1
|
Idrissou M, Maréchal A. The PRP19 Ubiquitin Ligase, Standing at the Cross-Roads of mRNA Processing and Genome Stability. Cancers (Basel) 2022; 14:878. [PMID: 35205626 PMCID: PMC8869861 DOI: 10.3390/cancers14040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/07/2022] Open
Abstract
mRNA processing factors are increasingly being recognized as important regulators of genome stability. By preventing and resolving RNA:DNA hybrids that form co-transcriptionally, these proteins help avoid replication-transcription conflicts and thus contribute to genome stability through their normal function in RNA maturation. Some of these factors also have direct roles in the activation of the DNA damage response and in DNA repair. One of the most intriguing cases is that of PRP19, an evolutionarily conserved essential E3 ubiquitin ligase that promotes mRNA splicing, but also participates directly in ATR activation, double-strand break resection and mitosis. Here, we review historical and recent work on PRP19 and its associated proteins, highlighting their multifarious cellular functions as central regulators of spliceosome activity, R-loop homeostasis, DNA damage signaling and repair and cell division. Finally, we discuss open questions that are bound to shed further light on the functions of PRP19-containing complexes in both normal and cancer cells.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| |
Collapse
|
2
|
Yeh FL, Chang SL, Ahmed GR, Liu HI, Tung L, Yeh CS, Lanier LS, Maeder C, Lin CM, Tsai SC, Hsiao WY, Chang WH, Chang TH. Activation of Prp28 ATPase by phosphorylated Npl3 at a critical step of spliceosome remodeling. Nat Commun 2021; 12:3082. [PMID: 34035302 PMCID: PMC8149812 DOI: 10.1038/s41467-021-23459-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
Splicing, a key step in the eukaryotic gene-expression pathway, converts precursor messenger RNA (pre-mRNA) into mRNA by excising introns and ligating exons. This task is accomplished by the spliceosome, a macromolecular machine that must undergo sequential conformational changes to establish its active site. Each of these major changes requires a dedicated DExD/H-box ATPase, but how these enzymes are activated remain obscure. Here we show that Prp28, a yeast DEAD-box ATPase, transiently interacts with the conserved 5' splice-site (5'SS) GU dinucleotide and makes splicing-dependent contacts with the U1 snRNP protein U1C, and U4/U6.U5 tri-snRNP proteins, Prp8, Brr2, and Snu114. We further show that Prp28's ATPase activity is potentiated by the phosphorylated Npl3, but not the unphosphorylated Npl3, thus suggesting a strategy for regulating DExD/H-box ATPases. We propose that Npl3 is a functional counterpart of the metazoan-specific Prp28 N-terminal region, which can be phosphorylated and serves as an anchor to human spliceosome.
Collapse
Affiliation(s)
- Fu-Lung Yeh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Hsin-I Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Luh Tung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Shu Yeh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Leah Stands Lanier
- Department of Biology, Washington and Lee University, Lexington, VA, USA
| | - Corina Maeder
- Department of Chemistry, Trinity University, San Antonio, TX, USA
| | - Che-Min Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Chun Tsai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Yi Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
3
|
Wu NY, Cheng SC. Functional analysis of Cwc24 ZF-domain in 5' splice site selection. Nucleic Acids Res 2019; 47:10327-10339. [PMID: 31504764 PMCID: PMC6821175 DOI: 10.1093/nar/gkz733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
The essential splicing factor Cwc24 contains a zinc-finger (ZF) domain required for its function in splicing. Cwc24 binds over the 5' splice site after the spliceosome is activated, and its binding prior to Prp2-mediated spliceosome remodeling is important for proper interactions of U5 and U6 with the 5' splice site sequence and selection of the 5' splice site. Here, we show that Cwc24 transiently interacts with the 5' splice site in formation of the functional RNA catalytic core during spliceosome remodeling, and the ZF-motif is required for specific interaction of Cwc24 with the 5' splice site. Deletion of the ZF domain or mutation of the conserved ZF residues greatly weakened the association of Cwc24 with the spliceosome, and lowered the affinity and specificity of its interaction with the 5' splice site, resulting in atypical interactions of U5, U6 and Prp8 with the 5' splice site, and aberrant cleavage at the 5' splice site. Our results reveal a crucial role of the Cwc24 ZF-motif for defining 5' splice site selection in the first splicing step.
Collapse
Affiliation(s)
- Nan-Ying Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
4
|
Chung CS, Tseng CK, Lai YH, Wang HF, Newman AJ, Cheng SC. Dynamic protein-RNA interactions in mediating splicing catalysis. Nucleic Acids Res 2019; 47:899-910. [PMID: 30395327 PMCID: PMC6344849 DOI: 10.1093/nar/gky1089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022] Open
Abstract
The spliceosome is assembled via sequential interactions of pre-mRNA with five small nuclear RNAs and many proteins. Recent determination of cryo-EM structures for several spliceosomal complexes has provided deep insights into interactions between spliceosomal components and structural changes of the spliceosome between steps, but information on how the proteins interact with pre-mRNA to mediate the reaction is scarce. By systematic analysis of proteins interacting with the splice sites (SSs), we have identified many previously unknown interactions of spliceosomal components with the pre-mRNA. Prp8 directly binds over the 5′SS and the branch site (BS) for the first catalytic step, and the 5′SS and 3′SS for the second step. Switching the Prp8 interaction from the BS to the 3′SS requires Slu7, which interacts dynamically with pre-mRNA first, and then interacts stably with the 3′-exon after Prp16-mediated spliceosome remodeling. Our results suggest that Prp8 plays a key role in positioning the 5′SS and 3′SS, facilitated by Slu7 through interactions with Prp8 and substrate RNA to advance exon ligation. We also provide evidence that Prp16 first docks on the intron 3′ tail, then translocates in the 3′ to 5′ direction on remodeling the spliceosome.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Chi-Kang Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Yung-Hua Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Hui-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
5
|
Torres-Cifuentes DM, Galindo-Rosales JM, Saucedo-Cárdenas O, Valdés J. The Entamoeba histolytica Syf1 Homolog Is Involved in the Splicing of AG-Dependent and AG-Independent Transcripts. Front Cell Infect Microbiol 2018; 8:229. [PMID: 30038900 PMCID: PMC6046404 DOI: 10.3389/fcimb.2018.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 02/04/2023] Open
Abstract
Syf1 is a tetratricopeptide repeat (TPR) protein implicated in transcription elongation, spliceosome conformation, mRNA nuclear-cytoplasmic export and transcription-coupled DNA repair. Recently, we identified the spliceosomal components of the human parasite Entamoeba histolytica, among them is EhSyf. Molecular predictions confirmed that EhSyf contains 15 type 1 TPR tandem α-antiparallel array motifs. Amoeba transformants carrying plasmids overexpressing HA-tagged or EhSyf silencing plasmids were established to monitor the impact of EhSyf on the splicing of several test Entamoeba transcripts. EhSyf Entamoeba transformants efficiently silenced or overexpressed the proteins in the nucleus. The overexpression or absence of EhSyf notably enhanced or blocked splicing of transcripts irrespective of the strength of their 3′ splice site. Finally, the absence of EhSyf negatively affected the transcription of an intron-less transcript. Altogether our data suggest that EhSyf is a bona fide Syf1 ortholog involved in transcription and splicing.
