1
|
Autonomously Replicating Linear Plasmids That Facilitate the Analysis of Replication Origin Function in Candida albicans. mSphere 2019; 4:4/2/e00103-19. [PMID: 30842269 PMCID: PMC6403455 DOI: 10.1128/msphere.00103-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circular plasmids are important tools for molecular manipulation in model fungi such as baker’s yeast, yet, in Candida albicans, an important yeast pathogen of humans, prior studies were not able to generate circular plasmids that were autonomous (duplicated without inserting themselves into the chromosome). Here, we found that linearizing circular plasmids with sequences from telomeres, the chromosome ends, allows the plasmids to duplicate and segregate in C. albicans. We used this system to identify chromosomal sequences that facilitate the initiation of plasmid replication (origins) and to show that an ∼100-bp fragment of a C. albicans origin and an origin sequence from a distantly related yeast can both function as origins in C. albicans. Thus, the requirements for plasmid geometry, but not necessarily for origin sequences, differ between C. albicans and baker’s yeast. The ability to generate autonomously replicating plasmids has been elusive in Candida albicans, a prevalent human fungal commensal and pathogen. Instead, plasmids generally integrate into the genome. Here, we assessed plasmid and transformant properties, including plasmid geometry, transformant colony size, four selectable markers, and potential origins of replication, for their ability to drive autonomous plasmid maintenance. Importantly, linear plasmids with terminal telomere repeats yielded many more autonomous transformants than circular plasmids with the identical sequences. Furthermore, we could distinguish (by colony size) transient, autonomously replicating, and chromosomally integrated transformants (tiny, medium, and large, respectively). Candida albicansURA3 and a heterologous marker, ARG4, yielded many transient transformants indicative of weak origin activity; the replication of the plasmid carrying the heterologous LEU2 marker was highly dependent upon the addition of a bona fide origin sequence. Several bona fide chromosomal origins, with an origin fragment of ∼100 bp as well as a heterologous origin, panARS, from Kluyveromyces lactis, drove autonomous replication, yielding moderate transformation efficiency and plasmid stability. Thus, C. albicans maintains linear plasmids that yield high transformation efficiency and are maintained autonomously in an origin-dependent manner. IMPORTANCE Circular plasmids are important tools for molecular manipulation in model fungi such as baker’s yeast, yet, in Candida albicans, an important yeast pathogen of humans, prior studies were not able to generate circular plasmids that were autonomous (duplicated without inserting themselves into the chromosome). Here, we found that linearizing circular plasmids with sequences from telomeres, the chromosome ends, allows the plasmids to duplicate and segregate in C. albicans. We used this system to identify chromosomal sequences that facilitate the initiation of plasmid replication (origins) and to show that an ∼100-bp fragment of a C. albicans origin and an origin sequence from a distantly related yeast can both function as origins in C. albicans. Thus, the requirements for plasmid geometry, but not necessarily for origin sequences, differ between C. albicans and baker’s yeast.
Collapse
|
2
|
High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation. G3-GENES GENOMES GENETICS 2016; 6:993-1012. [PMID: 26865697 PMCID: PMC4825667 DOI: 10.1534/g3.116.027904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid partitioning and suggest underlying biological roles shared by such elements.
Collapse
|
3
|
Asymmetrical Inheritance of Plasmids Depends on Dynamic Cellular Geometry and Volume Exclusion Effects. PLoS One 2015; 10:e0139443. [PMID: 26468952 PMCID: PMC4607505 DOI: 10.1371/journal.pone.0139443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022] Open
Abstract
The asymmetrical inheritance of plasmid DNA, as well as other cellular components, has been shown to be involved in replicative aging. In Saccharomyces cerevisiae, there is an ongoing debate regarding the mechanisms underlying this important asymmetry. Currently proposed models suggest it is established via diffusion, but differ on whether a diffusion barrier is necessary or not. However, no study so far incorporated key aspects to segregation, such as dynamic morphology changes throughout anaphase or plasmids size. Here, we determine the distinct effects and contributions of individual cellular variability, plasmid volume and moving boundaries in the asymmetric segregation of plasmids. We do this by measuring cellular nuclear geometries and plasmid diffusion rates with confocal microscopy, subsequently incorporating this data into a growing domain stochastic spatial simulator. Our modelling and simulations confirms that plasmid asymmetrical inheritance does not require an active barrier to diffusion, and provides a full analysis on plasmid size effects.
Collapse
|
4
|
Froyd CA, Kapoor S, Dietrich F, Rusche LN. The deacetylase Sir2 from the yeast Clavispora lusitaniae lacks the evolutionarily conserved capacity to generate subtelomeric heterochromatin. PLoS Genet 2013; 9:e1003935. [PMID: 24204326 PMCID: PMC3814328 DOI: 10.1371/journal.pgen.1003935] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022] Open
Abstract
Deacetylases of the Sir2 or sirtuin family are thought to regulate life cycle progression and life span in response to nutrient availability. This family has undergone successive rounds of duplication and diversification, enabling the enzymes to perform a wide variety of biological functions. Two evolutionarily conserved functions of yeast Sir2 proteins are the generation of repressive chromatin in subtelomeric domains and the suppression of unbalanced recombination within the tandem rDNA array. Here, we describe the function of the Sir2 ortholog ClHst1 in the yeast Clavispora lusitaniae, an occasional opportunistic pathogen. ClHst1 was localized to the non-transcribed spacer regions of the rDNA repeats and deacetylated histones at these loci, indicating that, like other Sir2 proteins, ClHst1 modulates chromatin structure at the rDNA repeats. However, we found no evidence that ClHst1 associates with subtelomeric regions or impacts gene expression directly. This surprising observation highlights the plasticity of sirtuin function. Related yeast species, including Candida albicans, possess an additional Sir2 family member. Thus, it is likely that the ancestral Candida SIR2/HST1 gene was duplicated and subfunctionalized, such that HST1 retained the capacity to regulate rDNA whereas SIR2 had other functions, perhaps including the generation of subtelomeric chromatin. After subsequent species diversification, the SIR2 paralog was apparently lost in the C. lusitaniae lineage. Thus, C. lusitaniae presents an opportunity to discover how subtelomeric chromatin can be reconfigured.
