1
|
Conaway RC, Conaway JW. The Mediator complex and transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:69-75. [PMID: 22983086 DOI: 10.1016/j.bbagrm.2012.08.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mediator is an evolutionarily conserved multisubunit RNA polymerase II (Pol II) coregulatory complex. Although Mediator was initially found to play a critical role in the regulation of the initiation of Pol II transcription, recent studies have brought to light an expanded role for Mediator at post-initiation stages of transcription. SCOPE OF REVIEW We provide a brief description of the structure of Mediator and its function in the regulation of Pol II transcription initiation, and we summarize recent findings implicating Mediator in the regulation of various stages of Pol II transcription elongation. MAJOR CONCLUSIONS Emerging evidence is revealing new roles for Mediator in nearly all stages of Pol II transcription, including initiation, promoter escape, elongation, pre-mRNA processing, and termination. GENERAL SIGNIFICANCE Mediator plays a central role in the regulation of gene expression by impacting nearly all stages of mRNA synthesis. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
2
|
Orozco IJ, Kim SJ, Martinson HG. The poly(A) signal, without the assistance of any downstream element, directs RNA polymerase II to pause in vivo and then to release stochastically from the template. J Biol Chem 2002; 277:42899-911. [PMID: 12196547 DOI: 10.1074/jbc.m207415200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes encoding polyadenylated mRNAs depend on their poly(A) signals for termination of transcription. Typically, transcription downstream of the poly(A) signal gradually declines to zero, but often there is a transient increase in polymerase density immediately preceding the decline. Special elements called pause sites are traditionally invoked to account for this increase. Using run-on transcription from the nuclei of transfected cells, we show that both the pause and the gradual decline that follow a poly(A) site are generated entirely by the poly(A) signal itself in a series of model constructs. We found no other elements to be involved and argue that the elements called pause sites do not function through pausing. Both the poly(A)-dependent pause and the subsequent decline occurred earlier for a stronger poly(A) signal than for a weaker one. Because the gradual decline resembles the abortive elongation that occurs downstream of many promoters, one model has proposed that the poly(A) signal flips the polymerase from the elongation mode to the abortive mode like a binary switch. We compared abortive elongators with poly(A) terminators and found a 4-fold difference in processivity. We conclude that poly(A) terminating polymerases do not merely revert to their prior state of low processivity but rather convert to a new termination-prone condition.
Collapse
Affiliation(s)
- Ian J Orozco
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
3
|
Clement JQ, Wilkinson MF. Rapid induction of nuclear transcripts and inhibition of intron decay in response to the polymerase II inhibitor DRB. J Mol Biol 2000; 299:1179-91. [PMID: 10873444 DOI: 10.1006/jmbi.2000.3745] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional inhibitor 5, 6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) is an adenosine analog that has been shown to cause premature transcriptional termination and thus has been a useful tool to identify factors important for transcriptional elongation. Here, we establish an efficient system for studying DRB-sensitive steps of transcriptional elongation. In addition, we establish two novel effects of DRB not previously reported: intron stabilization and the induction of long transcripts by a mechanism other than premature termination. We found that DRB had a biphasic effect on T-cell receptor-beta (TCRbeta) transcripts driven by a tetracycline (tet)-responsive promoter in transfected HeLa cells. In the first phase, DRB caused a rapid decrease (within five minutes) of pre-mRNA and its spliced intron (IVS1(Cbeta1)), consistent with the known ability of DRB to inhibit transcription. In the second phase (which began ten minutes to two hours after treatment, depending on the dose), DRB dramatically increased the levels of IVS1(Cbeta1)-containing transcripts by a mechanism requiring de novo RNA synthesis. DRB induced the appearance of short 0.4 to 0.8 kb TCRbeta transcripts in vivo, indicating DRB enhances premature transcriptional termination. A approximately 475 nt prematurely terminated transcript (PT) was characterized that terminated at an internal poly(A) tract in the intron IVS1(Cbeta1). We identified three other effects of DRB. First, we observed that DRB induced the appearance of heterodisperse TCRbeta transcripts that were too long ( approximately 1 kb to >8 kb) to result from the type of premature termination events previously described. Their production was not promoter-specific, as we found that long transcripts were induced by DRB from both the tet-responsive and beta-actin promoters. Second, DRB upregulated full-length normal-sized c-myc mRNA, which provided further evidence that DRB has effects besides regulation of premature termination. Third, DRB stabilized lariat forms of the intron IVS1(Cbeta1), indicating that DRB exerts post-transcriptional actions. We propose that our model system will be useful for elucidating the factors that regulate RNA decay and transcriptional elongation in vivo.