Collapse
Affiliation(s)
- Diana M Torres-Cifuentes
- RNA Laboratory, Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José M Galindo-Rosales
- RNA Laboratory, Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico.,División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Jesús Valdés
- RNA Laboratory, Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
Sidarovich A, Will CL, Anokhina MM, Ceballos J, Sievers S, Agafonov DE, Samatov T, Bao P, Kastner B, Urlaub H, Waldmann H, Lührmann R. Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation. eLife 2017; 6. [PMID: 28300534 PMCID: PMC5354520 DOI: 10.7554/elife.23533] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/26/2017] [Indexed: 11/13/2022] Open
Abstract
Small molecule inhibitors of pre-mRNA splicing are important tools for identifying new spliceosome assembly intermediates, allowing a finer dissection of spliceosome dynamics and function. Here, we identified a small molecule that inhibits human pre-mRNA splicing at an intermediate stage during conversion of pre-catalytic spliceosomal B complexes into activated Bact complexes. Characterization of the stalled complexes (designated B028) revealed that U4/U6 snRNP proteins are released during activation before the U6 Lsm and B-specific proteins, and before recruitment and/or stable incorporation of Prp19/CDC5L complex and other Bact complex proteins. The U2/U6 RNA network in B028 complexes differs from that of the Bact complex, consistent with the idea that the catalytic RNA core forms stepwise during the B to Bact transition and is likely stabilized by the Prp19/CDC5L complex and related proteins. Taken together, our data provide new insights into the RNP rearrangements and extensive exchange of proteins that occurs during spliceosome activation. DOI:http://dx.doi.org/10.7554/eLife.23533.001
Collapse
Affiliation(s)
- Anzhalika Sidarovich
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Maria M Anokhina
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Javier Ceballos
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sonja Sievers
- Compound Management and Screening Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dmitry E Agafonov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Timur Samatov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Penghui Bao
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute for Clinical Chemistry Göttingen, University Medical Center, Göttingen, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
7
|
Role of Cwc24 in the First Catalytic Step of Splicing and Fidelity of 5' Splice Site Selection. Mol Cell Biol 2017; 37:MCB.00580-16. [PMID: 27994011 DOI: 10.1128/mcb.00580-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/11/2016] [Indexed: 12/17/2022] Open
Abstract
Cwc24 is an essential splicing factor but only transiently associates with the spliceosome, with an unknown function. The protein contains a RING finger and a zinc finger domain in the carboxyl terminus. The human ortholog of Cwc24, RNF113A, has been associated with the disorder trichothiodystrophy. Here, we show that the zinc finger domain is essential for Cwc24 function, while the RING finger domain is dispensable. Cwc24 binds to the spliceosome after the Prp19-associated complex and is released upon Prp2 action. Cwc24 is not required for Prp2-mediated remodeling of the spliceosome, but the spliceosome becomes inactive if remodeling occurs before the addition of Cwc24. Cwc24 binds directly to pre-mRNA at the 5' splice site, spanning the splice junction. In the absence of Cwc24, U5 and U6 modes of interaction with the 5' splice site are altered, and splicing is very inefficient, with aberrant cleavage at the 5' splice site. Our data suggest roles for Cwc24 in orchestrating organization of the spliceosome into an active configuration prior to Prp2-mediated spliceosome remodeling and in promoting specific interaction of U5 and U6 with the 5' splice site for fidelity of 5' splice site selection.
Collapse
|
8
|
Kai M. Roles of RNA-Binding Proteins in DNA Damage Response. Int J Mol Sci 2016; 17:310. [PMID: 26927092 PMCID: PMC4813173 DOI: 10.3390/ijms17030310] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022] Open
Abstract
Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as “liquid-demixing”). Among the PAR-associated IDPs are FUS/TLS (fused in sarcoma/translocated in sarcoma), EWS (Ewing sarcoma), TARF15 (TATA box-binding protein-associated factor 68 kDa) (also called FET proteins), a number of heterogeneous nuclear ribonucleoproteins (hnRNPs), and RBM14. Importantly, various point mutations within the FET genes have been implicated in pathological protein aggregation in neurodegenerative diseases, specifically with amyotrophic lateral sclerosis (ALS), and frontotemporal lobe degeneration (FTLD). The FET proteins also frequently exhibit gene translocation in human cancers, and emerging evidence shows their physical interactions with DDR proteins and thus implies their involvement in the maintenance of genome stability.
Collapse
Affiliation(s)
- Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
9
|
Liang WW, Cheng SC. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev 2015; 29:81-93. [PMID: 25561497 PMCID: PMC4281567 DOI: 10.1101/gad.253708.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The DEAD-box RNA helicase Prp5 is required for the formation of the prespliceosome through an ATP-dependent function to remodel U2 snRNPs and an ATP-independent function of unknown mechanism. Liang and Cheng show that Prp5 binds to the spliceosome in association with U2 by interacting with the branchpoint-interacting stem–loop and is released upon base-pairing of U2 with the branch site to allow the recruitment of the tri-snRNP. The DEAD-box RNA helicase Prp5 is required for the formation of the prespliceosome through an ATP-dependent function to remodel U2 small nuclear ribonucleoprotein particles (snRNPs) and an ATP-independent function of unknown mechanism. Prp5 has also been implicated in proofreading the branch site sequence, but the molecular mechanism has not been well characterized. Using actin precursor mRNA (pre-mRNA) carrying branch site mutations, we identified a Prp5-containing prespliceosome with Prp5 directly bound to U2 small nuclear RNA (snRNA). Prp5 is in contact with U2 in regions on and near the branchpoint-interacting stem–loop (BSL), suggesting that Prp5 may function in stabilizing the BSL. Regardless of its ATPase activity, Prp5 mutants that suppress branch site mutations associate with the spliceosome less tightly and allow more tri-snRNP binding for the reaction to proceed. Our results suggest a novel mechanism for how Prp5 functions in prespliceosome formation and proofreading of the branch site sequence. Prp5 binds to the spliceosome in association with U2 by interacting with the BSL and is released upon the base-pairing of U2 with the branch site to allow the recruitment of the tri-snRNP. Mutations impairing U2–branch site base-pairing retard Prp5 release and impede tri-snRNP association. Prp5 mutations that destabilize the Prp5–U2 interaction suppress branch site mutations by allowing progression of the pathway.
Collapse
Affiliation(s)
- Wen-Wei Liang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Abstract
The spliceosomal factor TRAP150 is essential for pre-mRNA splicing in vivo and, when overexpressed, it enhances splicing efficiency. In this study, we found that TRAP150 interacted with the cleavage and polyadenylation specificity factor (CPSF) and co-fractionated with CPSF and RNA polymerase II. Moreover, TRAP150 preferentially associated with the U1 small ribonucleoprotein (snRNP). However, our data do not support a role for TRAP150 in alternative 5′ splice site or exon selection or in alternative polyadenylation. Because U1 snRNP participates in premature cleavage and polyadenylation (PCPA), we tested whether TRAP150 is a cofactor in the control of PCPA. Although TRAP150 depletion had no significant effect on PCPA, overexpression of TRAP150 forced activation of a cryptic 3′ splice site, yielding spliced PCPA transcripts. Mechanistic studies showed that TRAP150-activated splicing occurred in composite but not authentic terminal exons, and such an activity was enhanced by debilitation of U1 snRNP or interference with transcription elongation or termination. Together, these results indicate that TRAP150 provides an additional layer of PCPA regulation, through which it may increase the diversity of abortive RNA transcripts under conditions of compromised gene expression.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Watrin E, Demidova M, Watrin T, Hu Z, Prigent C. Sororin pre-mRNA splicing is required for proper sister chromatid cohesion in human cells. EMBO Rep 2014; 15:948-55. [PMID: 25092791 DOI: 10.15252/embr.201438640] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sister chromatid cohesion, which depends on cohesin, is essential for the faithful segregation of replicated chromosomes. Here, we report that splicing complex Prp19 is essential for cohesion in both G2 and mitosis, and consequently for the proper progression of the cell through mitosis. Inactivation of splicing factors SF3a120 and U2AF65 induces similar cohesion defects to Prp19 complex inactivation. Our data indicate that these splicing factors are all required for the accumulation of cohesion factor Sororin, by facilitating the proper splicing of its pre-mRNA. Finally, we show that ectopic expression of Sororin corrects defective cohesion caused by Prp19 complex inactivation. We propose that the Prp19 complex and the splicing machinery contribute to the establishment of cohesion by promoting Sororin accumulation during S phase, and are, therefore, essential to the maintenance of genome stability.
Collapse
Affiliation(s)
- Erwan Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Maria Demidova
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Tanguy Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Zheng Hu
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Claude Prigent
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| |
Collapse
|
12
|
Wan L, Huang J. The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia-mutated and Rad3-related (ATR). J Biol Chem 2014; 289:6619-6626. [PMID: 24443570 DOI: 10.1074/jbc.m113.543439] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PSO4 core complex is composed of PSO4/PRP19/SNEV, CDC5L, PLRG1, and BCAS2/SPF27. Besides its well defined functions in pre-mRNA splicing, the PSO4 complex has been shown recently to participate in the DNA damage response. However, the specific role for the PSO4 complex in the DNA damage response pathways is still not clear. Here we show that both the BCAS2 and PSO4 subunits of the PSO4 complex directly interact and colocalize with replication protein A (RPA). Depletion of BCAS2 or PSO4 impairs the recruitment of ATR-interacting protein (ATRIP) to DNA damage sites and compromises CHK1 activation and RPA2 phosphorylation. Moreover, we demonstrate that both the RPA1-binding ability of BCAS2 and the E3 ligase activity of PSO4 are required for efficient accumulation of ATRIP at DNA damage sites and the subsequent CHK1 activation and RPA2 phosphorylation. Our results suggest that the PSO4 complex functionally interacts with RPA and plays an important role in the DNA damage response.
