1
|
Jin H, Ge X, Huan Z, Yao H, Xu C, Cai J. Stress-induced phosphoprotein 1 restrains spinal cord ischaemia-reperfusion injury by modulating NF-κB signalling. J Cell Mol Med 2021; 25:11075-11084. [PMID: 34734476 PMCID: PMC8650032 DOI: 10.1111/jcmm.17030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI), a major cause of disability, causes high global disease and economic burdens. Stress-induced phosphoprotein 1 (STIP1) has been identified to be involved in spinal cord ischaemia-reperfusion injury (SCII); however, the effect of STIP1 on SCII remains unclear until now. This study aimed to examine the role of STIP1 in SCII and unravel the possible mechanisms. Western blotting and immunohistochemical staining showed that STIP1 expression rapidly increased and then decreased in rat spinal cord following SCII treatment. Neurological function scoring, HE staining, immunohistochemical staining and Western blotting revealed that STIP1 overexpression alleviated SCII-induced motor dysfunction of hind limbs, neuronal loss and inflammation in spinal cord, and inhibited activity of nuclear factor kappa B (NF-κB) signalling in rats. Immunoprecipitation identified that STIP1 was co-located with Iba-1. In addition, STIP1 was found to ameliorate oxygen and glucose deprivation (OGD)-induced inflammation and activation of NF-κB signalling in mouse microglia BV2 cells, and STIP1 resulted in decrease of heat shock protein family A member 8 (HSPA8), increase of IκBβ expression and reduced binding of IκBβ to HSPA8 in BV2 cells. The results of the present study demonstrate that STIP1 alleviates ischaemia/reperfusion-induced neuronal injury and inflammation in rat spinal cord and mouse microglial cells by deactivating NF-κB signalling. These findings may provide novel insights for the clinical diagnosis and treatment of SCI.
Collapse
Affiliation(s)
- Hongdou Jin
- Department of General SurgeryWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Xin Ge
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Zhirong Huan
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Hao Yao
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Ce Xu
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Jimin Cai
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| |
Collapse
|
2
|
Everson N, Bach J, Hammill JT, Falade MO, Rice AL, Guy RK, Eagon S. Identification of Plasmodium falciparum heat shock 90 inhibitors via molecular docking. Bioorg Med Chem Lett 2021; 35:127818. [PMID: 33513390 DOI: 10.1016/j.bmcl.2021.127818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
A virtual screen was performed to identify anti-malarial compounds targeting Plasmodium falciparum heat shock 90 protein by applying a series of drug-like and commercial availability filters to compounds in the ZINC database, resulting in a virtual library of more than 13 million candidates. The goal of the virtual screen was to identify novel compounds which could serve as a starting point for the development of antimalarials with a mode of action different from anything currently used in the clinic. The screen targeted the ATP binding pocket of the highly conserved Plasmodium heat shock 90 protein, as this protein is critical to the survival of the parasite and has several significant structural differences from the human homolog. The top twelve compounds from the virtual screen were tested in vitro, with all twelve showing no antiproliferative activity against the human fibroblast cell line and three compounds exhibiting single digit or better micromolar antiproliferative activity against the chloroquine-sensitive P. falciparum 3D7 strain.
Collapse
Affiliation(s)
- Nikalet Everson
- Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| | - Jordan Bach
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Jared T Hammill
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Mofolusho O Falade
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Amy L Rice
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - R Kiplin Guy
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Scott Eagon
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
3
|
Makumire S, Dongola TH, Chakafana G, Tshikonwane L, Chauke CT, Maharaj T, Zininga T, Shonhai A. Mutation of GGMP Repeat Segments of Plasmodium falciparum Hsp70-1 Compromises Chaperone Function and Hop Co-Chaperone Binding. Int J Mol Sci 2021; 22:ijms22042226. [PMID: 33672387 PMCID: PMC7926355 DOI: 10.3390/ijms22042226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Parasitic organisms especially those of the Apicomplexan phylum, harbour a cytosol localised canonical Hsp70 chaperone. One of the defining features of this protein is the presence of GGMP repeat residues sandwiched between α-helical lid and C-terminal EEVD motif. The role of the GGMP repeats of Hsp70s remains unknown. In the current study, we introduced GGMP mutations in the cytosol localised Hsp70-1 of Plasmodium falciparum (PfHsp70-1) and a chimeric protein (KPf), constituted by the ATPase domain of E. coli DnaK fused to the C-terminal substrate binding domain of PfHsp70-1. A complementation assay conducted using E. coli dnaK756 cells demonstrated that the GGMP motif was essential for chaperone function of the chimeric protein, KPf. Interestingly, insertion of GGMP motif of PfHsp70-1 into DnaK led to a lethal phenotype in E. coli dnaK756 cells exposed to elevated growth temperature. Using biochemical and biophysical assays, we established that the GGMP motif accounts for the elevated basal ATPase activity of PfHsp70-1. Furthermore, we demonstrated that this motif is important for interaction of the chaperone with peptide substrate and a co-chaperone, PfHop. Our findings suggest that the GGMP may account for both the specialised chaperone function and reportedly high catalytic efficiency of PfHsp70-1.
Collapse
Affiliation(s)
- Stanley Makumire
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Tendamudzimu Harmfree Dongola
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Department of Medicine, University of Cape Town, Faculty of Health Sciences, Observatory, Cape Town 7925, South Africa
| | - Lufuno Tshikonwane
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Cecilia Tshikani Chauke
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Tarushai Maharaj
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Correspondence: ; Tel.: +27-15962-8723
| |
Collapse
|
4
|
Zhou X, Zheng Y, Cai Z, Wang X, Liu Y, Yu A, Chen X, Liu J, Zhang Y, Wang A. Identification and Functional Analysis of Tomato TPR Gene Family. Int J Mol Sci 2021; 22:E758. [PMID: 33451131 PMCID: PMC7828616 DOI: 10.3390/ijms22020758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Tomato (Solanum lycopersicum) as an important vegetable grown around the world is threatened by many diseases, which seriously affects its yield. Therefore, studying the interaction between tomato and pathogenic bacteria is biologically and economically important. The TPR (Tetratricopeptide repeat) gene family is a class of genes containing TPR conserved motifs, which are widely involved in cell cycle regulation, gene expression, protein degradation and other biological processes. The functions of TPR gene in Arabidopsis and wheat plants have been well studied, but the research on TPR genes in tomato is not well studied. In this study, 26 TPR gene families were identified using bioinformatics based on tomato genome data, and they were analyzed for subcellular localization, phylogenetic evolution, conserved motifs, tissue expression, and GO (Gene Ontology) analysis. The qRT-PCR was used to detect the expression levels of each member of the tomato TPR gene family (SlTPRs) under biological stress (Botrytis cinerea) and abiotic stress such as drought and abscisic acid (ABA). The results showed that members of the tomato TPR family responded to various abiotic stresses and Botrytis cinerea stress, and the SlTPR2 and SlTPR4 genes changed significantly under different stresses. Using VIGS (Virus-induced gene silencing) technology to silence these two genes, the silenced plants showed reduced disease resistance. It was also shown that TPR4 can interact with atpA which encodes a chloroplast ATP synthase CF1 α subunit. The above results provide a theoretical basis for further exploring the molecular mechanism of TPR-mediated resistance in disease defense, and also provide a foundation for tomato disease resistance breeding.