Collapse
Affiliation(s)
- Cara A. Froyd
- Biochemistry Department, Duke University, Durham, North Carolina, United States of America
| | - Shivali Kapoor
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Fred Dietrich
- Department of Molecular Genetics & Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Laura N. Rusche
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
5
|
Pittayakhajonwut D, Angeletti PC. Analysis of cis-elements that facilitate extrachromosomal persistence of human papillomavirus genomes. Virology 2008; 374:304-14. [PMID: 18279904 PMCID: PMC2430029 DOI: 10.1016/j.virol.2008.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/08/2007] [Accepted: 01/14/2008] [Indexed: 11/26/2022]
Abstract
Human papillomaviruses (HPVs) are maintained latently in dividing epithelial cells as nuclear plasmids. Two virally encoded proteins, E1, a helicase, and E2, a transcription factor, are important players in replication and stable plasmid maintenance in host cells. Recent experiments in yeast have demonstrated that viral genomes retain replication and maintenance function independently of E1 and E2 [Angeletti, P.C., Kim, K., Fernandes, F.J., and Lambert, P.F. (2002). Stable replication of papillomavirus genomes in Saccharomyces cerevisiae. J. Virol. 76(7), 3350-8; Kim, K., Angeletti, P.C., Hassebroek, E.C., and Lambert, P.F. (2005). Identification of cis-acting elements that mediate the replication and maintenance of human papillomavirus type 16 genomes in Saccharomyces cerevisiae. J. Virol. 79(10), 5933-42]. Flow cytometry studies of EGFP-reporter vectors containing subgenomic HPV fragments with or without a human ARS (hARS), revealed that six fragments located in E6-E7, E1-E2, L1, and L2 regions showed a capacity for plasmid stabilization in the absence of E1 and E2 proteins. Interestingly, four fragments within E7, the 3' end of L2, and the 5' end of L1 exhibited stability in plasmids that lacked an hARS, indicating that they possess both replication and maintenance functions. Two fragments lying in E1-E2 and the 3' region of L1 were stable only in the presence of hARS, that they contained only maintenance function. Mutational analyses of HPV16-GFP reporter constructs provided evidence that genomes lacking E1 and E2 could replicate to an extent similar to wild type HPV16. Together these results support the concept that cellular factors influence HPV replication and maintenance, independently, and perhaps in conjunction with E1 and E2, suggesting a role in the persistent phase of the viral lifecycle.
Collapse
Affiliation(s)
- Daraporn Pittayakhajonwut
- Nebraska Center for Virology, School of Biological Sciences University of Nebraska-Lincoln, Lincoln, NE, 68588-0666, USA
| | - Peter C. Angeletti
- Nebraska Center for Virology, School of Biological Sciences University of Nebraska-Lincoln, Lincoln, NE, 68588-0666, USA
| |
Collapse
|
6
|
Dershowitz A, Snyder M, Sbia M, Skurnick JH, Ong LY, Newlon CS. Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements. Mol Cell Biol 2007; 27:4652-63. [PMID: 17452442 PMCID: PMC1951491 DOI: 10.1128/mcb.01246-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Revised: 09/05/2006] [Accepted: 04/16/2007] [Indexed: 11/20/2022] Open
Abstract
Replication origins in Saccharomyces cerevisiae are spaced at intervals of approximately 40 kb. However, both measurements of replication fork rate and studies of hypomorphic alleles of genes encoding replication initiation proteins suggest the question of whether replication origins are more closely spaced than should be required. We approached this question by systematically deleting replicators from chromosome III. The first significant increase in loss rate detected for the 315-kb full-length chromosome occurred only after all five efficient chromosomal replicators in the left two-thirds of the chromosome (ARS305, ARS306, ARS307, ARS309, and ARS310) had been deleted. The removal of the inefficient replicator ARS308 from this originless region caused little or no additional increase in loss rate. Chromosome fragmentations that removed the normally inactive replicators on the left end of the chromosome or the replicators distal to ARS310 on the right arm showed that both groups of replicators contribute significantly to the maintenance of the originless chromosome. Surprisingly, a 142-kb derivative of chromosome III, lacking all sequences that function as autonomously replicating sequence elements in plasmids, replicated and segregated properly 97% of the time. Both the replication initiation protein ORC and telomeres or a linear topology were required for the maintenance of chromosome fragments lacking replicators.