Collapse
Affiliation(s)
- Li Wan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
13
|
The SPF27 homologue Num1 connects splicing and kinesin 1-dependent cytoplasmic trafficking in Ustilago maydis. PLoS Genet 2014; 10:e1004046. [PMID: 24391515 PMCID: PMC3879195 DOI: 10.1371/journal.pgen.1004046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022] Open
Abstract
The conserved NineTeen protein complex (NTC) is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking. In eukaryotic cells, nascent mRNA is processed by splicing to remove introns and to join the exon sequences. The processed mRNA is then transported out of the nucleus and employed by ribosomes to synthesize proteins. Splicing is achieved by the spliceosome and associated protein complexes, among them the so-called NineTeen complex (NTC). We have identified the Num1 protein as one of the core components of the NTC in the fungus Ustilago maydis, and could show that it is required for polarized growth of the filamentous fungal cells. Consistent with the NTC function, cells with a num1-deletion show reduced splicing of mRNA. Moreover, we uncover a novel cytoplasmic function of the Num1 protein: It physically interacts with the microtubule-associated Kinesin 1 motor protein, and phenotypic analyses corroborate that both proteins are functionally connected. Our findings reveal a yet unidentified role of a global splicing factor during intracellular trafficking processes. A possible connection between these disparate mechanisms presumably resides in mRNA-export out of the nucleus and/or the transport of mRNA within the cytoplasm.
Collapse
|
14
|
Abstract
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.
Collapse
|
15
|
David CJ, Boyne AR, Millhouse SR, Manley JL. The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex. Genes Dev 2011; 25:972-83. [PMID: 21536736 DOI: 10.1101/gad.2038011] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pre-mRNA splicing is frequently coupled to transcription by RNA polymerase II (RNAPII). This coupling requires the C-terminal domain of the RNAPII largest subunit (CTD), although the underlying mechanism is poorly understood. Using a biochemical complementation assay, we previously identified an activity that stimulates CTD-dependent splicing in vitro. We purified this activity and found that it consists of a complex of two well-known splicing factors: U2AF65 and the Prp19 complex (PRP19C). We provide evidence that both U2AF65 and PRP19C are required for CTD-dependent splicing activation, that U2AF65 and PRP19C interact both in vitro and in vivo, and that this interaction is required for activation of splicing. Providing the link to the CTD, we show that U2AF65 binds directly to the phosphorylated CTD, and that this interaction results in increased recruitment of U2AF65 and PRP19C to the pre-mRNA. Our results not only provide a mechanism by which the CTD enhances splicing, but also describe unexpected interactions important for splicing and its coupling to transcription.
Collapse
Affiliation(s)
- Charles J David
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
16
|
Ren L, McLean JR, Hazbun TR, Fields S, Vander Kooi C, Ohi MD, Gould KL. Systematic two-hybrid and comparative proteomic analyses reveal novel yeast pre-mRNA splicing factors connected to Prp19. PLoS One 2011; 6:e16719. [PMID: 21386897 PMCID: PMC3046128 DOI: 10.1371/journal.pone.0016719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/23/2010] [Indexed: 11/19/2022] Open
Abstract
Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1:1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold.
Collapse
Affiliation(s)
- Liping Ren
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Janel R. McLean
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tony R. Hazbun
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Stanley Fields
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Craig Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kathleen L. Gould
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Splicing factor Cwc22 is required for the function of Prp2 and for the spliceosome to escape from a futile pathway. Mol Cell Biol 2010; 31:43-53. [PMID: 20956557 DOI: 10.1128/mcb.00801-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cwc22 was previously identified to associate with the pre-mRNA splicing factor Cef1/Ntc85, a component of the Prp19-associated complex (nineteen complex [NTC]) involved in spliceosome activation. We show here that Cwc22 is required for pre-mRNA splicing both in vivo and in vitro but is neither tightly associated with the NTC nor required for spliceosome activation. Cwc22 is associated with the spliceosome prior to catalytic steps and remains associated throughout the reaction. The stable association of Cwc22 with the spliceosome requires the presence of the NTC but is independent of Prp2. Although Cwc22 is not required for the recruitment of Prp2 to the spliceosome, it is essential for the function of Prp2 in promoting the release of the U2 components SF3a and SF3b. In the absence of Cwc22, Prp2 can bind to the spliceosome but is dissociated upon ATP hydrolysis without promoting the release of SF3a/b. Thus, Cwc22 represents a novel ATP-dependent step one factor besides Prp2 and Spp2 and has a distinct role from that of Spp2 in mediating the function of Prp2.
Collapse
|
18
|
Hofmann JC, Husedzinovic A, Gruss OJ. The function of spliceosome components in open mitosis. Nucleus 2010; 1:447-59. [PMID: 21327086 DOI: 10.4161/nucl.1.6.13328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022] Open
Abstract
Spatial separation of eukaryotic cells into the nuclear and cytoplasmic compartment permits uncoupling of DNA transcription from translation of mRNAs and allows cells to modify newly transcribed pre mRNAs extensively. Intronic sequences (introns), which interrupt the coding elements (exons), are excised ("spliced") from pre-mRNAs in the nucleus to yield mature mRNAs. This not only enables alternative splicing as an important source of proteome diversity, but splicing is also an essential process in all eukaryotes and knock-out or knock-down of splicing factors frequently results in defective cell proliferation and cell division. However, higher eukaryotes progress through cell division only after breakdown of the nucleus ("open mitosis"). Open mitosis suppresses basic nuclear functions such as transcription and splicing, but allows separate, mitotic functions of nuclear proteins in cell division. Mitotic defects arising after loss-of-function of splicing proteins therefore could be an indirect consequence of compromised splicing in the closed nucleus of the preceding interphase or reflect a direct contribution of splicing proteins to open mitosis. Although experiments to directly distinguish between these two alternatives have not been reported, indirect evidence exists for either hypotheses. In this review, we survey published data supporting an indirect function of splicing in open mitosis or arguing for a direct function of spliceosomal proteins in cell division.
Collapse
|
19
|
Hogg R, McGrail JC, O’Keefe RT. The function of the NineTeen Complex (NTC) in regulating spliceosome conformations and fidelity during pre-mRNA splicing. Biochem Soc Trans 2010; 38:1110-5. [PMID: 20659013 PMCID: PMC4234902 DOI: 10.1042/bst0381110] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The NineTeen Complex (NTC) of proteins associates with the spliceosome during pre-mRNA splicing and is essential for both steps of intron removal. The NTC and other NTC-associated proteins are recruited to the spliceosome where they participate in regulating the formation and progression of essential spliceosome conformations required for the two steps of splicing. It is now clear that the NTC is an integral component of active spliceosomes from yeast to humans and provides essential support for the spliceosomal snRNPs (small nuclear ribonucleoproteins). In the present article, we discuss the identification and characterization of the yeast NTC and review recent work in yeast that supports the essential role for this complex in the regulation and fidelity of splicing.
Collapse
Affiliation(s)
- Rebecca Hogg
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester, M13 9PT, UK
| | - Joanne C. McGrail
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester, M13 9PT, UK
| | - Raymond T. O’Keefe
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
20
|
Chiu YF, Liu YC, Chiang TW, Yeh TC, Tseng CK, Wu NY, Cheng SC. Cwc25 is a novel splicing factor required after Prp2 and Yju2 to facilitate the first catalytic reaction. Mol Cell Biol 2009; 29:5671-8. [PMID: 19704000 PMCID: PMC2772750 DOI: 10.1128/mcb.00773-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/10/2009] [Accepted: 08/17/2009] [Indexed: 11/20/2022] Open
Abstract
Cwc25 has previously been identified to associate with pre-mRNA splicing factor Cef1/Ntc85, a component of the Prp19-associated complex (nineteen complex, or NTC) involved in spliceosome activation. We show here that Cwc25 is neither tightly associated with NTC nor required for spliceosome activation but is required for the first catalytic reaction. The affinity-purified spliceosome formed in Cwc25-depleted extracts contained only pre-mRNA and could be chased into splicing intermediates upon the addition of recombinant Cwc25 in an ATP-independent manner, suggesting that Cwc25 functions in the final step of the first catalytic reaction after the action of Prp2. Yju2 and a heat-resistant factor of unknown identity, HP, have previously been shown to be required for the same step of the splicing pathway. Cwc25, although resistant to heat treatment, is not sufficient to replace the function of HP, indicating that another heat-resistant factor, which we named HP-X, is involved. The requirement of Cwc25 and HP-X for the first catalytic reaction could be partially compensated for when the affinity-purified spliceosome was incubated in the presence of low concentrations of Mn(2+). These results have implications for the possible roles of Cwc25 and HP-X in facilitating juxtaposition of the 5' splice site and the branch point during the first catalytic reaction.
