1
|
Robertson AL, Yue L, Choudhuri A, Kubaczka C, Wattrus SJ, Mandelbaum J, Avagyan S, Yang S, Freeman RJ, Chan V, Blair MC, Daley GQ, Zon LI. Hematopoietic stem cell division is governed by distinct RUNX1 binding partners. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.596542. [PMID: 38895208 PMCID: PMC11185638 DOI: 10.1101/2024.06.07.596542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A defined number of hematopoietic stem cell (HSC) clones are born during development and expand to form the pool of adult stem cells. An intricate balance between self-renewal and differentiation of these HSCs supports hematopoiesis for life. HSC fate is determined by complex transcription factor networks that drive cell-type specific gene programs. The transcription factor RUNX1 is required for definitive hematopoiesis, and mutations in Runx1 have been shown to reduce clonal diversity. The RUNX1 cofactor, CBFý, stabilizes RUNX1 binding to DNA, and disruption of their interaction alters downstream gene expression. Chemical screening for modulators of Runx1 and HSC expansion in zebrafish led us to identify a new mechanism for the RUNX1 inhibitor, Ro5-3335. We found that Ro5-3335 increased HSC divisions in zebrafish, and animals transplanted with Ro5-3335 treated cells had enhanced chimerism compared to untreated cells. Using human CD34+ cells, we show that Ro5-3335 remodels the RUNX1 transcription complex by binding to ELF1, independent of CBFý. This allows specific expression of cell cycle and hematopoietic genes that enhance HSC self-renewal and prevent differentiation. Furthermore, we provide the first evidence to show that it is possible to pharmacologically increase the number of stem cell clones in vivo , revealing a previously unknown mechanism for enhancing clonal diversity. Our studies have revealed a mechanism by which binding partners of RUNX1 determine cell fate, with ELF transcription factors guiding cell division. This information could lead to treatments that enhance clonal diversity for blood diseases.
Collapse
|
2
|
Day RB, Hickman JA, Xu Z, Katerndahl CD, Ferraro F, Ramakrishnan SM, Erdmann-Gilmore P, Sprung RW, Mi Y, Townsend RR, Miller CA, Ley TJ. Proteogenomic analysis reveals cytoplasmic sequestration of RUNX1 by the acute myeloid leukemia-initiating CBFB::MYH11 oncofusion protein. J Clin Invest 2023; 134:e176311. [PMID: 38061017 PMCID: PMC10866659 DOI: 10.1172/jci176311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
Several canonical translocations produce oncofusion genes that can initiate acute myeloid leukemia (AML). Although each translocation is associated with unique features, the mechanisms responsible remain unclear. While proteins interacting with each oncofusion are known to be relevant for how they act, these interactions have not yet been systematically defined. To address this issue in an unbiased fashion, we fused a promiscuous biotin ligase (TurboID) in-frame with 3 favorable-risk AML oncofusion cDNAs (PML::RARA, RUNX1::RUNX1T1, and CBFB::MYH11) and identified their interacting proteins in primary murine hematopoietic cells. The PML::RARA- and RUNX1::RUNX1T1-TurboID fusion proteins labeled common and unique nuclear repressor complexes, implying their nuclear localization. However, CBFB::MYH11-TurboID-interacting proteins were largely cytoplasmic, probably because of an interaction of the MYH11 domain with several cytoplasmic myosin-related proteins. Using a variety of methods, we showed that the CBFB domain of CBFB::MYH11 sequesters RUNX1 in cytoplasmic aggregates; these findings were confirmed in primary human AML cells. Paradoxically, CBFB::MYH11 expression was associated with increased RUNX1/2 expression, suggesting the presence of a sensor for reduced functional RUNX1 protein, and a feedback loop that may attempt to compensate by increasing RUNX1/2 transcription. These findings may have broad implications for AML pathogenesis.
Collapse
Affiliation(s)
- Ryan B. Day
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Julia A. Hickman
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Ziheng Xu
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Casey D.S. Katerndahl
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Francesca Ferraro
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | | | - Petra Erdmann-Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert W. Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiling Mi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher A. Miller
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Timothy J. Ley
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| |
Collapse
|
3
|
Malik N, Kim YI, Yan H, Tseng YC, du Bois W, Ayaz G, Tran AD, Vera-Ramirez L, Yang H, Michalowski AM, Kruhlak M, Lee M, Hunter KW, Huang J. Dysregulation of Mitochondrial Translation Caused by CBFB Deficiency Cooperates with Mutant PIK3CA and Is a Vulnerability in Breast Cancer. Cancer Res 2023; 83:1280-1298. [PMID: 36799863 PMCID: PMC10106426 DOI: 10.1158/0008-5472.can-22-2525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Understanding functional interactions between cancer mutations is an attractive strategy for discovering unappreciated cancer pathways and developing new combination therapies to improve personalized treatment. However, distinguishing driver gene pairs from passenger pairs remains challenging. Here, we designed an integrated omics approach to identify driver gene pairs by leveraging genetic interaction analyses of top mutated breast cancer genes and the proteomics interactome data of their encoded proteins. This approach identified that PIK3CA oncogenic gain-of-function (GOF) and CBFB loss-of-function (LOF) mutations cooperate to promote breast tumor progression in both mice and humans. The transcription factor CBFB localized to mitochondria and moonlighted in translating the mitochondrial genome. Mechanistically, CBFB enhanced the binding of mitochondrial mRNAs to TUFM, a mitochondrial translation elongation factor. Independent of mutant PI3K, mitochondrial translation defects caused by CBFB LOF led to multiple metabolic reprogramming events, including defective oxidative phosphorylation, the Warburg effect, and autophagy/mitophagy addiction. Furthermore, autophagy and PI3K inhibitors synergistically killed breast cancer cells and impaired the growth of breast tumors, including patient-derived xenografts carrying CBFB LOF and PIK3CA GOF mutations. Thus, our study offers mechanistic insights into the functional interaction between mutant PI3K and mitochondrial translation dysregulation in breast cancer progression and provides a strong preclinical rationale for combining autophagy and PI3K inhibitors in precision medicine for breast cancer. SIGNIFICANCE CBFB-regulated mitochondrial translation is a regulatory step in breast cancer metabolism and synergizes with mutant PI3K in breast cancer progression.
Collapse
Affiliation(s)
- Navdeep Malik
- Cancer and Stem Cell Epigenetics Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Young-Im Kim
- Cancer and Stem Cell Epigenetics Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yu-Chou Tseng
- Cancer and Stem Cell Epigenetics Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wendy du Bois
- Animal Model and Genotyping Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gamze Ayaz
- Cancer and Stem Cell Epigenetics Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andy D. Tran
- CCR Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Laura Vera-Ramirez
- Metastasis Susceptibility Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS, Granada, Spain
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Center, University of Granada, Granada, Spain
| | - Howard Yang
- High-dimension Data Analysis Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aleksandra M. Michalowski
- Cancer and Stem Cell Epigenetics Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michael Kruhlak
- CCR Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maxwell Lee
- High-dimension Data Analysis Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kent W. Hunter
- Metastasis Susceptibility Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jing Huang
- Cancer and Stem Cell Epigenetics Group, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
4
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
5
|
Tang CY, Wu M, Zhao D, Edwards D, McVicar A, Luo Y, Zhu G, Wang Y, Zhou HD, Chen W, Li YP. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways. PLoS Genet 2021; 17:e1009233. [PMID: 33476325 PMCID: PMC7819607 DOI: 10.1371/journal.pgen.1009233] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Runx1 is highly expressed in osteoblasts, however, its function in osteogenesis is unclear. We generated mesenchymal progenitor-specific (Runx1f/fTwist2-Cre) and osteoblast-specific (Runx1f/fCol1α1-Cre) conditional knockout (Runx1 CKO) mice. The mutant CKO mice with normal skeletal development displayed a severe osteoporosis phenotype at postnatal and adult stages. Runx1 CKO resulted in decreased osteogenesis and increased adipogenesis. RNA-sequencing analysis, Western blot, and qPCR validation of Runx1 CKO samples showed that Runx1 regulates BMP signaling pathway and Wnt/β-catenin signaling pathway. ChIP assay revealed direct binding of Runx1 to the promoter regions of Bmp7, Alk3, and Atf4, and promoter mapping demonstrated that Runx1 upregulates their promoter activity through the binding regions. Bmp7 overexpression rescued Alk3, Runx2, and Atf4 expression in Runx1-deficient BMSCs. Runx2 expression was decreased while Runx1 was not changed in Alk3 deficient osteoblasts. Atf4 overexpression in Runx1-deficient BMSCs did not rescue expression of Runx1, Bmp7, and Alk3. Smad1/5/8 activity was vitally reduced in Runx1 CKO cells, indicating Runx1 positively regulates the Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 signaling pathway. Notably, Runx1 overexpression in Runx2-/- osteoblasts rescued expression of Atf4, OCN, and ALP to compensate Runx2 function. Runx1 CKO mice at various osteoblast differentiation stages reduced Wnt signaling and caused high expression of C/ebpα and Pparγ and largely increased adipogenesis. Co-culture of Runx1-deficient and wild-type cells demonstrated that Runx1 regulates osteoblast-adipocyte lineage commitment both cell-autonomously and non-autonomously. Notably, Runx1 overexpression rescued bone loss in OVX-induced osteoporosis. This study focused on the role of Runx1 in different cell populations with regards to BMP and Wnt signaling pathways and in the interacting network underlying bone homeostasis as well as adipogenesis, and has provided new insight and advancement of knowledge in skeletal development. Collectively, Runx1 maintains adult bone homeostasis from bone loss though up-regulating Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 and WNT/β-Catenin signaling pathways, and targeting Runx1 potentially leads to novel therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Chen-Yi Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Department of Metabolism & Endocrinology, Hunan provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Dongfeng Zhao
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Shanghai University of Traditional Chinese Medicine, Pudong, Shanghai, China P.R
| | - Diep Edwards
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Abigail McVicar
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Yuan Luo
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Yongjun Wang
- Shanghai University of Traditional Chinese Medicine, Pudong, Shanghai, China P.R
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, Hunan provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- * E-mail: (WC); (Y-PL)
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- * E-mail: (WC); (Y-PL)
| |
Collapse
|
6
|
Li X, Wang L, Wang C, Tan C, Liu X, Zhu Y. Development and Biocompatibility Analysis of NBD Peptide Sustained- Release Microsphere Scaffold Nanoparticle SP-Sr-CaS/NBD. Curr Drug Deliv 2020; 18:433-445. [PMID: 33198617 DOI: 10.2174/1567201817999201116154935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In clinical treatment, it is difficult to carry out effective bone tissue transplantation and anti-inflammatory treatment at the same time due to bone defects and osteomyelitis where the tissue is contaminated or infected. As a downstream target of TNF-α, NF-κB has an inhibition effect on the proliferation and differentiation of cells surrounding the lesion. As a negative effect, it leads to a reduction in bone growth and development. METHODS In this study, the small molecule NBD polypeptide and bone conduction matrix Sr-CaS are microspheres, formed to prepare Sr-CaS, NBD drug-loaded sustained-release microspheres in order to achieve a Sr-CaS/NBD peptide drug-loaded sustained release microsphere scaffold material (SP-Sr-CaS/NBD). We prepared the microspheres and optimized the production process to obtain particles with stable morphological properties and sustained release properties. RESULT In vitro experiments demonstrated that SP-Sr-CaS/NBD could reduce TNF-α-induced cell growth inhibition, caspase-3 activity and NF-κB transcriptional activation as the function of continuous NBD peptide dosing regimen. CONCLUSION Also, the introduction of the Sr-CaS matrix potentiates microspheres to promote cell proliferation and provides a basis to become a promising 3D bone scaffold material in the future.