Collapse
Affiliation(s)
- Xi’nan Zhou
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Yangyang Zheng
- College of Plant Protection, China Agricultural University, Beijing 100000, China; (Y.Z.); (Y.L.)
| | - Zhibo Cai
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Xingyuan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Yang Liu
- College of Plant Protection, China Agricultural University, Beijing 100000, China; (Y.Z.); (Y.L.)
| | - Anzhou Yu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Jiayin Liu
- College of Sciences, Northeast Agricultural University, Harbin 150030, China;
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
5
|
The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell Mol Life Sci 2021; 78:7257-7273. [PMID: 34677645 PMCID: PMC8629791 DOI: 10.1007/s00018-021-03962-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
The Hsp70 and Hsp90 molecular chaperone systems are critical regulators of protein homeostasis (proteostasis) in eukaryotes under normal and stressed conditions. The Hsp70 and Hsp90 systems physically and functionally interact to ensure cellular proteostasis. Co-chaperones interact with Hsp70 and Hsp90 to regulate and to promote their molecular chaperone functions. Mammalian Hop, also called Stip1, and its budding yeast ortholog Sti1 are eukaryote-specific co-chaperones, which have been thought to be essential for substrate ("client") transfer from Hsp70 to Hsp90. Substrate transfer is facilitated by the ability of Hop to interact simultaneously with Hsp70 and Hsp90 as part of a ternary complex. Intriguingly, in prokaryotes, which lack a Hop ortholog, the Hsp70 and Hsp90 orthologs interact directly. Recent evidence shows that eukaryotic Hsp70 and Hsp90 can also form a prokaryote-like binary chaperone complex in the absence of Hop, and that this binary complex displays enhanced protein folding and anti-aggregation activities. The canonical Hsp70-Hop-Hsp90 ternary chaperone complex is essential for optimal maturation and stability of a small subset of clients, including the glucocorticoid receptor, the tyrosine kinase v-Src, and the 26S/30S proteasome. Whereas many cancers have increased levels of Hop, the levels of Hop decrease in the aging human brain. Since Hop is not essential in all eukaryotic cells and organisms, tuning Hop levels or activity might be beneficial for the treatment of cancer and neurodegeneration.
Collapse
|
6
|
Albakova Z, Siam MKS, Sacitharan PK, Ziganshin RH, Ryazantsev DY, Sapozhnikov AM. Extracellular heat shock proteins and cancer: New perspectives. Transl Oncol 2020; 14:100995. [PMID: 33338880 PMCID: PMC7749402 DOI: 10.1016/j.tranon.2020.100995] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
High expression of extracellular heat shock proteins (HSPs) indicates highly aggressive tumors. HSP profiling of extracellular vesicles (EVs) derived from various biological fluids and released by immune cells may open new perspectives for an identification of diagnostic, prognostic and predictive biomarkers of cancer. Identification of specific microRNAs targeting HSPs in EVs may be a promising strategy for the discovery of novel biomarkers of cancer.
Heat shock proteins (HSPs) are a large family of molecular chaperones aberrantly expressed in cancer. The expression of HSPs in tumor cells has been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis. Given that extracellular vesicles (EVs) can serve as potential source for the discovery of clinically useful biomarkers and therapeutic targets, it is of particular interest to study proteomic profiling of HSPs in EVs derived from various biological fluids of cancer patients. Furthermore, a divergent expression of circulating microRNAs (miRNAs) in patient samples has opened new opportunities in exploiting miRNAs as diagnostic tools. Herein, we address the current literature on the expression of extracellular HSPs with particular interest in HSPs in EVs derived from various biological fluids of cancer patients and different types of immune cells as promising targets for identification of clinical biomarkers of cancer. We also discuss the emerging role of miRNAs in HSP regulation for the discovery of blood-based biomarkers of cancer. We outline the importance of understanding relationships between various HSP networks and co-chaperones and propose the model for identification of HSP signatures in cancer. Elucidating the role of HSPs in EVs from the proteomic and miRNAs perspectives may provide new opportunities for the discovery of novel biomarkers of cancer.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 199192 Moscow, Russia.
| | | | - Pradeep Kumar Sacitharan
- The Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitriy Y Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander M Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
7
|
Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Sci Rep 2020; 10:10733. [PMID: 32612187 PMCID: PMC7329908 DOI: 10.1038/s41598-020-67645-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 01/24/2023] Open
Abstract
The function of steroid receptors in the cell depends on the chaperone machinery of Hsp90, as Hsp90 primes steroid receptors for hormone binding and transcriptional activation. Several conserved proteins are known to additionally participate in receptor chaperone assemblies, but the regulation of the process is not understood in detail. Also, it is unknown to what extent the contribution of these cofactors is conserved in other eukaryotes. We here examine the reconstituted C. elegans and human chaperone assemblies. We find that the nematode phosphatase PPH-5 and the prolyl isomerase FKB-6 facilitate the formation of glucocorticoid receptor (GR) complexes with Hsp90. Within these complexes, Hsp90 can perform its closing reaction more efficiently. By combining chemical crosslinking and mass spectrometry, we define contact sites within these assemblies. Compared to the nematode Hsp90 system, the human system shows less cooperative client interaction and a stricter requirement for the co-chaperone p23 to complete the closing reaction of GR·Hsp90·Pp5/Fkbp51/Fkbp52 complexes. In both systems, hormone binding to GR is accelerated by Hsp90 alone and in the presence of its cofactors. Our results show that cooperative complex formation and hormone binding patterns are, in many aspects, conserved between the nematode and human systems.
Collapse
|
8
|
Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 Multi-Functionality in Cancer. Cells 2020; 9:cells9030587. [PMID: 32121660 PMCID: PMC7140411 DOI: 10.3390/cells9030587] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
The 70-kDa heat shock proteins (HSP70s) are abundantly present in cancer, providing malignant cells selective advantage by suppressing multiple apoptotic pathways, regulating necrosis, bypassing cellular senescence program, interfering with tumor immunity, promoting angiogenesis and supporting metastasis. This direct involvement of HSP70 in most of the cancer hallmarks explains the phenomenon of cancer "addiction" to HSP70, tightly linking tumor survival and growth to the HSP70 expression. HSP70 operates in different states through its catalytic cycle, suggesting that it can multi-function in malignant cells in any of these states. Clinically, tumor cells intensively release HSP70 in extracellular microenvironment, resulting in diverse outcomes for patient survival. Given its clinical significance, small molecule inhibitors were developed to target different sites of the HSP70 machinery. Furthermore, several HSP70-based immunotherapy approaches were assessed in clinical trials. This review will explore different roles of HSP70 on cancer progression and emphasize the importance of understanding the flexibility of HSP70 nature for future development of anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
- Correspondence:
| | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
| | - Leonid M. Kanevskiy
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Elena I. Kovalenko
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Alexander M. Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| |
Collapse
|
9
|
Hassan FU, Nawaz A, Rehman MS, Ali MA, Dilshad SM, Yang C. Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2019; 5:340-350. [PMID: 31890910 PMCID: PMC6920399 DOI: 10.1016/j.aninu.2019.06.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 01/28/2023]
Abstract
Heat stress induced by long periods of high ambient temperature decreases animal productivity, leading to heavy economic losses. This devastating situation for livestock production is even becoming worse under the present climate change scenario. Strategies focused to breed animals with better thermo-tolerance and climatic resilience are keenly sought these days to mitigate impacts of heat stress especially in high input livestock production systems. The 70-kDa heat shock proteins (HSP70) are a protein family known for its potential role in thermo-tolerance and widely considered as cellular thermometers. HSP70 function as molecular chaperons and have major roles in cellular thermotolerance, apoptosis, immune-modulation and heat stress. Expression of HSP70 is controlled by various factors such as, intracellular pH, cyclic adenosine monophosphate (cyclic AMP), protein kinase C and intracellular free calcium, etc. Over expression of HSP70 has been observed under oxidative stress leading to scavenging of mitochondrial reactive oxygen species and protection of pulmonary endothelial barrier against bacterial toxins. Polymorphisms in flanking and promoter regions in HSP70 gene have shown association with heat tolerance, weaning weight, milk production, fertility and disease susceptibility in livestock. This review provides insight into pivotal roles of HSP70 which make it an ideal candidate genetic marker for selection of animals with better climate resilience, immune response and superior performance.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ayesha Nawaz
- Department of Zoology Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad S. Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad A. Ali
- Faculty of Veterinary Sciences, Bahauddin Zakriya University, Multan, Pakistan
| | - Syed M.R. Dilshad
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, 29050, Pakistan
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| |
Collapse
|
10
|
Heat Shock Protein 90 Ensures the Integrity of Rubella Virus p150 Protein and Supports Viral Replication. J Virol 2019; 93:JVI.01142-19. [PMID: 31484751 DOI: 10.1128/jvi.01142-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Two viral nonstructural proteins, p150 and p90, are expressed in rubella virus (RUBV)-infected cells and mediate viral genome replication, presumably using various host machineries. Molecular chaperones are critical host factors for the maintenance of cellular proteostasis, and certain viral proteins use this chaperone system. The RUBV p150 and p90 proteins are generated from a precursor polyprotein, p200, via processing by the protease activity of its p150 region. This processing is essential for RUBV genome replication. Here we show that heat shock protein 90 (HSP90), a molecular chaperone, is an important host factor for RUBV genome replication. The treatment of RUBV-infected cells with the HSP90 inhibitors 17-allylamino-17-desmethoxygeldanamycin (17-AAG) and ganetespib suppressed RUBV genome replication. HSP90α physically interacted with p150, but not p90. Further analyses into the mechanism of action of the HSP90 inhibitors revealed that HSP90 activity contributes to p150 functional integrity and promotes p200 processing. Collectively, our data demonstrate that RUBV p150 is a client of the HSP90 molecular chaperone and that HSP90 functions as a key host factor for RUBV replication.IMPORTANCE Accumulating evidence indicates that RNA viruses use numerous host factors during replication of their genomes. However, the host factors involved in rubella virus (RUBV) genome replication are largely unknown. In this study, we demonstrate that the HSP90 molecular chaperone is needed for the efficient replication of the RUBV genome. Further, we reveal that HSP90 interacts with RUBV nonstructural protein p150 and its precursor polyprotein, p200. HSP90 contributes to the stability of p150 and the processing of p200 via its protease domain in the p150 region. We conclude that the cellular molecular chaperone HSP90 is a key host factor for functional maturation of nonstructural proteins for RUBV genome replication. These findings provide novel insight into this host-virus interaction.