Collapse
Affiliation(s)
- J Q Clement
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | | |
Collapse
|
4
|
Keene RG, Mueller A, Landick R, London L. Transcriptional pause, arrest and termination sites for RNA polymerase II in mammalian N- and c-myc genes. Nucleic Acids Res 1999; 27:3173-82. [PMID: 10454615 PMCID: PMC148545 DOI: 10.1093/nar/27.15.3173] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using either highly purified RNA polymerase II (pol II) elongation complexes assembled on oligo(dC)-tailed templates or promoter-initiated (extract-generated) pol II elongation complexes, the precise 3" ends of transcripts produced during transcription in vitro at several human c- and N- myc pause, arrest and termination sites were determined. Despite a low overall similarity between the entire c- and N- myc first exon sequences, many positions of pol II pausing, arrest or termination occurred within short regions of related sequence shared between the c- and N- myc templates. The c- and N- myc genes showed three general classes of sequence conservation near intrinsic pause, arrest or termination sites: (i) sites where arrest or termination occurred after the synthesis of runs of uridines (Us) preceding the transcript 3" end, (ii) sites downstream of potential RNA hairpins and (iii) sites after nucleotide addition following either a U or a C or following a combination of several pyrimidines near the transcript 3" end. The finding that regions of similarity occur near the sites of pol II pausing, arrest or termination suggests that the mechanism of c- and N- myc regulation at the level of transcript elongation may be similar and not divergent as previously proposed.
Collapse
Affiliation(s)
- R G Keene
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
5
|
Osheim YN, Proudfoot NJ, Beyer AL. EM visualization of transcription by RNA polymerase II: downstream termination requires a poly(A) signal but not transcript cleavage. Mol Cell 1999; 3:379-87. [PMID: 10198640 DOI: 10.1016/s1097-2765(00)80465-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have used EM visualization of active genes on plasmid vectors in Xenopus oocyte nuclei to investigate the relationship between poly(A) signals and RNA polymerase II transcription termination. Although a functional poly(A) signal is required for efficient termination, cotranscriptional RNA cleavage at the poly(A) site is not. Furthermore, the phenomena of termination and cotranscriptional RNA cleavage can be uncoupled, and the efficiency of both varies independently on different copies of the same plasmid template in the same oocyte nucleus. The combined observations are consistent with a scenario in which there is template-specific addition to Pol II (presumably at the promoter) of elongation and/or RNA processing factors, which are altered upon passage through a poly(A) signal, resulting in termination and, in some cases, cotranscriptional RNA cleavage.
