1
|
Basiri M, Behmanesh M, Tahamtani Y, Khalooghi K, Moradmand A, Baharvand H. The Convenience of Single Homology Arm Donor DNA and CRISPR/Cas9-Nickase for Targeted Insertion of Long DNA Fragment. CELL JOURNAL 2016; 18:532-539. [PMID: 28042537 PMCID: PMC5086331 DOI: 10.22074/cellj.2016.4719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
Objective CRISPR/Cas9 technology provides a powerful tool for targeted modification of
genomes. In this system, a donor DNA harboring two flanking homology arms is mostly used
for targeted insertion of long exogenous DNA. Here, we introduced an alternative design for
the donor DNA by incorporation of a single short homology arm into a circular plasmid.
Materials and Methods In this experimental study, single homology arm donor was applied
along with a single guide RNA (sgRNA) specific to the homology region, and either Cas9 or its
mutant nickase variant (Cas9n). Using Pdx1 gene as the target locus the functionality of this
system was evaluated in MIN6 cell line and murine embryonic stem cells (ESCs).
Results Both wild type Cas9 and Cas9n could conduct the knock-in process with this system.
We successfully applied this strategy with Cas9n for generation of Pdx1GFP knock-in mouse
ESC lines. Altogether, our results demonstrated that a combination of a single homology arm
donor, a single guide RNA and Cas9n is capable of precisely incorporating DNA fragments of
multiple kilo base pairs into the targeted genomic locus.
Conclusion While taking advantage of low off-target mutagenesis of the Cas9n, our new
design strategy may facilitate the targeting process. Consequently, this strategy can be applied
in knock-in or insertional inactivation studies.
Collapse
Affiliation(s)
- Mohsen Basiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Keynoosh Khalooghi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
2
|
Liu Q, Wang G, Chen Y, Li G, Yang D, Kang J. A miR-590/Acvr2a/Rad51b axis regulates DNA damage repair during mESC proliferation. Stem Cell Reports 2014; 3:1103-17. [PMID: 25458897 PMCID: PMC4264031 DOI: 10.1016/j.stemcr.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022] Open
Abstract
Embryonic stem cells (ESCs) enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF), which maintains the self-renewal capability of mouse ESCs (mESCs), significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB) and double-strand break (DSB) damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a) to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR) gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal. miR-590 promotes DNA damage repair and slows proliferation by targeting Acvr2a miR-590/Acvr2a/Rad51b axis balances SSB and DSB damage repair in mESCs
Collapse
Affiliation(s)
- Qidong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yafang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Dandan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
3
|
Xiong S, Parker-Thornburg J, Lozano G. Developing genetically engineered mouse models to study tumor suppression. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2012; 2:9-24. [PMID: 22582146 DOI: 10.1002/9780470942390.mo110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since the late 1980s, the tools to generate mice with deletions of tumor suppressors have made it possible to study such deletions in the context of a whole animal. Deletion of some tumor suppressors results in viable mice while deletion of others yield embryo lethal phenotypes cementing the concept that genes that often go awry in cancer are also of developmental importance. More sophisticated mouse models were subsequently developed to delete a gene in a specific cell type at a specific time point. Additionally, incorporation of point mutations in a specific gene as observed in human tumors has also revealed their contributions to tumorigenesis. On the other hand, some models never develop cancer unless combined with other deletions suggesting a modifying role in tumorigenesis. This review will describe the technical aspects of generating these mice and provide examples of the outcomes obtained from alterations of different tumor suppressors.
Collapse
Affiliation(s)
- Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Houston, TX 77030
| | | | | |
Collapse
|
4
|
Hall B, Limaye A, Kulkarni AB. Overview: generation of gene knockout mice. CURRENT PROTOCOLS IN CELL BIOLOGY 2009; Chapter 19:Unit 19.12 19.12.1-17. [PMID: 19731224 PMCID: PMC2782548 DOI: 10.1002/0471143030.cb1912s44] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The technique of gene targeting allows for the introduction of engineered genetic mutations into a mouse at a determined genomic locus. The process of generating mouse models with targeted mutations was developed through both the discovery of homologous recombination and the isolation of murine embryonic stem cells (ES cells). Homologous recombination is a DNA repair mechanism that is employed in gene targeting to insert a designed mutation into the homologous genetic locus. Targeted homologous recombination can be performed in murine ES cells through electroporation of a targeting construct. These ES cells are totipotent and, when injected into a mouse blastocyst, they can differentiate into all cell types of a chimeric mouse. A chimeric mouse harboring cells derived from the targeted ES cell clone can then generate a whole mouse containing the desired targeted mutation. The initial step for the generation of a mouse with a targeted mutation is the construction of an efficient targeting vector that will be introduced into the ES cells.
Collapse
Affiliation(s)
- Bradford Hall
- Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
5
|
Tichy ED, Stambrook PJ. DNA repair in murine embryonic stem cells and differentiated cells. Exp Cell Res 2008; 314:1929-36. [PMID: 18374918 PMCID: PMC2532524 DOI: 10.1016/j.yexcr.2008.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 01/06/2023]
Abstract
Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
6
|
Raynard SJ, Baker MD. Incorporation of large heterologies into heteroduplex DNA during double-strand-break repair in mouse cells. Genetics 2002; 162:977-85. [PMID: 12399405 PMCID: PMC1462280 DOI: 10.1093/genetics/162.2.977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the formation and repair of large (>1 kb) insertion/deletion (I/D) heterologies during double-strand-break repair (DSBR) was investigated using a gene-targeting assay that permits efficient recovery of sequence insertion events at the haploid chromosomal immunoglobulin (Ig) mu-locus in mouse hybridoma cells. The results revealed that (i) large I/D heterologies were generated on one or both sides of the DSB and, in some cases, formed symmetrically in both homology regions; (ii) large I/D heterologies did not negatively affect the gene targeting frequency; and (iii) prior to DNA replication, the large I/D heterologies were rectified.