Collapse
Affiliation(s)
- Ying-Fang Chiu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China, Faculty of Life Science and Institute of Genomic Science, National Yang-Ming University, Taipei, Taiwan 112, Republic of China, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Yen-Chi Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China, Faculty of Life Science and Institute of Genomic Science, National Yang-Ming University, Taipei, Taiwan 112, Republic of China, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Ting-Wei Chiang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China, Faculty of Life Science and Institute of Genomic Science, National Yang-Ming University, Taipei, Taiwan 112, Republic of China, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Tzu-Chi Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China, Faculty of Life Science and Institute of Genomic Science, National Yang-Ming University, Taipei, Taiwan 112, Republic of China, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Chi-Kang Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China, Faculty of Life Science and Institute of Genomic Science, National Yang-Ming University, Taipei, Taiwan 112, Republic of China, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Nan-Ying Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China, Faculty of Life Science and Institute of Genomic Science, National Yang-Ming University, Taipei, Taiwan 112, Republic of China, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China, Faculty of Life Science and Institute of Genomic Science, National Yang-Ming University, Taipei, Taiwan 112, Republic of China, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| |
Collapse
|
21
|
Zhang N, Kaur R, Akhter S, Legerski RJ. Cdc5L interacts with ATR and is required for the S-phase cell-cycle checkpoint. EMBO Rep 2009; 10:1029-35. [PMID: 19633697 DOI: 10.1038/embor.2009.122] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 11/09/2022] Open
Abstract
Cell division cycle 5-like protein (Cdc5L) is a core component of the putative E3 ubiquitin ligase complex containing Prp19/Pso4, Plrg1 and Spf27. This complex has been shown to have a role in pre-messenger RNA splicing from yeast to humans; however, more recent studies have described a function for this complex in the cellular response to DNA damage. Here, we show that Cdc5L interacts physically with the cell-cycle checkpoint kinase ataxia-telangiectasia and Rad3-related (ATR). Depletion of Cdc5L by RNA-mediated interference methods results in a defective S-phase cell-cycle checkpoint and cellular sensitivity in response to replication-fork blocking agents. Furthermore, we show that Cdc5L is required for the activation of downstream effectors or mediators of ATR checkpoint function such as checkpoint kinase 1 (Chk1), cell cycle checkpoint protein Rad 17 (Rad17) and Fanconi anaemia complementation group D2 protein (FancD2). In addition, we have mapped the ATR-binding region in Cdc5L and show that a deletion mutant that is unable to interact with ATR is defective in the rescue of the checkpoint deficiency in Cdc5L-depleted cells. These findings show a new function for Cdc5L in the regulation of the ATR-mediated cell-cycle checkpoint in response to genotoxic agents.
Collapse
Affiliation(s)
- Nianxiang Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
22
|
Monaghan J, Xu F, Gao M, Zhao Q, Palma K, Long C, Chen S, Zhang Y, Li X. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 2009; 5:e1000526. [PMID: 19629177 PMCID: PMC2709443 DOI: 10.1371/journal.ppat.1000526] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/30/2009] [Indexed: 01/01/2023] Open
Abstract
Plant Resistance (R) proteins play an integral role in defense against pathogen infection. A unique gain-of-function mutation in the R gene SNC1, snc1, results in constitutive activation of plant immune pathways and enhanced resistance against pathogen infection. We previously found that mutations in MOS4 suppress the autoimmune phenotypes of snc1, and that MOS4 is part of a nuclear complex called the MOS4-Associated Complex (MAC) along with the transcription factor AtCDC5 and the WD-40 protein PRL1. Here we report the immuno-affinity purification of the MAC using HA-tagged MOS4 followed by protein sequence analysis by mass spectrometry. A total of 24 MAC proteins were identified, 19 of which have predicted roles in RNA processing based on their homology to proteins in the Prp19-Complex, an evolutionarily conserved spliceosome-associated complex containing homologs of MOS4, AtCDC5, and PRL1. Among these were two highly similar U-box proteins with homology to the yeast and human E3 ubiquitin ligase Prp19, which we named MAC3A and MAC3B. MAC3B was recently shown to exhibit E3 ligase activity in vitro. Through reverse genetics analysis we show that MAC3A and MAC3B are functionally redundant and are required for basal and R protein-mediated resistance in Arabidopsis. Like mos4-1 and Atcdc5-1, mac3a mac3b suppresses snc1-mediated autoimmunity. MAC3 localizes to the nucleus and interacts with AtCDC5 in planta. Our results suggest that MAC3A and MAC3B are members of the MAC that function redundantly in the regulation of plant innate immunity.
Collapse
Affiliation(s)
- Jacqueline Monaghan
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Minghui Gao
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Qingguo Zhao
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Kristoffer Palma
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chengzu Long
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - She Chen
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Yuelin Zhang
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
23
|
McGrail JC, Krause A, O'Keefe RT. The RNA binding protein Cwc2 interacts directly with the U6 snRNA to link the nineteen complex to the spliceosome during pre-mRNA splicing. Nucleic Acids Res 2009; 37:4205-17. [PMID: 19435883 PMCID: PMC2715229 DOI: 10.1093/nar/gkp341] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc finger and RNA recognition motif (RRM). In yeast cells mutation of either the zinc finger or RRM destabilize Cwc2 and are lethal. Yeast cells depleted of Cwc2 accumulate pre-mRNA and display reduced levels of U1, U4, U5 and U6 snRNAs. Cwc2 depletion also reduces U4/U6 snRNA complex levels, as found with depletion of other NTC proteins, but without increase in free U4. Purified Cwc2 displays general RNA binding properties and can bind both snRNAs and pre-mRNA in vitro. A Cwc2 RRM fragment alone can bind RNA but with reduced efficiency. Under splicing conditions Cwc2 can associate with U2, U5 and U6 snRNAs, but can only be crosslinked directly to the U6 snRNA. Cwc2 associates with U6 both before and after the first step of splicing. We propose that Cwc2 links the NTC to the spliceosome during pre-mRNA splicing through the U6 snRNA.
Collapse
Affiliation(s)
- Joanne C McGrail
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT
| | | | | |
Collapse
|
24
|
Tsai RT, Tseng CK, Lee PJ, Chen HC, Fu RH, Chang KJ, Yeh FL, Cheng SC. Dynamic interactions of Ntr1-Ntr2 with Prp43 and with U5 govern the recruitment of Prp43 to mediate spliceosome disassembly. Mol Cell Biol 2007; 27:8027-37. [PMID: 17893323 PMCID: PMC2169193 DOI: 10.1128/mcb.01213-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae splicing factors Ntr1 (also known as Spp382) and Ntr2 form a stable complex and can further associate with DExD/H-box RNA helicase Prp43 to form a functional complex, termed the NTR complex, which catalyzes spliceosome disassembly. We show that Prp43 interacts with Ntr1-Ntr2 in a dynamic manner. The Ntr1-Ntr2 complex can also bind to the spliceosome first, before recruiting Prp43 to catalyze disassembly. Binding of Ntr1-Ntr2 or Prp43 does not require ATP, but disassembly of the spliceosome requires hydrolysis of ATP. The NTR complex also dynamically interacts with U5 snRNP. Ntr2 interacts with U5 component Brr2 and is essential for both interactions of NTR with U5 and with the spliceosome. Ntr2 alone can also bind to U5 and to the spliceosome, suggesting a role of Ntr2 in mediating the binding of NTR to the spliceosome through its interaction with U5. Our results demonstrate that dynamic interactions of NTR with U5, through the interaction of Ntr2 with Brr2, and interactions of Ntr1 and Prp43 govern the recruitment of Prp43 to the spliceosome to mediate spliceosome disassembly.
Collapse
Affiliation(s)
- Rong-Tzong Tsai
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Palma K, Zhao Q, Cheng YT, Bi D, Monaghan J, Cheng W, Zhang Y, Li X. Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes Dev 2007; 21:1484-93. [PMID: 17575050 PMCID: PMC1891426 DOI: 10.1101/gad.1559607] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Innate immunity against pathogen infection is an evolutionarily conserved process among multicellular organisms. Arabidopsis SNC1 encodes a Resistance protein that combines attributes of multiple mammalian pattern recognition receptors. Utilizing snc1 as an autoimmune model, we identified a discrete protein complex containing at least three members--MOS4 (Modifier Of snc1, 4), AtCDC5, and PRL1 (Pleiotropic Regulatory Locus 1)--that are all essential for plant innate immunity. AtCDC5 has DNA-binding activity, suggesting that this complex probably regulates defense responses through transcriptional control. Since the complex components along with their interactions are highly conserved from fission yeast to Arabidopsis and human, they may also have a yet-to-be-identified function in mammalian innate immunity.