Collapse
|
11
|
Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB, Galigniana MD. The Nuclear Receptor Field: A Historical Overview and Future Challenges. NUCLEAR RECEPTOR RESEARCH 2018; 5:101320. [PMID: 30148160 PMCID: PMC6108593 DOI: 10.11131/2018/101320] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this article we summarize the birth of the field of nuclear receptors, the discovery of untransformed and transformed isoforms of ligand-binding macromolecules, the discovery of the three-domain structure of the receptors, and the properties of the Hsp90-based heterocomplex responsible for the overall structure of the oligomeric receptor and many aspects of the biological effects. The discovery and properties of the subfamily of receptors called orphan receptors is also outlined. Novel molecular aspects of the mechanism of action of nuclear receptors and challenges to resolve in the near future are discussed.
Collapse
Affiliation(s)
- Gisela I. Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | - Cecilia M. Lotufo
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | | | - Jeffrey C. Sivils
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Olga B. Soto
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Marc B. Cox
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mario D. Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| |
Collapse
|
12
|
Radli M, Rüdiger SGD. Dancing with the Diva: Hsp90-Client Interactions. J Mol Biol 2018; 430:3029-3040. [PMID: 29782836 DOI: 10.1016/j.jmb.2018.05.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
Abstract
The molecular chaperone Hsp90 is involved in the folding, maturation, and degradation of a large number structurally and sequentially unrelated clients, often connected to serious diseases. Elucidating the principles of how Hsp90 recognizes this large variety of substrates is essential for comprehending the mechanism of this chaperone machinery, as well as it is a prerequisite for the design of client specific drugs targeting Hsp90. Here, we discuss the recent progress in understanding the substrate recognition principles of Hsp90 and its implications for the role of Hsp90 in the lifecycle of proteins. Hsp90 acts downstream of the chaperone Hsp70, which exposes its substrate to a short and highly hydrophobic cleft. The subsequently acting Hsp90 has an extended client-binding interface that enables a large number of low-affinity contacts. Structural studies show interaction modes of Hsp90 with the intrinsically disordered Alzheimer's disease-causing protein Tau, the kinase Cdk4 in a partially unfolded state and the folded ligand-binding domain of a steroid receptor. Comparing the features shared by these different proteins provides a picture of the substrate-binding principles of Hsp90.
Collapse
Affiliation(s)
- Martina Radli
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality. Mol Cell Biol 2016; 36:1412-24. [PMID: 26951197 DOI: 10.1128/mcb.01064-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/26/2016] [Indexed: 12/15/2022] Open
Abstract
Hsp90 is a molecular chaperone that aids in the folding of its metastable client proteins. Past studies have shown that it can exert a strong impact on some cellular pathways by controlling key regulators. However, it is unknown whether several components of a single pathway are collectively regulated by Hsp90. Here, we observe that Hsp90 influences the protein abundance of multiple Gal proteins and the efficiency of galactose utilization even after the galactose utilization pathway (GAL pathway) is fully induced. The effect of Hsp90 on Gal proteins is not at the transcriptional level. Moreover, Gal1 is found to physically interact with Hsp90, and its stability is reduced in low-Hsp90 cells. When Hsp90 is compromised, several Gal proteins form protein aggregates that colocalize with the disaggregase Hsp104. These results suggest that Gal1 and other Gal proteins are probably the clients of Hsp90. An unbalanced GAL pathway has been known to cause fatal growth arrest due to accumulation of toxic galactose metabolic intermediates. It is likely that Hsp90 chaperones multiple Gal proteins to maintain proteostasis and prevent cell lethality especially in a fluctuating environment.
Collapse
|
14
|
Assimon VA, Southworth DR, Gestwicki JE. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation. Biochemistry 2015; 54:7120-31. [PMID: 26565746 PMCID: PMC4714923 DOI: 10.1021/acs.biochem.5b00801] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) require the help of tetratricopeptide repeat (TPR) domain-containing cochaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can interact with only a single TPR cochaperone at a time, and each member of the TPR cochaperone family brings distinct functions to the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR cochaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity among the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR cochaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other cochaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between the Hsp70 and Hsp90 proteins and the TPR cochaperones.
Collapse
Affiliation(s)
| | | | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158
| |
Collapse
|
15
|
Beraldo FH, Thomas A, Kolisnyk B, Hirata PH, De Jaeger X, Martyn AC, Fan J, Goncalves DF, Cowan MF, Masood T, Martins VR, Gros R, Prado VF, Prado MAM. Hyperactivity and attention deficits in mice with decreased levels of stress-inducible phosphoprotein 1 (STIP1). Dis Model Mech 2015; 8:1457-66. [PMID: 26398952 PMCID: PMC4631792 DOI: 10.1242/dmm.022525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022] Open
Abstract
Stress-inducible phosphoprotein I (STIP1, STI1 or HOP) is a co-chaperone intermediating Hsp70/Hsp90 exchange of client proteins, but it can also be secreted to trigger prion protein-mediated neuronal signaling. Some mothers of children with autism spectrum disorders (ASD) present antibodies against certain brain proteins, including antibodies against STIP1. Maternal antibodies can cross the fetus blood-brain barrier during pregnancy, suggesting the possibility that they can interfere with STIP1 levels and, presumably, functions. However, it is currently unknown whether abnormal levels of STIP1 have any impact in ASD-related behavior. Here, we used mice with reduced (50%) or increased STIP1 levels (fivefold) to test for potential ASD-like phenotypes. We found that increased STIP1 regulates the abundance of Hsp70 and Hsp90, whereas reduced STIP1 does not affect Hsp70, Hsp90 or the prion protein. Interestingly, BAC transgenic mice presenting fivefold more STIP1 show no major phenotype when examined in a series of behavioral tasks, including locomotor activity, elevated plus maze, Morris water maze and five-choice serial reaction time task (5-CSRTT). In contrast, mice with reduced STIP1 levels are hyperactive and have attentional deficits on the 5-CSRTT, but exhibit normal performance for the other tasks. We conclude that reduced STIP1 levels can contribute to phenotypes related to ASD. However, future experiments are needed to define whether it is decreased chaperone capacity or impaired prion protein signaling that contributes to these phenotypes. Summary: Here, using a series of behavioral tests including touchscreen tasks we show that decreased levels of stress-inducible phosphoprotein 1 (STIP1) lead to attention deficits and hyperactivity in mice.
