1
|
Zhang Y, Zhang H. RNAa Induced by TATA Box-Targeting MicroRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 28639194 DOI: 10.1007/978-981-10-4310-9_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies reveal that some nuclear microRNAs (miRNA) and synthesized siRNAs target gene promoters to activate gene transcription (RNAa). Interestingly, our group identified a novel HIV-1-encoded miRNA, miR-H3, which targets specifically the core promoter TATA box of HIV-1 and activates viral gene expression. Depletion of miR-H3 significantly impaired the replication of HIV-1. miR-H3 mimics could activate viruses from CD4+ T cells isolated from patients receiving suppressive highly active antiretroviral therapy, which is very intriguing for reducing HIV-1 latent reservoir. Further study revealed that many cellular miRNAs also function like miR-H3. For instance, let-7i targets the TATA box of the interleukin-2 (IL-2) promoter and upregulates IL-2 expression in T-lymphocytes. In RNAa induced by TATA box-targeting miRNAs, Argonaute (AGO) proteins are needed, but there is no evidence for the involvement of promoter-associated transcripts or epigenetic modifications. We propose that the binding of small RNA-AGO complex to TATA box could facilitate the assembly of RNA Polymerase II transcription preinitiation complex. In addition, synthesized small RNAs targeting TATA box can also efficiently activate transcription of interested genes, such as insulin, IL-2, and c-Myc. The discovery of RNAa induced by TATA box-targeting miRNA provides an easy-to-use tool for activating gene expression.
Collapse
Affiliation(s)
- Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
p53 Dynamically Directs TFIID Assembly on Target Gene Promoters. Mol Cell Biol 2017; 37:MCB.00085-17. [PMID: 28416636 DOI: 10.1128/mcb.00085-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
p53 is a central regulator that turns on vast gene networks to maintain cellular integrity in the presence of various stimuli. p53 activates transcription initiation in part by aiding recruitment of TFIID to the promoter. However, the precise means by which p53 dynamically interacts with TFIID to facilitate assembly on target gene promoters remains elusive. To address this key issue, we have undertaken an integrated approach involving single-molecule fluorescence microscopy, single-particle cryo-electron microscopy, and biochemistry. Our real-time single-molecule imaging data demonstrate that TFIID alone binds poorly to native p53 target promoters. p53 unlocks TFIID's ability to bind DNA by stabilizing TFIID contacts with both the core promoter and a region within p53's response element. Analysis of single-molecule dissociation kinetics reveals that TFIID interacts with promoters via transient and prolonged DNA binding modes that are each regulated by p53. Importantly, our structural work reveals that TFIID's conversion to a rearranged DNA binding conformation is enhanced in the presence of DNA and p53. Notably, TFIID's interaction with DNA induces p53 to rapidly dissociate, which likely leads to additional rounds of p53-mediated recruitment of other basal factors. Collectively, these findings indicate that p53 dynamically escorts and loads TFIID onto its target promoters.
Collapse
|
3
|
Zhang Y, Fan M, Zhang X, Huang F, Wu K, Zhang J, Liu J, Huang Z, Luo H, Tao L, Zhang H. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA (NEW YORK, N.Y.) 2014; 20:1878-89. [PMID: 25336585 PMCID: PMC4238354 DOI: 10.1261/rna.045633.114] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression.
Collapse
Affiliation(s)
- Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Miaomiao Fan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xue Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Kang Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Zhuoqiong Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
4
|
Huang Q, Gong C, Li J, Zhuo Z, Chen Y, Wang J, Hua ZC. Distance and helical phase dependence of synergistic transcription activation in cis-regulatory module. PLoS One 2012; 7:e31198. [PMID: 22299056 PMCID: PMC3267773 DOI: 10.1371/journal.pone.0031198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/03/2012] [Indexed: 01/21/2023] Open
Abstract
Deciphering of the spatial and stereospecific constraints on synergistic transcription activation mediated between activators bound to cis-regulatory elements is important for understanding gene regulation and remains largely unknown. It has been commonly believed that two activators will activate transcription most effectively when they are bound on the same face of DNA double helix and within a boundary distance from the transcription initiation complex attached to the TATA box. In this work, we studied the spatial and stereospecific constraints on activation by multiple copies of bound model activators using a series of engineered relative distances and stereospecific orientations. We observed that multiple copies of the activators GAL4-VP16 and ZEBRA bound to engineered promoters activated transcription more effectively when bound on opposite faces of the DNA double helix. This phenomenon was not affected by the spatial relationship between the proximal activator and initiation complex. To explain these results, we proposed the novel concentration field model, which posits the effective concentration of bound activators, and therefore the transcription activation potential, is affected by their stereospecific positioning. These results could be used to understand synergistic transcription activation anew and to aid the development of predictive models for the identification of cis-regulatory elements.