Collapse
Affiliation(s)
- Ann Dershowitz
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, ICPH, 225 Warren St., Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
7
|
Kim K, Angeletti PC, Hassebroek EC, Lambert PF. Identification of cis-acting elements that mediate the replication and maintenance of human papillomavirus type 16 genomes in Saccharomyces cerevisiae. J Virol 2005; 79:5933-42. [PMID: 15857979 PMCID: PMC1091711 DOI: 10.1128/jvi.79.10.5933-5942.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses contain small double-stranded DNA genomes that are maintained in persistently infected mammalian host epithelia as nuclear plasmids and rely upon the host replication machinery for replication. Papillomaviruses encode a DNA helicase, E1, which can specifically bind to the viral genome and support DNA synthesis. Under some conditions in mammalian cells, E1 is not required for viral DNA synthesis, leading to the hypothesis that papillomavirus DNA can be replicated solely by the host replication machinery. This machinery is highly conserved among eukaryotes. We and others found that papillomavirus DNA could replicate in a simple eukaryote, Saccharomyces cerevisiae. Specifically, papillomavirus DNA could substitute for the function of the autonomously replicating sequence (ARS) and centromere (CEN) elements that are normally both required for the stable replication of extrachromosomal DNAs in yeast. Furthermore, this form of replication in yeast was E1 independent. In this study, we map the elements in the human papillomavirus type 16 (HPV16) genome that can substitute for yeast ARS and CEN elements. A single element, termed rep, was identified that can substitute for ARS, and multiple elements, termed mtc, could substitute for CEN. The location of one of these mtc elements overlaps the location of rep, and this approximately 1,000-bp region of HPV16 was sufficient to support stable replication of a bacterial-yeast shuttle plasmid deleted of both ARS and CEN elements.
Collapse
Affiliation(s)
- Kitai Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Ave., Madison, WI 53706, USA
| | | | | | | |
Collapse
|
8
|
Papacs LA, Sun Y, Anderson EL, Sun J, Holmes SG. REP3-mediated silencing in Saccharomyces cerevisiae. Genetics 2004; 166:79-87. [PMID: 15020408 PMCID: PMC1470685 DOI: 10.1534/genetics.166.1.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In yeast the Sir proteins and Rap1p are key regulators of transcriptional silencing at telomeres and the silent mating-type loci. Rap1 and Sir4 also possess anchoring activity; the rotation of plasmids bound by Sir4 or Rap1 is constrained in vivo, and Rap1 or Sir4 binding can also correct the segregation bias of plasmids lacking centromeres. To investigate the mechanistic link between DNA anchoring and regulation of transcription, we examined the ability of a third defined anchor in yeast, the 2micro circle REP3 segregation element, to mediate transcriptional silencing. We find that placement of the REP3 sequence adjacent to the HML locus in a strain deleted for natural silencer sequences confers transcriptional repression on HML. This repression requires the Sir proteins and is decreased in strains lacking the REP3-binding factors Rep1 and Rep2. The yeast cohesin complex associates with REP3; we show that REP3 silencing is also decreased in strains bearing a mutated allele of the MCD1/SCC1 cohesin gene. Conventional silencing is increased in some strains lacking the 2micro circle and decreased in strains overexpressing the Rep1 and Rep2 proteins, suggesting that the Rep proteins antagonize conventional silencing.
Collapse
Affiliation(s)
- Laurie Ann Papacs
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | |
Collapse
|
9
|
Boucher N, McNicoll F, Laverdière M, Rochette A, Chou MN, Papadopoulou B. The ribosomal RNA gene promoter and adjacent cis-acting DNA sequences govern plasmid DNA partitioning and stable inheritance in the parasitic protozoan Leishmania. Nucleic Acids Res 2004; 32:2925-36. [PMID: 15161957 PMCID: PMC419617 DOI: 10.1093/nar/gkh617] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Detailed analysis of the Leishmania donovani ribosomal RNA (rRNA) gene promoter region has allowed the identification of cis-acting sequences involved in plasmid DNA partitioning and stable plasmid inheritance. We report that plasmids bearing the 350 bp rRNA promoter along with the 200 bp region immediately 3' to the promoter exhibited a 6.5-fold increase in transformation frequency and were transmitted to daughter cells as single-copy molecules. This is in contrast to what has been observed for plasmid molecules in this organism so far. Moreover, we show that these low-copy-number plasmids displayed a remarkable mitotic stability in the absence of selective pressure. The region in the vicinity of the RNA pol I transcription initiation site, and also in the adjacent 200 nt, displays a complex structural organization and shares sequence similarity to the yeast autonomously replicating consensus sequence and centromere DNA elements. Deletion analyses indicated that these elements were necessary but not sufficient for plasmid DNA partitioning and stable inheritance, and that the rRNA promoter region was required for optimal function. These results suggest an interplay between RNA pol I transcription, DNA replication, DNA partitioning and mitotic stability in trypanosomatids. This is the first example of defined DNA elements for plasmid partitioning and stable inheritance in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Nathalie Boucher
- Infectious Disease Research Center, CHUL Research Center, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Kapoor P, Frappier L. EBNA1 partitions Epstein-Barr virus plasmids in yeast cells by attaching to human EBNA1-binding protein 2 on mitotic chromosomes. J Virol 2003; 77:6946-56. [PMID: 12768013 PMCID: PMC156160 DOI: 10.1128/jvi.77.12.6946-6956.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 03/18/2003] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) episomal genomes are stably maintained in human cells and are partitioned during cell division by mitotic chromosome attachment. Partitioning is mediated by the viral EBNA1 protein, which binds both the EBV segregation element (FR) and a mitotic chromosomal component. We previously showed that the segregation of EBV-based plasmids can be reconstituted in Saccharomyces cerevisiae and is absolutely dependent on EBNA1, the EBV FR sequence, and the human EBNA1-binding protein 2 (EBP2). We have now used this yeast system to elucidate the functional contribution of human EBP2 to EBNA1-mediated plasmid partitioning. Human EBP2 was found to attach to yeast mitotic chromosomes in a cell cycle-dependent manner and cause EBNA1 to associate with the mitotic chromosomes. The domain of human EBP2 that binds both yeast and human chromosomes was mapped and shown to be functionally distinct from the EBNA1-binding domain. The functionality and localization of human EBP2 mutants and fusion proteins indicated that the attachment of EBNA1 to mitotic chromosomes is crucial for EBV plasmid segregation in S. cerevisiae, as it is in humans, and that this is the contribution of human EBP2. The results also indicate that plasmid segregation in S. cerevisiae can occur through chromosome attachment.