Collapse
Affiliation(s)
- Kristoffer Palma
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Qingguo Zhao
- National Institute of Biological Sciences (NIBS), Zhongguancun Life Science Park, Beijing 102206, People’s Republic of China
| | - Yu Ti Cheng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dongling Bi
- National Institute of Biological Sciences (NIBS), Zhongguancun Life Science Park, Beijing 102206, People’s Republic of China
| | - Jacqueline Monaghan
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wei Cheng
- National Institute of Biological Sciences (NIBS), Zhongguancun Life Science Park, Beijing 102206, People’s Republic of China
| | - Yuelin Zhang
- National Institute of Biological Sciences (NIBS), Zhongguancun Life Science Park, Beijing 102206, People’s Republic of China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Corresponding author.E-MAIL ; FAX (604) 822-2114
| |
Collapse
|
26
|
Liu YC, Chen HC, Wu NY, Cheng SC. A novel splicing factor, Yju2, is associated with NTC and acts after Prp2 in promoting the first catalytic reaction of pre-mRNA splicing. Mol Cell Biol 2007; 27:5403-13. [PMID: 17515604 PMCID: PMC1952081 DOI: 10.1128/mcb.00346-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Prp19-associated complex (NTC) is essential for pre-mRNA splicing and is associated with the spliceosome during spliceosome activation. NTC is required for specifying interactions of U5 and U6 with pre-mRNA to stabilize their association with the spliceosome after dissociation of U4. Here, we show that a novel splicing factor, Yju2, is associated with components of NTC, and that it is required for pre-mRNA splicing both in vivo and in vitro. During spliceosome assembly, Yju2 is associated with the spliceosome at nearly the same time as NTC but is destabilized after the first catalytic reaction, whereas other NTC components remain associated until the reaction is complete. Extracts depleted of Yju2 could be complemented by recombinant Yju2, suggesting that Yju2 and NTC are not entirely in association with each other. Yju2 is not required for the binding of NTC to the spliceosome or for NTC-mediated spliceosome activation. Complementation analysis of the affinity-isolated spliceosome formed in Yju2-depleted extracts demonstrated that Yju2 acts in concert with an unidentified heat-resistant factor(s) in an ATP-independent manner to promote the first catalytic reaction of pre-mRNA splicing after Prp2-mediated structural rearrangement of the spliceosome.
Collapse
Affiliation(s)
- Yen-Chi Liu
- Institute of Microbiology Biology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
27
|
Lu X, Legerski RJ. The Prp19/Pso4 core complex undergoes ubiquitylation and structural alterations in response to DNA damage. Biochem Biophys Res Commun 2007; 354:968-74. [PMID: 17276391 PMCID: PMC1810354 DOI: 10.1016/j.bbrc.2007.01.097] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 01/17/2007] [Indexed: 11/17/2022]
Abstract
Prp19/Pso4, a U-box containing E3 ligase, has a demonstrated role in pre-mRNA splicing, but has also been implicated in both yeast and mammalian cells as having a direct role in DNA damage processing. In this report, we provide further evidence in support of this latter assertion. We show that hPrp19 forms an ubiquitylated oligomeric species that is resistant to disruption by SDS gel electrophoresis under nonreducing conditions suggesting that is mediated by a thiolester between ubiquitin and a cysteine residue in Prp19. The level of this species is significantly enhanced upon treatment of cells with DNA damaging agents, and its association with chromatin is increased. In addition, hPrp19 is known to form a stable core complex with Cdc5L, Plrg1, and Spf27; however, ubiquitylated hPrp19 fails to interact with either Cdc5L or Plrg1 indicating that DNA damage can induce profound alterations to the hPrp19 core complex. Finally, we show that overexpression of hPrp19 in human cells provides a pro-survival affect in that it reduces the levels of apoptosis observed after exposure of cells to DNA damage.
Collapse
|
28
|
Deckert J, Hartmuth K, Boehringer D, Behzadnia N, Will CL, Kastner B, Stark H, Urlaub H, Lührmann R. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol 2006; 26:5528-43. [PMID: 16809785 PMCID: PMC1592722 DOI: 10.1128/mcb.00582-06] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spliceosomal B complex is the substrate that undergoes catalytic activation leading to catalysis of pre-mRNA splicing. Previous characterization of this complex was performed in the presence of heparin, which dissociates less stably associated components. To obtain a more comprehensive inventory of the B complex proteome, we isolated this complex under low-stringency conditions using two independent methods. MS2 affinity-selected B complexes supported splicing when incubated in nuclear extract depleted of snRNPs. Mass spectrometry identified over 110 proteins in both independently purified B complex preparations, including approximately 50 non-snRNP proteins not previously found in the spliceosomal A complex. Unexpectedly, the heteromeric hPrp19/CDC5 complex and 10 additional hPrp19/CDC5-related proteins were detected, indicating that they are recruited prior to spliceosome activation. Electron microscopy studies revealed that MS2 affinity-selected B complexes exhibit a rhombic shape with a maximum dimension of 420 A and are structurally more homogeneous than B complexes treated with heparin. These data provide novel insights into the composition and structure of the spliceosome just prior to its catalytic activation and suggest a potential role in activation for proteins recruited at this stage. Furthermore, the spliceosomal complexes isolated here are well suited for complementation studies with purified proteins to dissect factor requirements for spliceosome activation and splicing catalysis.
Collapse
Affiliation(s)
- Jochen Deckert
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsai RT, Fu RH, Yeh FL, Tseng CK, Lin YC, Huang YH, Cheng SC. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev 2006; 19:2991-3003. [PMID: 16357217 PMCID: PMC1315403 DOI: 10.1101/gad.1377405] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two novel yeast splicing factors required for spliceosome disassembly have been identified. Ntr1 and Ntr2 (NineTeen complex-Related proteins) were identified for their weak association with components of the Prp19-associated complex. Unlike other Prp19-associated components, these two proteins were primarily associated with the intron-containing spliceosome during the splicing reaction. Extracts depleted of Ntr1 or Ntr2 exhibited full splicing activity, but accumulated large amounts of lariat-intron in the spliceosome after splicing, indicating that the normal function of the Prp19-associated complex in spliceosome activation was not affected, but spliceosome disassembly was hindered. Immunoprecipitation analysis revealed that Ntr1 and Ntr2 formed a stable complex with DExD/H-box RNA helicase Prp43 in the splicing extract. Ntr1 interacted with Prp43 through the N-terminal G-patch domain, with Ntr2 through a middle region, and with itself through the carboxyl half of the protein. The affinity-purified Ntr1-Ntr2-Prp43 complex could catalyze disassembly of the spliceosome in an ATP-dependent manner, separating U2, U5, U6, NTC (NineTeen Complex), and lariat-intron. This is the first demonstration of physical disassembly of the spliceosome, catalyzed by a complex containing a DExD/H-box RNA helicase and two accessory factors, which might function in targeting the helicase to the correct substrate.
Collapse
Affiliation(s)
- Rong-Tzong Tsai
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang Q, He J, Lynn B, Rymond BC. Interactions of the yeast SF3b splicing factor. Mol Cell Biol 2005; 25:10745-54. [PMID: 16314500 PMCID: PMC1316957 DOI: 10.1128/mcb.25.24.10745-10754.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/12/2005] [Accepted: 09/21/2005] [Indexed: 11/20/2022] Open
Abstract
The U2 snRNP promotes prespliceosome assembly through interactions that minimally involve the branchpoint binding protein, Mud2p, and the pre-mRNA. We previously showed that seven proteins copurify with the yeast (Saccharomyces cerevisiae) SF3b U2 subcomplex that associates with the pre-mRNA branchpoint region: Rse1p, Hsh155p, Hsh49p, Cus1p, and Rds3p and unidentified subunits p10 and p17. Here proteomic and genetic studies identify Rcp10p as p10 and show that it contributes to SF3b stability and is necessary for normal cellular Cus1p accumulation and for U2 snRNP recruitment in splicing. Remarkably, only the final 53 amino acids of Rcp10p are essential. p17 is shown to be composed of two accessory splicing factors, Bud31p and Ist3p, the latter of which independently associates with the RES complex implicated in the nuclear pre-mRNA retention. A directed two-hybrid screen reveals a network of prospective interactions that includes previously unreported intra-SF3b contacts and SF3b interactions with the RES subunit Bud13p, the Prp5p DExD/H-box protein, Mud2p, and the late-acting nineteen complex. These data establish the concordance of yeast and mammalian SF3b complexes, implicate accessory splicing factors in U2 snRNP function, and support SF3b contribution from early pre-mRNP recognition to late steps in splicing.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biology, University of Kentucky, Lexington, 40506, USA
| | | | | | | |
Collapse
|
31
|
Milchanowski AB, Henkenius AL, Narayanan M, Hartenstein V, Banerjee U. Identification and characterization of genes involved in embryonic crystal cell formation during Drosophila hematopoiesis. Genetics 2005; 168:325-39. [PMID: 15454546 PMCID: PMC1448098 DOI: 10.1534/genetics.104.028639] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parallels between vertebrate and Drosophila hematopoiesis add to the value of flies as a model organism to gain insights into blood development. The Drosophila hematopoietic system is composed of at least three classes of terminally differentiated blood cells: plasmatocytes, crystal cells, and lamellocytes. Recent studies have identified transcriptional and signaling pathways in Drosophila involving proteins similar to those seen in human blood development. To identify additional genes involved in Drosophila hematopoiesis, we have conducted a P-element-based genetic screen to isolate mutations that affect embryonic crystal cell development. Using a marker of terminally differentiated crystal cells, we screened 1040 P-element-lethal lines located on the second and third chromosomes and identified 44 individual lines that affect crystal cell development. Identifying novel genes and pathways involved in Drosophila hematopoiesis is likely to provide further insights into mammalian hematopoietic development and disorders.
