between multiple steps of transcription.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | | | | |
Collapse
|
5
|
Johanson K, Hoang T, Sheth M, Hyman LE. GRS1, a yeast tRNA synthetase with a role in mRNA 3' end formation. J Biol Chem 2003; 278:35923-30. [PMID: 12855679 DOI: 10.1074/jbc.m304978200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription termination and 3' end formation are essential processes necessary for gene expression. However, the specific mechanisms responsible for these events remain elusive. A screen designed to identify trans-acting factors involved in these mechanisms in Saccharomyces cerevisiae identified a temperature-sensitive mutant that displayed phenotypes consistent with a role in transcription termination. The complementing gene was identified as GRS1, which encodes the S. cerevisiae glycyl-tRNA synthetase. This result, although unusual, is not unprecedented given that the involvement of tRNA synthetases in a variety of cellular processes other than translation has been well established. A direct role for the synthetase in transcription termination was determined through several in vitro assays using purified wild type and mutant enzyme. First, binding to two well characterized yeast mRNA 3' ends was demonstrated by cross-linking studies. In addition, it was found that all three substrates compete with each other for binding to GlyRS enzyme. Next, the affinity of the synthetase for the two mRNA 3' ends was found to be similar to that of its "natural" substrate, glycine tRNA in a nitrocellulose filter binding assay. The effect of the grs1-1 mutation was also examined and found to significantly reduce the affinity of the enzyme for the three RNA substrates. Taken together, these data indicate that not only does this synthetase interact with several different RNA substrates, but also that these substrates bind to the same site. These results establish a direct role for GRS1 in mRNA 3' end formation.
Collapse
Affiliation(s)
- Kelly Johanson
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
6
|
Nedea E, He X, Kim M, Pootoolal J, Zhong G, Canadien V, Hughes T, Buratowski S, Moore CL, Greenblatt J. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3'-ends. J Biol Chem 2003; 278:33000-10. [PMID: 12819204 DOI: 10.1074/jbc.m304454200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Messenger RNA 3'-end formation is functionally coupled to transcription by RNA polymerase II. By tagging and purifying Ref2, a non-essential protein previously implicated in mRNA cleavage and termination, we isolated a multiprotein complex, holo-CPF, containing the yeast cleavage and polyadenylation factor (CPF) and six additional polypeptides. The latter can form a distinct complex, APT, in which Pti1, Swd2, a type I protein phosphatase (Glc7), Ssu72 (a TFIIB and RNA polymerase II-associated factor), Ref2, and Syc1 are associated with the Pta1 subunit of CPF. Systematic tagging and purification of holo-CPF subunits revealed that yeast extracts contain similar amounts of CPF and holo-CPF. By purifying holo-CPF from strains lacking Ref2 or containing truncated subunits, subcomplexes were isolated that revealed additional aspects of the architecture of APT and holo-CPF. Chromatin immunoprecipitation was used to localize Ref2, Ssu72, Pta1, and other APT subunits on small nucleolar RNA (snoRNA) genes and primarily near the polyadenylation signals of the constitutively expressed PYK1 and PMA1 genes. Use of mutant components of APT revealed that Ssu72 is important for preventing readthrough-dependent expression of downstream genes for both snoRNAs and polyadenylated transcripts. Ref2 and Pta1 similarly affect at least one snoRNA transcript.