Collapse
Affiliation(s)
- Qilai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
| | - Chenguang Gong
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jiahuang Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Zhu Zhuo
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Yuan Chen
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- * E-mail: (JW); (ZH)
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
- * E-mail: (JW); (ZH)
| |
Collapse
|
5
|
Park R, Heston L, Shedd D, Delecluse HJ, Miller G. Mutations of amino acids in the DNA-recognition domain of Epstein-Barr virus ZEBRA protein alter its sub-nuclear localization and affect formation of replication compartments. Virology 2008; 382:145-62. [PMID: 18937960 DOI: 10.1016/j.virol.2008.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/31/2008] [Accepted: 09/08/2008] [Indexed: 11/18/2022]
Abstract
ZEBRA, a transcription factor and DNA replication protein encoded by the Epstein-Barr virus (EBV) BZLF1 gene, plays indispensable roles in the EBV lytic cycle. We recently described the phenotypes of 46 single amino acid substitutions introduced into the DNA-recognition region of ZEBRA [Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H.J., and Miller, G. 2006]. The 27 DNA-binding-proficient mutants exhibited distinct defects in their ability to activate expression of the kinetic classes of viral genes. Four phenotypic variants could be discerned: wild-type, defective at activating Rta, defective at activating early genes, and defective at activating late genes. Here we analyze the distribution of ZEBRA within the nucleus and the localization of EA-D (the viral DNA polymerase processivity factor), an indicator of the development of replication compartments, in representatives of each phenotypic group. Plasmids encoding wild-type (WT) and mutant ZEBRA were transfected into 293 cells containing EBV-bacmids. WT ZEBRA protein was diffusely and smoothly distributed throughout the nucleus, sparing nucleoli, and partially recruited to globular replication compartments. EA-D induced by WT ZEBRA was present diffusely in some cells and concentrated in globular replication compartments in other cells. The distribution of ZEBRA and EA-D proteins was identical to WT following transfection of K188R, a mutant with a conservative change. The distribution of S186A mutant ZEBRA protein, defective for activation of Rta and EA-D, was identical to WT, except that the mutant ZEBRA was never found in globular compartments. Co-expression of Rta with S186A mutant rescued diffuse EA-D but not globular replication compartments. The most striking observation was that several mutant ZEBRA proteins defective in activating EA-D (R179A, K181A and A185V) and defective in activating lytic viral DNA replication and late genes (Y180E and K188A) were localized to numerous punctate foci. The speckled appearance of R179A and Y180E was more regular and clearly defined in EBV-positive than in EBV-negative 293 cells. The Y180E late-mutant induced EA-D, but prevented EA-D from localizing to globular replication compartments. These results show that individual amino acids within the basic domain influence localization of the ZEBRA protein and its capacity to induce EA-D to become located in mature viral replication compartments. Furthermore, these mutant ZEBRA proteins delineate several stages in the processes of nuclear re-organization which accompany lytic EBV replication.