Collapse
Affiliation(s)
- Flavio H Beraldo
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Anu Thomas
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Benjamin Kolisnyk
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada Program in Neuroscience, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Pedro H Hirata
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Xavier De Jaeger
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Amanda C Martyn
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Jue Fan
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Daniela F Goncalves
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Matthew F Cowan
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Talal Masood
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada Program in Neuroscience, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Vilma R Martins
- Department of Molecular and Cell Biology, International Research Center, A.C. Camargo Cancer Center and National Institute for Translational Neuroscience Research Center, Sao Paulo, SP 01508-010, Brazil
| | - Robert Gros
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada Program in Neuroscience, The University of Western Ontario, London, Ontario N6A5B7, Canada Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A5B7, Canada Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A5B7, Canada Program in Neuroscience, The University of Western Ontario, London, Ontario N6A5B7, Canada Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A5B7, Canada Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A5B7, Canada
| |
Collapse
|
16
|
Kang H, Xiao A, Huang X, Gao X, Yu H, He X, Zhu H, Hong Z, Zhang Z. A Lotus japonicus Cochaperone Protein Interacts With the Ubiquitin-Like Domain Protein CIP73 and Plays a Negative Regulatory Role in Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:534-45. [PMID: 25761207 DOI: 10.1094/mpmi-11-14-0354-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The calcium/calmodulin-dependent protein kinase CCaMK forms a complex with its phosphorylation target CIP73 (CCaMK-interacting protein of 73 kDa). In this work, a homolog of the animal HSC/HSP70 interacting protein (HIP) was identified as an interacting partner of CIP73 in Lotus japonicus. L. japonicus HIP contains all functional domains characteristic of animal HIP proteins. The C-terminal STI1-like domain of L. japonicus HIP was found to be necessary and sufficient for interaction with CIP73. The interaction between CIP73 and HIP occurred in both the nuclei and cytoplasm in Nicotiana benthamiana leaf cells. The interactions between CIP73 and HIP and between CIP73 and CCaMK could take place simultaneously in the same nuclei. HIP transcripts were detected in all plant tissues tested. As nodule primordia developed into young nodules, the expression of HIP was down-regulated and the HIP transcript level became very low in mature nodules. More nodules were formed in transgenic hairy roots of L. japonicus expressing HIP RNA interference at 16 days postinoculation as compared with the control hairy roots expressing the empty vector. It appears that HIP may play a role as a negative regulator for nodulation.
Collapse
Affiliation(s)
- Heng Kang
- 1Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aifang Xiao
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqin Huang
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xioumei Gao
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haixiang Yu
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingxing He
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhu
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonglie Hong
- 3Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-2339, U.S.A
| | - Zhongming Zhang
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Baindur-Hudson S, Edkins AL, Blatch GL. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins. Subcell Biochem 2015; 78:69-90. [PMID: 25487016 DOI: 10.1007/978-3-319-11731-7_3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.
Collapse
Affiliation(s)
- Swati Baindur-Hudson
- College of Health and Biomedicine, Victoria University, VIC 8001, Melbourne, Australia,
| | | | | |
Collapse
|
18
|
Röhl A, Tippel F, Bender E, Schmid AB, Richter K, Madl T, Buchner J. Hop/Sti1 phosphorylation inhibits its co-chaperone function. EMBO Rep 2014; 16:240-9. [PMID: 25504578 PMCID: PMC4328751 DOI: 10.15252/embr.201439198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In eukaryotes, the molecular chaperones Hsp90 and Hsp70 are connected via the co-chaperone Sti1/Hop, which allows transfer of clients. Here, we show that the basic functions of yeast Sti1 and human Hop are conserved. These include the simultaneous binding of Hsp90 and Hsp70, the inhibition of the ATPase activity of Hsp90, and the ability to support client activation in vivo. Importantly, we reveal that both Hop and Sti1 are subject to inhibitory phosphorylation, although the sites modified and the influence of regulatory phosphorylation is species specific. Phospho-mimetic variants have a reduced ability to activate clients in vivo and different affinity for Hsp70. Hop is more tightly regulated, as phosphorylation affects also the interaction with Hsp90 and induces structural rearrangements in the core part of the protein.
Collapse
Affiliation(s)
- Alina Röhl
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Franziska Tippel
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Evelyn Bender
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Andreas B Schmid
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Klaus Richter
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany Institute of Structural Biology Helmholtz Zentrum München, Neuherberg, Germany Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Buchner
- Center for Integrated Protein Science (CIPSM) at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
19
|
Protein folding, misfolding and quality control: the role of molecular chaperones. Essays Biochem 2014; 56:53-68. [DOI: 10.1042/bse0560053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells have to cope with stressful conditions and adapt to changing environments. Heat stress, heavy metal ions or UV stress induce damage to cellular proteins and disturb the balanced status of the proteome. The adjusted balance between folded and folding proteins, called protein homoeostasis, is required for every aspect of cellular functionality. Protective proteins called chaperones are expressed under extreme conditions in order to prevent aggregation of cellular proteins and safeguard protein quality. These chaperones co-operate during de novo folding, refolding and disaggregation of damaged proteins and in many cases refold them to their functional state. Even under physiological conditions these machines support protein homoeostasis and maintain the balance between de novo folding and degradation. Mutations generating unstable proteins, which are observed in numerous human diseases such as Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis and cystic fibrosis, also challenge the protein quality control system. A better knowledge of how the protein homoeostasis system is regulated will lead to an improved understanding of these diseases and provide potential targets for therapy.
Collapse
|
20
|
STI1 antagonizes cytoskeleton collapse mediated by small GTPase Rnd1 and regulates neurite growth. Exp Cell Res 2014; 324:84-91. [PMID: 24690281 DOI: 10.1016/j.yexcr.2014.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 01/10/2023]
Abstract
Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1-plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.
Collapse
|
21
|
Maciejewski A, Prado MA, Choy WY. ¹H, ¹⁵N and ¹³C backbone resonance assignments of the TPR1 and TPR2A domains of mouse STI1. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:305-310. [PMID: 23070844 DOI: 10.1007/s12104-012-9433-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/06/2012] [Indexed: 06/01/2023]
Abstract
Hop/STI1 (Hsp-organizing protein/stress-induced-phosphoprotein 1) is a molecular co-chaperone, which coordinates Hsp70 and Hsp90 activity during client protein folding through interactions with its TPR1 and TPR2A domains. Hsp90 substrates include a diverse set of proteins, many of which have been implicated in tumorigenesis. Over-expression of Hsp90 in cancer cells stabilizes mutant oncoproteins promoting cancer cell survival. Disruption of Hsp90 and its co-chaperone machinery has become a promising strategy for the treatment of cancer. STI1 has also been described as a neurotrophic signaling molecule through its interactions with the prion protein (PrP(C)). Here, we report the (1)H, (13)C and (15)N backbone assignments of the TPR1 and TPR2A domains of mouse STI1, which interact with Hsp70 and Hsp90, respectively. (1)H-(15)N HSQC spectra of TPR2A domain in the presence of a peptide encoding the C-terminal Hsp90 binding site revealed significant chemical shift changes indicating complex formation. These results will facilitate the screening of potential molecules that inhibit STI1 complex formation with Hsp70 and/or Hsp90 for the treatment of cancer and detailed structural studies of the STI1-PrP(C) complex.