Collapse
Affiliation(s)
- Y N Osheim
- University of Virginia Health Sciences Center, Department of Microbiology, Charlottesville 22908, USA
| | | | | |
Collapse
|
6
|
Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 1996; 271:27176-83. [PMID: 8900211 DOI: 10.1074/jbc.271.43.27176] [Citation(s) in RCA: 516] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The entry of RNA polymerase II into a productive mode of elongation is controlled, in part, by the postinitiation activity of positive transcription elongation factor b (P-TEFb) (Marshall, N. F., and Price, D. H. (1995) J. Biol. Chem. 270, 12335-12338). We report here that removal of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II abolishes productive elongation. Correspondingly, we found that P-TEFb can phosphorylate the CTD of pure RNA polymerase II. Furthermore, P-TEFb can phosphorylate the CTD of RNA polymerase II when the polymerase is in an early elongation complex. Both the function and kinase activity of P-TEFb are blocked by the drugs 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and H-8. P-TEFb is distinct from transcription factor IIH (TFIIH) because the two factors have no subunits in common, P-TEFb is more sensitive to DRB than is TFIIH, and most importantly, TFIIH cannot substitute functionally for P-TEFb. We propose that phosphorylation of the CTD by P-TEFb controls the transition from abortive into productive elongation mode.
Collapse
Affiliation(s)
- N F Marshall
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
7
|
Egyházi E, Ossoinak A, Pigon A, Holmgren C, Lee JM, Greenleaf AL. Phosphorylation dependence of the initiation of productive transcription of Balbiani ring 2 genes in living cells. Chromosoma 1996; 104:422-33. [PMID: 8601337 DOI: 10.1007/bf00352266] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using polytene chromosomes of salivary gland cells of Chironomus tentans, phosphorylation state-sensitive antibodies and the transcription and protein kinase inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), we have visualized the chromosomal distribution of RNA polymerase II (pol II) with hypophosphorylated (pol IIA) and hyperphosphorylated (pol II0) carboxyl-terminal repeat domain (CTD). DRB blocks labeling of the CTD with 32Pi within minutes of its addition, and nuclear pol II0 is gradually converted to IIA; this conversion parallels the reduction in transcription of protein-coding genes. DRB also alters the chromosomal distribution of II0: there is a time-dependent clearance from chromosomes of phosphoCTD (PCTD) after addition of DRB, which coincides in time with the completion and release of preinitiated transcripts. Furthermore, the staining of smaller transcription units is abolished before that of larger ones. The staining pattern of chromosomes with anti-CTD antibodies is not detectably influenced by the DRB treatment, indicating that hypophosphorylated pol IIA is unaffected by the transcription inhibitor. Microinjection of synthetic heptapeptide repeats, anti-CTD and anti-PCTD antibodies into salivary gland nuclei hampered the transcription of BR2 genes, indicating the requirement for CTD and PCTD in transcription in living cells. The results demonstrate that in vivo the protein kinase effector DRB shows parallel effects on an early step in gene transcription and the process of pol II hyperphosphorylation. Our observations are consistent with the proposal that the initiation of productive RNA synthesis is CTD-phosphorylation dependent and also with the idea that the gradual dephosphorylation of transcribing pol II0 is coupled to the completion of nascent pol II gene transcripts.
Collapse
Affiliation(s)
- E Egyházi
- Karolinska Institutet, Department of Cell and Molecular Biology, Laboratory of Medical Cell Biology, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Yeh CH, Shatkin AJ. A cis-acting element in Rous sarcoma virus long terminal repeat required for promoter repression by HeLa nuclear protein p21. J Biol Chem 1995; 270:15815-20. [PMID: 7797584 DOI: 10.1074/jbc.270.26.15815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HeLa cell basic nuclear protein (p21), which represses Rous sarcoma virus long terminal repeat (RSV LTR) promoter activity, diminished v-src expression and the appearance at permissive temperature of the transformed phenotype in tsRSVLA23 Rat-1, a cell line transformed with a temperature-sensitive mutant of RSV. Nuclear run-on analyses using COS-1 cells cotransfected with p21 cDNA and chloramphenicol acetyltransferase reporter indicated that p21 inhibits transcription initiation by targeting a region in the RSV LTR promoter between positions -108 and -85 upstream of the cap site. Insertion of this 24-base pair sequence in place of one of the 72-base pair enhancers in the SV40 early promoter rendered it sensitive to p21 repression. Electrophoretic mobility shift assays using a synthetic oligomer corresponding to the 24-base pair LTR promoter element revealed that p21 altered the pattern of protein.DNA complex formation apparently without binding DNA directly. Complex formation assayed by UV cross-linking and DNA affinity chromatography indicated further that a cellular factor which can interact with this element was decreased in cells transfected with p21 expression plasmid. The results indicate that p21 repression of RSV LTR is mediated by a cis-acting element and may occur by alteration of protein complexes formed on this promoter element.