Collapse
Affiliation(s)
- Richard Park
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
6
|
El-Guindy AS, Paek SY, Countryman J, Miller G. Identification of constitutive phosphorylation sites on the Epstein-Barr virus ZEBRA protein. J Biol Chem 2005; 281:3085-95. [PMID: 16321978 DOI: 10.1074/jbc.m506076200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZEBRA, the product of the Epstein-Barr virus gene bzlf1, and a member of the AP-1 subfamily of basic zipper (bZIP) transcription factors, is necessary and sufficient to disrupt viral latency and to initiate the viral lytic cycle. Two serine residues of ZEBRA, Ser167 and Ser173, are substrates for casein kinase 2 (CK2) and are constitutively phosphorylated in vivo. Phosphorylation of ZEBRA at its CK2 sites is required for proper temporal regulation of viral gene expression. Phosphopeptide analysis indicated that ZEBRA contains additional constitutive phosphorylation sites. Here we employed a co-migration strategy to map these sites in vivo. The cornerstone of this strategy was to correlate the migration of 32P- and 35S-labeled tryptic peptides of ZEBRA. The identity of the peptides was revealed by mutagenesis of methionine and cysteine residues present in each peptide. Phosphorylation sites within the peptide were identified by mutagenesis of serines and threonines. ZEBRA was shown to be phosphorylated at serine and threonine residues, but not tyrosine. Two previously unrecognized phosphorylation sites of ZEBRA were identified in the NH2-terminal region of the transactivation domain: a cluster of weak phosphorylation sites at Ser6, Thr7, and Ser8 and a strong phosphorylation site at Thr14. Thr14 was embedded in a MAP kinase consensus sequence and could be phosphorylated in vitro by JNK, despite the absence of a canonical JNK docking site. Thus ZEBRA is now known to be constitutively phosphorylated at three distinct sites.
Collapse
Affiliation(s)
- Ayman S El-Guindy
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
7
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) both infect lymphoid and epithelial cells and both are implicated in the development of cancer. The two viruses establish latency in B-lymphoid cells that, once disrupted, leads to a burst of virus replication during the lytic cycle. A basic leucine zipper (bZIP) transcription factor encoded by EBV, Zta (also known as BZLF1 and ZEBRA), is key to the disruption of EBV latency. KSHV encodes a related protein, K-bZIP (also known as RAP and K8alpha). Recent developments in our understanding of the structures and functions of these two viral bZIP proteins have led to the conclusion that they are not homologues. Two important features of Zta are its ability to interact directly with DNA and to induce EBV replication whereas K-bZIP is not known to interact directly with DNA or to induce KSHV replication. Despite these differences, the ability to disrupt cell cycle control is conserved in both Zta and K-bZIP. The interactions of Zta and K-bZIP with cellular genes will be reviewed here.
Collapse
Affiliation(s)
- Alison J Sinclair
- School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, UK
| |
Collapse
|
8
|
Rajcáni J, Kúdelová M. Gamma herpesviruses: pathogenesis of infection and cell signaling. Folia Microbiol (Praha) 2003; 48:291-318. [PMID: 12879740 DOI: 10.1007/bf02931360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Altered cell signaling is the molecular basis for cell proliferation occurring in association with several gamma herpesvirus infections. Three gamma herpesviruses, namely EBV/HHV-4, KSHV/HHV-8 and the MHV-68 (and/or MHV-72) and their unusual cell-pirated gene products are discussed in this respect. The EBV, KSHV as well as the MHV DNA may persist lifelong in an episomal form in the host carrier cells (mainly in lymphocytes but also in macrophages, in non-hornifying squamous epithelium and/or in blood vessel endothelial cells). Under conditions of extremely limited transcription, the EBV-infected cells express EBNA1 (EB nuclear antigen 1), the KSHV infected cells express LANA1 (latent nuclear antigen 1), while the MHV DNA carrier cells express the latency-associated protein M2. With the full set of latency-associated proteins expressed, EBV carrier cells synthesize additional EBNAs and at least one LMP (latent membrane protein 1). The latent KSHV carrier cells, in addition to LANA1, may express a viral cyclin, a viral Fas-DD-like ICE inhibitor protein (vFLIP) and a virus-specific transformation protein called kaposin (K12). In MHV latency with a wide expression of latency-associated proteins, the carrier cells express a LANA analogue (ORF73), the M3 protein, the K3/IE (immediate early) proteins and M11/bcl-2 homologue proteins. During the period of limited gene expression, the latency-associated proteins serve mainly for the maintenance of the latent episomal DNA (a typical example is EBNA1). In contrast, during latency with a broader spectrum gene expression, the virus-encoded products activate transcription of otherwise silenced cellular genes, which leads to the synthesis of enzymes capable of promoting not only viral but also cellular DNA replication. Thus, the latency-associated proteins block apoptosis and drive host cells towards division and immortalization. Proliferation of hemopoetic cells, which had become gamma herpesvirus DNA carriers, can be initiated and strongly enhanced in the presence of inflammatory cytokines and by virus-encoded analogues of interleukins, chemokines and IFN regulator proteins. At early stages of tumor formation, many proliferating hemopoetic and/or endothelium cells, which had became transcriptionally active under the influence of chemokines and cytokines, may not yet be infected. In contrast, at later stages of oncogenesis, the virus-encoded proteins, inducing false signaling and activating the proliferation pathways, bring the previously infected cells into full transformation burst.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Microbiology and Immunology, Jessenius Medical Faculty, Martin, Slovakia.