Collapse
Affiliation(s)
- Allison B Milchanowski
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095, USA
| | | | | | | | | |
Collapse
|
32
|
Makarova OV, Makarov EM, Urlaub H, Will CL, Gentzel M, Wilm M, Lührmann R. A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing. EMBO J 2004; 23:2381-91. [PMID: 15175653 PMCID: PMC423283 DOI: 10.1038/sj.emboj.7600241] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 04/27/2004] [Indexed: 11/09/2022] Open
Abstract
During catalytic activation of the spliceosome, snRNP remodeling events occur, leading to the formation of a 35S U5 snRNP that contains a large group of proteins, including Prp19 and CDC5, not found in 20S U5 snRNPs. To investigate the function of 35S U5 proteins, we immunoaffinity purified human spliceosomes that had not yet undergone catalytic activation (designated BDeltaU1), which contained U2, U4, U5, and U6, but lacked U1 snRNA. Comparison of the protein compositions of BDeltaU1 and activated B* spliceosomes revealed that, whereas U4/U6 snRNP proteins are stably associated with BDeltaU1 spliceosomes, 35S U5-associated proteins (which are present in B*) are largely absent, suggesting that they are dispensable for complex B formation. Indeed, immunodepletion/complementation experiments demonstrated that a subset of 35S U5 proteins including Prp19, which form a stable heteromeric complex, are required prior to catalytic step 1 of splicing, but not for stable integration of U4/U6.U5 tri-snRNPs. Thus, comparison of the proteomes of spliceosomal complexes at defined stages can provide information as to which proteins function as a group at a particular step of splicing.
Collapse
Affiliation(s)
- Olga V Makarova
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Evgeny M Makarov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marc Gentzel
- EMBL, Bioanalytical Research Group, Heidelberg, Germany
| | - Matthias Wilm
- EMBL, Bioanalytical Research Group, Heidelberg, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany. Tel.: +49 551 201 1407; Fax: +49 551 201 1197; E-mail:
| |
Collapse
|
33
|
Ajuh P, Lamond AI. Identification of peptide inhibitors of pre-mRNA splicing derived from the essential interaction domains of CDC5L and PLRG1. Nucleic Acids Res 2003; 31:6104-16. [PMID: 14576297 PMCID: PMC275459 DOI: 10.1093/nar/gkg817] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CDC5L and PLRG1 are both spliceosomal proteins that are highly conserved across species. They have both been shown to be part of sub- spliceosomal protein complexes that are essential for pre-mRNA splicing in yeast and humans. CDC5L and PLRG1 interact directly in vitro. This interaction is mediated by WD40 regions in PLRG1 and the C-terminal domain of CDC5L. In order to determine whether this interaction is important for the splicing mechanism, we have designed peptides corresponding to highly conserved sequences in the interaction domains of both proteins. These peptides were used in in vitro splicing experiments as competitors to the cognate sequences in the endogenous proteins. Certain peptides derived from the binding domains of both proteins were found to inhibit in vitro splicing. This splicing inhibition could be prevented by preincubating the peptides with the corresponding partner protein that had been expressed in Escherichia coli. The results from this study indicate that the interaction between CDC5L and PLRG1 is essential for pre-mRNA splicing and further demonstrate that small peptides can be used as effective splicing inhibitors.
Collapse
Affiliation(s)
- Paul Ajuh
- The University of Dundee, School of Life Sciences, Wellcome Trust Biocentre, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
34
|
Vincent K, Wang Q, Jay S, Hobbs K, Rymond BC. Genetic interactions with CLF1 identify additional pre-mRNA splicing factors and a link between activators of yeast vesicular transport and splicing. Genetics 2003; 164:895-907. [PMID: 12871902 PMCID: PMC1462608 DOI: 10.1093/genetics/164.3.895] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clf1 is a conserved spliceosome assembly factor composed predominately of TPR repeats. Here we show that the TPR elements are not functionally equivalent, with the amino terminus of Clf1 being especially sensitive to change. Deletion and add-back experiments reveal that the splicing defect associated with TPR removal results from the loss of TPR-specific sequence information. Twelve mutants were found that show synthetic growth defects when combined with an allele that lacks TPR2 (i.e., clf1Delta2). The identified genes encode the Mud2, Ntc20, Prp16, Prp17, Prp19, Prp22, and Syf2 splicing factors and four proteins without established contribution to splicing (Bud13, Cet1, Cwc2, and Rds3). Each synthetic lethal with clf1Delta2 (slc) mutant is splicing defective in a wild-type CLF1 background. In addition to the splicing factors, SSD1, BTS1, and BET4 were identified as dosage suppressors of clf1Delta2 or selected slc mutants. These results support Clf1 function through multiple stages of the spliceosome cycle, identify additional genes that promote cellular mRNA maturation, and reveal a link between Rab/Ras GTPase activation and the process of pre-mRNA splicing.
Collapse
Affiliation(s)
- Kevin Vincent
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506-0225, USA
| | | | | | | | | |
Collapse
|
35
|
Revers LF, Cardone JM, Bonatto D, Saffi J, Grey M, Feldmann H, Brendel M, Henriques JAP. Thermoconditional modulation of the pleiotropic sensitivity phenotype by the Saccharomyces cerevisiae PRP19 mutant allele pso4-1. Nucleic Acids Res 2002; 30:4993-5003. [PMID: 12434004 PMCID: PMC137178 DOI: 10.1093/nar/gkf632] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Revised: 09/30/2002] [Accepted: 09/30/2002] [Indexed: 11/13/2022] Open
Abstract
The conditionally-lethal pso4-1 mutant allele of the spliceosomal-associated PRP19 gene allowed us to study this gene's influence on pre-mRNA processing, DNA repair and sporulation. Phenotypes related to intron-containing genes were correlated to temperature. Splicing reporter systems and RT-PCR showed splicing efficiency in pso4-1 to be inversely correlated to growth temperature. A single amino acid substitution, replacing leucine with serine, was identified within the N-terminal region of the pso4-1 allele and was shown to affect the interacting properties of Pso4-1p. Amongst 24 interacting clones isolated in a two-hybrid screening, seven could be identified as parts of the RAD2, RLF2 and DBR1 genes. RAD2 encodes an endonuclease indispensable for nucleotide excision repair (NER), RLF2 encodes the major subunit of the chromatin assembly factor I, whose deletion results in sensitivity to UVC radiation, while DBR1 encodes the lariat RNA splicing debranching enzyme, which degrades intron lariat structures during splicing. Characterization of mutagen-sensitive phenotypes of rad2Delta, rlf2Delta and pso4-1 single and double mutant strains showed enhanced sensitivity for the rad2Delta pso4-1 and rlf2Delta pso4-1 double mutants, suggesting a functional interference of these proteins in DNA repair processes in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- L F Revers
- Depto. de Biofísica/Centro de Biotecnologia-IB-UFRGS, Avenida Bento Gonçalves, 9500, Prédio 43421, Campus do Vale, 91501-907 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ohi MD, Link AJ, Ren L, Jennings JL, McDonald WH, Gould KL. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol Cell Biol 2002; 22:2011-24. [PMID: 11884590 PMCID: PMC133674 DOI: 10.1128/mcb.22.7.2011-2024.2002] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 09/19/2001] [Accepted: 12/20/2001] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe Cdc5p and its Saccharomyces cerevisiae ortholog, Cef1p, are essential Myb-related proteins implicated in pre-mRNA splicing and contained within large multiprotein complexes. Here we describe the tandem affinity purification (TAP) of Cdc5p- and Cef1p-associated complexes. Using transmission electron microscopy, we show that the purified Cdc5p complex is a discrete structure. The components of the S. pombe Cdc5p/S. cerevisiae Cef1p complexes (termed Cwfs or Cwcs, respectively) were identified using direct analysis of large protein complex (DALPC) mass spectrometry (A. J. Link et al., Nat. Biotechnol. 17:676-682, 1999). At least 26 proteins were detected in the Cdc5p/Cef1p complexes. Comparison of the polypeptides identified by S. pombe Cdc5p purification with those identified by S. cerevisiae Cef1p purification indicates that these two yeast complexes are nearly identical in composition. The majority of S. pombe Cwf proteins and S. cerevisiae Cwc proteins are known pre-mRNA splicing factors including core Sm and U2 and U5 snRNP components. In addition, the complex contains the U2, U5, and U6 snRNAs. Previously uncharacterized proteins were also identified, and we provide evidence that several of these novel factors are involved in pre-mRNA splicing. Our data represent the first comprehensive analysis of CDC5-associated proteins in yeasts, describe a discrete highly conserved complex containing novel pre-mRNA splicing factors, and demonstrate the power of DALPC for identification of components in multiprotein complexes.