Collapse
Affiliation(s)
- Eduard Nedea
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Edmonds M. A history of poly A sequences: from formation to factors to function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:285-389. [PMID: 12102557 DOI: 10.1016/s0079-6603(02)71046-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological polyadenylation, first recognized as an enzymatic activity, remained an orphan enzyme until poly A sequences were found on the 3' ends of eukarvotic mRNAs. Their presence in bacteria viruses and later in archeae (ref. 338) established their universality. The lack of compelling evidence for a specific function limited attention to their cellular formation. Eventually the newer techniques of molecular biology and development of accurate nuclear processing extracts showed 3' end formation to be a two-step process. Pre-mRNA was first cleaved endonucleolytically at a specific site that was followed by sequential addition of AMPs from ATP to the 3' hydroxyl group at the end of mRNA. The site of cleavage was specified by a conserved hexanucleotide, AAUAAA, from 10 to 30 nt upstream of this 3' end. Extensive purification of these two activities showed that more than 10 polypeptides were needed for mRNA 3' end formation. Most of these were in complexes involved in the cleavage step. Two of the best characterized are CstF and CPSF, while two other remain partially purified but essential. Oddly, the specific proteins involved in phosphodiester bond hydrolysis have yet to be identified. The polyadenylation step occurs within the complex of poly A polymerase and poly A-binding protein, PABII, that controls poly A length. That the cleavage complex, CPSF, is also required for this step attests to a tight coupling of the two steps of 3' and formation. The reaction reconstituted from these RNA-free purified factors correctly processes pre-mRNAs. Meaningful analysis of the role of poly A in mRNA metabolism or function was possible once quantities of these proteins most often over-expressed from cDNA clones became available. The large number needed for two simple reactions of an endonuclease, a polymerase and a sequence recognition factor, pointed to 3' end formation as a regulated process. Polyadenylation itself had appeared to require regulation in cases where two poly A sites were alternatively processed to produce mRNA coding for two different proteins. The 64-KDa subunit of CstF is now known to be a regulator of poly A site choice between two sites in the immunoglobulin heavy chain of B cells. In resting cells the site used favors the mRNA for a membrane-bound protein. Upon differentiation to plasma cells, an upstream site is used the produce a secreted form of the heavy chain. Poly A site choice in the calcitonin pre-mRNA involves splicing factors at a pseudo splice site in an intron downstream of the active poly site that interacts with cleavage factors for most tissues. The molecular basis for choice of the alternate site in neuronal tissue is unknown. Proteins needed for mRNA 3' end formation also participate in other RNA-processing reactions: cleavage factors bind to the C-terminal domain of RNA polymerase during transcription; splicing of 3' terminal exons is stimulated port of by cleavage factors that bind to splicing factors at 3' splice sites. nuclear ex mRNAs is linked to cleavage factors and requires the poly A II-binding protein. Most striking is the long-sought evidence for a role for poly A in translation in yeast where it provides the surface on which the poly A-binding protein assembles the factors needed for the initiation of translation. This adaptability of eukaryotic cells to use a sequence of low information content extends to bacteria where poly A serves as a site for assembly of an mRNA degradation complex in E. coli. Vaccinia virus creates mRNA poly A tails by a streamlined mechanism independent of cleavage that requires only two proteins that recognize unique poly A signals. Thus, in spite of 40 years of study of poly A sequences, this growing multiplicity of uses and even mechanisms of formation seem destined to continue.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- History, 20th Century
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/history
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Mary Edmonds
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
8
|
Johanson K, Allen PL, Lewis F, Cubano LA, Hyman LE, Hammond TG. Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture. J Appl Physiol (1985) 2002; 93:2171-80. [PMID: 12391061 DOI: 10.1152/japplphysiol.01087.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study utilizes Saccharomyces cerevisiae to study genetic responses to suspension culture. The suspension culture system used in this study is the high-aspect-ratio vessel, one type of the rotating wall vessel, that provides a high rate of gas exchange necessary for rapidly dividing cells. Cells were grown in the high-aspect-ratio vessel, and DNA microarray and metabolic analyses were used to determine the resulting changes in yeast gene expression. A significant number of genes were found to be up- or downregulated by at least twofold as a result of rotational growth. By using Gibbs promoter alignment, clusters of genes were examined for promoter elements mediating these genetic changes. Candidate binding motifs similar to the Rap1p binding site and the stress-responsive element were identified in the promoter regions of differentially regulated genes. This study shows that, as in higher order organisms, S. cerevisiae changes gene expression in response to rotational culture and also provides clues for investigations into the signaling pathways involved in gravitational response.