Collapse
Affiliation(s)
- Priya Kapoor
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Canada M5S 1A8
| | | |
Collapse
|
11
|
Lebrun E, Fourel G, Defossez PA, Gilson E. A methyltransferase targeting assay reveals silencer-telomere interactions in budding yeast. Mol Cell Biol 2003; 23:1498-508. [PMID: 12588971 PMCID: PMC151690 DOI: 10.1128/mcb.23.5.1498-1508.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 07/29/2002] [Accepted: 12/10/2002] [Indexed: 11/20/2022] Open
Abstract
We have designed a modified version of the Dam identification technique and used it to probe higher-order chromatin structure in Saccharomyces cerevisiae. We fused the bacterial DNA methyltransferase Dam to the DNA-binding domain of TetR and targeted the resulting chimera to Tet operators inserted in the yeast genome at the repressed locus HML. We then monitored the methylation status of HML and other sequences by a quantitative technique combining methylation-sensitive restriction and real-time PCR. As expected, we found that TetR-Dam efficiently methylated HML in cis. More strikingly, when TetR-Dam was present at HML, we observed increased methylation in the III-L subtelomeric region but not in intervening sequences. This effect was lost when the HML silencers were inactivated by mutations. When the HM silencers and the Tet operators were transferred to a plasmid, strong methylation was clearly observed not only in the III-L subtelomeric region but also at other telomeres. These data indicate that HM silencers can specifically associate with telomeres, even those located on different chromosomes.
Collapse
Affiliation(s)
- Eleonore Lebrun
- Laboratoire de Biologie Moléculaire de la Cellule, UMR5665, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
12
|
Andrulis ED, Zappulla DC, Ansari A, Perrod S, Laiosa CV, Gartenberg MR, Sternglanz R. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Mol Cell Biol 2002; 22:8292-301. [PMID: 12417731 PMCID: PMC134074 DOI: 10.1128/mcb.22.23.8292-8301.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A targeted silencing screen was performed to identify yeast proteins that, when tethered to a telomere, suppress a telomeric silencing defect caused by truncation of Rap1. A previously uncharacterized protein, Esc1 (establishes silent chromatin), was recovered, in addition to well-characterized proteins Rap1, Sir1, and Rad7. Telomeric silencing was slightly decreased in Deltaesc1 mutants, but silencing of the HM loci was unaffected. On the other hand, targeted silencing by various tethered proteins was greatly weakened in Deltaesc1 mutants. Two-hybrid analysis revealed that Esc1 and Sir4 interact via a 34-amino-acid portion of Esc1 (residues 1440 to 1473) and a carboxyl-terminal domain of Sir4 known as PAD4 (residues 950 to 1262). When tethered to DNA, this Sir4 domain confers efficient partitioning to otherwise unstable plasmids and blocks the ability of bound DNA segments to rotate freely in vivo. Here, both phenomena were shown to require ESC1. Sir protein-mediated partitioning of a telomere-based plasmid also required ESC1. Fluorescence microscopy of cells expressing green fluorescent protein (GFP)-Esc1 showed that the protein localized to the nuclear periphery, a region of the nucleus known to be functionally important for silencing. GFP-Esc1 localization, however, was not entirely coincident with telomeres, the nucleolus, or nuclear pore complexes. Our data suggest that Esc1 is a component of a redundant pathway that functions to localize silencing complexes to the nuclear periphery.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Wong MCVL, Scott-Drew SRS, Hayes MJ, Howard PJ, Murray JAH. RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 microm plasmid maintenance in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:4218-29. [PMID: 12024034 PMCID: PMC133863 DOI: 10.1128/mcb.22.12.4218-4229.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stable maintenance of the 2 microm circle plasmid depends on its ability to overcome intrinsic maternal inheritance bias, which in yeast normally results in the failure to transmit DNA molecules efficiently to daughter cells. In addition to the plasmid proteins Rep1 and Rep2 acting on the plasmid DNA locus STB, it is likely that other chromosomally encoded yeast proteins are required. We have isolated mutants of yeast unable to maintain 2 microm and found that RSC2 is essential for 2 microm to overcome maternal inheritance bias. Rsc2 is part of a multisubunit RSC chromatin remodeling complex, and we show that in the absence of Rsc2 the chromatin structure of the STB region is significantly altered and the Rep1 protein loses its normal localization to subnuclear foci. Rsc1, a closely related homolog of Rsc2 present in an alternative form of the RSC complex, is not required for 2 microm maintenance and does not replace the requirement for Rsc2 when overexpressed. This represents the first specific role for Rsc2 that has been related to a change in chromatin structure, as well as the first direct evidence linking chromatin structure to 2 microm segregation.