Collapse
Affiliation(s)
- Melanie D Ohi
- Howard Hughes Medical Institute. Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
37
|
Chen CH, Yu WC, Tsao TY, Wang LY, Chen HR, Lin JY, Tsai WY, Cheng SC. Functional and physical interactions between components of the Prp19p-associated complex. Nucleic Acids Res 2002; 30:1029-37. [PMID: 11842115 PMCID: PMC100336 DOI: 10.1093/nar/30.4.1029] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Prp19p-associated complex is essential for the yeast pre-mRNA splicing reaction. The complex consists of at least eight protein components, but is not tightly associated with spliceosomal snRNAs. By a combination of genetic and biochemical methods we previously identified four components of this complex, Ntc25p, Ntc85p, Ntc30p and Ntc20p, all of them being novel splicing factors. We have now identified three other components of the complex, Ntc90p, Ntc77p and Ntc31p. These three proteins were also associated with the spliceosome during the splicing reaction in the same manner as Prp19p, concurrently with or immediately after dissociation of U4 snRNA. Two-hybrid analysis revealed that none of these proteins interacted with Prp19p or Ntc25p, but all interacted with Ntc85p. An interaction network between the identified components of the Prp19p-associated complex is demonstrated. Biochemical analysis revealed that Ntc90p, Ntc31p, Ntc30p and Ntc20p form a subcomplex, which, through interacting with Ntc85p and Ntc77p, can associate with Prp19p and Ntc25p to form the Prp19p-associated complex. Genetic analysis suggests that Ntc31p, Ntc30p and Ntc20p may play roles in modulating the function of Ntc90p.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen HR, Tsao TY, Chen CH, Tsai WY, Her LS, Hsu MM, Cheng SC. Snt309p modulates interactions of Prp19p with its associated components to stabilize the Prp19p-associated complex essential for pre-mRNA splicing. Proc Natl Acad Sci U S A 1999; 96:5406-11. [PMID: 10318896 PMCID: PMC21872 DOI: 10.1073/pnas.96.10.5406] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SNT309 gene was identified via a mutation that causes lethality of cells in combination with a prp19 mutation. We showed previously that Snt309p is a component of the Prp19p-associated complex and that Snt309p, like Prp19p, is associated with the spliceosome immediately after or concomitantly with dissociation of U4 from the spliceosome. We show here that extracts prepared from the SNT309-deleted strain (DeltaSNT309) were defective in splicing but could be complemented by addition of the purified Prp19p-associated complex. Isolation of the Prp19p-associated complex from DeltaSNT309 extracts indicated that the complex was destabilized in the absence of Snt309p and dissociated on affinity chromatography, suggesting a role of Snt309p in stabilization of the Prp19p-associated complex. Addition of the affinity-purified Prp19p-Snt309p binary complex to DeltaSNT309 extracts could reconstitute the Prp19p-associated complex. Genetic analysis further suggests that Snt309p plays a role in modulating interactions of Prp19p with other associated components to facilitate formation of the Prp19p-associated complex. A model for how Snt309p modulates such interactions is proposed.
Collapse
Affiliation(s)
- H R Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taiwan 112
| | | | | | | | | | | | | |
Collapse
|
39
|
Lygerou Z, Christophides G, Séraphin B. A novel genetic screen for snRNP assembly factors in yeast identifies a conserved protein, Sad1p, also required for pre-mRNA splicing. Mol Cell Biol 1999; 19:2008-20. [PMID: 10022888 PMCID: PMC83994 DOI: 10.1128/mcb.19.3.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly pathway of spliceosomal snRNPs in yeast is poorly understood. We devised a screen to identify mutations blocking the assembly of newly synthesized U4 snRNA into a functional snRNP. Fifteen mutant strains failing either to accumulate the newly synthesized U4 snRNA or to assemble a U4/U6 particle were identified and categorized into 13 complementation groups. Thirteen previously identified splicing-defective prp mutants were also assayed for U4 snRNP assembly defects. Mutations in the U4/U6 snRNP components Prp3p, Prp4p, and Prp24p led to disassembly of the U4/U6 snRNP particle and degradation of the U6 snRNA, while prp17-1 and prp19-1 strains accumulated free U4 and U6 snRNA. A detailed analysis of a newly identified mutant, the sad1-1 mutant, is presented. In addition to having the snRNP assembly defect, the sad1-1 mutant is severely impaired in splicing at the restrictive temperature: the RP29 pre-mRNA strongly accumulates and splicing-dependent production of beta-galactosidase from reporter constructs is abolished, while extracts prepared from sad1-1 strains fail to splice pre-mRNA substrates in vitro. The sad1-1 mutant is the only splicing-defective mutant analyzed whose mutation preferentially affects assembly of newly synthesized U4 snRNA into the U4/U6 particle. SAD1 encodes a novel protein of 52 kDa which is essential for cell viability. Sad1p localizes to the nucleus and is not stably associated with any of the U snRNAs. Sad1p contains a putative zinc finger and is phylogenetically highly conserved, with homologues identified in human, Caenorhabditis elegans, Arabidospis, and Drosophila.
Collapse
|
40
|
Chen HR, Jan SP, Tsao TY, Sheu YJ, Banroques J, Cheng SC. Snt309p, a component of the Prp19p-associated complex that interacts with Prp19p and associates with the spliceosome simultaneously with or immediately after dissociation of U4 in the same manner as Prp19p. Mol Cell Biol 1998; 18:2196-204. [PMID: 9528791 PMCID: PMC121462 DOI: 10.1128/mcb.18.4.2196] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The yeast protein Prp19p is essential for pre-mRNA splicing and is associated with the spliceosome concurrently with or just after dissociation of U4 small nuclear RNA. In splicing extracts, Prp19p is associated with several other proteins in a large protein complex of unknown function, but at least one of these proteins is also essential for splicing (W.-Y. Tarn, C.-H. Hsu, K.-T. Huang, H.-R. Chen, H.-Y. Kao, K.-R. Lee, and S.-C. Cheng, EMBO J. 13:2421-2431, 1994). To identify proteins in the Prp19p-associated complex, we have isolated trans-acting mutations that exacerbate the phenotypes of conditional alleles of prp19, using the ade2-ade3 sectoring system. A novel splicing factor, Snt309p, was identified through such a screen. Although the SNT309 gene was not essential for growth of Saccharomyces cerevisiae under normal conditions, yeast cells containing a null allele of the SNT309 gene were temperature sensitive and accumulated pre-mRNA at the nonpermissive temperature. Far-Western blot analysis revealed direct interaction between Prp19p and Snt309p. Snt309p was shown to be a component of the Prp19p-associated complex by Western blot analysis. Immunoprecipitation studies demonstrated that Snt309p was also a spliceosomal component and associated with the spliceosome in the same manner as Prp19p during spliceosome assembly. These results suggest that the functions of Prp19p and Snt309p in splicing may require coordinate action of these two proteins.
Collapse
Affiliation(s)
- H R Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Grey M, Düsterhöft A, Henriques JA, Brendel M. Allelism of PSO4 and PRP19 links pre-mRNA processing with recombination and error-prone DNA repair in Saccharomyces cerevisiae. Nucleic Acids Res 1996; 24:4009-14. [PMID: 8918805 PMCID: PMC146181 DOI: 10.1093/nar/24.20.4009] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The radiation-sensitive mutant pso4-1 of Saccharomyces cerevisiae shows a pleiotropic phenotype, including sensitivity to DNA cross-linking agents, nearly blocked sporulation and reduced mutability. We have cloned the putative yeast DNA repair gene PSO4 from a genomic library by complementation of the blocked UV-induced mutagenesis and of sporulation in diploids homozygous for pso4-1. Sequence analysis revealed that gene PSO4 consists of 1512 bp located upstream of UBI4 on chromosome XII and encodes a putative protein of 56.7 kDa. PSO4 is allelic to PRP19, a gene encoding a spliceosome-associated protein, but shares no significant homology with other yeast genes. Gene disruption with a destroyed reading frame of our PSO4 clone resulted in death of haploid cells, confirming the finding that PSO4/PRP19 is an essential gene. Thus, PSO4 is the third essential DNA repair gene found in the yeast S.cerevisiae.