Collapse
Affiliation(s)
- Kelly Johanson
- Department of Biochemistry, Center for BioEnvironmental Research, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
9
|
Hyman LE, Kwon E, Ghosh S, McGee J, Chachulska AMB, Jackson T, Baricos WH. Binding to Elongin C inhibits degradation of interacting proteins in yeast. J Biol Chem 2002; 277:15586-91. [PMID: 11864988 DOI: 10.1074/jbc.m200800200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongin C is a highly conserved, low molecular weight protein found in a variety of multiprotein complexes in human, rat, fly, worm, and yeast cells. Among the best characterized of these complexes is a mammalian E3 ligase that targets proteins for ubiquitination and subsequent degradation by the 26 S proteasome. Despite its crucial role as a component of such E3 ligases and other complexes, the specific function of Elongin C is unknown. In yeast, Elongin C is a non-essential gene and there is no obvious phenotype as associated with its absence. We previously reported that in Saccharomyces cerevisiae Elongin C (Elc1) interacts specifically and strongly with a class of proteins loosely defined as stress response proteins. In the present study, we examined the role of yeast Elc1 in the turnover of two of these binding partners, Snf4 and Pcl6. Deletion of Elc1 resulted in decreased steady-state levels of Snf4 and Pcl6 as indicated by Western blot analysis. Northern blot analysis of mRNA prepared from elc1 null and wild type strains revealed no difference in mRNA levels for Snf4 and Pcl6 establishing that the effects of Elc1 are not transcriptionally mediated. Reintroduction of either yeast or human Elongin C into Elc1 null strains abrogated this effect. Taken together, these data document that the levels of Snf4 and Pcl6 are dependent on the presence of Elc1 and that binding to Elc1 inhibits the degradation of these proteins. The results suggest a new function for yeast Elongin C that is distinct from a direct role in targeting proteins for ubiquitination and subsequent proteolysis.
Collapse
Affiliation(s)
- Linda E Hyman
- Department of Biochemistry, Tulane University Health Science Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
McEwan NR, Eschenlauer SC, Calza RE, Wallace RJ, Newbold CJ. The 3' untranslated region of messages in the rumen protozoan Entodinium caudatum. Protist 2000; 151:139-46. [PMID: 10965953 DOI: 10.1078/1434-4610-00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 3' untranslated regions of a number of cDNAs from the rumen protozoal species Entodinium caudatum were studied with a view to characterising their preference for stop codons, general length, nucleotide composition and polyadenylation signals. Unlike a number of ciliates, Entodinium caudatum uses UAA as a stop codon, rather than as a codon for glutamine. In addition, the 3' untranslated region of the message is generally less than 100 nucleotides in length, extremely A+T rich, and does not appear to utilise any of the conventional polyadenylation signals described in other organisms.
Collapse
Affiliation(s)
- N R McEwan
- Rowett Research Institute, Bucksburn, Aberdeen, Scotland.
| | | | | | | | | |
Collapse
|
11
|
Jackson T, Kwon E, Chachulska AM, Hyman LE. Novel roles for elongin C in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1491:161-76. [PMID: 10760578 DOI: 10.1016/s0167-4781(00)00052-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mammalian Elongin C is a 112-amino acid protein that binds to the von Hippel-Lindau (VHL) tumor suppressor and to Elongin A, the transcriptionally active subunit of the RNA polymerase II elongation factor, SIII. It is conserved in eukaryotic cells, as homologs have been identified in Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans. The mammalian protein is thought to function as part of a ubiquitin targeting E3 ligase, yet the function in yeast has not been determined. In this report we examine the role of Elongin C in yeast and establish that yeast Elongin C may function in a mode distinct from its role as an E3 ligase. The RNA is expressed ubiquitously, albeit at low levels. Two hybrid analyses demonstrate that Elongin C in yeast interacts with a specific set of proteins that are involved in the stress response. This suggests a novel role for Elongin C and provides insights into additional potential functions in mammalian cells.