Collapse
Affiliation(s)
- Xue Li
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, 528000, Guangzhou, China
| | - Lei Wang
- Department of Orthopaedics & Traumatology, Nanfang Hospital, Southern Medical University, 510515, China
| | - Changbing Wang
- 15th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, 528000, Guangzhou, China
| | - Caixia Tan
- Radiology Department, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, 528000, Guangzhou, China
| | - Xifaofang Liu
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, 528000, Guangzhou, China
| | - Yongzhan Zhu
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, 528000, Guangzhou, China
| |
Collapse
|
7
|
Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020; 136:24-35. [PMID: 32430494 PMCID: PMC7332898 DOI: 10.1182/blood.2019000937] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recognition that germline mutations can predispose individuals to blood cancers, often presenting as secondary leukemias, has largely been driven in the last 20 years by studies of families with inherited mutations in the myeloid transcription factors (TFs) RUNX1, GATA2, and CEBPA. As a result, in 2016, classification of myeloid neoplasms with germline predisposition for each of these and other genes was added to the World Health Organization guidelines. The incidence of germline mutation carriers in the general population or in various clinically presenting patient groups remains poorly defined for reasons including that somatic mutations in these genes are common in blood cancers, and our ability to distinguish germline (inherited or de novo) and somatic mutations is often limited by the laboratory analyses. Knowledge of the regulation of these TFs and their mutant alleles, their interaction with other genes and proteins and the environment, and how these alter the clinical presentation of patients and their leukemias is also incomplete. Outstanding questions that remain for patients with these germline mutations or their treating clinicians include: What is the natural course of the disease? What other symptoms may I develop and when? Can you predict them? Can I prevent them? and What is the best treatment? The resolution of many of the remaining clinical and biological questions and effective evidence-based treatment of patients with these inherited mutations will depend on worldwide partnerships among patients, clinicians, diagnosticians, and researchers to aggregate sufficient longitudinal clinical and laboratory data and integrate these data with model systems.
Collapse
MESH Headings
- Age of Onset
- Blood Cell Count
- CCAAT-Enhancer-Binding Proteins/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Disease Management
- Early Detection of Cancer
- Forecasting
- GATA2 Transcription Factor/genetics
- Genes, Neoplasm
- Genetic Counseling
- Genetic Predisposition to Disease
- Germ-Line Mutation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Neoplasms, Second Primary/genetics
- Penetrance
- Prognosis
Collapse
Affiliation(s)
- Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
8
|
Inhibition of Vif-Mediated Degradation of APOBEC3G through Competitive Binding of Core-Binding Factor Beta. J Virol 2020; 94:JVI.01708-19. [PMID: 31941780 DOI: 10.1128/jvi.01708-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
Vif counteracts the host restriction factor APOBEC3G (A3G) and other APOBEC3s by preventing the incorporation of A3G into progeny virions. We previously identified Vif mutants with a dominant-negative (D/N) phenotype that interfered with the function of wild-type Vif, inhibited the degradation of A3G, and reduced the infectivity of viral particles by increased packaging of A3G. However, the mechanism of interference remained unclear, in particular since all D/N Vif mutants were unable to bind Cul5 and some mutants additionally failed to bind A3G, ruling out competitive binding to A3G or the E3 ubiquitin ligase complex as the sole mechanism. The goal of the current study was to revisit the mechanism of D/N interference by Vif mutants and analyze the possible involvement of core binding factor beta (CBFβ) in this process. We found a clear correlation of D/N properties of Vif mutants with their ability to engage CBFβ. Only mutants that retained the ability to bind CBFβ exhibited the D/N phenotype. Competition studies revealed that D/N Vif mutants directly interfered with the association of CBFβ and wild-type Vif. Furthermore, overexpression of CBFβ counteracted the interference of D/N Vif mutants with A3G degradation by wild-type Vif. Finally, overexpression of Runx1 mimicked the effect of D/N Vif mutants and inhibited the degradation of A3G by wild-type Vif. Taken together, we identified CBFβ as the key player involved in D/N interference by Vif.IMPORTANCE Of all the accessory proteins encoded by HIV-1 and other primate lentiviruses, Vif has arguably the strongest potential as a target for antiviral therapy. This conclusion is based on the observation that replication of HIV-1 in vivo is critically dependent on Vif. Thus, inhibiting the function of Vif via small-molecule inhibitors or other approaches has significant therapeutic potential. We previously identified dominant-negative (D/N) Vif variants whose expression interferes with the function of virus-encoded wild-type Vif. We now show that D/N interference involves competitive binding of D/N Vif variants to the transcriptional cofactor core binding factor beta (CBFβ), which is expressed in cells in limiting quantities. Overexpression of CBFβ neutralized the D/N phenotype of Vif. In contrast, overexpression of Runx1, a cellular binding partner of CBFβ, phenocopied the D/N Vif phenotype by sequestering endogenous CBFβ. Thus, our results provide proof of principle that D/N Vif variants could have therapeutic potential.
Collapse
|
9
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
10
|
Skayneh H, Jishi B, Hleihel R, Hamieh M, Darwiche N, Bazarbachi A, El Sabban M, El Hajj H. A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology. Genes (Basel) 2019; 10:E614. [PMID: 31412687 PMCID: PMC6722578 DOI: 10.3390/genes10080614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most frequent, complex, and heterogeneous hematological malignancies. AML prognosis largely depends on acquired cytogenetic, epigenetic, and molecular abnormalities. Despite the improvement in understanding the biology of AML, survival rates remain quite low. Animal models offer a valuable tool to recapitulate different AML subtypes, and to assess the potential role of novel and known mutations in disease progression. This review provides a comprehensive and critical overview of select available AML animal models. These include the non-mammalian Zebrafish and Drosophila models as well as the mammalian rodent systems, comprising rats and mice. The suitability of each animal model, its contribution to the advancement of knowledge in AML pathophysiology and treatment, as well as its advantages and limitations are discussed. Despite some limitations, animal models represent a powerful approach to assess toxicity, and permit the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Hala Skayneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Batoul Jishi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Maguy Hamieh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
11
|
Chisholm KM, Denton C, Keel S, Geddis AE, Xu M, Appel BE, Cantor AB, Fleming MD, Shimamura A. Bone Marrow Morphology Associated With Germline RUNX1 Mutations in Patients With Familial Platelet Disorder With Associated Myeloid Malignancy. Pediatr Dev Pathol 2019; 22:315-328. [PMID: 30600763 DOI: 10.1177/1093526618822108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Germline mutations in RUNX1 result in autosomal dominant familial platelet disorder with associated myeloid malignancy (FPDMM). To characterize the hematopathologic features associated with a germline RUNX1 mutation, we reviewed a total of 42 bone marrow aspirates from 14 FPDMM patients, including 24 cases with no cytogenetic clonal abnormalities, and 18 with clonal karyotypes or leukemia. We found that all aspirate smears had ≥10% atypical megakaryocytes, predominantly characterized by small forms with hypolobated and eccentric nuclei, and forms with high nuclear-to-cytoplasmic ratios. Core biopsies showed variable cellularity and variable numbers of megakaryocytes with similar features to those in the aspirates. Granulocytic and/or erythroid dysplasia (≥10% cells per lineage) were present infrequently. Megakaryocytes with separate nuclear lobes were increased in patients with myelodysplastic syndrome (MDS) and acute leukemia. Comparison to an immune thrombocytopenic purpura cohort confirms increased megakaryocytes with hypolobated eccentric nuclei in FPDMM patients. As such, patients with FPDMM often have atypical megakaryocytes with small hypolobated and eccentric nuclei even in the absence of clonal cytogenetic abnormalities; these findings are related to the underlying RUNX1 germline mutation and not diagnostic of MDS. Isolated megakaryocytic dysplasia in patients with unexplained thrombocytopenia should raise the possibility of an underlying germline RUNX1 mutation.