| | | |
Collapse
|
9
|
Baumann M, Gires O, Kolch W, Mischak H, Zeidler R, Pich D, Hammerschmidt W. The PKC targeting protein RACK1 interacts with the Epstein-Barr virus activator protein BZLF1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3891-901. [PMID: 10849009 DOI: 10.1046/j.1432-1327.2000.01430.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phorbol esters reactivate Epstein-Barr virus (EBV) from latently infected cells via transcriptional activation of the viral immediate-early gene BZLF1. BZLF1 is a member of the extended AP-1 family of transcription factors that binds to specific BZLF1-binding motifs within early EBV promoters and to consensus AP-1 sites. Regulation of BZLF1's activity is achieved at the transcriptional level as well as through post-translational modifications. Recently, we reported that the transcriptional activity of BZLF1 is augmented by TPA [Baumann, M., Mischak, H., Dammeier, S., Kolch, W., Gires, O., Pich, D., Zeidler, R., Delecluse, H. J. & Hammerschmidt, W., (1998) J. Virol. 72, 8105-8114]. The increase of BZLF1's activity depends on a single serine residue (S186) that is phosphorylated by protein kinase C (PKC) in vitro and in vivo after stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA). Here, we identified RACK1 as a binding partner of BZLF1 in a yeast interaction trap assay. RACK stands for receptor of activated C-kinase and is involved in targeting activated PKCs and other signaling proteins. In vivo, RACK1 binds directly to the transactivation domain of BZLF1. Although a functional relationship between BZLF1 and PKC could be mediated by RACKs, RACK1 did not have a detectable effect on the phosphorylation status of BZLF1 in in vitro or in vivo phosphorylation assays. We suggest that RACK1 may act as a scaffolding protein on BZLF1 independently of activated PKCs.
Collapse
Affiliation(s)
- M Baumann
- GSF-National Research Center for Environment and Health, Institute of Clinical Molecular Biology and Tumor Genetics, Department of Gene Vectors, München, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Li-Weber M, Laur O, Krammer PH. Novel Egr/NF-AT composite sites mediate activation of the CD95 (APO-1/Fas) ligand promoter in response to T cell stimulation. Eur J Immunol 1999; 29:3017-27. [PMID: 10508276 DOI: 10.1002/(sici)1521-4141(199909)29:09<3017::aid-immu3017>3.0.co;2-r] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expression of the CD95 (APO-1/Fas) ligand (CD95L) in activated T cells is a major cause of activation-induced T cell apoptosis. The transcription factors NF-AT and Egr-3 (a member of the immediate-early transcription factors involved in cellular growth and differentiation) have been implicated in activation of the CD95L promoter upon T cell activation. On the basis of DNase I footprinting, electrophoretic mobility shift assay, antibody supershift analysis and transfection studies, we have identified two novel Egr-binding sites 5' upstream of the previously identified Egr site. Mutation analysis of each Egr site shows that all three sites are important for full CD95L promoter activity. Strikingly, all Egr sites, including the previously identified Egr site, are adjacent to or overlap with DNA sequences homologous to NF-AT binding sites and confer T cell activation-induced, cyclosporin A-sensitive transcriptional activity. Antibody supershift analysis revealed that NF-AT and Egr proteins are the components of inducible DNA-binding complexes formed on the two novel Egr sites. Cotransfection experiments showed that Egr-1, Egr-3 and NF-AT display a cooperative and synergistic activation of transcription mediated by these three Egr/NF-AT composite regulatory elements. These findings provide further insight into the mechanisms involved in the regulation of the CD95L expression in response to T cell activation.