Collapse
Affiliation(s)
- T Jackson
- Department of Biochemistry SL43, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA
| | | | | | | |
Collapse
|
12
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999. [PMID: 10357856 DOI: 10.1007/s13146-011-0050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
13
|
Magrath C, Hyman LE. A mutation in GRS1, a glycyl-tRNA synthetase, affects 3'-end formation in Saccharomyces cerevisiae. Genetics 1999; 152:129-41. [PMID: 10224248 PMCID: PMC1460614 DOI: 10.1093/genetics/152.1.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
3'-end formation is a complex and incompletely understood process involving both cis-acting and trans-acting factors. As part of an effort to examine the mechanisms of transcription termination by RNA polymerase II, a mutant hunt for strains defective in 3'-end formation was conducted. Following random mutagenesis, a temperature-sensitive strain exhibiting several phenotypes consistent with a role in transcription termination was isolated. First, readthrough of a terminator increases significantly in the mutant strain. Accordingly, RNA analysis indicates a decrease in the level of terminated transcripts, both in vivo and in vitro. Moreover, a plasmid stability assay in which high levels of readthrough lead to high levels of plasmid loss and transcription run-on analysis also demonstrate defective termination of transcription. Examination of polyadenylation and cleavage by the mutant strain indicates these processes are not affected. These results represent the first example of a transcription termination factor in Saccharomyces cerevisiae that affects transcription termination independent of 3'-end processing of mRNA. Complementation studies identified GRS1, an aminoacyl-tRNA synthetase, as the complementing gene. Sequence analysis of grs1-1 in the mutant strain revealed that nucleotides 1656 and 1657 were both C to T transitions, resulting in a single amino acid change of proline to phenylalanine. Further studies revealed GRS1 is essential, and the grs1-1 allele confers the temperature-sensitive growth defect associated with the mutant strain. Finally, we observed structures with some similarity to tRNA molecules within the 3'-end of various yeast genes. On the basis of our results, we suggest Grs1p is a transcription termination factor that may interact with the 3'-end of pre-mRNA to promote 3'-end formation.
Collapse
Affiliation(s)
- C Magrath
- Interdisciplinary Program in Molecular and Cellular Biology, Tulane University, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
14
|
Magrath C, Lund K, Miller CA, Hyman LE. Overlapping 3'-end formation signals and ARS elements: tightly linked but functionally separable. Gene 1998; 222:69-75. [PMID: 9813245 DOI: 10.1016/s0378-1119(98)00479-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
3'-End formation signals are closely associated with autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in that ARSs frequently contain signals that direct 3'-end formation (Chen et al., 1996). Mutationally-inactivated ARSs that co-reside with 3'-end formation sequences do not disrupt 3'-end formation, thus demonstrating that replication function does not affect termination function. To test the corollary possibility that 3'-end formation is important for replication function, we made point mutations in ARS305 that increase readthrough of the 3'-end formation signals and determined plasmid replication efficiency. Replication efficiency, as assessed by plasmid stability assays, was not altered by mutations affecting 3'-end formation when transcription through the ARS was either absent or highly-induced. Under conditions of high-level transcription through the ARS, the rate of plasmid loss in both wild-type and mutated terminators increased over five-fold from rates observed during transcriptionally repressed conditions. This result indicates that the native 3'-end formation signal is incapable of protecting the replication function when high levels of transcription are directed into the ARS. Thus, the compact nature of the S. cerevisiae genome, rather than a functional inter-dependence, may account for close association of transcription terminators and ARSs.
Collapse
Affiliation(s)
- C Magrath
- Tulane University, Interdisciplinary Program in Molecular and Cell Biology, New Orleans, LA, USA
| | | | | | | |
Collapse
|
15
|
Aranda A, Pérez-Ortín JE, Moore C, del Olmo M. The yeast FBP1 poly(A) signal functions in both orientations and overlaps with a gene promoter. Nucleic Acids Res 1998; 26:4588-96. [PMID: 9753725 PMCID: PMC147910 DOI: 10.1093/nar/26.20.4588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This report provides an analysis of a region of chromosome XII in which the FBP1 and YLR376c genes transcribe in the same direction. Our investigation indicates that the Saccharomyces cerevisiae FBP1 gene contains strong signals for polyadenylation and transcription termination in both orientations in vivo . A (TA)14 element plays a major role in directing polyadenylation in both orientations. While this region has four nonoverlapping copies of a TATATA hexanucleotide, which is a very potent polyadenylation efficiency element in yeast, it alone is not sufficient for full activation in the reverse orientation of a cluster of downstream poly(A) sites, and an additional upstream sequence is required. The putative RNA hairpin formed from the (TA)14 element is not involved in 3'-end formation. Surprisingly, deletion of the entire (TA)14 stretch affects transcription termination in the reverse orientation, in contrast to our previous results with the forward orientation, indicating that the transcription termination element operating in the reverse orientation has very different sequence requirements. Promoter elements for the YLR376c gene overlap with the signal for FBP1 3'-end formation. To our knowledge, this is the first time that overlapping of both types of regulatory signals has been found in two adjacent yeast genes.