Collapse
Affiliation(s)
- Steven J Raynard
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
7
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
8
|
Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS. Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 2000; 19:5552-61. [PMID: 11032822 PMCID: PMC313999 DOI: 10.1093/emboj/19.20.5552] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The XpF/Ercc1 structure-specific endonuclease performs the 5' incision in nucleotide excision repair and is the apparent mammalian counterpart of the Rad1/Rad10 endonuclease from Saccharomyces cerevisiae. In yeast, Rad1/Rad10 endonuclease also functions in mitotic recombination. To determine whether XpF/Ercc1 endonuclease has a similar role in mitotic recombination, we targeted the APRT locus in Chinese hamster ovary ERCC1(+) and ERCC1(-) cell lines with insertion vectors having long or short terminal non-homologies flanking each side of a double-strand break. No substantial differences were evident in overall recombination frequencies, in contrast to results from targeting experiments in yeast. However, profound differences were observed in types of APRT(+) recombinants recovered from ERCC1(-) cells using targeting vectors with long terminal non-homologies-almost complete ablation of gap repair and single-reciprocal exchange events, and generation of a new class of aberrant insertion/deletion recombinants absent in ERCC1(+) cells. These results represent the first demonstration of a requirement for ERCC1 in targeted homologous recombination in mammalian cells, specifically in removal of long non-homologous tails from invading homologous strands.
Collapse
Affiliation(s)
- G M Adair
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
9
|
Vilotte JL, L'Huillier P, Mercier JC. Modification and repression of genes expressed in the mammary gland using gene targeting and other technologies. J Mammary Gland Biol Neoplasia 1998; 3:351-62. [PMID: 10819520 DOI: 10.1023/a:1018775729834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenic experiments using oocyte micro-injection methodology are often performed in order to target expression of a foreign gene in a specific tissue or, to a lesser extent, to study the regulation of gene expression. However, the isolation of embryonic stem cells in mice and the development of antisense and ribozyme technologies have allowed more subtle alterations of endogenous gene expression to be achieved. The mammary gland is one of the few organs able to undergo several cycles of development, differentiation and apoptosis through complex multihormonal regulation during adult life. It is thus an attractive model to assess the in vivo function of some genes potentially involved in these mechanisms, either by silencing them or by partially repressing their expression. Furthermore, such alterations of gene expression have also been performed for more applied objectives such as the modification of milk composition for nutritional and technological purposes. This review will describe the experimental procedures used toward these aims and the results already obtained in this field. Some potential new targets will be suggested.
Collapse
Affiliation(s)
- J L Vilotte
- Laboratoire de Génétique Biochimique et de Cytogénétique, Jouy-en-Josas, France.
| | | | | |
Collapse
|
10
|
Papadopoulou B, Dumas C. Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania. Nucleic Acids Res 1997; 25:4278-86. [PMID: 9336458 PMCID: PMC147044 DOI: 10.1093/nar/25.21.4278] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study we investigated the role of several parameters governing the efficiency of gene targeting mediated by homologous recombination in the protozoan parasite Leishmania. We evaluated the relative targeting frequencies of different replacement vectors designed to target several sequences within the parasite genome. We found that a decrease in the length of homologous sequences <1 kb on one arm of the vector linearly influences the targeting frequency. No homologous recombination was detected, however, when the flanking homologous regions were <180 bp. A requirement for a very high degree of homology between donor and target sequences was found necessary for efficient gene targeting in Leishmania , as targeted recombination was strongly affected by base pair mismatches. Targeting frequency increased proportionally with copy number of the target only when the target was part of a linear amplicon, but remained unchanged when it was present on circles. Different chromosomal locations were found to be targeted with significantly variable levels of efficiency. Finally, different strains of the same species showed differences in gene targeting frequency. Overall, gene targeting mediated by homologous recombination in Leishmania shares similarities to both the yeast and the mammalian recombination systems.
Collapse
Affiliation(s)
- B Papadopoulou
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval and Département de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | |
Collapse
|
11
|
Whyatt LM, Rathjen PD. Introduction of precise alterations into the mouse genome with high efficiency by stable tag-exchange gene targeting: implications for gene targeting in ES cells. Nucleic Acids Res 1997; 25:2381-8. [PMID: 9171089 PMCID: PMC146761 DOI: 10.1093/nar/25.12.2381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The efficiency of tag-and-exchange gene targeting approaches for the introduction of precise genomic modifications is compromised by high levels of non-homologous recombinants which survive selection due to loss of tag gene expression, often by physical loss of the tag gene. We describe a modified approach, termed stable tag-exchange, which incorporates an additional positive selection (stability) cassette to circumvent this limitation. HPRT (tag) and neo (stability) cassettes, separated by 4.9 kb of homologous DNA, were introduced efficiently into the LIF locus of ES cells. The tag cassette was substituted for abeta-galactosidase gene in exchange step targeting. Direct comparison of the tag-and-exchange and stable tag-exchange approaches indicated respective targeting efficiencies of 21% and 88%. The increased stable tag-exchange targeting efficiency resulted from elimination of >75% of background lines which survived tag-and-exchange selection due to physical loss of the tag gene. These resulted from reversion of the tagged allele to wild-type which is therefore a major contributor to tag-and-exchange targeting background. Our results extend the application of gene targeting by demonstrating a rationale for single-step integration of multiple regions of extended non-homology, and providing an efficient system for the repeated introduction of precise alterations into the mammalian genome.