Collapse
Affiliation(s)
- Michael C V L Wong
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
O’Donnell RA, Freitas-Junior LH, Preiser PR, Williamson DH, Duraisingh M, McElwain TF, Scherf A, Cowman AF, Crabb BS. A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. EMBO J 2002; 21:1231-9. [PMID: 11867551 PMCID: PMC125903 DOI: 10.1093/emboj/21.5.1231] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial plasmids introduced into the human malaria parasite Plasmodium falciparum replicate well but are poorly segregated during mitosis. In this paper, we screened a random P.falciparum genomic library in order to identify sequences that overcome this segregation defect. Using this approach, we selected for parasites that harbor a unique 21 bp repeat sequence known as Rep20. Rep20 is one of six different repeats found in the subtelomeric regions of all P.falciparum chromosomes but which is not found in other eukaryotes or in other plasmodia. Using a number of approaches, we demonstrate that Rep20 sequences lead to dramatically improved episomal maintenance by promoting plasmid segregation between daughter merozoites. We show that Rep20(+), but not Rep20(-), plasmids co-localize with terminal chromosomal clusters, indicating that Rep20 mediates plasmid tethering to chromosomes, a mechanism that explains the improved segregation phenotype. This study implicates a direct role for Rep20 in the physical association of chromosome ends, which is a process that facilitates the generation of diversity in the terminally located P.falciparum virulence genes.
Collapse
Affiliation(s)
- Rebecca A. O’Donnell
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Lúcio H. Freitas-Junior
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Peter R. Preiser
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Donald H. Williamson
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Manoj Duraisingh
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Terry F. McElwain
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Artur Scherf
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Alan F. Cowman
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Brendan S. Crabb
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| |
Collapse
|
15
|
|
16
|
Fourel G, Revardel E, Koering CE, Gilson E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J 1999; 18:2522-37. [PMID: 10228166 PMCID: PMC1171334 DOI: 10.1093/emboj/18.9.2522] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In budding yeast, the telomeric DNA is flanked by a combination of two subtelomeric repetitive sequences, the X and Y' elements. We have investigated the influence of these sequences on telomeric silencing. The telomere-proximal portion of either X or Y' dampened silencing when located between the telomere and the reporter gene. These elements were named STARs, for subtelomeric anti-silencing regions. STARs can also counteract silencer-driven repression at the mating-type HML locus. When two STARs bracket a reporter gene, its expression is no longer influenced by surrounding silencing elements, although these are still active on a second reporter gene. In addition, an intervening STAR uncouples the silencing of neighboring genes. STARs thus display the hallmarks of insulators. Protection from silencing is recapitulated by multimerized oligonucleotides representing Tbf1p- and Reb1p-binding sites, as found in STARs. In contrast, sequences located more centromere proximal in X and Y' elements reinforce silencing. They can promote silencing downstream of an insulated expressed domain. Overall, our results suggest that the silencing emanating from telomeres can be propagated in a discontinuous manner via a series of subtelomeric relay elements.
Collapse
Affiliation(s)
- G Fourel
- Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure de Lyon, UMR5665 CNRS/ENSL, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
17
|
Lew JE, Enomoto S, Berman J. Telomere length regulation and telomeric chromatin require the nonsense-mediated mRNA decay pathway. Mol Cell Biol 1998; 18:6121-30. [PMID: 9742129 PMCID: PMC109198 DOI: 10.1128/mcb.18.10.6121] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rap1p localization factor 4 (RLF4) is a Saccharomyces cerevisiae gene that was identified in a screen for mutants that affect telomere function and alter the localization of the telomere binding protein Rap1p. In rlf4 mutants, telomeric silencing is reduced and telomere DNA tracts are shorter, indicating that RLF4 is required for both the establishment and/or maintenance of telomeric chromatin and for the control of telomere length. In this paper, we demonstrate that RLF4 is allelic to NMD2/UPF2, a gene required for the nonsense-mediated mRNA decay (NMD) pathway (Y. Cui, K. W. Hagan, S. Zhang, and S. W. Peltz, Mol. Cell. Biol. 9:423-436, 1995, and F. He and A. Jacobson, Genes Dev. 9:437-454, 1995). The NMD pathway, which requires Nmd2p/Rlf4p together with two other proteins, (Upf1p and Upf3p), targets nonsense messages for degradation in the cytoplasm by the exoribonuclease Xrn1p. Deletion of UPF1 and UPF3 caused telomere-associated defects like those caused by rlf4 mutations, implying that the NMD pathway, rather than an NMD-independent function of Nmd2p/Rlf4p, is required for telomere functions. In addition, telomere length regulation required Xrn1p but not Rat1p, a nuclear exoribonuclease with functional similarity to Xrn1p (A. W. Johnson, Mol. Cell. Biol. 17:6122-6130, 1997). In contrast, telomere-associated defects were not observed in pan2, pan3, or pan2 pan3 strains, which are defective in the intrinsic deadenylation-dependent decay of normal (as opposed to nonsense) mRNAs. Thus, loss of the NMD pathway specifically causes defects at telomeres, demonstrating a physiological requirement for the NMD pathway in normal cell functions. We propose a model in which the NMD pathway regulates the levels of specific mRNAs that are important for telomere functions.