Collapse
Affiliation(s)
- M Li-Weber
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | |
Collapse
|
11
|
Ellwood K, Chi T, Huang W, Mitsouras K, Carey M. Cooperative assembly of RNA polymerase II transcription complexes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:253-61. [PMID: 10384289 DOI: 10.1101/sqb.1998.63.253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K Ellwood
- Department of Biological Chemistry, University of California School of Medicine, Los Angeles 90095-1737, USA
| | | | | | | | | |
Collapse
|
12
|
Edinger JW, Bonneville M, Scotet E, Houssaint E, Schumacher HR, Posnett DN. EBV Gene Expression Not Altered in Rheumatoid Synovia Despite the Presence of EBV Antigen-Specific T Cell Clones. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
T cells infiltrating the rheumatoid arthritis (RA) joint are oligoclonal, implicating an Ag-driven process, but the putative joint-specific Ags remain elusive. Here we examine expression of selected EBV genes in RA synovia and find no abnormal expression in RA. DNA of CMV and EBV was detectable by PCR in the synovial tissue of RA. RNA of several latent and lytic EBV genes was also detectable. However, there were no differences in EBV gene expression in synovial tissues or peripheral blood when comparing RA with osteoarthritis, Gulf War syndrome, and other disease controls. RA synovia with highly expanded CD8 T cell clones reactive with defined EBV peptide Ags presented by HLA class I alleles lacked evidence of abnormal mRNA expression for the relevant EBV Ag (BZLF1) or lacked amplifiable mRNA (BMLF1). Thus, local production of EBV Ags in synovial tissues may not be the cause of the accumulation of T cell clones specific for these Ags. Instead, APCs loaded with processed EBV peptides may migrate to the synovium. Alternatively, EBV-specific T cell clones may be generated in other tissues and then migrate to synovia, perhaps due to cross-reactive joint-specific Ags or because of expression of homing receptors.
Collapse
Affiliation(s)
- James W. Edinger
- *Immunology Program, Graduate School of Medical Sciences, and Department of Medicine, Weill Medical College, Cornell University Weill, New York, NY 10021
| | - Marc Bonneville
- †Institut National de la Santé et de la Recherche Médicale, Unit 463, Institut de Biologie, Nantes, France; and
| | - Emmanuel Scotet
- †Institut National de la Santé et de la Recherche Médicale, Unit 463, Institut de Biologie, Nantes, France; and
| | - Elisabeth Houssaint
- ‡Veterans Affairs Medical Center, University of Pennsylvania, Philadelphia, PA 19104
| | - H. Ralph Schumacher
- ‡Veterans Affairs Medical Center, University of Pennsylvania, Philadelphia, PA 19104
| | - David N. Posnett
- *Immunology Program, Graduate School of Medical Sciences, and Department of Medicine, Weill Medical College, Cornell University Weill, New York, NY 10021
| |
Collapse
|
13
|
Wang J, Ellwood K, Lehman A, Carey MF, She ZS. A mathematical model for synergistic eukaryotic gene activation. J Mol Biol 1999; 286:315-25. [PMID: 9973553 DOI: 10.1006/jmbi.1998.2489] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise biochemical mechanism underlying the synergistic action of gene activators on eukaryotic transcription has eluded a solution, largely because of the technical difficulties inherent in analyzing the mechanics of a 2.5 MDa complex comprising greater than 50 polypeptide components. To complement the biochemical approach we have employed mathematical modeling as a means to understand the mechanism of synergy. Parameters relevant to activated transcription were varied in a simple biochemical system and the data were compared to the transcriptional response predicted by a multi-component statistical model. We found that the model achieved a consistent, semi-quantitative description of the measured transcriptional response, and enabled the characterization and measurement of thermodynamic parameters in the in vitro system. The results provide evidence for the existence of cooperativity in the activation process beyond what would be predicted from one current model suggesting that activators function solely by simple recruitment of the general transcription machinery to the promoter.