Collapse
Affiliation(s)
- Karen M Chisholm
- 1 Department of Laboratories, Seattle Children's Hospital, Seattle, Washington.,2 Department of Laboratory Medicine, University of Washington, Seattle, Washington.,3 Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Christopher Denton
- 4 Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
| | - Sioban Keel
- 5 Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington
| | - Amy E Geddis
- 6 Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, Washington.,7 Division of Hematology & Oncology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Min Xu
- 1 Department of Laboratories, Seattle Children's Hospital, Seattle, Washington.,2 Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Burton E Appel
- 8 Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Children's Cancer Institute, Hackensack, New Jersey
| | - Alan B Cantor
- 9 Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts.,10 Department of Hematology Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Mark D Fleming
- 3 Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Akiko Shimamura
- 9 Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts.,10 Department of Hematology Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
12
|
Sarper SE, Inubushi T, Kurosaka H, Ono Minagi H, Murata Y, Kuremoto KI, Sakai T, Taniuchi I, Yamashiro T. Anterior cleft palate due to Cbfb deficiency and its rescue by folic acid. Dis Model Mech 2019; 12:dmm.038851. [PMID: 31171577 PMCID: PMC6602316 DOI: 10.1242/dmm.038851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Core binding factor β (Cbfb) is a cofactor of the Runx family of transcription factors. Among these transcription factors, Runx1 is a prerequisite for anterior-specific palatal fusion. It was previously unclear, however, whether Cbfb served as a modulator or as an obligatory factor in the Runx signaling process that regulates palatogenesis. Here, we report that Cbfb is essential and indispensable in mouse anterior palatogenesis. Palatal fusion in Cbfb mutants is disrupted owing to failed disintegration of the fusing epithelium specifically at the anterior portion, as observed in Runx1 mutants. In these mutants, expression of TGFB3 is disrupted in the area of failed palatal fusion, in which phosphorylation of Stat3 is also affected. TGFB3 protein has been shown to rescue palatal fusion in vitro. TGFB3 also activated Stat3 phosphorylation. Strikingly, the anterior cleft palate in Cbfb mutants is further rescued by pharmaceutical application of folic acid, which activates suppressed Stat3 phosphorylation and Tgfb3 expression in vitro. With these findings, we provide the first evidence that Cbfb is a prerequisite for anterior palatogenesis and acts as an obligatory cofactor in the Runx1/Cbfb-Stat3-Tgfb3 signaling axis. Furthermore, the rescue of the mutant cleft palate using folic acid might highlight potential therapeutic targets aimed at Stat3 modification for the prevention and pharmaceutical intervention of cleft palate. Summary: Epithelial deletion of Cbfb results in an anterior cleft palate with impaired fusion of the palatal process; folic acid application rescues the mutant phenotype with Stat3 activation in vitro.
Collapse
Affiliation(s)
- Safiye E Sarper
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.,Laboratory of Theoretical Biology, Graduate School of Sciences, Osaka University, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Hitomi Ono Minagi
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Yuka Murata
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Koh-Ichi Kuremoto
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Sekimata M, Yoshida D, Araki A, Asao H, Iseki K, Murakami-Sekimata A. Runx1 and RORγt Cooperate to Upregulate IL-22 Expression in Th Cells through Its Distal Enhancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3198-3210. [PMID: 31028121 DOI: 10.4049/jimmunol.1800672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
IL-22 is a cytokine that plays a pivotal role in regulating tissue homeostasis at barrier surfaces and is produced by activated CD4+ Th cells. Currently, the molecular mechanisms regulating Il22 gene expression are still unclear. In this study, we have identified a crucial cis-regulatory element located 32 kb upstream of the mouse Il22 promoter, termed conserved noncoding sequence (CNS)-32. We demonstrated that CNS-32 acts as an enhancer in reporter assays and contains binding motifs for Runt-related transcription factor (Runx)1 and retinoic acid-related orphan receptor γt (RORγt). Mutation of these motifs significantly abrogated the reporter activity, suggesting a role for both factors in the control of enhancer-mediated Il22 expression. Runx1 and RORγt occupancy and elevated histone H4 acetylation at CNS-32 were evident, as naive T cells differentiated into IL-22-producing Th22 cells. Overexpression of Runx1 promoted IL-22 production by inducing RORγt and IL-23 receptor, all critical to Th22 cell induction. Although Runx1 alone enhanced IL-22 production in Th22 cells, it was further enhanced in the presence of RORγt. Conversely, short hairpin RNA-mediated knockdown of core-binding factor β, a cofactor essential for Runx1 activity, was effective in limiting IL-22 production. Collectively, our results suggest that IL-22 production is controlled by a regulatory circuit in which Runx1 induces RORγt and then partners with RORγt to direct Il22 expression through their targeting of the Il22 enhancer.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Animals
- Cell Differentiation
- Cells, Cultured
- Conserved Sequence/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Enhancer Elements, Genetic/genetics
- Interleukins/genetics
- Interleukins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutation/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Protein Binding
- RNA, Small Interfering/genetics
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- Up-Regulation
- Interleukin-22
Collapse
Affiliation(s)
- Masayuki Sekimata
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan;
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Daiki Yoshida
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
14
|
Hong D, Fritz AJ, Gordon JA, Tye CE, Boyd JR, Tracy KM, Frietze SE, Carr FE, Nickerson JA, Van Wijnen AJ, Imbalzano AN, Zaidi SK, Lian JB, Stein JL, Stein GS. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol 2019; 234:8597-8609. [PMID: 30515788 PMCID: PMC6395522 DOI: 10.1002/jcp.27841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.
Collapse
Affiliation(s)
- Deli Hong
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Seth E Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E. Carr
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Andre J. Van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Anthony N. Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
15
|
van der Kouwe E, Staber PB. RUNX1-ETO: Attacking the Epigenome for Genomic Instable Leukemia. Int J Mol Sci 2019; 20:E350. [PMID: 30654457 PMCID: PMC6358732 DOI: 10.3390/ijms20020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/29/2022] Open
Abstract
Oncogenic fusion protein RUNX1-ETO is the product of the t(8;21) translocation, responsible for the most common cytogenetic subtype of acute myeloid leukemia. RUNX1, a critical transcription factor in hematopoietic development, is fused with almost the entire ETO sequence with the ability to recruit a wide range of repressors. Past efforts in providing a comprehensive picture of the genome-wide localization and the target genes of RUNX1-ETO have been inconclusive in understanding the underlying mechanism by which it deregulates native RUNX1. In this review; we dissect the current data on the epigenetic impact of RUNX1 and RUNX1-ETO. Both share similarities however, in recent years, research focused on epigenetic factors to explain their differences. RUNX1-ETO impairs DNA repair mechanisms which compromises genomic stability and favors a mutator phenotype. Among an increasing pool of mutated factors, regulators of DNA methylation are frequently found in t(8;21) AML. Together with the alteration of both, histone markers and distal enhancer regulation, RUNX1-ETO might specifically disrupt normal chromatin structure. Epigenetic studies on the fusion protein uncovered new mechanisms contributing to leukemogenesis and hopefully will translate into clinical applications.
Collapse
Affiliation(s)
- Emiel van der Kouwe
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Philipp Bernhard Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
16
|
Gao L, Tober J, Gao P, Chen C, Tan K, Speck NA. RUNX1 and the endothelial origin of blood. Exp Hematol 2018; 68:2-9. [PMID: 30391350 PMCID: PMC6494457 DOI: 10.1016/j.exphem.2018.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
The transcription factor RUNX1 is required in the embryo for formation of the adult hematopoietic system. Here, we describe the seminal findings that led to the discovery of RUNX1 and of its critical role in blood cell formation in the embryo from hemogenic endothelium (HE). We also present RNA-sequencing data demonstrating that HE cells in different anatomic sites, which produce hematopoietic progenitors with dissimilar differentiation potentials, are molecularly distinct. Hemogenic and non-HE cells in the yolk sac are more closely related to each other than either is to hemogenic or non-HE cells in the major arteries. Therefore, a major driver of the different lineage potentials of the committed erythro-myeloid progenitors that emerge in the yolk sac versus hematopoietic stem cells that originate in the major arteries is likely to be the distinct molecular properties of the HE cells from which they are derived. We used bioinformatics analyses to predict signaling pathways active in arterial HE, which include the functionally validated pathways Notch, Wnt, and Hedgehog. We also used a novel bioinformatics approach to assemble transcriptional regulatory networks and predict transcription factors that may be specifically involved in hematopoietic cell formation from arterial HE, which is the origin of the adult hematopoietic system.
Collapse
Affiliation(s)
- Long Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Tenno M, Kojo S, Lawir DF, Hess I, Shiroguchi K, Ebihara T, Endo TA, Muroi S, Satoh R, Kawamoto H, Boehm T, Taniuchi I. Cbfβ2 controls differentiation of and confers homing capacity to prethymic progenitors. J Exp Med 2018; 215:595-610. [PMID: 29343500 PMCID: PMC5789415 DOI: 10.1084/jem.20171221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/28/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023] Open
Abstract
Tenno et al. show that an evolutionarily conserved alternative splicing event in the Cbfb gene generates Cbfβ2, which forms a functionally distinct transcription factor complex underlying the differentiation of extrathymic T cell progenitors, including induction of the principal thymus-homing receptor, Ccr9. Multipotent hematopoietic progenitors must acquire thymus-homing capacity to initiate T lymphocyte development. Despite its importance, the transcriptional program underlying this process remains elusive. Cbfβ forms transcription factor complexes with Runx proteins, and here we show that Cbfβ2, encoded by an RNA splice variant of the Cbfb gene, is essential for extrathymic differentiation of T cell progenitors. Furthermore, Cbfβ2 endows extrathymic progenitors with thymus-homing capacity by inducing expression of the principal thymus-homing receptor, Ccr9. This occurs via direct binding of Cbfβ2 to cell type–specific enhancers, as is observed in Rorγt induction during differentiation of lymphoid tissue inducer cells by activation of an intronic enhancer. As in mice, an alternative splicing event in zebrafish generates a Cbfβ2-specific mRNA, important for ccr9 expression. Thus, despite phylogenetically and ontogenetically variable sites of origin of T cell progenitors, their robust thymus-homing capacity is ensured by an evolutionarily conserved mechanism emerging from functional diversification of Runx transcription factor complexes by acquisition of a novel splice variant.