Collapse
Affiliation(s)
- M Grey
- Institut für Mikrobiologie der J.W.Goethe Universität, Frankfurt/Main,Germany
| | | | | | | |
Collapse
|
42
|
Weidenhammer EM, Singh M, Ruiz-Noriega M, Woolford JL. The PRP31 gene encodes a novel protein required for pre-mRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res 1996; 24:1164-70. [PMID: 8604353 PMCID: PMC145753 DOI: 10.1093/nar/24.6.1164] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pre-mRNA splicing factor Prp31p was identified in a screen of temperature-sensitive yeast strains for those exhibiting a splicing defect upon shift to the non- permissive temperature. The wild-type PRP31 gene was cloned and shown to be essential for cell viability. The PRP31 gene is predicted to encode a 60 kDa polypeptide. No similarities with other known splicing factors or motifs indicative of protein-protein or RNA-protein interaction domains are discernible in the predicted amino acid sequence. A PRP31 allele bearing a triple repeat of the hemagglutinin epitope has been generated. The tagged protein is functional in vivo and a single polypeptide species of the predicted size was detected by Western analysis with proteins from yeast cell extracts. Functional Prp31p is required for the processing of pre-mRNA species both in vivo and in vitro, indicating that the protein is directly involved in the splicing pathway.
Collapse
Affiliation(s)
- E M Weidenhammer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | | | | | | |
Collapse
|
43
|
Vaidya VC, Seshadri V, Vijayraghavan U. An extragenic suppressor of prp24-1 defines genetic interaction between PRP24 and PRP21 gene products of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:267-76. [PMID: 8602141 DOI: 10.1007/bf02174384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The temperature-sensitive prp24-1 mutation defines a gene product required for the first step in pre-mRNA splicing. PRP24 is probably a component of the U6 snRNP particle. We have applied genetic reversion analysis to identify proteins that interact with PRP24. Spontaneous revertants of the temperature-sensitive (ts)prp24-1 phenotype were analyzed for those that are due to extragenic suppression. We then extended our analysis to screen for suppressors that confer a distinct conditional phenotype. We have identified a temperature-sensitive extragenic suppressor, which was shown by genetic complementation analysis to be allelic to prp21-1. This suppressor, prp21-2, accumulates pre-mRNA at the non-permissive temperature, a phenotype similar to that of prp21-1. prp21-2 completely suppresses the splicing defect and restores in vivo levels of the U6 snRNA in the prp24-1 strain. Genetic analysis of the suppressor showed that prp21-2 is not a bypass suppressor of prp24-1. The suppression of prp24-1 by prp21-2 is gene specific and also allele specific with respect to both the loci. Genetic interactions with other components of the pre-spliceosome have also been studied. Our results indicate an interaction between PRP21, a component of the U2 snRNP, and PRP24, a component of the U6 snRNP. These results substantiate other data showing U2-U6 snRNA interactions.
Collapse
Affiliation(s)
- V C Vaidya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
44
|
Interactions between highly conserved U2 small nuclear RNA structures and Prp5p, Prp9p, Prp11p, and Prp21p proteins are required to ensure integrity of the U2 small nuclear ribonucleoprotein in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 8065365 DOI: 10.1128/mcb.14.9.6337] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.
Collapse
|
45
|
Wells SE, Ares M. Interactions between highly conserved U2 small nuclear RNA structures and Prp5p, Prp9p, Prp11p, and Prp21p proteins are required to ensure integrity of the U2 small nuclear ribonucleoprotein in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:6337-49. [PMID: 8065365 PMCID: PMC359160 DOI: 10.1128/mcb.14.9.6337-6349.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.
Collapse
Affiliation(s)
- S E Wells
- Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | |
Collapse
|
46
|
Cheng SC. Formation of the yeast splicing complex A1 and association of the splicing factor PRP19 with the pre-mRNA are independent of the 3' region of the intron. Nucleic Acids Res 1994; 22:1548-54. [PMID: 8202353 PMCID: PMC308028 DOI: 10.1093/nar/22.9.1548] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Assembly of the spliceosome is a step-wise process and involves sequential binding of snRNAs to the pre-mRNA to form pre-splicing complex A2-1. Subsequent dissociation of U4 from the spliceosome is accompanied by formation of complex A1 (Genes Dev. 1, 1014-1027, 1987). We show that the 3' region of the intron sequence is not required for efficient assembly of the yeast spliceosome. Truncated precursor mRNA retaining only four or five nucleotides 3' to the TACTAAC box formed pre-splicing complex A1, kinetically the last pre-mRNA containing splicing complex identified. The subsequent cleavage--ligation reaction requires at least 23 nucleotides on the 3' side of the TACTAAC box in a sequence-independent manner. Immunoprecipitation with anti-PRP19 antibody showed that association of PRP19 with the spliceosome was also independent of the 3' region of the intron.
Collapse
Affiliation(s)
- S C Cheng
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, ROC
| |
Collapse
|
47
|
Hu J, Xu Y, Schappert K, Harrington T, Wang A, Braga R, Mogridge J, Friesen JD. Mutational analysis of the PRP4 protein of Saccharomyces cerevisiae suggests domain structure and snRNP interactions. Nucleic Acids Res 1994; 22:1724-34. [PMID: 8202378 PMCID: PMC308056 DOI: 10.1093/nar/22.9.1724] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The PRP4 protein of Saccharomyces cerevisiae is an essential part of the U4/U6 snRNP, a component of the mRNA splicing apparatus. As an approach to the determination of structure-function relationships in the PRP4 protein, we have isolated more than fifty new alleles of the PRP4 gene through random and site-directed mutagenesis, and have analyzed the phenotypes of many of them. Twelve of the fourteen single-point mutations that give rise to temperature-sensitive (ts) or null phenotypes are located in the portion of the PRP4 gene that corresponds to the beta-transducin-like region of the protein; the remaining two are located in the central portion of the gene, one of them in an arginine-lysine-rich region. Nine additional deletion or deletion/insertion mutations were isolated at both the amino- and carboxy-termini. These data show that the amino-terminal region (108 amino acids) of PRP4 is non-essential, while the carboxy-terminal region is essential up to the penultimate amino acid. A deletion of one entire beta-transducin-like repeat (the third of five) resulted in a null phenotype. All ts mutants show a first-step defect in the splicing of U3 snRNA primary transcript in vivo at the non-permissive temperature. The effects on prp4 mutant growth of increased copy-number of mutant prp4 genes themselves, and of genes for other components of the U4/U6 snRNP (PRP3 and U6 snRNA) have also been studied. We suggest that the PRP4 protein has at least three domains: a non-essential amino-terminal segment of at least 108 amino acids, a central basic region of about 140 residues that is relatively refractile to mutation and might be involved in RNA interaction, and an essential carboxy-terminal region of about 210 residues with the five repeat-regions that are similar to beta-transducins, which might be involved in protein-protein interaction. A model of interactions of snRNP components suggested by these results is presented.
Collapse
Affiliation(s)
- J Hu
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tarn WY, Lee KR, Cheng SC. Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA. Proc Natl Acad Sci U S A 1993; 90:10821-5. [PMID: 8248176 PMCID: PMC47870 DOI: 10.1073/pnas.90.22.10821] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
During assembly of the spliceosome, the U4 small nuclear RNA (snRNA) interacts with the spliceosome as a preformed U4/U6-U5 triple small nuclear ribonucleoprotein (snRNP) complex. Subsequently, U4 becomes loosely associated with the spliceosome, whereas U5 and U6 remain tightly associated, suggesting unwinding of the U4/U6 duplex. We show that this step of the assembly process can be blocked by limiting the ATP concentration in the splicing reaction. We also show that the yeast precursor mRNA processing protein PRP19 becomes associated with the spliceosome during this transition. Thus, PRP19 may function in this step of spliceosome assembly.
Collapse
Affiliation(s)
- W Y Tarn
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, Republic of China
| | | | | |
Collapse
|
49
|
Affiliation(s)
- J D Beggs
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| |
Collapse
|
50
|
Abstract
We have isolated the gene of a splicing factor, PRP19, by complementation of the temperature-sensitive growth defect of the prp19 mutant of Saccharomyces cerevisiae. The gene encodes a protein of 502 amino acid residues of molecular weight 56,500, with no homology to sequences in the data base. Unlike other PRP proteins or mammalian splicing factors, the sequence of PRP19 has no discernible motif. Immunoprecipitation studies showed that PRP19 is associated with the spliceosome during the splicing reaction. Although the exact function of PRP19 remains unknown, PRP19 appears to be distinct from the other PRP proteins or other spliceosomal components.
Collapse
|