Collapse
Affiliation(s)
- A Aranda
- Departament de Bioquímica i Biologia Molecular, Facultats de Ciències, Universitat de València, andDepartamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apartado 73,-46100 Burjassot, Spain
| | | | | | | |
Collapse
|
16
|
Aranda A, Pérez-Ortín JE, Moore C, del Olmo ML. Transcription termination downstream of the Saccharomyces cerevisiae FBP1 [changed from FPB1] poly(A) site does not depend on efficient 3'end processing. RNA (NEW YORK, N.Y.) 1998; 4:303-318. [PMID: 9510332 PMCID: PMC1369619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Efficient transcription termination downstream of poly(A) sites has been shown to correlate with the strength of an upstream polyadenylation signal and the presence of a polymerase pause site. To further investigate the mechanism linking termination with 3'-end processing, we analyzed the cis-acting elements that contribute to these events in the Saccharomyces cerevisiae FBP1 gene. FBP1 has a complex polyadenylation signal, and at least three efficiency elements must be present for efficient processing. However, not all combinations of these elements are equally effective. This gene also shows a novel organization of sequence elements. A strong positioning element is located upstream, rather than downstream, of the efficiency elements, and functions to select the cleavage site in vitro and in vivo. Transcription run-on analysis indicated that termination occurs within 61 nt past the poly(A) site. Deletion of two UAUAUA-type efficiency elements greatly reduces polyadenylation in vivo and in vitro, but transcription termination is still efficient, implying that FBP1 termination signals may be distinct from those for polyadenylation. Alternatively, assembly of a partial, but nonfunctional, polyadenylation complex on the nascent transcript may be sufficient to cause termination.
Collapse
Affiliation(s)
- A Aranda
- Departament de Bioquímica i Biologia Molecular, Facultats de Ciències, Universitat de València, Spain
| | | | | | | |
Collapse
|
17
|
Mahadevan S, Raghunand TR, Panicker S, Struhl K. Characterisation of 3' end formation of the yeast HIS3 mRNA. Gene 1997; 190:69-76. [PMID: 9185851 DOI: 10.1016/s0378-1119(96)00708-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleotide (nt) sequence of the 3' end of the yeast HIS3 mRNA was determined by PCR amplification of the 3' end. Analysis of 28 individual clones revealed that at least 13 distinct polyadenylation sites are present. The sites of polyadenylation are extremely heterogeneous and do not show any obvious similarity other than that they occur after pyrimidine residues in most cases. Most mutants carrying internal deletions of the 3' untranslated region (3' UTR) did not abolish 3' end formation and showed polyadenylation at normal sites. Deletion of a 90-nt region that contains an A+T-rich sequence close to the 3' end of the HIS3 coding sequence and a subset of processing sites resulted in a drastic reduction in the levels of full-length HIS3 mRNA and concomitant transcription past the normal HIS3 3' end. The 90-nt region appears to be sufficient to direct the formation of at least a subset of the HIS3 3' ends since mutants that carry deletions of flanking regions of this sequence show detectable levels of HIS3 mRNA. Spacing between the upstream A-T sequence and the site of processing is variable. In the light of the extreme heterogeneity of the sites, a possible mechanism for 3' processing is discussed.