Collapse
Affiliation(s)
- Mari Tenno
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Isabell Hess
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katsuyuki Shiroguchi
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Laboratory for Integrative Omics, RIKEN Quantitative Biology Center, Osaka, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Rumi Satoh
- Laboratory for Lymphocyte Development, RIKEN Center for Allergy and Immunology, Yokohama, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Center for Allergy and Immunology, Yokohama, Japan
| | - Thomas Boehm
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
18
|
Mutant Runx2 regulates amelogenesis and osteogenesis through a miR-185-5p-Dlx2 axis. Cell Death Dis 2017; 8:3221. [PMID: 29242628 PMCID: PMC5870583 DOI: 10.1038/s41419-017-0078-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Abstract
Regulation of microRNAs (miRNA) has been extensively investigated in diseases; however, little is known about the roles of miRNAs in cleidocranial dysplasia (CCD). The aim of the present study was to investigate the potential involvement of miRNAs in CCD. In vitro site-directed mutagenesis was performed to construct three mutant Runx2 expression vectors, which were then transfected into LS8 cells and MC3T3-E1 cells, to determine the impact on amelogenesis and osteogenesis, respectively. miRCURY LNA miRNA microarray identify miR-185-5p as a miRNA target commonly induced by all three Runx2 mutants. Real-time quantitative PCR was applied to determine the expression of miR-185-5p and Dlx2 in samples. Dual-luciferase reporter assays were conducted to confirm Dlx2 as a legitimate target of miR-185-5p. The suppressive effect of miR-185-5p on amelogenesis and osteogenesis of miR-185-5p was evaluated by RT-PCR and western blot examination of Amelx, Enam, Klk4, and Mmp20 gene and protein expression, and by Alizarin Red stain. We found that mutant Runx2 suppressed amelogenesis and osteogenesis. miR-185-5p, induced by Runx2, suppressed amelogenesis and osteogenesis. Furthermore, we identified Dlx2 as direct target of miR-185-5p. Consistently, Dlx2 expression was inversely correlated with miR-185-5p levels. This study highlights the molecular etiology and significance of miR-185-5p in CCD, and suggests that targeting miR-185-5p may represent a new therapeutic strategy in prevention or intervention of CCD.
Collapse
|
19
|
Zhou X, Zhu J, Bian T, Wang R, Gao F. Mislocalization of Runt-related transcription factor 3 results in airway inflammation and airway hyper-responsiveness in a murine asthma model. Exp Ther Med 2017; 14:2695-2701. [PMID: 28962214 DOI: 10.3892/etm.2017.4812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
The Runt-related transcription factor (RUNX) gene family consists of three members, RUNX1, -2 and -3, which heterodimerize with a common protein, core-binding factor β, and contain the highly conserved Runt-homology domain. RUNX1 and -2 have essential roles in hematopoiesis and osteogenesis. Runx3 protein regulates cell lineage decisions in neurogenesis and thymopoiesis. The aim of the present study was to determine the expression features of the Runx3 protein in a murine asthma model. In vivo, Runx3 protein and mRNA were found to be almost equivalently expressed in the murine lung tissue of the control, ovalbumin (OVA) and genistein groups; however, the nuclear Runx3 protein was abated in lung tissue in OVA-immunized and challenged mice. Following treatment with genistein, which is a flavonoid previously demonstrated to decrease airway inflammation in asthma, the allergic airway inflammation and airway hyper-responsiveness were attenuated and the Runx3 protein tended to augment in the nucleus. These results were further determined in vitro. These results indicated that the mislocalization of Runx3 protein is a molecular mechanism of allergic inflammation and airway hyper-responsiveness in a murine asthma model.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Respiratory Medicine, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jinxiao Zhu
- Department of Stomatology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Ruiqian Wang
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Fei Gao
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
20
|
Gau P, Curtright A, Condon L, Raible DW, Dhaka A. An ancient neurotrophin receptor code; a single Runx/Cbfβ complex determines somatosensory neuron fate specification in zebrafish. PLoS Genet 2017; 13:e1006884. [PMID: 28708822 PMCID: PMC5533457 DOI: 10.1371/journal.pgen.1006884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 07/28/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and sensory receptor expression where Runx1 mediates TrkA+ nociceptor diversification while Runx3 promotes a TrkC+ proprioceptive/mechanoceptive fate. Here, we report in zebrafish larvae that orthologs of the neurotrophin receptors in contrast to terrestrial vertebrates mark overlapping and distinct subsets of nociceptors suggesting that TrkA, TrkB and TrkC do not intrinsically promote nociceptor, mechanoceptor and proprioceptor/mechanoceptor neuronal fates, respectively. While we find that zebrafish Runx3 regulates nociceptors in contrast to terrestrial vertebrates, it shares a conserved regulatory mechanism found in terrestrial vertebrate proprioceptors/mechanoceptors in which it promotes TrkC expression and suppresses TrkB expression. We find that Cbfβ, which enhances Runx protein stability and affinity for DNA, serves as an obligate cofactor for Runx in neuronal fate determination. High levels of Runx can compensate for the loss of Cbfβ, indicating that in this context Cbfβ serves solely as a signal amplifier of Runx activity. Our data suggests an alteration/expansion of the neurotrophin receptor code of sensory neurons between larval teleost fish and terrestrial vertebrates, while the essential roles of Runx/Cbfβ in sensory neuron cell fate determination while also expanded are conserved. Our perception of the external world comes from our senses. Often overlooked the skin is our largest sensory organ. Specialized neurons located in the dorsal root ganglion (DRG), which innervate the body, and trigeminal ganglion (TG), which innervate the face, sense the somatosensory perceptions: light touch, temperature, pain (nociceptors) and muscle/limb position (proprioception) via nerve endings that project to the skin. These neurons receive and relay information from these diverse stimuli through distinct subclasses of neurons. Since these neurons arise from common lineages, they provide an excellent system to study how neurons develop and diversify into different subtypes. Runx transcription factors have been shown in terrestrial vertebrates (birds and mammals) to be instrumental in specifying nociceptor and proprioceptor populations by regulating the expression of a class of genes that code for the neurotrophin receptors, which are thought to be essential for specifying these neuronal fates. In our study we show that mechanisms by which Runx transcription factors regulate neurotrophin receptor expression are conserved between zebrafish and terrestrial vertebrates, yet the type of neuron specified by these genes are different such that in zebrafish the neurotrophin receptor TrkC is expressed in a nociceptor lineage instead of the proprioceptor/mechanoreceptor lineage as in terrestrial vertebrates. These data demonstrate that the specification of neuronal lineages is not fundamental to a given neurotrophin receptor but has adapted and evolved from the time fish and terrestrial vertebrates diverged 350 million years ago. Furthermore we show in fish that zebrafish Runx3 has properties that are divided between Runx1 and Runx3 in terrestrial vertebrates. Finally we show that the Runx co-factor Cbfβ is essential for its function, but the high level of Runx3 expression can overcome the loss of Cbfβ, demonstrating that Cbfβ in this context serves solely as a signal amplifier of Runx3 activity.
Collapse
Affiliation(s)
- Philia Gau
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Andrew Curtright
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Logan Condon
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
RUNX1 is a member of the core-binding factor family of transcription factors and is indispensable for the establishment of definitive hematopoiesis in vertebrates. RUNX1 is one of the most frequently mutated genes in a variety of hematological malignancies. Germ line mutations in RUNX1 cause familial platelet disorder with associated myeloid malignancies. Somatic mutations and chromosomal rearrangements involving RUNX1 are frequently observed in myelodysplastic syndrome and leukemias of myeloid and lymphoid lineages, that is, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic myelomonocytic leukemia. More recent studies suggest that the wild-type RUNX1 is required for growth and survival of certain types of leukemia cells. The purpose of this review is to discuss the current status of our understanding about the role of RUNX1 in hematological malignancies.
Collapse
|
22
|
Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 2017; 129:2061-2069. [PMID: 28179276 DOI: 10.1182/blood-2016-12-689109] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/01/2023] Open
Abstract
The Runx family of transcription factors (Runx1, Runx2, and Runx3) are highly conserved and encode proteins involved in a variety of cell lineages, including blood and blood-related cell lineages, during developmental and adult stages of life. They perform activation and repressive functions in the regulation of gene expression. The requirement for Runx1 in the normal hematopoietic development and its dysregulation through chromosomal translocations and loss-of-function mutations as found in acute myeloid leukemias highlight the importance of this transcription factor in the healthy blood system. Whereas another review will focus on the role of Runx factors in leukemias, this review will provide an overview of the normal regulation and function of Runx factors in hematopoiesis and focus particularly on the biological effects of Runx1 in the generation of hematopoietic stem cells. We will present the current knowledge of the structure and regulatory features directing lineage-specific expression of Runx genes, the models of embryonic and adult hematopoietic development that provide information on their function, and some of the mechanisms by which they affect hematopoietic function.
Collapse
|
23
|
Lilly AJ, Costa G, Largeot A, Fadlullah MZH, Lie-A-Ling M, Lacaud G, Kouskoff V. Interplay between SOX7 and RUNX1 regulates hemogenic endothelial fate in the yolk sac. Development 2016; 143:4341-4351. [PMID: 27802172 DOI: 10.1242/dev.140970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/12/2016] [Indexed: 02/01/2023]
Abstract
Endothelial to hematopoietic transition (EHT) is a dynamic process involving the shutting down of endothelial gene expression and switching on of hematopoietic gene transcription. Although the factors regulating EHT in hemogenic endothelium (HE) of the dorsal aorta have been relatively well studied, the molecular regulation of yolk sac HE remains poorly understood. Here, we show that SOX7 inhibits the expression of RUNX1 target genes in HE, while having no effect on RUNX1 expression itself. We establish that SOX7 directly interacts with RUNX1 and inhibits its transcriptional activity. Through this interaction we demonstrate that SOX7 hinders RUNX1 DNA binding as well as the interaction between RUNX1 and its co-factor CBFβ. Finally, we show by single-cell expression profiling and immunofluorescence that SOX7 is broadly expressed across the RUNX1+ yolk sac HE population compared with SOX17. Collectively, these data demonstrate for the first time how direct protein-protein interactions between endothelial and hematopoietic transcription factors regulate contrasting transcriptional programs during HE differentiation and EHT.