Collapse
Affiliation(s)
- Andrzej Maciejewski
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | |
Collapse
|
22
|
Yamaguchi F, Yamamura S, Shimamoto S, Tokumitsu H, Tokuda M, Kobayashi R. Suramin is a novel activator of PP5 and biphasically modulates S100-activated PP5 activity. Appl Biochem Biotechnol 2013; 172:237-47. [PMID: 24068474 DOI: 10.1007/s12010-013-0522-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/15/2013] [Indexed: 11/24/2022]
Abstract
Suramin is an activator of ryanodine receptors and competitively binds to the calmodulin-binding site. In addition, S100A1 and calmodulin compete for the same binding site on ryanodine receptors. We therefore studied the effects of suramin on protein phosphatase 5 (PP5) and S100-activated PP5. In the absence of S100 proteins, suramin bound to the tetratricopeptide repeat (TPR) domain of PP5 and activated the enzyme in a dose-dependent manner. In the presence of S100A2/Ca(2+), lower concentrations of suramin dose-dependently inhibited PP5 activity as an S100 antagonist, whereas higher concentrations of suramin reactivated PP5. Although the C-terminal fragment of heat shock protein 90 (HspC90) also weakly activated PP5, the binding site of suramin and HspC90 may be different, and addition of suramin showed no clear effect on the phosphatase activity of PP5. Similar biphasic effects of suramin were observed with S100A1-, S100B- or S100P-activated PP5. However, the inhibitory effects of lower concentrations of suramin on S100A6-activated PP5 are weak and high concentrations of suramin further activated PP5. SPR and the cross-linking study showed inhibition of the interaction between S100 protein and PP5 by suramin. Our results revealed that suramin is a novel PP5 activator and modulates S100-activated PP5 activity by competitively binding to the TPR domain.
Collapse
Affiliation(s)
- Fuminori Yamaguchi
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Hliscs M, Nahar C, Frischknecht F, Matuschewski K. Expression profiling of Plasmodium berghei HSP70 genes for generation of bright red fluorescent parasites. PLoS One 2013; 8:e72771. [PMID: 24013507 PMCID: PMC3754930 DOI: 10.1371/journal.pone.0072771] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022] Open
Abstract
Live cell imaging of recombinant malarial parasites encoding fluorescent probes provides critical insights into parasite-host interactions and life cycle progression. In this study, we generated a red fluorescent line of the murine malarial parasite Plasmodium berghei. To allow constitutive and abundant expression of the mCherry protein we profiled expression of all members of the P. berghei heat shock protein 70 (HSP70) family. We identified PbHSP70/1, an invariant ortholog of Plasmodium falciparum HSP70-1, as the protein with the highest expression levels during Plasmodium blood, mosquito, and liver infection. Stable allelic insertion of a mCherry expression cassette into the PbHsp70/1 locus created constitutive red fluorescent P. berghei lines, termed Pbred. We show that these parasites can be used for live imaging of infected host cells and organs, including hepatocytes, erythrocytes, and whole Anopheles mosquitoes. Quantification of the fluorescence intensity of several Pbred parasite stages revealed significantly enhanced signal intensities in comparison to GFP expressed under the control of the constitutive EF1alpha promoter. We propose that systematic transcript profiling permits generation of reporter parasites, such as the Pbred lines described herein.
Collapse
Affiliation(s)
- Marion Hliscs
- Max Planck Institute for Infection Biology, Parasitology Unit, Berlin, Germany
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Carolin Nahar
- Max Planck Institute for Infection Biology, Parasitology Unit, Berlin, Germany
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Kai Matuschewski
- Max Planck Institute for Infection Biology, Parasitology Unit, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
24
|
van der Steen T, Tindall DJ, Huang H. Posttranslational modification of the androgen receptor in prostate cancer. Int J Mol Sci 2013; 14:14833-59. [PMID: 23863692 PMCID: PMC3742275 DOI: 10.3390/ijms140714833] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/03/2023] Open
Abstract
The androgen receptor (AR) is important in the development of the prostate by regulating transcription, cellular proliferation, and apoptosis. AR undergoes posttranslational modifications that alter its transcription activity, translocation to the nucleus and stability. The posttranslational modifications that regulate these events are of utmost importance to understand the functional role of AR and its activity. The majority of these modifications occur in the activation function-1 (AF1) region of the AR, which contains the transcriptional activation unit 1 (TAU1) and 5 (TAU5). Identification of the modifications that occur to these regions may increase our understanding of AR activation in prostate cancer and the role of AR in the progression from androgen-dependent to castration-resistant prostate cancer (CRPC). Most of the posttranslational modifications identified to date have been determined using the full-length AR in androgen dependent cells. Further investigations into the role of posttranslational modifications in androgen-independent activation of full-length AR and constitutively active splicing variants are warranted, findings from which may provide new therapeutic options for CRPC.
Collapse
Affiliation(s)
- Travis van der Steen
- Department of Urology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; E-Mails: (T.V.S.); (D.J.T.)
| | - Donald J. Tindall
- Department of Urology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; E-Mails: (T.V.S.); (D.J.T.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-507-284-0020; Fax: +1-507-293-3071
| |
Collapse
|
25
|
Pare JM, LaPointe P, Hobman TC. Hsp90 cochaperones p23 and FKBP4 physically interact with hAgo2 and activate RNA interference-mediated silencing in mammalian cells. Mol Biol Cell 2013; 24:2303-10. [PMID: 23741051 PMCID: PMC3727923 DOI: 10.1091/mbc.e12-12-0892] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Argonaute proteins rely on the activity of Hsp90 to mediate their interaction with small RNAs. The activity of Hsp90 is modulated by proteins known as cochaperones. This study identifies p23 and FKBP4 as cochaperones that interact with hAgo2 and shows that they, along with Cdc37 and Aha1, are required for efficient RNAi. Argonaute proteins and small RNAs together form the RNA-induced silencing complex (RISC), the central effector of RNA interference (RNAi). The molecular chaperone Hsp90 is required for the critical step of loading small RNAs onto Argonaute proteins. Here we show that the Hsp90 cochaperones Cdc37, Aha1, FKBP4, and p23 are required for efficient RNAi. Whereas FKBP4 and p23 form a stable complex with hAgo2, the function of Cdc37 in RNAi appears to be indirect and may indicate that two or more Hsp90 complexes are involved. Our data also suggest that p23 and FKBP4 interact with hAgo2 before small RNA loading and that RISC loading takes place in the cytoplasm rather than in association with RNA granules. Given the requirement for p23 and FKBP4 for efficient RNAi and that these cochaperones bind to hAgo2, we predict that loading of hAgo2 is analogous to Hsp90-mediated steroid hormone receptor activation. To this end, we outline a model in which FKBP4, p23, and Aha1 cooperatively regulate the progression of hAgo2 through the chaperone cycle. Finally, we propose that hAgo2 and RNAi can serve as a robust model system for continued investigation into the Hsp90 chaperone cycle.
Collapse
Affiliation(s)
- Justin M Pare
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | | | |
Collapse
|
26
|
Li HB, Du YZ. Molecular cloning and characterization of an Hsp90/70 organizing protein gene from Frankliniella occidentalis (Insecta: Thysanoptera, Thripidae). Gene 2013; 520:148-55. [DOI: 10.1016/j.gene.2013.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 01/06/2023]
|
27
|
Shahinas D, Folefoc A, Pillai DR. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance. Pathogens 2013; 2:33-54. [PMID: 25436880 PMCID: PMC4235713 DOI: 10.3390/pathogens2010033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/29/2022] Open
Abstract
Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine.