Collapse
Affiliation(s)
- S Mahadevan
- Developmental Biology and Genetics Laboratory, Indian Institute of Science, Bangalore.
| | | | | | | |
Collapse
|
18
|
Wahle E, Kühn U. The mechanism of 3' cleavage and polyadenylation of eukaryotic pre-mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:41-71. [PMID: 9175430 DOI: 10.1016/s0079-6603(08)60277-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E Wahle
- Institut für Biochemic, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
19
|
Russo P. Saccharomyces cerevisiae mRNA 3' end forming signals are also involved in transcription termination. Yeast 1995; 11:447-53. [PMID: 7597848 DOI: 10.1002/yea.320110507] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously, a 38-base-pair (bp) region in the 3' untranslated portion of the Saccharomyces cerevisiae iso-1-cytochrome c gene, was shown to be required for both normal CYC1 mRNA 3' end formation (Zaret and Sherman, 1982), and efficient transcription termination (Russo and Sherman, 1989). In another study, specific sequences such as TATATA, TACATA, and TAGTAGTA were shown to be involved in mRNA 3' end formation in S. cerevisiae (Russo et al., 1991). In this report, an in vivo plasmid stability assay has been utilized to show that these and related sequences are also involved in transcription termination, at varying efficiencies, and in an orientation-dependent manner. For example: the sequence TATATA appeared to terminate transcription almost as efficiently as the original wild type 38-bp region; whereas, the sequences TAGATATATGTAA and TACATA were less efficient, and TTTTTTTATA had little, if any, transcription termination function. In contrast, none of these sequences appeared to terminate transcription in the reverse orientation. Therefore, it appears that certain sequence signals capable of promoting mRNA 3' end formation in yeast, are also directly involved in transcription termination.
Collapse
Affiliation(s)
- P Russo
- Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
20
|
Wahle E. 3'-end cleavage and polyadenylation of mRNA precursors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:183-94. [PMID: 7711061 DOI: 10.1016/0167-4781(94)00248-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E Wahle
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
21
|
Egli CM, Braus GH. Uncoupling of mRNA 3' cleavage and polyadenylation by expression of a hammerhead ribozyme in yeast. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46996-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Bae YM, Hastings JW. Cloning, sequencing and expression of dinoflagellate luciferase DNA from a marine alga, Gonyaulax polyedra. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:449-56. [PMID: 7918642 DOI: 10.1016/0167-4781(94)90071-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The marine dinoflagellate, Gonyaulax polyedra emits light in a reaction involving the enzymatic oxidation of its tetrapyrrole luciferin by molecular oxygen; its luciferase (LCF) single chain has an estimated molecular mass of 130 kDa, and exhibits a circadian rhythm in its activity. A cDNA expression library in the lambda ZAPII vector was constructed from the polyadenylated RNA isolated from the Gonyaulax cells during the early night phase, the time at which LCF synthesis is believed to be greatest. Of the approx. 1.2 . 10(5) phages from the library screened with antibody against Gonyaulax LCF, 13 positive plaques were obtained. The nucleotide sequences of two of the larger inserts (2.4 kb and 1.6 kb in length), both carrying the poly(A) tail, were determined and found to be identical in the overlapping region. When expressed in Escherichia coli, both cDNA clones produced active luciferase. A Northern hybridization using the cDNA as a probe showed that the length of the lcf mRNA is approx. 4.1 kb, sufficiently long to encode the 130 kDa LCF. Analyses of polymerase chain reaction products, prepared using both the cloned cDNA and Gonyaulax chromosomal DNA as templates, indicated that the cloned region of the luciferase gene does not carry any introns. This represents the first dinoflagellate luciferase to be cloned and sequenced; its deduced amino acid sequence bears no significant homologies with that of any other luciferase, or any other sequence in the data base.