Collapse
Affiliation(s)
- Andrew J Lilly
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Guilherme Costa
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Anne Largeot
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Muhammad Z H Fadlullah
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
24
|
Jiang Q, Qin X, Kawane T, Komori H, Matsuo Y, Taniuchi I, Ito K, Izumi SI, Komori T. Cbfb2 Isoform Dominates More Potent Cbfb1 and Is Required for Skeletal Development. J Bone Miner Res 2016; 31:1391-404. [PMID: 26890219 DOI: 10.1002/jbmr.2814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/24/2016] [Accepted: 02/13/2016] [Indexed: 12/26/2022]
Abstract
Cbfb is a cotranscription factor that forms a heterodimer with Runx proteins Runx1, Runx2, and Runx3. It is required for fetal liver hematopoiesis and skeletal development. Cbfb has two functional isoforms, Cbfb1 and Cbfb2, which are formed by alternative splicing. To address the biological functions of these isoforms in skeletal development, we examined Cbfb1(-/-) and Cbfb2(-/-) mouse embryos. Intramembranous and endochondral ossification was retarded and chondrocyte and osteoblast differentiation was inhibited in Cbfb2(-/-) embryos but not in Cbfb1(-/-) embryos. Cbfb2 mRNA was upregulated in calvariae, limbs, livers, thymuses, and hearts of Cbfb1(-/-) embryos but Cbfb1 mRNA was not in those of Cbfb2(-/-) embryos, and the total amount of Cbfb1 and Cbfb2 mRNA in Cbfb1(-/-) embryos was similar to that in wild-type embryos but was severely reduced in Cbfb2(-/-) embryos. The absolute numbers of Cbfb2 mRNA in calvariae, limbs, livers, thymuses, and brains in wild-type embryos were about three times higher than those of Cbfb1 in the respective tissue. The levels of Runx proteins were reduced in calvariae, limbs, and primary osteoblasts from Cbfb2(-/-) embryos, but the reduction in Runx2 protein was very mild. Furthermore, the amounts of Runx proteins and Cbfb in Cbfb2(-/-) embryos differed similarly among skeletal tissues, livers, and thymuses, suggesting that Runx proteins and Cbfb are mutually required for their stability. Although Cbfb1(-/-) embryos developed normally, Cbfb1 induced chondrocyte and osteoblast differentiation and enhanced DNA binding of Runx2 more efficiently than Cbfb2. Our results indicate that modulations in the relative levels of the isoforms may adjust transcriptional activation by Runx2 to appropriate physiological levels. Cbfb2 was more abundant, but Cbfb1 was more potent for enhancing Runx2 activity. Although only Cbfb2 loss generated overt skeletal phenotypes, both may play major roles in skeletal development with functional redundancy. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Xin Qin
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tetsuya Kawane
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hisato Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuki Matsuo
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shin-Ichi Izumi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
25
|
|
26
|
Marques CL, Cancela ML, Laizé V. Transcriptional regulation of gilthead seabream bone morphogenetic protein (BMP) 2 gene by bone- and cartilage-related transcription factors. Gene 2015; 576:229-36. [PMID: 26456102 DOI: 10.1016/j.gene.2015.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 09/04/2015] [Accepted: 10/04/2015] [Indexed: 01/30/2023]
Abstract
Bone morphogenetic protein (BMP) 2 belongs to the transforming growth factor β (TGFβ) superfamily of cytokines and growth factors. While it plays important roles in embryo morphogenesis and organogenesis, BMP2 is also critical to bone and cartilage formation. Protein structure and function have been remarkably conserved throughout evolution and BMP2 transcription has been proposed to be tightly regulated, although few data is available. In this work we report the cloning and functional analysis of gilthead seabream BMP2 promoter. As in other vertebrates, seabream BMP2 gene has a 5′ non-coding exon, a feature already present in DPP gene, the fruit fly ortholog of vertebrate BMP2 gene, and maintained throughout evolution. In silico analysis of seabream BMP2 promoter revealed several binding sites for bone and cartilage related transcription factors (TFs) and their functionality was evaluated using promoter-luciferase constructions and TF-expressing vectors. Runt-related transcription factor 3 (RUNX3) was shown to negatively regulate BMP2 transcription and combination with the core binding factor β (CBFβ) further reduced transcriptional activity of the promoter. Although to a lesser extent, myocyte enhancer factor 2C (MEF2C) had also a negative effect on the regulation of BMP2 gene transcription, when associated with SRY (sex determining region Y)-box 9 (SOX9b). Finally, v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was able to slightly enhance BMP2 transcription. Data reported here provides new insights toward the better understanding of the transcriptional regulation of BMP2 gene in a bone and cartilage context.
Collapse
Affiliation(s)
- Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
27
|
Huang S, O'Donovan KJ, Turner EE, Zhong J, Ginty DD. Extrinsic and intrinsic signals converge on the Runx1/CBFβ transcription factor for nonpeptidergic nociceptor maturation. eLife 2015; 4:e10874. [PMID: 26418744 PMCID: PMC4657622 DOI: 10.7554/elife.10874] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023] Open
Abstract
The generation of diverse neuronal subtypes involves specification of neural progenitors and, subsequently, postmitotic neuronal differentiation, a relatively poorly understood process. Here, we describe a mechanism whereby the neurotrophic factor NGF and the transcription factor Runx1 coordinate postmitotic differentiation of nonpeptidergic nociceptors, a major nociceptor subtype. We show that the integrity of a Runx1/CBFβ holocomplex is crucial for NGF-dependent nonpeptidergic nociceptor maturation. NGF signals through the ERK/MAPK pathway to promote expression of Cbfb but not Runx1 prior to maturation of nonpeptidergic nociceptors. In contrast, transcriptional initiation of Runx1 in nonpeptidergic nociceptor precursors is dependent on the homeodomain transcription factor Islet1, which is largely dispensable for Cbfb expression. Thus, an NGF/TrkA-MAPK-CBFβ pathway converges with Islet1-Runx1 signaling to promote Runx1/CBFβ holocomplex formation and nonpeptidergic nociceptor maturation. Convergence of extrinsic and intrinsic signals to control heterodimeric transcription factor complex formation provides a robust mechanism for postmitotic neuronal subtype specification. DOI:http://dx.doi.org/10.7554/eLife.10874.001 Animals detect and respond to their environment using their sensory nervous system, which forms through a complex, multi-step process. A precursor nerve cell’s fate is set early in its development, and determines the different nerve types it can become. As development progresses, sensory nerve cells develop further into distinct subtypes that perform particular tasks, such as responding to touch or pain. Nociceptors are the specialised sensory nerves that respond to potentially harmful stimuli. They form two distinct subtypes: peptidergic nerves detect potentially dangerous temperatures, whereas non-peptidergic nerves detect potentially dangerous mechanical sensations. Both subtypes originate from the same precursor nerve cell and both initially depend on an external molecule called NGF for their development and survival. During their development, non-peptidergic neurons stop responding to NGF and start producing a protein called Runx1, considered to be the ‘master regulator’ of non-peptidergic nerve cell development. Runx1 works by forming a complex with another protein called CBFbβ, and this complex activates a program of gene expression that is specific to non-peptidergic nerves. However it was unclear how an external signal, like NGF, can coordinate with or influence a nerve cell’s internal genetic program during the nerve’s development. It was also not known whether NGF and Runx1 interact with each other. By studying non-peptidergic nerve cell development in mice that lack NGF, Runx1 and other associated proteins, Huang et al. have now established the sequence of events that regulate the development of this nerve cell subtype. Two signalling pathways converge to switch on non-peptidergic nerve cell development. An NGF-driven signalling pathway activates the production of CBFβ, while another protein binds to the Runx1 gene to switch it on. This leads to the production of the Runx1 and CBFβ proteins that complex together to activate the non-peptidergic neuronal genetic program. These findings demonstrate how two different mechanisms converge to produce the component parts of a complex, which then activates a genetic program that drives the development of a particular neuronal subtype. Whether this mechanism is involved in determining the fate of other cell types remains a question for future work. DOI:http://dx.doi.org/10.7554/eLife.10874.002
Collapse
Affiliation(s)
- Siyi Huang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| | - Kevin J O'Donovan
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, United States
| | - Eric E Turner
- Seattle Children's Hospital, Seattle Children's Research Institute, Seattle, United States
| | - Jian Zhong
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, United States
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
28
|
Park NR, Lim KE, Han MS, Che X, Park CY, Kim JE, Taniuchi I, Bae SC, Choi JY. Core Binding Factor β Plays a Critical Role During Chondrocyte Differentiation. J Cell Physiol 2015; 231:162-71. [DOI: 10.1002/jcp.25068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Na-Rae Park
- Department of Biochemistry and Cell Biology; Skeletal Diseases Genome Research Center; Cell and Matrix Research Institute; BK21 Plus KNU Biomedical Convergence Program; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Kyung-Eun Lim
- Department of Biochemistry and Cell Biology; Skeletal Diseases Genome Research Center; Cell and Matrix Research Institute; BK21 Plus KNU Biomedical Convergence Program; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Min-Su Han
- Department of Biochemistry and Cell Biology; Skeletal Diseases Genome Research Center; Cell and Matrix Research Institute; BK21 Plus KNU Biomedical Convergence Program; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology; Skeletal Diseases Genome Research Center; Cell and Matrix Research Institute; BK21 Plus KNU Biomedical Convergence Program; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Clara Yongjoo Park
- Department of Biochemistry and Cell Biology; Skeletal Diseases Genome Research Center; Cell and Matrix Research Institute; BK21 Plus KNU Biomedical Convergence Program; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation; RIKEN Research Center for Allergy and Immunology; Kanagawa Japan
| | - Suk-Chul Bae
- Department of Biochemistry; Institute for Tumor Research; Chungbuk National University; College of Medicine; Cheongju Republic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology; Skeletal Diseases Genome Research Center; Cell and Matrix Research Institute; BK21 Plus KNU Biomedical Convergence Program; Kyungpook National University School of Medicine; Daegu Republic of Korea
| |
Collapse
|
29
|
Wysokinski D, Blasiak J, Pawlowska E. Role of RUNX2 in Breast Carcinogenesis. Int J Mol Sci 2015; 16:20969-93. [PMID: 26404249 PMCID: PMC4613236 DOI: 10.3390/ijms160920969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| |
Collapse
|
30
|
Mizutani S, Yoshida T, Zhao X, Nimer SD, Taniwaki M, Okuda T. Loss of RUNX1/AML1 arginine-methylation impairs peripheral T cell homeostasis. Br J Haematol 2015; 170:859-73. [PMID: 26010396 DOI: 10.1111/bjh.13499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/11/2015] [Indexed: 01/15/2023]
Abstract
RUNX1 (previously termed AML1) is a frequent target of human leukaemia-associated gene aberrations, and it encodes the DNA-binding subunit of the Core-Binding Factor transcription factor complex. RUNX1 expression is essential for the initiation of definitive haematopoiesis, for steady-state thrombopoiesis, and for normal lymphocytes development. Recent studies revealed that protein arginine methyltransferase 1 (PRMT1), which accounts for the majority of the type I PRMT activity in cells, methylates two arginine residues in RUNX1 (R206 and R210), and these modifications inhibit corepressor-binding to RUNX1 thereby enhancing its transcriptional activity. In order to elucidate the biological significance of these methylations, we established novel knock-in mouse lines with non-methylable, double arginine-to-lysine (RTAMR-to-KTAMK) mutations in RUNX1. Homozygous Runx1(KTAMK) (/) (KTAMK) mice are born alive and appear normal during adulthood. However, Runx1(KTAMK) (/) (KTAMK) mice showed a reduction in CD3(+) T lymphoid cells and a decrease in CD4(+) T cells in peripheral lymphoid organs, in comparison to their wild-type littermates, leading to a reduction in the CD4(+) to CD8(+) T-cell ratio. These findings suggest that arginine-methylation of RUNX1 in the RTAMR-motif is dispensable for the development of definitive haematopoiesis and for steady-state platelet production, however this modification affects the role of RUNX1 in the maintenance of the peripheral CD4(+) T-cell population.