Collapse
Affiliation(s)
- C H Yeh
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
9
|
Marshall NF, Price DH. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem 1995; 270:12335-8. [PMID: 7759473 DOI: 10.1074/jbc.270.21.12335] [Citation(s) in RCA: 421] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Production of full-length runoff transcripts in vitro and functional mRNA in vivo is sensitive to the drug 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). We previously proposed the existence of an activity, P-TEF (positive transcription elongation factor) that functions in a DRB-sensitive manner to allow RNA polymerase II elongation complexes to efficiently synthesize long transcripts (Marshall, N. F. and Price, D. H. (1992) Mol. Cell. Biol. 12, 2078-2090). We have fractionated nuclear extracts of Drosophila melanogaster Kc cells and identified three activities, P-TEFa, factor 2, and P-TEFb, that are directly involved in reconstructing DRB-sensitive transcription. P-TEFb is essential for the production of DRB-sensitive long transcripts in vitro, while P-TEFa and factor 2 are stimulatory. P-TEFb activity is associated with a protein comprising two polypeptide subunits with apparent molecular masses of 124 and 43 kDa. Using a P-TEFb-dependent transcription system, we show that P-TEFb acts after initiation and is the limiting factor in the production of long run-off transcripts.
Collapse
Affiliation(s)
- N F Marshall
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
10
|
Dahmus ME. Phosphorylation of the C-terminal domain of RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:171-82. [PMID: 7711060 DOI: 10.1016/0167-4781(94)00233-s] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The CTD has become a focal point in the analysis of RNAP II. The unusual properties of the CTD, including its unique structure and high level of phosphorylation, have stimulated interest in understanding the role this domain plays in the transcription of protein-coding genes. Research during the past ten years suggests that the CTD may function at multiple steps in the transcription cycle and that its involvement is promoter dependent. The general idea, for which there is now considerable support, is that the CTD mediates the interaction of RNAP II with the transcription apparatus and that these interactions are influenced by the phosphorylation that occurs throughout the CTD. The temporal relationship between phosphorylation of the CTD and the progression of RNAP II through the transcription cycle has been established in a general sense. However, it is not clear that the modifications that occur at a given time are causally related to the progression of RNAP II beyond that point in the transcription cycle. The idea that phosphorylation of the CTD mediates the release of RNAP II from the preinitiation complex is an attractive one and consistent with a number of experimental results. However, an increasing number of observations suggest that CTD phosphorylation and promoter clearance may not be causally related. One possibility is that even though phosphorylation occurs concomitant with transcript initiation it plays no real role in the initiation process and is necessary only to establish an elongation competent form of the enzyme. Alternatively, CTD phosphorylation may play an essential role in the release of RNAP II from preinitiation complexes in vivo but may be dispensable in defined in vitro transcription systems. Finally it may be important to distinguish between promoter clearance as defined by RNAP moving off the transcriptional start site and the complete disruption of interactions between RNAP II and the preinitiation complex. Because of the extended nature of the CTD, RNAP II may remain tethered to factors assembled on the promoter even though a short transcript has been synthesized. Clearly additional research is necessary to (a) define the contacts made by the CTD in preinitiation complexes, (b) understand the relationship between the disruption of these contacts and CTD phosphorylation and (c) understand biochemically what is required to generate an elongation competent form of RNAP II. The possibility that the CTD plays a role in transcript elongation has been proposed since the discovery of the CTD [15].(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M E Dahmus
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| |
Collapse
|
11
|