Collapse
Affiliation(s)
- L M Whyatt
- Department of Biochemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | | |
Collapse
|
12
|
Faruqi AF, Seidman MM, Segal DJ, Carroll D, Glazer PM. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol Cell Biol 1996; 16:6820-8. [PMID: 8943337 PMCID: PMC231685 DOI: 10.1128/mcb.16.12.6820] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy has been hindered by the low frequency of homologous recombination in mammalian cells. To stimulate recombination, we investigated the use of triple-helix-forming oligonucleotides (TFOs) to target DNA damage to a selected site within cells. By treating cells with TFOs linked to psoralen, recombination was induced within a simian virus 40 vector carrying two mutant copies of the supF tRNA reporter gene. Gene conversion events, as well as mutations at the target site, were also observed. The variety of products suggests that multiple cellular pathways can act on the targeted damage, and data showing that the triple helix can influence these pathways are presented. The ability to specifically induce recombination or gene conversion within mammalian cells by using TFOs may provide a new research tool and may eventually lead to novel applications in gene therapy.
Collapse
Affiliation(s)
- A F Faruqi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | |
Collapse
|
13
|
Kardinal C, Selmayr M, Mocikat R. Genetic stability of gene targeted immunoglobulin loci. I. Heavy chain isotype exchange induced by a universal gene replacement vector. Immunology 1996; 89:309-15. [PMID: 8958041 PMCID: PMC1456542 DOI: 10.1046/j.1365-2567.1996.d01-752.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene targeting at the immunoglobulin loci of B cells is an efficient tool for studying immunoglobulin expression or generating chimeric antibodies. We have shown that vector integration induced by human immunoglobulin G1 (IgG1) insertion vectors results in subsequent vector excision mediated by the duplicated target sequence, whereas replacement events which could be induced by the same constructs remain stable. We could demonstrate that the distribution of the vector homology strongly influences the genetic stability obtained. To this end we developed a novel type of a heavy chain replacement vector making use of the heavy chain class switch recombination sequence. Despite the presence of a two-sided homology this construct is universally applicable irrespective of the constant gene region utilized by the B cell. In comparison to an integration vector the frequency of stable incorporation was strongly increased, but we still observed vector excision, although at a markedly reduced rate. The latter events even occurred with circular constructs. Linearization of the construct at various sites and the comparison with an integration vector that carries the identical homology sequence, but differs in the distribution of homology, revealed the following features of homologous recombination of immunoglobulin genes: (i) the integration frequency is only determined by the length of the homology flank where the cross-over takes place; (ii) a 5' flank that does not meet the minimum requirement of homology length cannot be complemented by a sufficient 3' flank; (iii) free vector ends play a role for integration as well as for replacement targeting; (iv) truncating recombination events are suppressed in the presence of two flanks. Furthermore, we show that the switch region that was used as 3' flank is non-functional in an inverted orientation.
Collapse
Affiliation(s)
- C Kardinal
- GSF-Institut für Immunologie, München, Germany
| | | | | |
Collapse
|
14
|
Camenisch G, Gruber M, Donoho G, Van Sloun P, Wenger RH, Gassmann M. A polyoma-based episomal vector efficiently expresses exogenous genes in mouse embryonic stem cells. Nucleic Acids Res 1996; 24:3707-13. [PMID: 8871548 PMCID: PMC146162 DOI: 10.1093/nar/24.19.3707] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We describe the ability of novel episomally maintained vectors to efficiently promote gene expression in embryonic stem (ES) cells as well as in established mouse cell lines. Extrachromosomal maintenance of our vectors is based on the presence of polyoma virus DNA sequences, including the origin of replication harboring a mutant enhancer (PyF101), and a modified version of the polyoma early region (LT20) encoding the large T antigen only. Reporter gene expression from such extrachromosomally replicating vectors was approximately 10-fold higher than expression from replication-incompetent control plasmids. After transfection of different ES cell lines, the polyoma virus-derived plasmid variant pMGD20neo (7.2 kb) was maintained episomally in 16% of the G418-resistant clones. No chromosomal integration of pMGD20neo vector DNA was detected in ES cells that contained episomal vector DNA even after long term passage. The vector's replication ability was not altered after insertion of up to 10 kb hprt gene fragments. Besides undifferentiated ES cells, the polyoma-based vectors were also maintained extrachromosomally in differentiating ES cells and embryoid bodies as well as in established mouse cell lines.