Collapse
Affiliation(s)
- Shinsuke Mizutani
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan.,Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Xinyang Zhao
- Department of Biochemistry & Molecular Genetics, University of Alabama, Birmingham, AL, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Masafumi Taniwaki
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
31
|
Nagatake T, Fukuyama S, Sato S, Okura H, Tachibana M, Taniuchi I, Ito K, Shimojou M, Matsumoto N, Suzuki H, Kunisawa J, Kiyono H. Central Role of Core Binding Factor β2 in Mucosa-Associated Lymphoid Tissue Organogenesis in Mouse. PLoS One 2015; 10:e0127460. [PMID: 26001080 PMCID: PMC4441428 DOI: 10.1371/journal.pone.0127460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022] Open
Abstract
Mucosa-associated lymphoid tissue (MALT) is a group of secondary and organized lymphoid tissue that develops at different mucosal surfaces. Peyer's patches (PPs), nasopharynx-associated lymphoid tissue (NALT), and tear duct-associated lymphoid tissue (TALT) are representative MALT in the small intestine, nasal cavity, and lacrimal sac, respectively. A recent study has shown that transcriptional regulators of core binding factor (Cbf) β2 and promotor-1-transcribed Runt-related transcription factor 1 (P1-Runx1) are required for the differentiation of CD3-CD4+CD45+ lymphoid tissue inducer (LTi) cells, which initiate and trigger the developmental program of PPs, but the involvement of this pathway in NALT and TALT development remains to be elucidated. Here we report that Cbfβ2 plays an essential role in NALT and TALT development by regulating LTi cell trafficking to the NALT and TALT anlagens. Cbfβ2 was expressed in LTi cells in all three types of MALT examined. Indeed, similar to the previous finding for PPs, we found that Cbfβ2-/- mice lacked NALT and TALT lymphoid structures. However, in contrast to PPs, NALT and TALT developed normally in the absence of P1-Runx1 or other Runx family members such as Runx2 and Runx3. LTi cells for NALT and TALT differentiated normally but did not accumulate in the respective lymphoid tissue anlagens in Cbfβ2-/- mice. These findings demonstrate that Cbfβ2 is a central regulator of the MALT developmental program, but the dependency of Runx proteins on the lymphoid tissue development would differ among PPs, NALT, and TALT.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Satoshi Fukuyama
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Shintaro Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Hideaki Okura
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Masashi Tachibana
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852–8588, Japan
| | - Michiko Shimojou
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Naomi Matsumoto
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Kobe University School of Medicine, Kobe, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Medical Genome Science, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
- * E-mail:
| |
Collapse
|
32
|
Wysokinski D, Pawlowska E, Blasiak J. RUNX2: A Master Bone Growth Regulator That May Be Involved in the DNA Damage Response. DNA Cell Biol 2015; 34:305-15. [DOI: 10.1089/dna.2014.2688] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | | | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Sinha C, Cunningham LC, Liu PP. Core Binding Factor Acute Myeloid Leukemia: New Prognostic Categories and Therapeutic Opportunities. Semin Hematol 2015; 52:215-22. [PMID: 26111469 DOI: 10.1053/j.seminhematol.2015.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Core binding factor (CBF) is a heterodimeric protein complex involved in the transcriptional regulation of normal hematopoiesis. Mutations in CBF-encoding genes result in leukemogenic proliferative advantages and impaired differentiation of the hematopoietic progenitors. CBF molecular aberrations are responsible for approximately 20% of all adult acute myeloid leukemia (AML). Although CBF-AMLs are considered to have relatively good prognosis compared to other leukemia subtypes, they are a heterogeneous group of disorders and modern therapy frequently leads to relapse and the associated morbidity and mortality. Improvements in risk stratification and development of targeted therapies are needed for better outcomes. In this review we provide a brief overview of the molecular basis, prognostic categories and the advanced treatment strategies for CBF leukemias.
Collapse
Affiliation(s)
- Chandrima Sinha
- Bone Marrow Transplant & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN
| | - Lea C Cunningham
- Bone Marrow Transplant & Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN.
| | - Paul P Liu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
34
|
Lim KE, Park NR, Che X, Han MS, Jeong JH, Kim SY, Park CY, Akiyama H, Kim JE, Ryoo HM, Stein JL, Lian JB, Stein GS, Choi JY. Core binding factor β of osteoblasts maintains cortical bone mass via stabilization of Runx2 in mice. J Bone Miner Res 2015; 30:715-22. [PMID: 25358268 PMCID: PMC7363154 DOI: 10.1002/jbmr.2397] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 12/29/2022]
Abstract
Core binding factor beta (Cbfβ), the partner protein of Runx family transcription factors, enhances Runx function by increasing the binding of Runx to DNA. Null mutations of Cbfb result in embryonic death, which can be rescued by restoring fetal hematopoiesis but only until birth, where bone formation is still nearly absent. Here, we address a direct role of Cbfβ in skeletal homeostasis by generating osteoblast-specific Cbfβ-deficient mice (Cbfb(Δob/Δob) ) from Cbfb-floxed mice crossed with mice expressing Cre from the Col1a1 promoter. Cbfb(Δob/Δob) mice showed normal growth and development but exhibited reduced bone mass, particularly of cortical bone. The reduction of bone mass in Cbfb(Δob/Δob) mice is similar to the phenotype of mice with haploinsufficiency of Runx2. Although the number of osteoblasts remained unchanged, the number of active osteoblasts decreased in Cbfb(Δob/Δob) mice and resulted in lower mineral apposition rate. Immunohistochemical and quantitative real-time PCR analyses showed that the expression of osteogenic markers, including Runx2, osterix, osteocalcin, and osteopontin, was significantly repressed in Cbfb(Δob/Δob) mice compared with wild-type mice. Cbfβ deficiency also reduced Runx2 protein levels in osteoblasts. The mechanism was revealed by forced expression of Cbfβ, which increased Runx2 protein levels in vitro by inhibiting polyubiquitination-mediated proteosomal degradation. Collectively, these findings indicate that Cbfβ stabilizes Runx2 in osteoblasts by forming a complex and thus facilitates the proper maintenance of bone mass, particularly cortical bone.
Collapse
Affiliation(s)
- Kyung-Eun Lim
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The RUNX1–PU.1 axis in the control of hematopoiesis. Int J Hematol 2015; 101:319-29. [DOI: 10.1007/s12185-015-1762-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/16/2023]
|
36
|
Simões B, Conceição N, Matias AC, Bragança J, Kelsh RN, Cancela ML. Molecular characterization of cbfβ gene and identification of new transcription variants: implications for function. Arch Biochem Biophys 2015; 567:1-12. [PMID: 25575784 DOI: 10.1016/j.abb.2014.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 12/09/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
The CBFβ gene encodes a transcription factor that, in combination with CBFα (also called Runx, runt-related transcription factor) regulates expression of several target genes. CBFβ interacts with all Runx family members, such as RUNX2, a regulator of bone-related gene transcription that contains a conserved DNA-binding domain. CBFβ stimulates DNA binding of the Runt domain, and is essential for most of the known functions of RUNX2. A comparative analysis of the zebrafish cbfβ gene and protein, and of its orthologous identified homologous proteins in different species indicates a highly conserved function. We cloned eleven zebrafish cbfβ gene transcripts, one resulting in the known Cbfβ protein (with 187 aa), and three additional variants resulting from skipping exon 5a (resulting in a protein with 174 aa) or exon 5b (resulting in a protein with 201 aa), both observed for the first time in zebrafish, and a completely novel isoform containing both exon 5a and 5b (resulting in a protein with 188 aa). Functional analysis of these isoforms provides insight into their role in regulating gene transcription. From the other variants two are premature termination Cbfβ forms, while the others show in-frame exon-skipping causing changes in the Cbfβ domain that may affect its function.