Collapse
Affiliation(s)
- Dea Shahinas
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Canada.
| | - Asongna Folefoc
- Department of Pathology & Laboratory Medicine, The University of Calgary, Calgary, AB, Canada.
| | - Dylan R Pillai
- Department of Pathology & Laboratory Medicine, The University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Camargo M, Lopes PI, Del Giudice PT, Carvalho VM, Cardozo KHM, Andreoni C, Fraietta R, Bertolla RP. Unbiased label-free quantitative proteomic profiling and enriched proteomic pathways in seminal plasma of adult men before and after varicocelectomy. Hum Reprod 2012; 28:33-46. [DOI: 10.1093/humrep/des357] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Characterization of the interaction of Aha1 with components of the Hsp90 chaperone machine and client proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1092-101. [DOI: 10.1016/j.bbamcr.2012.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
|
30
|
Muhetaer G, Takeuchi H, Akizuki S, Iwamoto H, Shimazu M, Unezaki S, Hirano T. Higher Sensitivity of Peripheral Blood Lymphocytes to Endogenous Glucocorticoid in Renal Transplant Recipients Treated With Tacrolimus, as Compared to Those Treated With Cyclosporine. CELL MEDICINE 2012; 3:75-80. [PMID: 28058183 DOI: 10.3727/215517912x639423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lymphocyte sensitivity to endogenous glucocorticoid cortisol could be a biological marker for safe reduction and withdrawal of steroids in renal transplant recipients. We compared peripheral lymphocyte sensitivity with cortisol between transplant recipients treated with tacrolimus (Tac) and those treated with cyclosporine. The suppressive efficacies of cortisol against T-cell mitogen-stimulated proliferation of peripheral lymphocytes were investigated in 44 renal transplant patients, who either had reduced or been withdrawn from steroid treatment. Twenty of the 44 patients were treated with Tac, and the other 24 patients were treated with cyclosporine A (CyA). The lymphocyte sensitivity to cortisol was compared between these two patient groups. The cortisol IC50 values in the Tac and CyA groups were 0.09 ± 0.12 and 14.2 ± 12.7 ng/ml, respectively. Lymphocyte sensitivity to cortisol in the Tac-treated group was significantly higher than that in the CyA-treated group (p = 0.0283). On the other hand, incidences of steroid withdrawal syndrome and increases in serum creatinine concentration were not significantly different between the Tac and CyA groups. Lymphocyte sensitivity to cortisol was higher in the Tac-treated patients than that in the CyA-treated ones. Since the cortisol sensitivity of peripheral lymphocytes is suggested to be a predictive marker for safe steroid withdrawal, Tac administration shows promise in aiding successful withdrawal of steroid treatment in long-term renal transplant recipients.
Collapse
Affiliation(s)
- Gulimire Muhetaer
- Department of 5th Surgery, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan; †Department of Surgery, Uygur Autonomous Region People's Hospital, Xinjiang Uyghur Autonomous Region, China
| | - Hironori Takeuchi
- ‡ Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Sogo Akizuki
- ‡ Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Hitoshi Iwamoto
- Department of 5th Surgery, Hachioji Medical Center, Tokyo Medical University , Tokyo , Japan
| | - Motohide Shimazu
- Department of 5th Surgery, Hachioji Medical Center, Tokyo Medical University , Tokyo , Japan
| | - Sakae Unezaki
- Department of 5th Surgery, Hachioji Medical Center, Tokyo Medical University , Tokyo , Japan
| | - Toshihiko Hirano
- § Department of Clinical Pharmacology, Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| |
Collapse
|
31
|
Cervantes-Gomez F, Nimmanapalli R, Gandhi V. ATP analog enhances the actions of a heat shock protein 90 inhibitor in multiple myeloma cells. J Pharmacol Exp Ther 2011; 339:545-54. [PMID: 21821695 PMCID: PMC3199983 DOI: 10.1124/jpet.111.184903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/03/2011] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein (HSP) 90 regulates client oncoprotein maturation. The chaperone function of HSP90 is blocked by 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), although it results in transcription and translation of antiapoptotic HSP proteins. Using three myeloma cell lines, we tested whether inhibition of transcription/translation of HSP or client proteins will enhance 17-AAG-mediated cytotoxicity. 8-Chloro-adenosine (8-Cl-Ado), currently in clinical trials, inhibits bioenergy production, mRNA transcription, and protein translation and was combined with 17-AAG. 17-AAG treatment resulted in HSP transcript and protein level elevation. In the combination, 8-Cl-Ado did not abrogate HSP mRNA and protein induction. HSP90 requires ATP to stabilize client proteins; hence, expression of signal transducer and activator of transcription 3 (STAT3), Raf-1, and Akt was analyzed. 17-AAG alone resulted in <10% change in STAT3, Raf-1, and Akt protein levels, whereas no change was observed for 4E-BP1. In contrast, the combination treatment resulted in a >50% decrease in client protein levels and marked hypophosphorylation of 4E-BP1. 8-Cl-Ado alone resulted in a <30% decrease of client proteins and 4E-BP1 hypophosphorylation. 8-Cl-Ado combined with 17-AAG resulted in more than additive cytotoxicity. In conclusion, 8-Cl-Ado, which targets transcription, translation, and cellular bioenergy, enhanced 17-AAG-mediated cytotoxicity in myeloma cells.
Collapse
Affiliation(s)
- Fabiola Cervantes-Gomez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | |
Collapse
|
32
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
33
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
34
|
Li J, Soroka J, Buchner J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:624-35. [PMID: 21951723 DOI: 10.1016/j.bbamcr.2011.09.003] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client proteins many of which are involved in essential cellular processes like signal transduction pathways. This activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttranslational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynamics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).
Collapse
Affiliation(s)
- Jing Li
- Technische Universitat, Munchen, Germany
| | | | | |
Collapse
|
35
|
Hildenbrand ZL, Molugu SK, Herrera N, Ramirez C, Xiao C, Bernal RA. Hsp90 can accommodate the simultaneous binding of the FKBP52 and HOP proteins. Oncotarget 2011; 2:43-58. [PMID: 21378414 PMCID: PMC3248148 DOI: 10.18632/oncotarget.225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The regulation of steroidogenic hormone receptor-mediated activity plays an important role in the development of hormone-dependent cancers. For example, during prostate carcinogenesis, the regulatory function played by the androgen receptor is often converted from a growth suppressor to an oncogene thus promoting prostate cancer cell survival and eventual metastasis. Within the cytoplasm, steroid hormone receptor activity is regulated by the Hsp90 chaperone in conjunction with a series of co-chaperone proteins. Collectively, Hsp90 and its binding associates form a large heteromeric complex that scaffold the fully mature receptor for binding with the respective hormone. To date our understanding of the interactions between Hsp90 with the various TPR domain-containing co-chaperone proteins is limited due to a lack of available structural information. Here we present the stable formation of Hsp902-FKBP521- HOP2 and Hsp902-FKBP521-p232-HOP2 complexes as detected by immunoprecipitation, time course dynamic light scattering and electron microscopy. The simultaneous binding of FKBP52 and HOP to the Hsp90 dimer provide direct evidence of a novel chaperone sub-complex that likely plays a transient role in the regulation of the fully mature steroid hormone receptor.
Collapse
Affiliation(s)
- Zacariah L Hildenbrand
- Department of Chemistry, University of Texas at El Paso, 500 W. University Ave, El Paso, Texas 79968, USA
| | | | | | | | | | | |
Collapse
|
36
|
Schmidt JC, Soares MJ, Goldenberg S, Pavoni DP, Krieger MA. Characterization of TcSTI-1, a homologue of stress-induced protein-1, in Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2011; 106:70-7. [PMID: 21340359 DOI: 10.1590/s0074-02762011000100012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 11/21/2022] Open
Abstract
The life cycle of the protozoan Trypanosoma cruzi exposes it to several environmental stresses in its invertebrate and vertebrate hosts. Stress conditions are involved in parasite differentiation, but little is known about the stress response proteins involved. We report here the first characterization of stress-induced protein-1 (STI-1) in T. cruzi (TcSTI-1). This co-chaperone is produced in response to stress and mediates the formation of a complex between the stress proteins HSP70 and HSP90 in other organisms. Despite the similarity of TcSTI-1 to STI-1 proteins in other organisms, its expression profile in response to various stress conditions, such as heat shock, acidic pH or nutrient starvation, is quite different. Neither polysomal mRNA nor protein levels changed in exponentially growing epimastigotes cultured under any of the stress conditions studied. Increased levels of TcSTI-1 were observed in epimastigotes subjected to nutritional stress in the late growth phase. Co-immunoprecipitation assays revealed an association between TcSTI-1 and TcHSP70 in T. cruzi epimastigotes. Immunolocalization demonstrated that TcSTI-1 was distributed throughout the cytoplasm and there was some colocalization of TcSTI-1 and TcHSP70 around the nucleus. Thus, TcSTI-1 associates with TcHSP70 and TcSTI-1 expression is induced when the parasites are subjected to stress conditions during specific growth phase.