Collapse
Affiliation(s)
- J Wang
- School of Medicine, University of California, Los Angeles, CA, Box 1737, USA
| | | | | | | | | |
Collapse
|
14
|
Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD. The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 1998; 72:8559-67. [PMID: 9765394 PMCID: PMC110266 DOI: 10.1128/jvi.72.11.8559-8567.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1998] [Accepted: 07/02/1998] [Indexed: 01/13/2023] Open
Abstract
The Epstein-Barr virus transactivator Zta triggers lytic gene expression and is essential for replication of the lytic origin, oriLyt. Previous analysis indicated that the Zta activation domain contributed a replication-specific function. We now show that the Zta activation domain interacts with components of the EBV helicase-primase complex. The three helicase-primase proteins BBLF4 (helicase), BSLF1 (primase), and BBLF2/3 (primase-associated factor) were expressed fused to the Myc epitope. When expression plasmids for BBLF4 or BBLF2/3 plus BSLF1 (primase subcomplex) were separately transfected, the proteins localized to the cytoplasm. Interaction between Zta and the components of the helicase-primase complex was tested by examining the ability of Zta to alter the intracellular localization of these proteins. Cotransfection of Zta with Myc-BBLF4 resulted in nuclear translocation of Myc-BBLF4; similarly, cotransfection of Zta with the primase subcomplex led to nuclear translocation of the Myc-BSLF1 and Myc-BBLF2/3 proteins. This relocalization provides evidence for an interaction between Zta and the helicase and Zta and the primase subcomplex. An affinity assay using glutathione S-transferase-Zta fusion proteins demonstrated that Myc-BBLF4 and Myc-BBLF2/3 plus BSLF1 bound to the Zta activation domain (amino acids 1 to 133). In the nuclear relocalization assay, the amino-terminal 25 amino acids of Zta were required for efficient interaction with the primase subcomplex but not for interaction with BBLF4. Evidence for interaction between oriLyt bound Zta and the helicase-primase complex was obtained in a superactivation assay using an oriLyt-chloramphenicol acetyltransferase (CAT) reporter. Zta activated expression from a CAT reporter containing the complete oriLyt region and regulated by the oriLyt BHLF1 promoter. Cotransfection of the helicase-primase proteins, one of which was fused to a heterologous activation domain, led to Zta-dependent superactivation of CAT expression. This assay also provided evidence for an interaction between the single-stranded DNA binding protein, BALF2, and the Zta-tethered helicase-primase complex. The helicase-primase interaction is consistent with a role for Zta in stabilizing the formation of an origin-bound replication complex.
Collapse
Affiliation(s)
- Z Gao
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Asković S, Taylor W, Baumann R. The position of the ZEBRA activation domain does not influence its biological activity. Virus Res 1998; 57:125-38. [PMID: 9870581 DOI: 10.1016/s0168-1702(98)00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus which latently infects B lymphocytes. EBV encodes a unique transcriptional activator, known as ZEBRA, which can disrupt viral latency in B cells and induce lytic viral replication. Furthermore, ZEBRA has been shown to bind at the EBV origin of lytic replication, and is necessary for viral DNA replication to occur. Previously we demonstrated that heterologous activation domains can fully substitute for the ZEBRA activation domain. Here we extend those results by showing that the position of the ZEBRA activation domain or a heterologous replacement domain does not influence its ability to function in the disruption of EBV latency. In this study three novel clones were constructed in which the ZEBRA activation region was repositioned to the carboxy terminus of the protein. These mutants were used to demonstrate that the ability of ZEBRA's wild type domain to function in the complex biological process of virus activation is not compromised by altering its position within the protein.
Collapse
Affiliation(s)
- S Asković
- Department of Microbiology, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
16
|
Lehman AM, Ellwood KB, Middleton BE, Carey M. Compensatory energetic relationships between upstream activators and the RNA polymerase II general transcription machinery. J Biol Chem 1998; 273:932-9. [PMID: 9422752 DOI: 10.1074/jbc.273.2.932] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of RNA polymerase II transcription in vivo and in vitro is synergistic with respect to increasing numbers of activator binding sites or increasing concentrations of activator. The Epstein-Barr virus ZEBRA protein manifests both forms of synergy during activation of genes involved in the viral lytic cycle. The synergy has an underlying mechanistic basis that we and others have proposed is founded largely on the energetic contributions of (i) upstream ZEBRA binding to its sites, (ii) the general pol II machinery binding to the core promoter, and (iii) interactions between ZEBRA and the general machinery. We hypothesize that these interactions form a network for which a minimum stability must be attained to activate transcription. One prediction of this model is that the energetic contributions should be reciprocal, such that a strong core promoter linked to a weak upstream promoter would be functionally analogous to a weak core linked to a strong upstream promoter. We tested this view by measuring the transcriptional response after systematically altering the upstream and core promoters. Our data provide strong qualitative support for this hypothesis and provide a theoretical basis for analyzing Epstein-Barr virus gene regulation.