Collapse
Affiliation(s)
- G Camenisch
- Institute of Physiology, University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Smih F, Rouet P, Romanienko PJ, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 1995; 23:5012-9. [PMID: 8559659 PMCID: PMC307507 DOI: 10.1093/nar/23.24.5012] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Double-strand breaks (DSBs) are recombinogenic lesions in chromosomal DNA in yeast, Drosophila and Caenorhabditis elegans. Recent studies in mammalian cells utilizing the I-Scel endonuclease have demonstrated that in some immortalized cell lines DSBs in chromosomal DNA are also recombinogenic. We have now tested embryonic stem (ES) cells, a non-transformed mouse cell line frequently used in gene targeting studies. We find that a DSB introduced by I-Scel stimulates gene targeting at a selectable neo locus at least 50-fold. The enhanced level of targeting is achieved by transient expression of the I-Scel endonuclease. In 97% of targeted clones a single base pair polymorphism in the transfected homologous fragment was incorporated into the target locus. Analysis of the targeted locus demonstrated that most of the homologous recombination events were 'two-sided', in contrast to previous studies in 3T3 cells in which 'one-sided' homologous events predominated. Thus ES cells may be more faithful in incorporating homologous fragments into their genome than other cells in culture.
Collapse
Affiliation(s)
- F Smih
- Cell Biology and Genetics Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
16
|
Vaulont S, Daines S, Evans M. Disruption of the adenosine deaminase (ADA) gene using a dicistronic promoterless construct: production of an ADA-deficient homozygote ES cell line. Transgenic Res 1995; 4:247-55. [PMID: 7655514 DOI: 10.1007/bf01969118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In man, deficiency of ADA activity is associated with an autosomal recessive form of severe combined immunodeficiency (SCID), a disease with profound defects both cellular and humoral immunity. Current treatments of ADA deficient patients include bone marrow transplantation, enzyme replacement and somatic gene therapy. The mechanism of the selective immune cell pathogenesis in ADA-SCIDS is, however, still poorly understood. Thus, the generation of an ADA deficient mouse model will be of considerable benefit to understand better the pathophysiology of the disorder and to improve the gene therapy treatments. We have disrupted the adenosine deaminase (ADA) gene in embryonic stem cells using a new efficient promoter trap gene-targeting approach. To this end, a dicistronic targeting construct containing a promoterless IRES beta geo cassette was used. This cassette allows, via the internal ribosomal entry site (IRES), the direct cap-independent translation of the beta geo reporter gene which encodes a protein with both beta-galactosidase and neomycin activities. After indentification of targeted clones by Southern blot, successful inactivation of the ADA gene was first confirmed by producing, from our heterozygote clones, an homozygote cell line. This line shows no ADA activity as judged by zymogram analysis. Second, we have been able to detect in the targeted clones, a specific beta galactosidase activity using a sensitive fluorogenic assay. The targeted ES cell clones are currently being injected into blastocysts to create an ADA deficient mouse model.
Collapse
Affiliation(s)
- S Vaulont
- Institut Cochin de Genetique Moleculaire, Inserm U 129, Paris, France
| | | | | |
Collapse
|
17
|
Hasty P, Rivera-Pérez J, Bradley A. Gene conversion during vector insertion in embryonic stem cells. Nucleic Acids Res 1995; 23:2058-64. [PMID: 7596837 PMCID: PMC306984 DOI: 10.1093/nar/23.11.2058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recombination of an insertion vector into its chromosomal homologue is a conservative event in that both the chromosomal and the vector sequences are preserved. However, gene conversion may accompany homologous recombination of an insertion vector. To examine gene conversion in more detail we have determined the targeting frequencies and the structure of the recombinant alleles generated with a series of vectors which target the hprt gene in embryonic stem cells. We demonstrate that gene conversion of the introduced mutation does not significantly limit homologous recombination and that gene conversion occurs without a sequence specific bias for five different mutations. The frequency of the loss of a vector mutation and the gain of a chromosomal sequence is inversely proportional to the distance between the vector mutation and the double-strand break. The loss of a chromosomal sequence and the gain of a vector mutation occurs at a low frequency.
Collapse
Affiliation(s)
- P Hasty
- Department of Human and Molecular Genetics, Baylor College of Medicine, TX 77030, USA
| | | | | |
Collapse
|
18
|
Segal DJ, Carroll D. Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes. Proc Natl Acad Sci U S A 1995; 92:806-10. [PMID: 7846056 PMCID: PMC42709 DOI: 10.1073/pnas.92.3.806] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Homologous recombination in gene targeting in most organisms occurs by an inefficient mechanism. Inducing a double-strand break in the chromosomal target may increase this efficiency by allowing recombination to proceed by the highly efficient single-strand annealing mechanism. A gene targeting experiment was modeled in Xenopus oocytes by using a circular plasmid to mimic the chromosomal target site and a homologous linear molecule (pick-up fragment or PUF) as an analogue of the vector DNA. When those two molecules were simply injected together, no recombination was observed. In contrast, when the circular plasmid was cleaved in vivo by injection of the site-specific endonuclease, I-Sce I, relatively efficient intermolecular recombination occurred, involving up to 17% of the cleaved molecules. Recombination was dependent on the stability of the PUF; product yield was increased by using longer fragments and by injecting larger amounts of linear DNA, both of which increased the lifetime of the PUF in the oocytes. These results demonstrate that in vivo double-strand breaks can induce homologous recombination of reluctant substrates and may be useful in augmenting the efficiency of gene targeting.