Collapse
Affiliation(s)
- B Simões
- Department of Biomedical Sciences and Medicine/DCBM, University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal; Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - N Conceição
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - A C Matias
- Department of Biomedical Sciences and Medicine/DCBM, University of Algarve, Faro, Portugal; Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - J Bragança
- Department of Biomedical Sciences and Medicine/DCBM, University of Algarve, Faro, Portugal; Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - R N Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, United Kingdom
| | - M L Cancela
- Department of Biomedical Sciences and Medicine/DCBM, University of Algarve, Faro, Portugal; Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| |
Collapse
|
37
|
CBFβ and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish. Blood 2014; 124:70-8. [PMID: 24850758 DOI: 10.1182/blood-2013-10-531988] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CBFβ and RUNX1 form a DNA-binding heterodimer and are both required for hematopoietic stem cell (HSC) generation in mice. However, the exact role of CBFβ in the production of HSCs remains unclear. Here, we generated and characterized 2 zebrafish cbfb null mutants. The cbfb(-/-) embryos underwent primitive hematopoiesis and developed transient erythromyeloid progenitors, but they lacked definitive hematopoiesis. Unlike runx1 mutants, in which HSCs are not formed, nascent, runx1(+)/c-myb(+) HSCs were formed in cbfb(-/-) embryos. However, the nascent HSCs were not released from the aorta-gonad-mesonephros (AGM) region, as evidenced by the accumulation of runx1(+) cells in the AGM that could not enter circulation. Moreover, wild-type embryos treated with an inhibitor of RUNX1-CBFβ interaction, Ro5-3335, phenocopied the hematopoietic defects in cbfb(-/-) mutants, rather than those in runx1(-/-) mutants. Finally, we found that cbfb was downstream of the Notch pathway during HSC development. Our data suggest that runx1 and cbfb are required at 2 different steps during early HSC development. CBFβ is not required for nascent HSC emergence but is required for the release of HSCs from AGM into circulation. Our results also indicate that RUNX1 can drive the emergence of nascent HSCs in the AGM without its heterodimeric partner CBFβ.
Collapse
|
38
|
Jacobs PT, Cao L, Samon JB, Kane CA, Hedblom EE, Bowcock A, Telfer JC. Runx transcription factors repress human and murine c-Myc expression in a DNA-binding and C-terminally dependent manner. PLoS One 2013; 8:e69083. [PMID: 23874874 PMCID: PMC3715461 DOI: 10.1371/journal.pone.0069083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
The transcription factors Runx1 and c-Myc have individually been shown to regulate important gene targets as well as to collaborate in oncogenesis. However, it is unknown whether there is a regulatory relationship between the two genes. In this study, we investigated the transcriptional regulation of endogenous c-Myc by Runx1 in the human T cell line Jurkat and murine primary hematopoietic cells. Endogenous Runx1 binds to multiple sites in the c-Myc locus upstream of the c-Myc transcriptional start site. Cells transduced with a C-terminally truncated Runx1 (Runx1.d190), which lacks important cofactor interaction sites and can block C-terminal-dependent functions of all Runx transcription factors, showed increased transcription of c-Myc. In order to monitor c-Myc expression in response to early and transiently-acting Runx1.d190, we generated a cell membrane-permeable TAT-Runx1.d190 fusion protein. Murine splenocytes treated with TAT-Runx1.d190 showed an increase in the transcription of c-Myc within 2 hours, peaking at 4 hours post-treatment and declining thereafter. This effect is dependent on the ability of Runx1.d190 to bind to DNA. The increase in c-Myc transcripts is correlated with increased c-Myc protein levels. Collectively, these data show that Runx1 directly regulates c-Myc transcription in a C-terminal- and DNA-binding-dependent manner.
Collapse
Affiliation(s)
- Paejonette T. Jacobs
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Li Cao
- Department of Genetics, Pediatrics and Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeremy B. Samon
- Quntiles, Medical Education Department, Hawthorne, New York, United States of America
| | - Christyne A. Kane
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Emmett E. Hedblom
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Anne Bowcock
- Department of Genetics, Pediatrics and Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Janice C. Telfer
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
James AW. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. SCIENTIFICA 2013; 2013:684736. [PMID: 24416618 PMCID: PMC3874981 DOI: 10.1155/2013/684736] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 05/07/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance is regulated by numerous, intersecting signaling pathways that converge on the regulation of two main transcription factors: peroxisome proliferator-activated receptor- γ (PPAR γ ) and Runt-related transcription factor 2 (Runx2). These two transcription factors, PPAR γ and Runx2, are generally regarded as the master regulators of adipogenesis and osteogenesis. This review will summarize signaling pathways that govern MSC fate towards osteogenic or adipocytic differentiation. A number of signaling pathways follow the inverse balance between osteogenic and adipogenic differentiation and are generally proosteogenic/antiadipogenic stimuli. These include β -catenin dependent Wnt signaling, Hedgehog signaling, and NELL-1 signaling. However, other signaling pathways exhibit more context-dependent effects on adipogenic and osteogenic differentiation. These include bone morphogenic protein (BMP) signaling and insulin growth factor (IGF) signaling, which display both proosteogenic and proadipogenic effects. In summary, understanding those factors that govern osteogenic versus adipogenic MSC differentiation has significant implications in diverse areas of human health, from obesity to osteoporosis to regenerative medicine.
Collapse
Affiliation(s)
- Aaron W. James
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS A3-251, Los Angeles, CA 90077, USA
- *Aaron W. James:
| |
Collapse
|
40
|
Hultquist JF, McDougle RM, Anderson BD, Harris RS. HIV type 1 viral infectivity factor and the RUNX transcription factors interact with core binding factor β on genetically distinct surfaces. AIDS Res Hum Retroviruses 2012; 28:1543-51. [PMID: 22725134 DOI: 10.1089/aid.2012.0142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires the cellular transcription factor core binding factor subunit β (CBFβ) to stabilize its viral infectivity factor (Vif) protein and neutralize the APOBEC3 restriction factors. CBFβ normally heterodimerizes with the RUNX family of transcription factors, enhancing their stability and DNA-binding affinity. To test the hypothesis that Vif may act as a RUNX mimic to bind CBFβ, we generated a series of CBFβ mutants at the RUNX/CBFβ interface and tested their ability to stabilize Vif and impact transcription at a RUNX-dependent promoter. While several CBFβ amino acid substitutions disrupted promoter activity, none of these impacted the ability of CBFβ to stabilize Vif or enhance degradation of APOBEC3G. A mutagenesis screen of CBFβ surface residues identified a single amino acid change, F68D, that disrupted Vif binding and its ability to degrade APOBEC3G. This mutant still bound RUNX and stimulated RUNX-dependent transcription. These separation-of-function mutants demonstrate that HIV-1 Vif and the RUNX transcription factors interact with cellular CBFβ on genetically distinct surfaces.
Collapse
Affiliation(s)
- Judd F. Hultquist
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota
| | - Rebecca M. McDougle
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Brett D. Anderson
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
41
|
Kaimakis P, Crisan M, Dzierzak E. The biochemistry of hematopoietic stem cell development. Biochim Biophys Acta Gen Subj 2012; 1830:2395-403. [PMID: 23069720 DOI: 10.1016/j.bbagen.2012.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/14/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short window of developmental time. In mammalian embryos, hematopoietic progenitor and HSC generation occurs within several extra- and intraembryonic microenvironments, most notably from 'hemogenic' endothelial cells lining the major vasculature. HSCs are made through a remarkable transdifferentiation of endothelial cells to a hematopoietic fate that is long-lived and self-renewable. Recent studies are beginning to provide an understanding of the biochemical signaling pathways and transcription factors/complexes that promote their generation. SCOPE OF REVIEW The focus of this review is on the biochemistry behind the generation of these potent long-lived self-renewing stem cells of the blood system. Both the intrinsic (master transcription factors) and extrinsic regulators (morphogens and growth factors) that affect the generation, maintenance and expansion of HSCs in the embryo will be discussed. MAJOR CONCLUSIONS The generation of HSCs is a stepwise process involving many developmental signaling pathways, morphogens and cytokines. Pivotal hematopoietic transcription factors are required for their generation. Interestingly, whereas these factors are necessary for HSC generation, their expression in adult bone marrow HSCs is oftentimes not required. Thus, the biochemistry and molecular regulation of HSC development in the embryo are overlapping, but differ significantly from the regulation of HSCs in the adult. GENERAL SIGNIFICANCE HSC numbers for clinical use are limiting, and despite much research into the molecular basis of HSC regulation in the adult bone marrow, no panel of growth factors, interleukins and/or morphogens has been found to sufficiently increase the number of these important stem cells. An understanding of the biochemistry of HSC generation in the developing embryo provides important new knowledge on how these complex stem cells are made, sustained and expanded in the embryo to give rise to the complete adult hematopoietic system, thus stimulating novel strategies for producing increased numbers of clinically useful HSCs. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- P Kaimakis
- Erasmus Medical Center, Erasmus MC Stem Cell Institute, Dept. of Cell Biology, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | | | | |
Collapse
|
42
|
Qin S, Zhou HX. PI 2PE: A Suite of Web Servers for Predictions Ranging From Protein Structure to Binding Kinetics. Biophys Rev 2012; 5:41-46. [PMID: 23526172 DOI: 10.1007/s12551-012-0086-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PI2PE (http://pipe.sc.fsu.edu) is a suite of four web servers for predicting a variety of folding- and binding-related properties of proteins. These include the solvent accessibility of amino acids upon protein folding, the amino acids forming the interfaces of protein-protein and protein-nucleic acid complexes, and the binding rate constants of these complexes. Three of the servers debuted in 2007, and have garnered ~2,500 unique users and finished over 30,000 jobs. The functionalities of these servers are now enhanced, and a new sever, for predicting the binding rate constants, is added. Together, these web servers form a pipeline from protein sequence to tertiary structure, then to quaternary structure, and finally to binding kinetics.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
43
|
Uribesalgo I, Di Croce L. Dynamics of epigenetic modifications in leukemia. Brief Funct Genomics 2011; 10:18-29. [PMID: 21258047 DOI: 10.1093/bfgp/elr002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chromatin modifications at both histones and DNA are critical for regulating gene expression. Mis-regulation of such epigenetic marks can lead to pathological states; indeed, cancer affecting the hematopoietic system is frequently linked to epigenetic abnormalities. Here, we discuss the different types of modifications and their general impact on transcription, as well as the polycomb group of proteins, which effect transcriptional repression and are often mis-regulated. Further, we discuss how chromosomal translocations leading to fusion proteins can aberrantly regulate gene transcription through chromatin modifications within the hematopoietic system. PML-RARa, AML1-ETO and MLL-fusions are examples of fusion proteins that mis-regulate epigenetic modifications (either directly or indirectly), which can lead to acute myeloblastic leukemia (AML). An in-depth understanding of the mechanisms behind the mis-regulation of epigenetic modifications that lead to the development and progression of AMLs could be critical for designing effective treatments.