Collapse
Affiliation(s)
- A M Lehman
- Department of Biological Chemistry, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | |
Collapse
|
17
|
Cayrol C, Flemington E. G0/G1 growth arrest mediated by a region encompassing the basic leucine zipper (bZIP) domain of the Epstein-Barr virus transactivator Zta. J Biol Chem 1996; 271:31799-802. [PMID: 8943219 DOI: 10.1074/jbc.271.50.31799] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Epstein-Barr virus (EBV) immediate early transactivator Zta is a basic leucine zipper (bZIP) transcription factor that causes G0/G1 cell cycle arrest through induction of the tumor suppressor protein, p53, and the cyclin-dependent kinase inhibitors, p21 and p27 (Cayrol, C., and Flemington, E. K. (1996) EMBO J. 15, 2748-2759). Here, we report a genetic analysis of Zta-mediated G0/G1 growth arrest and p21 induction. The majority of the Zta transactivation domain can be deleted (ZDelta1-128) without significantly affecting the ability of Zta to elicit growth arrest. A larger amino-terminal deletion (ZDelta1-167) abrogates the ability of Zta to inhibit proliferation, mapping the growth-inhibitory domain to a carboxyl-terminal region encompassing the bZIP domain (amino acids 128-245). The integrity of the bZIP domain is required for growth suppression since a two-amino acid mutant which is defective for homodimerization, fails to induce cell cycle arrest. Western blot analysis of p21 expression in cells expressing Zta mutants reveals that the ability of Zta mutants to cause G0/G1 growth arrest is intimately related to their capacity to induce p21 expression. Together, these data demonstrate that a carboxyl-terminal region of Zta that includes the bZIP domain is sufficient to mediate G0/G1 growth arrest and p21 induction.
Collapse
Affiliation(s)
- C Cayrol
- Division of Tumor Virology, Division of Neoplastic Disease Mechanisms, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
18
|
Cayrol C, Flemington EK. The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. EMBO J 1996; 15:2748-59. [PMID: 8654372 PMCID: PMC450210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
While oncoproteins encoded by small DNA tumor viruses and Epstein-Barr virus (EBV) latent antigens facilitate G1/S progression, the EBV lytic switch transactivator Zta was found to inhibit growth by causing cell cycle arrest in G0/G1 in several epithelial tumor cell lines. Expression of Zta results in induction of the tumor suppressor protein, p53, and the cyclin-dependent kinase inhibitors, p21 and p27, as well as accumulation of hypophosphorylated pRb. Up-regulation of p53 and p27 occurs by post-transcriptional mechanisms while expression of p21 is induced at the RNA level in a p53-dependent manner. Inactivation of pRb by transient overexpression of the human papillomavirus E7 oncoprotein indicates that pRb or pRb-related proteins are key mediators of the growth-inhibitory function of Zta. These findings suggest that EBV plays an active role in redirecting epithelial cell physiology to facilitate the viral replicative program through a Zta-mediated growth arrest function.