Collapse
Affiliation(s)
- D J Segal
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132
| | | |
Collapse
|
19
|
Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 1994. [PMID: 7969147 DOI: 10.1128/mcb.14.12.8096] [Citation(s) in RCA: 421] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To maintain genomic integrity, double-strand breaks (DSBs) in chromosomal DNA must be repaired. In mammalian systems, the analysis of the repair of chromosomal DSBs has been limited by the inability to introduce well-defined DSBs in genomic DNA. In this study, we created specific DSBs in mouse chromosomes for the first time, using an expression system for a rare-cutting endonuclease, I-SceI. A genetic assay has been devised to monitor the repair of DSBs, whereby cleavage sites for I-SceI have been integrated into the mouse genome in two tandem neomycin phosphotransferase genes. We find that cleavage of the I-SceI sites is very efficient, with at least 12% of stably transfected cells having at least one cleavage event and, of these, more than 70% have undergone cleavage at both I-SceI sites. Cleavage of both sites in a fraction of clones deletes 3.8 kb of intervening chromosomal sequences. We find that the DSBs are repaired by both homologous and nonhomologous mechanisms. Nonhomologous repair events frequently result in small deletions after rejoining of the two DNA ends. Some of these appear to occur by simple blunt-ended ligation, whereas several others may occur through annealing of short regions of terminal homology. The DSBs are apparently recombinogenic, stimulating gene targeting of a homologous fragment by more than 2 orders of magnitude. Whereas gene-targeted clones are nearly undetectable without endonuclease expression, they represent approximately 10% of cells transfected with the I-SceI expression vector. Gene targeted clones are of two major types, those that occur by two-sided homologous recombination with the homologous fragment and those that occur by one-sided homologous recombination. Our results are expected to impact a number of areas in the study of mammalian genome dynamics, including the analysis of the repair of DSBs and homologous recombination and, potentially, molecular genetic analyses of mammalian genomes.
Collapse
|
20
|
Efficiency of insertion versus replacement vector targeting varies at different chromosomal loci. Mol Cell Biol 1994. [PMID: 7969173 DOI: 10.1128/mcb.14.12.8385] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the targeting frequencies and recombination products generated with isogenic vectors at the fah and fgr loci in embryonic stem cells. A single vector which could be linearized at different sites to generate either a replacement or an insertion vector was constructed for each locus. A replacement event predominated when the vectors were linearized at the edge of the homologous sequences, while an insertion event predominated when the vectors were linearized within the homologous sequences. However, the ratio of the targeting frequencies exhibited by the different vector configurations differed for the two loci. When the fgr vector was linearized as an insertion vector, the ratio of targeted to random integrations was four- to eightfold greater than when the vector was linearized as a replacement vector. By contrast, the ratio of targeted to random integrations at the fah locus did not vary with the linearization site of the vector. The different relationships between the targeting frequency and the vector configuration at the fgr and fah loci may indicate a DNA sequence or chromatin structure preference for different targeting pathways.
Collapse
|
21
|
Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 1994; 14:8096-106. [PMID: 7969147 PMCID: PMC359348 DOI: 10.1128/mcb.14.12.8096-8106.1994] [Citation(s) in RCA: 305] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To maintain genomic integrity, double-strand breaks (DSBs) in chromosomal DNA must be repaired. In mammalian systems, the analysis of the repair of chromosomal DSBs has been limited by the inability to introduce well-defined DSBs in genomic DNA. In this study, we created specific DSBs in mouse chromosomes for the first time, using an expression system for a rare-cutting endonuclease, I-SceI. A genetic assay has been devised to monitor the repair of DSBs, whereby cleavage sites for I-SceI have been integrated into the mouse genome in two tandem neomycin phosphotransferase genes. We find that cleavage of the I-SceI sites is very efficient, with at least 12% of stably transfected cells having at least one cleavage event and, of these, more than 70% have undergone cleavage at both I-SceI sites. Cleavage of both sites in a fraction of clones deletes 3.8 kb of intervening chromosomal sequences. We find that the DSBs are repaired by both homologous and nonhomologous mechanisms. Nonhomologous repair events frequently result in small deletions after rejoining of the two DNA ends. Some of these appear to occur by simple blunt-ended ligation, whereas several others may occur through annealing of short regions of terminal homology. The DSBs are apparently recombinogenic, stimulating gene targeting of a homologous fragment by more than 2 orders of magnitude. Whereas gene-targeted clones are nearly undetectable without endonuclease expression, they represent approximately 10% of cells transfected with the I-SceI expression vector. Gene targeted clones are of two major types, those that occur by two-sided homologous recombination with the homologous fragment and those that occur by one-sided homologous recombination. Our results are expected to impact a number of areas in the study of mammalian genome dynamics, including the analysis of the repair of DSBs and homologous recombination and, potentially, molecular genetic analyses of mammalian genomes.
Collapse
Affiliation(s)
- P Rouet
- Cell Biology and Genetics Program, Sloan-Kettering Institute, New York, New York
| | | | | |
Collapse
|
22
|
Hasty P, Crist M, Grompe M, Bradley A. Efficiency of insertion versus replacement vector targeting varies at different chromosomal loci. Mol Cell Biol 1994; 14:8385-90. [PMID: 7969173 PMCID: PMC359377 DOI: 10.1128/mcb.14.12.8385-8390.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have analyzed the targeting frequencies and recombination products generated with isogenic vectors at the fah and fgr loci in embryonic stem cells. A single vector which could be linearized at different sites to generate either a replacement or an insertion vector was constructed for each locus. A replacement event predominated when the vectors were linearized at the edge of the homologous sequences, while an insertion event predominated when the vectors were linearized within the homologous sequences. However, the ratio of the targeting frequencies exhibited by the different vector configurations differed for the two loci. When the fgr vector was linearized as an insertion vector, the ratio of targeted to random integrations was four- to eightfold greater than when the vector was linearized as a replacement vector. By contrast, the ratio of targeted to random integrations at the fah locus did not vary with the linearization site of the vector. The different relationships between the targeting frequency and the vector configuration at the fgr and fah loci may indicate a DNA sequence or chromatin structure preference for different targeting pathways.