Collapse
Affiliation(s)
- J E Lew
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
18
|
Deng H, Dewhurst S. Functional identification and analysis of cis-acting sequences which mediate genome cleavage and packaging in human herpesvirus 6. J Virol 1998; 72:320-9. [PMID: 9420230 PMCID: PMC109379 DOI: 10.1128/jvi.72.1.320-329.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sequences present at the genomic termini of herpesviruses become linked during lytic-phase replication and provide the substrate for cleavage and packaging of unit length viral genomes. We have previously shown that homologs of the consensus herpesvirus cleavage-packaging signals, pac1 and pac2, are located at the left and right genomic termini of human herpesvirus 6 (HHV-6), respectively. Immediately adjacent to these elements are two distinct arrays of human telomeric repeat sequences (TRS). We now show that the unique sequence element formed at the junction of HHV-6B genome concatemers (pac2-pac1) is necessary and sufficient for virally mediated cleavage of plasmid DNAs containing the HHV-6B lytic-phase origin of DNA replication (oriLyt). The concatemeric junction sequence also allowed for the packaging of these plasmid molecules into intracellular nucleocapsids as well as mature, infectious viral particles. In addition, this element significantly enhanced the replication efficiency of oriLyt-containing plasmids in virally infected cells. Experiments revealed that the concatemeric junction sequence possesses an unusual, S1 nuclease-sensitive conformation (anisomorphic DNA), which might play a role in this apparent enhancement of DNA replication--although additional studies will be required to test this hypothesis. Finally, we also analyzed whether the presence of flanking viral TRS had any effect on the functional activity of the minimal concatemeric junction (pac2-pac1). These experiments revealed that the TRS motifs, either alone or in combination, had no effect on the efficiency of virally mediated DNA replication or DNA cleavage. Taken together, these data show that the cleavage and packaging of HHV-6 DNA are mediated by cis-acting consensus sequences similar to those found in other herpesviruses, and that these sequences also influence the efficiency of HHV-6 DNA replication. Since the adjacent TRS do not influence either viral cleavage and packaging or viral DNA replication, their function remains uncertain.
Collapse
Affiliation(s)
- H Deng
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642, USA
| | | |
Collapse
|
19
|
Ansari A, Gartenberg MR. The yeast silent information regulator Sir4p anchors and partitions plasmids. Mol Cell Biol 1997; 17:7061-8. [PMID: 9372937 PMCID: PMC232562 DOI: 10.1128/mcb.17.12.7061] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Circular plasmids containing telomeric TG1-3 arrays or the HMR E silencer segregate efficiently between dividing cells of the yeast Saccharomyces cerevisiae. Subtelomeric X repeats augment the TG1-3 partitioning activity by a process that requires the SIR2, SIR3, and SIR4 genes, which are also required for silencer-based partitioning. Here we show that targeting Sir4p to DNA directly via fusion to the bacterial repressor LexA confers efficient mitotic segregation to otherwise unstable plasmids. The Sir4p partitioning activity resides within a 300-amino-acid region (residues 950 to 1262) which precedes the coiled-coil dimerization motif at the extreme carboxy end of the protein. Using a topology-based assay, we demonstrate that the partitioning domain also retards the axial rotation of LexA operators in vivo. The anchoring and partitioning properties of LexA-Sir4p chimeras persist despite the loss of the endogenous SIR genes, indicating that these functions are intrinsic to Sir4p and not to a complex of Sir factors. In contrast, inactivation of the Sir4p-interacting protein Rap1p reduces partitioning by a LexA-Sir4p fusion. The data are consistent with a model in which the partitioning and anchoring domain of Sir4p (PAD4 domain) attaches to a nuclear component that divides symmetrically between cells at mitosis; DNA linked to Sir4p by LexA serves as a reporter of protein movement in these experiments. We infer that the segregation behavior of telomere- and silencer-based plasmids is, in part, a consequence of these Sir4p-mediated interactions. The assays presented herein illustrate two novel approaches to monitor the intracellular dynamics of nuclear proteins.
Collapse
Affiliation(s)
- A Ansari
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
20
|
Mirandola P, Ravaioli T, Cassai E. PCR analysis of human telomeric repeats present on HHV-6A viral strains. Virus Genes 1997; 15:29-32. [PMID: 9354266 DOI: 10.1023/a:1007950729162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human herpesvirus 6 (HHV-6) presents a perfect tandem array of human telomeric repeats (TRS) at both identical direct repeats (DR). Several researchers have reported a different TRS copy number by sequence analysis of HHV-6 DR's cloned fragments so it has been hypothesized that number of TRS is unstable. By PCR we show that the TRS copy number of U1102 HHV-6 variant A strains is stable during viral cultivation in cell lines and each HHV-6 variant A strain, detected in pathologic specimens, is characterized by a specific TRS copy number.