Collapse
Affiliation(s)
- Y M Bae
- Department of Cellular and Developmental Biology Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
23
|
Aslund L, Carlsson L, Henriksson J, Rydåker M, Toro GC, Galanti N, Pettersson U. A gene family encoding heterogeneous histone H1 proteins in Trypanosoma cruzi. Mol Biochem Parasitol 1994; 65:317-30. [PMID: 7969272 DOI: 10.1016/0166-6851(94)90082-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A gene family encoding a set of histone H1 proteins in Trypanosoma cruzi is described. The sequence of 3 genomic and 4 cDNA clones revealed the presence of several motifs characteristic of histone H1, although heterogeneity at the polypeptide level was evident. The clones encode histone H1 proteins of an unusually small size (74-97 amino acids), which lack the globular domain found in histone H1 of higher eukaryotes. All histone H1 mRNAs from T. cruzi are polyadenylated, although no typical polyadenylation signal was found. Furthermore, the genes encoding the histone H1 proteins in T. cruzi are found in a tandem array containing 15-20 gene copies per haploid genome. This tandem array is located on a large chromosome of 2.2 Mb.
Collapse
Affiliation(s)
- L Aslund
- Department of Medical Genetics, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Viljoen M, Subden RE, Krizus A, Van Vuuren HJ. Molecular analysis of the malic enzyme gene (mae2) of Schizosaccharomyces pombe. Yeast 1994; 10:613-24. [PMID: 7941746 DOI: 10.1002/yea.320100506] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sequence analysis of a 4.6-kb HindIII fragment containing the malic enzyme gene (mae2) of Schizosaccharomyces pombe, revealed the presence of an open reading frame of 1695 nucleotides, coding for a 565 amino acid polypeptide. The mae2 gene is expressed constitutively and encodes a single mRNA transcript of 2.0 kb. The mae2 gene was mapped on chromosome III by chromoblotting. The coding region and inferred amino acid sequence showed significant homology with 12 malic enzyme genes and proteins from widely different origins. Eight highly homologous regions were found in these malic enzymes, suggesting that they contain functionally conserved amino acid sequences that are indispensable for activity of malic enzymes. Two of these regions have previously been reported to be NAD- and NADP-binding sites.
Collapse
Affiliation(s)
- M Viljoen
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | | | |
Collapse
|
25
|
Rothnie HM, Reid J, Hohn T. The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3'-end formation in plants. EMBO J 1994; 13:2200-10. [PMID: 8187773 PMCID: PMC395075 DOI: 10.1002/j.1460-2075.1994.tb06497.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The requirement for sequence specificity in the AAUAAA motif of the cauliflower mosaic virus (CaMV) polyadenylation signal was examined by saturation mutagenesis. While deletion of AAUAAA almost abolished processing at the CaMV polyadenylation site, none of the 18 possible single base mutations had a dramatic effect on processing efficiency. The effect of replacing all six nucleotides simultaneously varied depending on the sequence used, but some replacements were as detrimental as the deletion mutant. Taken together, these results confirm that AAUAAA is an essential component of the CaMV polyadenylation signal, but indicate that a high degree of sequence variation can be tolerated. A repeated UUUGUA motif was identified as an important upstream accessory element of the CaMV polyadenylation signal. This sequence was able to induce processing at a heterologous polyadenylation site in a sequence-specific and additive manner. The effect of altering the spacing between this upstream element and the AAUAAA was examined; moving these two elements closer together or further apart reduces the processing efficiency. The upstream element does not function to signal processing at the CaMV polyadenylation site if placed downstream of the cleavage site. Analysis of further upstream sequences revealed that almost all of the 200 nt fragment required for maximal processing contributes positively to processing efficiency. Furthermore, isolated far upstream sequences distinct from UUUGUA were also able to induce processing at a heterologous polyadenylation site.