Collapse
Affiliation(s)
- P Hasty
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
23
|
Abstract
Using simple linear fragments of the Chinese hamster adenine phosphoribosyltransferase (APRT) gene as targeting vectors, we have investigated the homology dependence of targeted recombination at the endogenous APRT locus in Chinese hamster ovary (CHO) cells. We have examined the effects of varying either the overall length of targeting sequence homology or the length of 5' or 3' flanking homology on both the frequency of targeted homologous recombination and the types of recombination events that are obtained. We find an exponential (logarithmic) relationship between length of APRT targeting homology and the frequency of targeted recombination at the CHO APRT locus, with the frequency of targeted recombination dependent upon both the overall length of targeting homology and the length of homology flanking each side of the target gene deletion. Although most of the APRT+ recombinants analyzed reflect simple targeted replacement or conversion of the target gene deletion, a significant fraction appear to have arisen by target gene-templated extension and correction of the targeting fragment sequences. APRT fragments with limited targeting homology flanking one side of the target gene deletion yield proportionately fewer target gene conversion events and proportionately more templated extension and vector correction events than do fragments with more substantial flanking homology.
Collapse
|
24
|
Scheerer JB, Adair GM. Homology dependence of targeted recombination at the Chinese hamster APRT locus. Mol Cell Biol 1994; 14:6663-73. [PMID: 7935385 PMCID: PMC359196 DOI: 10.1128/mcb.14.10.6663-6673.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using simple linear fragments of the Chinese hamster adenine phosphoribosyltransferase (APRT) gene as targeting vectors, we have investigated the homology dependence of targeted recombination at the endogenous APRT locus in Chinese hamster ovary (CHO) cells. We have examined the effects of varying either the overall length of targeting sequence homology or the length of 5' or 3' flanking homology on both the frequency of targeted homologous recombination and the types of recombination events that are obtained. We find an exponential (logarithmic) relationship between length of APRT targeting homology and the frequency of targeted recombination at the CHO APRT locus, with the frequency of targeted recombination dependent upon both the overall length of targeting homology and the length of homology flanking each side of the target gene deletion. Although most of the APRT+ recombinants analyzed reflect simple targeted replacement or conversion of the target gene deletion, a significant fraction appear to have arisen by target gene-templated extension and correction of the targeting fragment sequences. APRT fragments with limited targeting homology flanking one side of the target gene deletion yield proportionately fewer target gene conversion events and proportionately more templated extension and vector correction events than do fragments with more substantial flanking homology.
Collapse
Affiliation(s)
- J B Scheerer
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | |
Collapse
|
25
|
Hanish JP, Yanowitz JL, de Lange T. Stringent sequence requirements for the formation of human telomeres. Proc Natl Acad Sci U S A 1994; 91:8861-5. [PMID: 8090736 PMCID: PMC44706 DOI: 10.1073/pnas.91.19.8861] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In human cells, transfection of telomeric T2AG3 repeats induces the formation of functional telomeres at previously interstitial sites. We report that telomere formation has stringent sequence requirements. While (T2AG3)n telomere seeds formed telomeres in approximately 70% of the transfected cells, five T2AG3-related heterologous telomeric DNAs seeded new telomeres in < 5% of the transfectants. Telomere formation did not correlate with the ability of human telomerase to elongate telomeric sequences in vitro. Homologous recombination is probably also not involved because a (T2AG3)n telomere seed with nontelomeric DNA at 160-bp intervals formed new telomeres frequently. Instead, the sequence dependence of telomere formation matched the in vitro binding requirements for the mammalian T2AG3 repeat binding factor (TRF). Human TRF failed to bind ineffective heterologous telomere seeds and had a 4-fold lower affinity for (T2AG5)2T2AG3 repeats, which seeded telomeres with reduced frequency. The results suggest that telomere seeds interact with TRF and predict that mammalian artificial chromosomes will require wild-type telomeric repeats at, or near, their termini.
Collapse
Affiliation(s)
- J P Hanish
- Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
26
|
Sakagami K, Tokinaga Y, Yoshikura H, Kobayashi I. Homology-associated nonhomologous recombination in mammalian gene targeting. Proc Natl Acad Sci U S A 1994; 91:8527-31. [PMID: 8078916 PMCID: PMC44639 DOI: 10.1073/pnas.91.18.8527] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nonhomologous (illegitimate) recombination of DNA underlies many changes in the genome. It involves no or little homology between recombining DNAs and has been considered unrelated with homologous recombination, which requires long homology. In mouse cells, however, we found recombination products whose sequences suggest that homologous interaction between DNAs caused nonhomologous recombination with another DNA. The intermediates of homologous recombination were apparently trapped at various stages and shunted to nonhomologous recombination. In one product, the nonhomologous recombination disrupted gene conversion. In another, it took place exactly at the end of long homology shared between two DNAs. This finding explains why gene targeting needs long uninterrupted homology and why mammalian homologous recombination is often nonconservative. We discuss possible consequences and roles of this type of homology-driven gene destruction mechanism.