Collapse
Affiliation(s)
- P Mirandola
- Institute of Microbiology, University of Ferrara, Italy
| | | | | |
Collapse
|
21
|
Bhattacharyya A, Blackburn EH. Aspergillus nidulans maintains short telomeres throughout development. Nucleic Acids Res 1997; 25:1426-31. [PMID: 9060439 PMCID: PMC146599 DOI: 10.1093/nar/25.7.1426] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the identification and cloning of the telomeres of the filamentous fungus,Aspergillus nidulans. We have identified three classes of cloned chromosomal ends based on the telomere-associated sequences (TASs) and demonstrated that the telomeric repeat sequence is TTAGGG, identical to that found in vertebrates, including humans, and some lower eukaryotes. One category of telomere clones was found to contain internal, variant TAAGGG repeats. The A.nidulans telomeric tract length is strikingly short (4-22 repeats). We demonstrate that telomere length is remarkably stable in different cell types and at altered growth temperatures, suggesting a highly regulated mechanism for length control.
Collapse
Affiliation(s)
- A Bhattacharyya
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA.
| | | |
Collapse
|
22
|
Mirabella A, Gartenberg MR. Yeast telomeric sequences function as chromosomal anchorage points in vivo. EMBO J 1997; 16:523-33. [PMID: 9034335 PMCID: PMC1169656 DOI: 10.1093/emboj/16.3.523] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Site-specific recombination in Saccharomyces cerevisiae was used to generate non-replicative DNA rings containing yeast telomeric sequences. In topoisomerase mutants expressing Escherichia coli topoisomerase I, the rings adopted a novel DNA topology consistent with the ability of yeast telomeric DNA to block or retard the axial rotation of DNA. DNA fragments bearing portions of the terminal repeat sequence C1-3 A/TG1-3 were both necessary and sufficient to create a barrier to DNA rotation. Synthetic oligonucleotide sequences containing Rap1p binding sites, a well represented motif in naturally occurring C1-3A arrays, also conferred immobilization; mutant Rap1p binding sites and telomeric sequences from other organisms were not sufficient. DNA anchoring was diminished by addition of competing telomeric sequences, implicating a role for an as yet unidentified limiting trans-acting factor. Though Rap1p is a likely protein constituent of the DNA anchor, deletion of the non-essential C-terminal domain did not affect the topology of telomeric DNA rings. Similarly, disruption of SIR2, SIR3 and SIR4, genes which influence a variety of telomere functions in yeast, also had no effect. We propose that telomeric DNA supports the formation of a SIR-independent macromolecular protein-DNA assembly that hinders the motion of DNA because of its linkage to an insoluble nuclear structure. Potential roles for DNA anchoring in telomere biology are discussed.
Collapse
Affiliation(s)
- A Mirabella
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
23
|
Enomoto S, Longtine MS, Berman J. TEL+CEN antagonism on plasmids involves telomere repeat sequences tracts and gene products that interact with chromosomal telomeres. Chromosoma 1994; 103:237-50. [PMID: 7988285 DOI: 10.1007/bf00352248] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Saccharomyces cerevisiae, circular plasmids that include either a centromere (CEN-plasmids) or a telomere sequence (TEL-plasmids) segregate more efficiently than circular ARS-plasmids. In contrast, circular plasmids that include both telomere and centromere sequences were unstable, a property we term TEL+CEN antagonism. TEL+CEN antagonism required a telomere repeat tract longer than 49 bp although the distance and relative orientation of the centromere and telomere sequences was not critical. TEL+CEN antagonism was alleviated in strains carrying different rap1 alleles including rap1ts, rap1s, and rap1t alleles. Mutations SIR2, SIR3, SIR4, NAT1 and ARD1, genes that influence transcriptional silencing at telomeres and at the silent mating type loci, abolished TEL+CEN antagonism Mutation of SIR1 also partially alleviated TEL-CEN antagonism. In some sir mutant strains short yeast artificial chromosomes (YACs), which are normally unstable, became more stable, suggesting that the same mechanism that caused TEL+CEN antagonism on circular plasmids may contribute to the instability of short linear plasmids.
Collapse
Affiliation(s)
- S Enomoto
- Department of Plant Biology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
24
|
Thomson BJ, Dewhurst S, Gray D. Structure and heterogeneity of the a sequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J Virol 1994; 68:3007-14. [PMID: 8151770 PMCID: PMC236791 DOI: 10.1128/jvi.68.5.3007-3014.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The unit-length genome of human herpesvirus 6 (HHV-6) consists of a single unique component (U) bounded by direct repeats DRL and DRR and forms head-to-tail concatemers during productive infection. cis-elements which mediate cleavage and packaging of progeny virions (a sequences) are found at the termini of all herpesvirus genomes. In HHV-6, DRL and DRR are identical and a sequences may therefore also occur at the U-DR junctions to give the arrangement aDRLa-U-aDRRa. We have sequenced the genomic termini, the U-DRR junction, and the DRR.DRL junction of HHV-6 strain variants U1102 and Z29. A (GGGTTA)n motif identical to the human telomeric repeat sequence (TRS) was found adjacent to, but did not form, the termini of both strain variants. The DRL terminus and U-DRR junction contained sequences closely related to that of the well-conserved herpesvirus packaging signal Cn-Gn-Nn-Gn (pac-1), followed by tandem arrays of TRSs separated by single copies of a hexanucleotide repeat. HHV-6 strain U1102 contained repeat sequences not found in HHV-6 Z29. In contrast, the DRR terminus of both variants contained a simple tandem array of TRSs and a close homolog of a herpesvirus pac-2 signal (GCn-Tn-GCn). The DRR.DRL junction was formed by simple head-to-tail linkage of the termini, yielding an intact cleavage signal, pac-2.x.pac-1, where x is the putative cleavage site. The left end of DR was the site of intrastrain size heterogeneity which mapped to the putative a sequences. These findings suggest that TRSs form part of the a sequence of HHV-6 and that the arrangement of a sequences in the genome can be represented as aDRLa-U-a-DRRa.