Parada CA, Yoon JB, Roeder RG. A novel LBP-1-mediated restriction of HIV-1 transcription at the level of elongation in vitro. J Biol Chem 1995; 270:2274-83. [PMID: 7836461 DOI: 10.1074/jbc.270.5.2274] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cellular factor, LBP-1, can repress HIV-1 transcription by preventing the binding of TFIID to the promoter. Here we have analyzed the effect of recombinant LBP-1 on HIV-1 transcription in vitro by using a "pulse-chase" assay. LBP-1 had no effect on initiation from a preformed preinitiation complex and elongation to position +13 ("pulse"). However, addition of LBP-1 after RNA polymerase was stalled at +13 strongly inhibited further elongation ("chase") by reducing RNA polymerase processivity. Severe mutations of the high affinity LBP-1 binding sites between -4 and +21 did not relieve the LBP-1-dependent block. However, LBP-1 could bind independently to upstream low affinity sites (-80 to -4), suggesting that these sites mediate the effect of LBP-1 on elongation. These results demonstrate a novel function of LBP-1, restricting HIV-1 transcription at the level of elongation. In addition, Tat was found to suppress the antiprocessivity effect of LBP-1 on HIV-1 transcription in nuclear extracts. These findings strongly suggest that LBP-1 may provide a natural mechanism for restricting the elongation of HIV-1 transcripts and that this may be a target for the action of Tat in enhancing transcription.
Collapse
Affiliation(s)
- C A Parada
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
12
|
Yankulov K, Blau J, Purton T, Roberts S, Bentley DL. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 1994; 77:749-59. [PMID: 8205623 DOI: 10.1016/0092-8674(94)90058-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report that a variety of transactivators stimulate elongation by RNA polymerase II. Activated transcription complexes have high processivity and are able to read through pausing and termination sites efficiently. In contrast, nonactivated and "squelched" transcription mostly arrests prematurely. Activators differ in the extent to which they stimulate processivity; for example, GAL4-VP16 and GAL4-E1a are more effective than GAL4-AH. The stimulation of elongation can be as important as the stimulation of initiation in activating expression of a reporter gene. We suggest that setting the competence of polymerase II to elongate is an integral part of the initiation step that is controlled by activators cooperating with the general transcription factors.
Collapse
Affiliation(s)
- K Yankulov
- Molecular Genetics of Differentiation Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, England
| | | | | | | | | |
Collapse
|
13
|
Inhibitors of transcription such as 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole and isoquinoline sulfonamide derivatives (H-8 and H-7) promote dephosphorylation of the carboxyl-terminal domain of RNA polymerase II largest subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36837-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Krumm A, Meulia T, Groudine M. Common mechanisms for the control of eukaryotic transcriptional elongation. Bioessays 1993; 15:659-65. [PMID: 8274141 DOI: 10.1002/bies.950151005] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regulation of transcriptional elongation is emerging as an important control mechanism for eukaryotic gene expression. In this essay, we review the basis of the current view of the regulation of elongation in the human c-myc gene and discuss similarities in elongation control among the c-myc, Drosophila hsp70 and the HIV-1 genes. Based upon these similarities, we propose a model for control of expression of these genes at the elongation phase of transcription. This model suggests that distinct promoter elements direct the assembly of RNA polymerase II transcription complexes which differ in their elongation efficiency.
Collapse
MESH Headings
- Animals
- Bacteriophage lambda/genetics
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Drosophila/genetics
- Eukaryotic Cells/metabolism
- Gene Expression Regulation
- Gene Products, tat/physiology
- Genes, myc
- HIV Long Terminal Repeat
- HIV-1/genetics
- Heat-Shock Proteins/genetics
- Humans
- Models, Genetic
- Molecular Sequence Data
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
- Transcription, Genetic
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- A Krumm
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | |
Collapse
|