Collapse
Affiliation(s)
- K Sakagami
- Department of Molecular Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
We analyzed the gene targeting frequencies and recombination products generated by a series of replacement deletion vectors which target the hprt (hypoxanthine phosphoribosyltransferase) locus in mouse embryonic stem cells. We found that the targeting frequency of a 19.2-kb deletion was comparable to that of a 3-kb deletion or a conventional replacement event in which a 1.7-kb fragment was inserted into the locus. We also observed different integration patterns for these deletion vectors. A result of this finding is that a wide range of genomic deletions in embryonic stem cells is feasible.
Collapse
|
28
|
Abstract
We analyzed the gene targeting frequencies and recombination products generated by a series of replacement deletion vectors which target the hprt (hypoxanthine phosphoribosyltransferase) locus in mouse embryonic stem cells. We found that the targeting frequency of a 19.2-kb deletion was comparable to that of a 3-kb deletion or a conventional replacement event in which a 1.7-kb fragment was inserted into the locus. We also observed different integration patterns for these deletion vectors. A result of this finding is that a wide range of genomic deletions in embryonic stem cells is feasible.
Collapse
Affiliation(s)
- H Zhang
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
29
|
Lang P, Mocikat R. Replacement-like recombination induced by an integration vector with a murine homology flank at the immunoglobulin heavy-chain locus in mouse and rat hybridoma cells. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:528-38. [PMID: 8121411 DOI: 10.1007/bf00285276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vectors for homologous recombination are commonly designed as replacement or integration constructs. We have evaluated integration vectors for the substitution of the immunoglobulin heavy-chain constant region by various human isotypes in mouse and rat hybridomas. It is known that under certain circumstances replacement vectors exhibit a lower target efficiency and can be incorporated by integration events. Conversely, we show here that an integration vector can undergo a replacement event despite having free homologous adjacent DNA ends, which would be expected to initiate integration according to the double-strand break repair model. Moreover, in cases of replacement recombination the 5' crossover is not necessarily located within the homology region, thereby giving rise to a truncated gene product. Whether or not the replacement leads to such deletions is clearly dependent on the isotypes involved in the targeting reaction. The fact that the vector is correctly targeted to the heavy-chain locus, but that the homology region is not always the site of recombination, points to a novel recombination mechanism that may be specific for the immunoglobulin loci and that seems to be predominant even in the presence of the free homologous adjacent ends of an integration vector. Furthermore we demonstrate that homologous recombination at the heavy-chain locus is also possible between sequences from different species. The implications of our findings for the production of chimeric antibodies are discussed.
Collapse
Affiliation(s)
- P Lang
- GSF-Institut für Immunologie, München, Germany
| | | |
Collapse
|
30
|
Wilson JH, Leung WY, Bosco G, Dieu D, Haber JE. The frequency of gene targeting in yeast depends on the number of target copies. Proc Natl Acad Sci U S A 1994; 91:177-81. [PMID: 8278360 PMCID: PMC42909 DOI: 10.1073/pnas.91.1.177] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have compared the efficiency of transformation by linear DNA fragments in yeast strains carrying different numbers of homologous targets for recombination. In strains carrying dispersed copies of a target and in strains carrying tandem arrays, the frequency of transformation is proportional to the number of targets. This result is in contrast to previous studies of transformation in mammalian cells, where targeted integration was insensitive to the number of targets. We conclude that, in yeast, the search for a homologous partner is a rate-limiting step in the successful recombination of linearized DNA fragments. Furthermore, the fact that we obtain the same results with both dispersed and clustered targets argues against models of homology searching in which DNA becomes nonspecifically associated with a chromosome and then slides along the DNA until homology is encountered.
Collapse
Affiliation(s)
- J H Wilson
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | |
Collapse
|
31
|
Rudolph U, Brabet P, Hasty P, Bradley A, Birnbaumer L. Disruption of the G(i2) alpha locus in embryonic stem cells and mice: a modified hit and run strategy with detection by a PCR dependent on gap repair. Transgenic Res 1993; 2:345-55. [PMID: 8268981 DOI: 10.1007/bf01976176] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used an insertion vector-based approach to target the G(i2) alpha gene in AB-1 embryonic stem cells. 105 bp located 0.8-0.9 kb upstream of a disrupting Neo marker in exon 3 were deleted and replaced with an engineered Not I site, that served to linearize the vector. The 105 bp deletion served as a primer annealing site in a polymerase chain reaction (PCR) designed to detect the gap repair associated with homologous recombination. Both target conversion and vector insertion events were obtained ('hit' step). Clones that had inserted the entire targeting vector were taken into FIAU (1-[2-deoxy,2-fluoro-beta-D-arabinofuranosyl]-5-ioduracil) counterselection to select against a thymidine kinase (TK) marker flanking the homologous genomic sequences and thus for cells that had excised the plasmid and the TK marker by intrachromosomal recombination ('run' step). Additional selection in G418 reduced the number of drug-resistant colonies at least five-fold. Thus, the Neo marker disrupting the homologous sequences allows for a more specific selection of the desired intrachromosomal recombination event in tissue culture. This modified 'hit and run' strategy represents a novel approach for vector design and the use of the polymerase chain reaction to detect targeting. It may be particularly useful for targeting genes that display a low frequency of homologous recombination. Germ line transmission of the mutated G(i2) alpha allele is also demonstrated.