Collapse
Affiliation(s)
- B J Thomson
- Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | | |
Collapse
|
25
|
Enomoto S, Longtine MS, Berman J. Enhancement of telomere-plasmid segregation by the X-telomere associated sequence in Saccharomyces cerevisiae involves SIR2, SIR3, SIR4 and ABF1. Genetics 1994; 136:757-67. [PMID: 8005431 PMCID: PMC1205882 DOI: 10.1093/genetics/136.3.757] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have previously shown that circular replicating plasmids that carry yeast telomere repeat sequence (TG1-3) tracts segregate efficiently relative to analogous plasmids lacking the TG1-3 tract and this efficient segregation is dependent upon RAP1. While a long TG1-3 tract is sufficient to improve plasmid segregation, the segregation efficiency of telomere plasmids (TEL-plasmids) is enhanced when the X-Telomere Associated Sequence (X-TAS) is also included on the plasmids. We now demonstrate that the enhancement of TEL-plasmid segregation by the X-TAS depends on SIR2, SIR3, SIR4 and ABF1 in trans and requires the Abf1p-binding site within the X-TAS. Mutation of the Abf1p-binding site within the X-TAS results in TEL-plasmids that are no longer affected by mutations in SIR2, SIR3 or SIR4, despite the fact that other Abf1p-binding sites are present on the plasmid. Mutation of the ARS consensus sequence within the X-TAS converts the X-TAS from an enhancer element to a negative element that interferes with TEL-plasmid segregation in a SIR-dependent manner. Thus, telomere associated sequences interact with TG1-3 tracts on the plasmid, suggesting that the TASs have an active role in modulating telomere function.
Collapse
Affiliation(s)
- S Enomoto
- Department of Plant Biology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
26
|
Strunnikov AV, Larionov VL, Koshland D. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Biophys Biochem Cytol 1993; 123:1635-48. [PMID: 8276886 PMCID: PMC2290909 DOI: 10.1083/jcb.123.6.1635] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The smc1-1 mutant was identified initially as a mutant of Saccharomyces cerevisiae that had an elevated rate of minichromosome nondisjunction. We have cloned the wild-type SMC1 gene. The sequence of the SMC1 gene predicts that its product (Smc1p) is a 141-kD protein, and antibodies against Smc1 protein detect a protein with mobility of 165 kD. Analysis of the primary and putative secondary structure of Smc1p suggests that it contains two central coiled-coil regions flanked by an amino-terminal nucleoside triphosphate (NTP)-binding head and a conserved carboxy-terminal tail. These analyses also indicate that Smc1p is an evolutionary conserved protein and is a member of a new family of proteins ubiquitous among prokaryotes and eukaryotes. The SMC1 gene is essential for viability. Several phenotypic characteristics of the mutant alleles of smc1 gene indicate that its product is involved in some aspects of nuclear metabolism, most likely in chromosome segregation. The smc1-1 and smc1-2 mutants have a dramatic increase in mitotic loss of a chromosome fragment and chromosome III, respectively, but have no increase in mitotic recombination. Depletion of SMC1 function in the ts mutant, smc1-2, causes a dramatic mitosis-related lethality. Smc1p-depleted cells have a defect in nuclear division as evidenced by the absence of anaphase cells. This phenotype of the smc1-2 mutant is not RAD9 dependent. Based upon the facts that Smc1p is a member of a ubiquitous family, and it is essential for yeast nuclear division, we propose that Smc1p and Smc1p-like proteins function in a fundamental aspect of prokaryotic and eukaryotic cell division.
Collapse
Affiliation(s)
- A V Strunnikov
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210
| | | | | |
Collapse
|
27
|
Olsson T, Ekwall K, Ruusala T. The silent P mating type locus in fission yeast contains two autonomously replicating sequences. Nucleic Acids Res 1993; 21:855-61. [PMID: 8451187 PMCID: PMC309217 DOI: 10.1093/nar/21.4.855] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We show that in fission yeast two DNA fragments at the silent P mating type locus provide plasmids with the capability of autonomous replication. Bacterial vectors containing these sequences replicate in a polymeric form in fission yeast very much like plasmids with the commonly used replication sequence ars1, do. There are, however, several differences between the two new ars sequences. The percentage of cells containing the plasmid during selection, the plasmid copy number and the plasmid segregation during mitosis are all dependent on the choice of the ars sequence. A DNA fragment with ars activity from the left side of the silent P cassette represses the expression of the marker gene, ura4+, at least three hundred fold compared to plasmids containing only the other new ars sequence or only ars1. The importance of replication in this promoter independent transcriptional regulation is further substantiated by the fact that the repression is partially released in the presence of ars1 on the same plasmid.
Collapse
Affiliation(s)
- T Olsson
- Department of Molecular Biology, Biomedicum, Uppsala, Sweden
| | | | | |
Collapse
|