Collapse
Affiliation(s)
- C Cayrol
- Division of Tumor Virology, Division of Neoplastic Disease Mechanisms, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Ozer J, Bolden AH, Lieberman PM. Transcription factor IIA mutations show activator-specific defects and reveal a IIA function distinct from stimulation of TBP-DNA binding. J Biol Chem 1996; 271:11182-90. [PMID: 8626665 DOI: 10.1074/jbc.271.19.11182] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The general transcription factor IIA (TFIIA) binds to the TATA binding protein (TBP) and mediates transcriptional activation by distinct classes of activators. To elucidate the function of TFIIA in transcriptional activation, point mutants were created in the human TFIIA-gamma subunit at positions conserved with the yeast homologue. We have identified a class of TFIIA mutants that stimulate TBP-DNA binding (T-A complex) but fail to support transcriptional activation by several different activators, suggesting that these mutants are defective in their ability to facilitate an activation step subsequent to TBP promoter binding. Point mutations of the hydrophobic core of conserved residues from 65 to 74 resulted in various activation-defective phenotypes. These residues were found to be important for TFIIA gamma-gamma interactions, suggesting that gamma-gamma interactions are critical for TFIIA function as a coactivator. A subset of these TFIIA-gamma mutations disrupted transcriptional activation by all activators tested, except for the Epstein-Barr virus-encoded Zta protein. The gamma Y65F, gamma W72A, and gamma W72F mutants mediate Zta activation, but not GAL4-AH, AP-1, GAL4-CTF, or GAL4-VP16 activation. The gamma W72A mutant failed to stimulate TFIID-DNA binding (D-A complex) but was able to form a complex with TFIID and DNA in the presence of Zta (Z-D-A complex). Thus, the ability of Zta to activate transcription with gamma W72A appears to result from a unique ability to form the stable Z-D-A complex with this mutant. Our results show that different activators utilize the general factor TFIIA in unique ways and that TFIIA contributes transcription activation functions in addition to the facilitation of TBP-DNA binding.
Collapse
Affiliation(s)
- J Ozer
- Wistar Institute, Philadelphia Pennsylvania 19104, USA
| | | | | |
Collapse
|
20
|
Fassler JS, Gussin GN. Promoters and basal transcription machinery in eubacteria and eukaryotes: concepts, definitions, and analogies. Methods Enzymol 1996; 273:3-29. [PMID: 8791596 DOI: 10.1016/s0076-6879(96)73003-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J S Fassler
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
21
|
Chi T, Lieberman P, Ellwood K, Carey M. A general mechanism for transcriptional synergy by eukaryotic activators. Nature 1995; 377:254-7. [PMID: 7675113 DOI: 10.1038/377254a0] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
One of the important regulatory concepts to emerge from studies of eukaryotic gene expression is that RNA polymerase II promoters and their upstream activators are composed of functional modules whose synergistic action regulates the transcriptional activity of a nearby gene. Biochemical analysis of synergy by ZEBRA, a non-acidic activator of the Epstein-Barr virus (EBV) lytic cycle, showed that the synergistic transcriptional effect of promoter sites and activation modules correlates with assembly of the TFIID:TFIIA (DA) complex in DNase I footprinting and gel shift assays. The activator-dependent DA complex differs from a basal DA complex by its ability to bind TFIIB stably in an interaction regulated by TATA-binding protein-associated factors (TAFs). TFIIB enhances the degree of synergism by increasing complex stability. Similar findings were made with the acidic activator GAL4-VP16. Our data suggest a unifying mechanism for gene activation and synergy by acidic and non-acidic activators, and indicate that synergy is manifested at the earliest stage of preinitiation complex assembly.
Collapse
Affiliation(s)
- T Chi
- Department of Biological Chemistry, University of California, Los Angeles, School of Medicine 90095-1737, USA
| | | | | | | |
Collapse
|
22
|
Tantin D, Carey M. A heteroduplex template circumvents the energetic requirement for ATP during activated transcription by RNA polymerase II. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32452-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Hori R, Carey M. The role of activators in assembly of RNA polymerase II transcription complexes. Curr Opin Genet Dev 1994; 4:236-44. [PMID: 8032201 DOI: 10.1016/s0959-437x(05)80050-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The past year has provided new insights into the biochemical mechanism of gene activation. Key discoveries include the finding that TFIIA plays an important regulatory role in transcription complex assembly, the TBP-associated factors are direct targets of at least two classes of activator, and a largely pre-assembled transcription complex has been isolated from yeast cells, challenging the step-wise assembly pathway. This review also presents an update on the argument that TFIIB is the target of VP16 and insights into the energetic role of ATP in RNA polymerase II initiation.
Collapse
Affiliation(s)
- R Hori
- Department of Biological Chemistry, University of California Los Angeles, School of Medicine 90024
| | | |
Collapse
|