Collapse
Affiliation(s)
- U Rudolph
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | |
Collapse
|
32
|
Morita T, Yoshimura Y, Yamamoto A, Murata K, Mori M, Yamamoto H, Matsushiro A. A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes. Proc Natl Acad Sci U S A 1993; 90:6577-80. [PMID: 8341671 PMCID: PMC46975 DOI: 10.1073/pnas.90.14.6577] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Analysis of mitotic and meiotic recombination in mammalian cells has been hampered by the complexity of the reactions involved as well as lack of mutants. Furthermore, none of the genes involved in the process has yet been identified. In budding yeast, Saccharomyces cerevisiae, the RAD51 gene is essential along with other genes of the RAD52 epistasis group for mitotic and meiotic recombination and DNA repair. The Rad51 protein is structurally similar to Escherichia coli RecA protein, which is required in homologous recombination and SOS responses in bacteria. Here we report the isolation of a mouse homolog of the yeast RAD51 gene. The amino acid sequence predicted from the gene shows 83% and 55% homology with those of the yeast RAD51 and the E. coli recA product, respectively. The mouse gene complemented a rad51 mutation of S. cerevisiae with sensitivity to methyl-methanesulfonate, which produces double-strand breaks of DNA. This gene is expressed in the thymus, testis, ovary, spleen, and intestine, suggesting that its product is involved in mitotic and meiotic recombination in addition to DNA repair.
Collapse
Affiliation(s)
- T Morita
- Department of Microbial Genetics, Osaka University, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Brookes AJ, Stevenson BJ, Porteous DJ, Dorin JR. A series of vectors that simplify mammalian gene targeting. Transgenic Res 1993; 2:238-44. [PMID: 8364606 DOI: 10.1007/bf01977354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to facilitate the procedure of mammalian gene targeting, we have produced and functionally tested a series of generic vectors. Homologous recombination has been achieved with each vector. The vectors are designed for both replacement and insertional recombination, are suitable for 'hit and run' strategies and contain all necessary genetic elements for both positive-negative and promoterless/gene fusion enrichment of homologous integrations. Multiple unique restriction sites are included to simplify the incorporation of genomic targeting sequences.
Collapse
Affiliation(s)
- A J Brookes
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
34
|
Kumar S, Simons JP. The effects of terminal heterologies on gene targeting by insertion vectors in embryonic stem cells. Nucleic Acids Res 1993; 21:1541-8. [PMID: 8386835 PMCID: PMC309360 DOI: 10.1093/nar/21.7.1541] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have examined the effects of placing nonhomologous DNA on the ends of an insertion-type gene targeting vector. The presence of terminal heterologies was found to be compatible with insertion targeting, and the terminal heterologies were efficiently removed. Terminal heterologies reduced the frequency of gene targeting to variable extents. The degree of inhibition of targeting was dependent on the length and the position of the heterology: 2.1kb heterologous sequences were more inhibitory than shorter regions of heterology, and heterology placed on the end of the long (4.8kb) arm of homology was more inhibitory than heterology positioned on the end of the short (0.8kb) arm. When heterology was placed on both arms of the targeting vector the targeting efficiencies were similar to or higher than when heterology was present on the long arm only. These results suggest that terminal sequences are removed simultaneously from both ends of targeting vectors. The removal of terminal sequences probably occurs by exonucleolytic degradation of both strands at each end, and removal of at least one of the strands is intimately coupled with the process of homologous recombination. These findings have implications for the design of gene targeting vectors.
Collapse
Affiliation(s)
- S Kumar
- Department of Molecular Genetics, AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian, UK
| | | |
Collapse
|
35
|
Effects of mutation position on frequency of marker rescue by homologous recombination. Mol Cell Biol 1992. [PMID: 1630464 DOI: 10.1128/mcb.12.8.3609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination between transferred and chromosomal DNA can be used for mapping mutations by marker rescue, i.e., by identifying which segment of wild-type DNA can recombine with the mutant chromosomal gene and restore normal function. In order to define how much the fragments should overlap each other for reliable mapping, we have measured how the frequency of marker rescue is affected by the position of the chromosomal mutation relative to the ends of the transferred DNA fragments. For this purpose, we used several DNA fragments to effect marker rescue in two mutant hybridomas which bear mutations 673 bp apart in the exons encoding the second and third constant region domains of the immunoglobulin mu heavy chain. The frequency of marker rescue decreased greatly when the mutation was located near one of the ends of the fragments, the results indicating that fragments should be designed to overlap by at least several hundred base pairs. Possible explanations for this "end effect" are considered.
Collapse
|
36
|
Jiang L, Connor A, Shulman MJ. Effects of mutation position on frequency of marker rescue by homologous recombination. Mol Cell Biol 1992; 12:3609-13. [PMID: 1630464 PMCID: PMC364627 DOI: 10.1128/mcb.12.8.3609-3613.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Homologous recombination between transferred and chromosomal DNA can be used for mapping mutations by marker rescue, i.e., by identifying which segment of wild-type DNA can recombine with the mutant chromosomal gene and restore normal function. In order to define how much the fragments should overlap each other for reliable mapping, we have measured how the frequency of marker rescue is affected by the position of the chromosomal mutation relative to the ends of the transferred DNA fragments. For this purpose, we used several DNA fragments to effect marker rescue in two mutant hybridomas which bear mutations 673 bp apart in the exons encoding the second and third constant region domains of the immunoglobulin mu heavy chain. The frequency of marker rescue decreased greatly when the mutation was located near one of the ends of the fragments, the results indicating that fragments should be designed to overlap by at least several hundred base pairs. Possible explanations for this "end effect" are considered.
Collapse
Affiliation(s)
- L Jiang
- Department of Immunology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|