Collapse
|
37
|
Matsumura Y, David LL, Skach WR. Role of Hsc70 binding cycle in CFTR folding and endoplasmic reticulum-associated degradation. Mol Biol Cell 2011; 22:2797-809. [PMID: 21697503 PMCID: PMC3154877 DOI: 10.1091/mbc.e11-02-0137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hsc70 plays a productive role during cotranslational cystic fibrosis transmembrane conductance regulator folding that is outweighed by its dominant contribution to posttranslational targeting to the ubiquitin-proteasome system. Moreover, the outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is governed by regulatory cochaperones. The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
38
|
Abstract
Prion diseases in humans and animals are characterized by progressive neurodegeneration and the formation of infectious particles called prions. Both features are intimately linked to a conformational transition of the cellular prion protein (PrP(C)) into aberrantly folded conformers with neurotoxic and self-replicating activities. Interestingly, there is increasing evidence that the infectious and neurotoxic properties of PrP conformers are not necessarily coupled. Transgenic mouse models revealed that some PrP mutants interfere with neuronal function in the absence of infectious prions. Vice versa, propagation of prions can occur without causing neurotoxicity. Consequently, it appears plausible that two partially independent pathways exist, one pathway leading to the propagation of infectious prions and another one that mediates neurotoxic signaling. In this review we will summarize current knowledge of neurotoxic PrP conformers and discuss the role of PrP(C) as a mediator of both stress-protective and neurotoxic signaling cascades.
Collapse
|
39
|
Madrigal-Matute J, Martin-Ventura JL, Blanco-Colio LM, Egido J, Michel JB, Meilhac O. Heat-shock proteins in cardiovascular disease. Adv Clin Chem 2011; 54:1-43. [PMID: 21874755 DOI: 10.1016/b978-0-12-387025-4.00001-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heat-shock proteins (HSPs) belong to a group of highly conserved families of proteins expressed by all cells and organisms and their expression may be constitutive or inducible. They are generally considered as protective molecules against different types of stress and have numerous intracellular functions. Secretion or release of HSPs has also been described, and potential roles for extracellular HSPs reported. HSP expression is modulated by different stimuli involved in all steps of atherogenesis including oxidative stress, proteolytic aggression, or inflammation. Also, antibodies to HSPs may be used to monitor the response to different types of stress able to induce changes in HSP levels. In the present review, we will focus on the potential implication of HSPs in atherogenesis and discuss the limitations to the use of HSPs and anti-HSPs as biomarkers of atherothrombosis. HSPs could also be considered as potential therapeutic targets to reinforce vascular defenses and delay or avoid clinical complications associated with atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Lab, IIS, Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Hildenbrand ZL, Molugu SK, Paul A, Avila GA, Herrera N, Xiao C, Cox MB, Bernal RA. High-yield expression and purification of the Hsp90-associated p23, FKBP52, HOP and SGTα proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2760-4. [PMID: 20829124 DOI: 10.1016/j.jchromb.2010.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/01/2010] [Accepted: 08/14/2010] [Indexed: 01/01/2023]
Abstract
Hsp90 is a ubiquitous molecular chaperone that plays a key role in the malignant development of hormone-dependent pathologies such as cancer. An important role for Hsp90 is to facilitate the stable binding of steroid hormones to their respective receptors enabling the ligand-based signal to be carried to the nucleus and ultimately resulting in the up-regulation of gene expression. Along with Hsp90, this dynamic and transient process also involves the recruitment of additional proteins and co-chaperones that add further stability to the mature receptor-chaperone complex. In the work presented here, we describe four new protocols for the bacterial over-expression and column chromatographic purification of the human p23, FKBP52, HOP and SGTα proteins. Each of these proteins plays a distinct role in the steroid hormone receptor regulatory cycle. Affinity, ion-exchange and size-exclusion techniques were used to produce target yields greater than 50mg/L of cultured media, with each purified sample reaching near absolute sample homogeneity. These results reveal a reliable system for the production of p23, FKBP52, HOP and SGTα substrate proteins for use in the investigation of the Hsp90-associated protein interactions of the steroid hormone receptor cycle.
Collapse
Affiliation(s)
- Zacariah L Hildenbrand
- Department of Chemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Galigniana MD, Echeverría PC, Erlejman AG, Piwien-Pilipuk G. Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus 2010; 1:299-308. [PMID: 21113270 PMCID: PMC2990191 DOI: 10.4161/nucl.1.4.11743] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 11/19/2022] Open
Abstract
In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling. All members of the steroid receptor family are known to form large oligomeric structures with the heat-shock proteins of 90-kDa (hsp90) and 70-kDa (hsp70), the small acidic protein p23, and a tetratricopeptide repeat (TPR) -domain protein such as FK506-binding proteins (FKBPs), cyclophilins (CyPs) or the serine/threonine protein phosphatase 5 (PP5). It has always been stated that the dissociation of the chaperone heterocomplex (a process normally referred to as receptor "transformation") is the first step that permits the nuclear import of steroid receptors. However the experimental evidence is consistent with a model where the chaperone machinery is required for the retrotransport of the receptor through the cytoplasm and also facilitates the passage through the nuclear pore. Recent evidence indicates that the hsp90-based chaperone system also interacts with structures of the nuclear pore such as importin β and the integral nuclear pore glycoprotein Nup62 facilitating the passage of the untransformed receptor through the nuclear pore.
Collapse
Affiliation(s)
- Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
42
|
Abstract
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that facilitates the maturation of a wide range of proteins (known as clients). Clients are enriched in signal transducers, including kinases and transcription factors. Therefore, HSP90 regulates diverse cellular functions and exerts marked effects on normal biology, disease and evolutionary processes. Recent structural and functional analyses have provided new insights on the transcriptional and biochemical regulation of HSP90 and the structural dynamics it uses to act on a diverse client repertoire. Comprehensive understanding of how HSP90 functions promises not only to provide new avenues for therapeutic intervention, but to shed light on fundamental biological questions.
Collapse
|
43
|
Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, Kessler H, Richter K, Buchner J. Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol Cell 2010; 37:344-54. [PMID: 20159554 DOI: 10.1016/j.molcel.2010.01.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/14/2009] [Accepted: 12/07/2009] [Indexed: 01/01/2023]
Abstract
The chaperone Hsp90 is an ATP-dependent, dimeric molecular machine regulated by several cochaperones, including inhibitors and the unique ATPase activator Aha1. Here, we analyzed the mechanism of the Aha1-mediated acceleration of Hsp90 ATPase activity and identified the interaction surfaces of both proteins using multidimensional NMR techniques. For maximum activation of Hsp90, the two domains of Aha1 bind to sites in the middle and N-terminal domains of Hsp90 in a sequential manner. This binding induces the kinetically unfavored N terminally dimerized state of Hsp90, which primes for the hydrolysis-competent conformation. Surprisingly, this activation mechanism is asymmetric. The presence of one Aha1 molecule per Hsp90 dimer is sufficient to bridge the two subunits and to fully stimulate Hsp90 ATPase activity. This seems to functionalize the two subunits of the Hsp90 dimer in different ways, in that one subunit can be used for conformational ATPase regulation and the other for substrate protein processing.
Collapse
Affiliation(s)
- Marco Retzlaff
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, D-85747 Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hajj GNM, Santos TG, Cook ZSP, Martins VR. Developmental expression of prion protein and its ligands stress-inducible protein 1 and vitronectin. J Comp Neurol 2010; 517:371-84. [PMID: 19760599 DOI: 10.1002/cne.22157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prion protein (PrP(C)) is the normal isoform of PrP(Sc), a protein involved in neurodegenerative disorders. PrP(C) participates in neuritogenesis, neuroprotection, and memory consolidation through its interaction with the secreted protein stress-inducible protein 1 (STI1) and the extracellular matrix protein vitronectin (Vn). Although PrP(C) mRNA expression has been documented during embryogenesis, its protein expression patterns have not been evaluated. Furthermore, little is known about either Vn or STI protein expression. In this study, PrP(C), STI1, and Vn protein expression was explored throughout mouse embryonic life. We found that the distributions of the three proteins were spatiotemporally related. STI1 and Vn expression became evident at E8, earlier than PrP(C), in the nervous system and heart. At E10, we observed, in the spinal cord, a gradient of expression of the three proteins, more abundant in the notochord and floor plate, suggesting that they can have a role in axonal growth. As development proceeded, the three proteins were detected in other organs, suggesting that they may play a role in the development of nonneural tissues as well. Finally, although STI1 and Vn are PrP(C) ligands, their expression was not altered in PrP(C)-null mice.