Collapse
Affiliation(s)
- Iris Uribesalgo
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08003, Spain.
| | | |
Collapse
|
44
|
Davis JN, Rogers D, Adams L, Yong T, Jung JS, Cheng B, Fennell K, Borazanci E, Moustafa YW, Sun A, Shi R, Glass J, Mathis JM, Williams BJ, Meyers S. Association of core-binding factor β with the malignant phenotype of prostate and ovarian cancer cells. J Cell Physiol 2010; 225:875-87. [DOI: 10.1002/jcp.22298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Hyde RK, Liu PP. RUNX1 repression-independent mechanisms of leukemogenesis by fusion genes CBFB-MYH11 and AML1-ETO (RUNX1-RUNX1T1). J Cell Biochem 2010; 110:1039-45. [PMID: 20589720 DOI: 10.1002/jcb.22596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The core binding factor (CBF) acute myeloid leukemias (AMLs) are a prognostically distinct subgroup that includes patients with the inv(16) and t(8:21) chromosomal rearrangements. Both of these rearrangements result in the formation of fusion proteins, CBFB-MYH11 and AML1-ETO, respectively, that involve members of the CBF family of transcription factors. It has been proposed that both of these fusion proteins function primarily by dominantly repressing normal CBF transcription. However, recent reports have indicted that additional, CBF-repression independent activities may be equally important during leukemogenesis. This article will focus on these recent advances.
Collapse
Affiliation(s)
- R Katherine Hyde
- Oncogenesis and Development Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
46
|
Meder B, Just S, Vogel B, Rudloff J, Gärtner L, Dahme T, Huttner I, Zankl A, Katus HA, Rottbauer W. JunB-CBFbeta signaling is essential to maintain sarcomeric Z-disc structure and when defective leads to heart failure. J Cell Sci 2010; 123:2613-20. [PMID: 20605922 DOI: 10.1242/jcs.067967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In muscle cells, a complex network of Z-disc proteins allows proper reception, transduction and transmission of mechanical and biochemical signals. Mutations in genes encoding different Z-disc proteins such as integrin-linked kinase (ILK) and nexilin have recently been shown to cause heart failure by distinct mechanisms such as disturbed mechanosensing, altered mechanotransduction or mechanical Z-disc destabilization. We identified core-binding factor β (CBFβ) as an essential component for maintaining sarcomeric Z-disc and myofilament organization in heart and skeletal muscle. In CBFβ-deficient cardiomyocytes and skeletal-muscle cells, myofilaments are thinned and Z-discs are misaligned, leading to progressive impairment of heart and skeletal-muscle function. Transcription of the gene encoding CBFβ mainly depends on JunB activity. In JunB-morphant zebrafish, which show a heart-failure phenotype similar to that of CBFβ-deficient zebrafish, transcript and protein levels of CBFβ are severely reduced. Accordingly, ectopic expression of CBFβ can reconstitute cardiomyocyte function and rescue heart failure in JunB morphants, demonstrating for the first time an essential role of JunB-CBFβ signaling for maintaining sarcomere architecture and function.
Collapse
Affiliation(s)
- Benjamin Meder
- Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Blood 2009; 115:1433-43. [PMID: 20007544 DOI: 10.1182/blood-2009-06-227413] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is known that CBFB-MYH11, the fusion gene generated by inversion of chromosome 16 in human acute myeloid leukemia, is causative for oncogenic transformation. However, the mechanism by which CBFB-MYH11 initiates leukemogenesis is not clear. Previously published reports showed that CBFB-MYH11 dominantly inhibits RUNX1 and CBFB, and such inhibition has been suggested as the mechanism for leukemogenesis. Here we show that Cbfb-MYH11 caused Cbfb/Runx1 repression-independent defects in both primitive and definitive hematopoiesis. During primitive hematopoiesis, Cbfb-MYH11 delayed differentiation characterized by sustained expression of Gata2, Il1rl1, and Csf2rb, a phenotype not found in Cbfb and Runx1 knockout mice. Expression of Cbfb-MYH11 in the bone marrow induced the accumulation of abnormal progenitor-like cells expressing Csf2rb in preleukemic mice. The expression of all 3 genes was detected in most human and murine CBFB-MYH11(+) leukemia samples. Interestingly, Cbfb-MYH11(+) preleukemic progenitors and leukemia-initiating cells did not express Csf2rb, although the majority of leukemia cells in our Cbfb-MYH11 knockin mice were Csf2rb(+). Therefore Csf2rb can be used as a negative selection marker to enrich preleukemic progenitor cells and leukemia-initiating cells from Cbfb-MYH11 mice. These results suggest that Cbfb/Runx1 repression-independent activities contribute to leukemogenesis by Cbfb-MYH11.
Collapse
|
48
|
Klunker S, Chong MMW, Mantel PY, Palomares O, Bassin C, Ziegler M, Rückert B, Meiler F, Akdis M, Littman DR, Akdis CA. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. ACTA ACUST UNITED AC 2009; 206:2701-15. [PMID: 19917773 PMCID: PMC2806624 DOI: 10.1084/jem.20090596] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Forkhead box P3 (FOXP3)(+)CD4(+)CD25(+) inducible regulatory T (iT reg) cells play an important role in immune tolerance and homeostasis. In this study, we show that the transforming growth factor-beta (TGF-beta) induces the expression of the Runt-related transcription factors RUNX1 and RUNX3 in CD4(+) T cells. This induction seems to be a prerequisite for the binding of RUNX1 and RUNX3 to three putative RUNX binding sites in the FOXP3 promoter. Inactivation of the gene encoding RUNX cofactor core-binding factor-beta (CBFbeta) in mice and small interfering RNA (siRNA)-mediated suppression of RUNX1 and RUNX3 in human T cells resulted in reduced expression of Foxp3. The in vivo conversion of naive CD4(+) T cells into Foxp3(+) iT reg cells was significantly decreased in adoptively transferred Cbfb(F/F) CD4-cre naive T cells into Rag2(-/-) mice. Both RUNX1 and RUNX3 siRNA silenced human T reg cells and Cbfb(F/F) CD4-cre mouse T reg cells showed diminished suppressive function in vitro. Circulating human CD4(+) CD25(high) CD127(-) T reg cells significantly expressed higher levels of RUNX3, FOXP3, and TGF-beta mRNA compared with CD4(+)CD25(-) cells. Furthermore, FOXP3 and RUNX3 were colocalized in human tonsil T reg cells. These data demonstrate Runx transcription factors as a molecular link in TGF-beta-induced Foxp3 expression in iT reg cell differentiation and function.
Collapse
Affiliation(s)
- Sven Klunker
- Swiss Institute of Allergy and Asthma Research Davos, University of Zurich, CH-7270 Davos-Platz, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jonason JH, Xiao G, Zhang M, Xing L, Chen D. Post-translational Regulation of Runx2 in Bone and Cartilage. J Dent Res 2009; 88:693-703. [PMID: 19734454 DOI: 10.1177/0022034509341629] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Runx2 gene product is essential for mammalian bone development. In humans, Runx2 haploinsufficiency results in cleidocranial dysplasia, a skeletal disorder characterized by bone and dental abnormalities. At the molecular level, Runx2 acts as a transcription factor for genes expressed in hypertrophic chondrocytes and osteoblasts. Runx2 gene expression and protein function are regulated on multiple levels, including transcription, translation, and post-translational modification. Furthermore, Runx2 is involved in numerous protein-protein interactions, most of which either activate or repress transcription of target genes. In this review, we discuss expression of Runx2 during development as well as the post-translational regulation of Runx2 through modification by phosphorylation, ubiquitination, and acetylation.
Collapse
Affiliation(s)
- J H Jonason
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
50
|
Tuomela S, Rautajoki KJ, Moulder R, Nyman TA, Lahesmaa R. Identification of novel Stat6 regulated proteins in IL-4-treated mouse lymphocytes. Proteomics 2009; 9:1087-98. [PMID: 19180534 DOI: 10.1002/pmic.200800161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interleukin 4 (IL-4) has an indispensable role in the differentiation of naive T helper (Th) cells toward the Th2 phenotype and induction of B cells to produce the IgE class of Igs. By regulating these two cell types, IL-4 has a pre-eminent role in regulation of allergic inflammation. IL-4-mediated regulation of T and B cell functions is largely transmitted through signal transducer and activator of transcription 6 (Stat6). In this study, we have used metabolic labeling and 2-D electrophoresis to detect differences in the proteomes of IL-4 stimulated spleen mononuclear cells of Stat6-/- and wild type mice and MS/MS for protein identification. With this methodology, we identified 49 unique proteins from 21 protein spots to be differentially expressed. Interestingly, in Stat6-/- CD4(+) cells the expression of isoform 2 of core binding factor b (CBFb2) was enhanced. CBFb is a non-DNA binding cofactor for the Runx family of transcription factors, which have been implicated in regulation of Th cell differentiation. We also found cellular nucleic acid protein (CNBP) to be downregulated in Stat6-/- cells. None of the proteins identified in this study have previously been reported to be regulated via Stat6. The results highlight the importance of exploiting proteomics tools to complement the studies on Stat6 target genes identified through transcriptional profiling.
Collapse
Affiliation(s)
- Soile Tuomela
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | | | | | | | | |
Collapse
|