Collapse
Affiliation(s)
- H M Rothnie
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
26
|
Schmalix W, Bandlow W. The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74266-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Kim J, Shen B, Dorsett D. The Drosophila melanogaster suppressor of Hairy-wing zinc finger protein has minimal effects on gene expression in Saccharomyces cerevisiae. Genetics 1993; 135:343-55. [PMID: 8243999 PMCID: PMC1205640 DOI: 10.1093/genetics/135.2.343] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many mutations in Drosophila melanogaster are gypsy retrotransposon insertions. Gypsy binds the protein (SUHW) encoded by the suppressor of Hairy-wing [su(Hw)] gene, and SUHW alters expression of surrounding genes. When gypsy is between an enhancer and promoter, SUHW blocks activation of transcription by the enhancer. Additionally, when gypsy is downstream of a promoter in a parallel orientation, SUHW increases truncation of transcripts at the poly(A) site in the gypsy 5' long terminal repeat, thereby decreasing the gene transcript levels. The effects of SUHW appear to involve fundamental and general mechanisms controlling gene expression because SUHW potentiates other poly(A) sites and blocks several enhancers in Drosophila. To investigate these mechanisms, SUHW was expressed in Saccharomyces cerevisiae. Although SUHW enters the nucleus and binds DNA in yeast, it has surprisingly minor effects on utilization of the CYC1 poly(A) site and transcription activation by a GAL upstream activation sequence. These observations indicate that the observed effects of SUHW on gene expression in Drosophila require specific interactions with other factors that are absent or unrecognizable in yeast.
Collapse
Affiliation(s)
- J Kim
- Program in Molecular Biology, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | |
Collapse
|
28
|
Abstract
As a eukaryotic microbe, yeast remains an attractive host for the expression of a large variety of foreign proteins, including viral antigens, enzymes used as food additives and therapeutic agents. Important progress has been made in the understanding of the critical parameters influencing product yield, and a number of novel tools for the genetic engineering of powerful yeast expression systems have been developed. This review focuses on recent findings in foreign gene expression in the yeasts Saccharomyces, Pichia, Hansenula, and Kluyveromyces.
Collapse
Affiliation(s)
- R Fleer
- Department of Biotechnology CRVA, Rhône-Poulenc Rorer, Vitry, France
| |
Collapse
|
29
|
Hughes DA, MacNeill SA, Fantes PA. Molecular cloning and sequence analysis of cdc27+ required for the G2-M transition in the fission yeast Schizosaccharomyces pombe. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:401-10. [PMID: 1538696 DOI: 10.1007/bf00292709] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cell division cycle gene cdc27+ of the fission yeast Schizosaccharomyces pombe is required for the transition from G2 into mitosis. Genetic and physiological experiments suggest a close relationship between cdc27+ and the cdc2+ gene, a key regulator of mitosis in yeast and also in higher eukaryotic cells. We isolated the cdc27+ gene by complementation of a temperature-sensitive cdc27 mutant. The DNA sequence of this gene predicts a 1116 nucleotide open reading frame split by five short introns, ranging in size from 49 to 74 nucleotides. Analysis of cDNA clones confirmed the structure of the gene. The deduced cdc27+ gene product consists of 372 amino acids with a predicted Mr of 43 kDa. No homology of the predicted protein with known proteins could be found, thus the cdc27+ gene encodes a novel function required for the G2-M transition. Northern analysis revealed two mRNAs of 1.4 and 2.2 kb transcribed from this gene, the smaller transcript being approximately tenfold more abundant than the larger. The level of cdc27+ mRNAs remained constant through the cell cycle indicating that the time of action of the cdc27+ gene, which is known to be regulated by elements of the mitotic control, is not determined by periodic accumulation of its transcripts.
Collapse
Affiliation(s)
- D A Hughes
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
30
|
Abstract
Almost all messenger RNAs carry a polyadenylate tail that is added in a post-transcriptional reaction. In the nuclei of animal cells, the 3'-end of the RNA is formed by endonucleolytic cleavage of the primary transcript at the site of poly(A) addition, followed by the polymerisation of the tail. The reaction depends on specific RNA sequences upstream as well as downstream of the polyadenylation site. Cleavage and polyadenylation can be uncoupled in vitro. Polyadenylation is carried out by poly(A) polymerase with the aid of a specificity factor that binds the polyadenylation signal AAUAAA. Several additional factors are required for the initial cleavage. A newly discovered poly(A)-binding protein stimulates poly(A) tail synthesis and may be involved in the control of tail length. Polyadenylation reactions different from this scheme, either in other organisms or under special physiological circumstances, are discussed.
Collapse
Affiliation(s)
- E Wahle
- Department of Cell Biology, University of Basel, Switzerland
| |
Collapse
|