Collapse
Affiliation(s)
- Glaucia N M Hajj
- Ludwig Institute for Cancer Research, São Paulo 01323-903, Brazil
| | | | | | | |
Collapse
|
45
|
Abstract
Heat shock proteins act as molecular chaperones, facilitating protein folding in cells of living organisms. Their role is particularly important in parasites because environmental changes associated with their life cycles place a strain on protein homoeostasis. Not surprisingly, some heat shock proteins are essential for the survival of the most virulent malaria parasite, Plasmodium falciparum. This justifies the need for a greater understanding of the specific roles and regulation of malarial heat shock proteins. Furthermore, heat shock proteins play a major role during invasion of the host by the parasite and mediate in malaria pathogenesis. The identification and development of inhibitor compounds of heat shock proteins has recently attracted attention. This is important, given the fact that traditional antimalarial drugs are increasingly failing, as a consequence of parasite increasing drug resistance. Heat shock protein 90 (Hsp90), Hsp70/Hsp40 partnerships and small heat shock proteins are major malaria drug targets. This review examines the structural and functional features of these proteins that render them ideal drug targets and the challenges of targeting these proteins towards malaria drug design. The major antimalarial compounds that have been used to inhibit heat shock proteins include the antibiotic, geldanamycin, deoxyspergualin and pyrimidinones. The proposed mechanisms of action of these molecules and the pathways they inhibit are discussed.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry & Microbiology, Zululand University, Kwadlangezwa, South Africa.
| |
Collapse
|
46
|
Wang L, Liang XF, Zhang WB, Mai KS, Huang Y, Shen D. Amnesic shellfish poisoning toxin stimulates the transcription of CYP1A possibly through AHR and ARNT in the liver of red sea bream Pagrus major. MARINE POLLUTION BULLETIN 2009; 58:1643-1648. [PMID: 19665739 DOI: 10.1016/j.marpolbul.2009.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 05/28/2023]
Abstract
To investigate the role of detoxification-related liver genes in amnesic shellfish poisoning toxin metabolism, red sea bream Pagrus major were exposed to domoic acid (DA, 2mugg(-1) wet weight) for 24h. Hepatic mRNA expression levels of AHR, ARNT, CYP1 and GSTs were determined by semi-quantitative RT-PCR. The cytosolic factors aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mRNA levels of DA exposure group were substantially enhanced by 113.3% and 90.9%, respectively. Consistent with this result, the phase I xenobiotic metabolizing enzyme (XME) cytochrome P-450 1A (CYP1A) was significantly induced. In contrast, the transcriptions of three major phase II XME glutathione S-transferases as well as heat shock protein 70 were not significantly affected by DA exposure. These results suggest a possible role of CYP1A after DA exposure in the toxin metabolism of marine fish, possibly through the AHR/ARNT signaling pathway.
Collapse
Affiliation(s)
- Lin Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | |
Collapse
|
47
|
Gaiser AM, Brandt F, Richter K. The Non-canonical Hop Protein from Caenorhabditis elegans Exerts Essential Functions and Forms Binary Complexes with Either Hsc70 or Hsp90. J Mol Biol 2009; 391:621-34. [DOI: 10.1016/j.jmb.2009.06.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/28/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
48
|
Song HO, Lee W, An K, Lee HS, Cho JH, Park ZY, Ahnn J. C. elegans STI-1, the homolog of Sti1/Hop, is involved in aging and stress response. J Mol Biol 2009; 390:604-17. [PMID: 19467242 DOI: 10.1016/j.jmb.2009.05.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 11/25/2022]
Abstract
Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.
Collapse
Affiliation(s)
- Hyun-Ok Song
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Hawkins GA, Lazarus R, Smith RS, Tantisira KG, Meyers DA, Peters SP, Weiss ST, Bleecker ER. The glucocorticoid receptor heterocomplex gene STIP1 is associated with improved lung function in asthmatic subjects treated with inhaled corticosteroids. J Allergy Clin Immunol 2009; 123:1376-83.e7. [PMID: 19254810 DOI: 10.1016/j.jaci.2009.01.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 01/02/2009] [Accepted: 01/09/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Corticosteroids exert their anti-inflammatory action by binding and activating the intracellular glucocorticoid receptor heterocomplex. OBJECTIVE We sought to evaluate the genes HSPCB, HSPCA, STIP1, HSPA8, DNAJB1, PTGES3, FKBP5, and FKBP4 on corticosteroid response. METHODS White asthmatic subjects (n = 382) randomized to once-daily flunisolide or conventional inhaled corticosteroid therapy were genotyped. Outcome measures were baseline FEV1, percent predicted FEV1, and percent change in FEV1 after corticosteroid treatment. Multivariable analyses adjusted for age, sex, and height were performed, fitting the most appropriate genetic model based on the quantitative mean derived from ANOVA models to determine whether there was an independent effect of polymorphisms on change in FEV1 independent of baseline level. RESULTS Positive recessive model correlations for STIP1 single nucleotide polymorphisms were observed for baseline FEV1 (rs4980524, P = .009; rs6591838, P = .0045; rs2236647, P = .002; and rs2236648; P = .013), baseline percent predicted FEV1 (rs4980524, P = .002; rs6591838, P = .017; rs2236647, P = .003; and rs2236648, P = .008), and percent change in FEV1 at 4 weeks (rs4980524, P = .044; rs6591838, P = .016; and rs2236647, P = .01) and 8 weeks (rs4980524, P = .044; rs6591838, P = .016; and rs2236647; P = .01) or therapy. Haplotypic associations were observed for baseline FEV1 and percent change in FEV1 at 4 weeks of therapy (P = .05 and P = .01, respectively). Significant trends toward association were observed for baseline percent predicted FEV1 and percent change in FEV1 at 8 weeks of therapy. Positive correlations between haplotypes and percent change in FEV1 were also observed. CONCLUSIONS STIP1 genetic variations might play a role in regulating corticosteroid response in asthmatic subjects with reduced lung function. Replication in a second asthmatic population is required to confirm these observations.
Collapse
Affiliation(s)
- Gregory A Hawkins
- Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Longshaw VM, Baxter M, Prewitz M, Blatch GL. Knockdown of the co-chaperone Hop promotes extranuclear accumulation of Stat3 in mouse embryonic stem cells. Eur J Cell Biol 2008; 88:153-66. [PMID: 18996616 DOI: 10.1016/j.ejcb.2008.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/27/2008] [Accepted: 09/13/2008] [Indexed: 01/07/2023] Open
Abstract
A key event in the mechanism of mouse embryonic stem cell (mESC) pluripotency is phosphorylation, dimerisation and translocation to the nucleus of the signal transducer and activator of transcription3, Stat3. We used RNAi to suppress the levels of the co-chaperone Hsp70/Hsp90 organising protein (Hop) in an mESC line. Hop knockdown caused 68% depletion in Stat3 mRNA levels, decreased soluble pYStat3 levels, and led to an extranuclear accumulation of Stat3. The major binding partner of Hop, Hsp90, co-localised with a small non-nuclear fraction of Stat3 in mESCs, and both Stat3 and Hop co-precipitated with Hsp90. Hop knockdown did not affect Nanog and Oct4 protein levels; however, Nanog mRNA levels were decreased. We found that in the absence of Hop, mESCs lost their pluripotent ability to form embryoid bodies with a basement membrane. These data suggest that Hop facilitates the phosphorylation and nuclear translocation of Stat3, implying a role for the Hsp70/Hsp90 chaperone heterocomplex machinery in pluripotency signalling.
Collapse
Affiliation(s)
- Victoria M Longshaw
- Department of Biochemistry, Microbiology & Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | | | |
Collapse
|