1
|
Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V, Galbiati A, Barozzi S, Garre M, Oldani A, Flaus A, Cerbino R, Parazzoli D, Rothenberg E, d'Adda di Fagagna F. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol 2019; 21:1286-1299. [PMID: 31570834 PMCID: PMC6859070 DOI: 10.1038/s41556-019-0392-4] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.
Collapse
Affiliation(s)
- Fabio Pessina
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ubaldo Gioia
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valerio Vitelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Sara Barozzi
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Amanda Oldani
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Andrew Flaus
- Centre for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Roberto Cerbino
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Dario Parazzoli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
2
|
Jackobel AJ, Han Y, He Y, Knutson BA. Breaking the mold: structures of the RNA polymerase I transcription complex reveal a new path for initiation. Transcription 2018; 9:255-261. [PMID: 29264963 PMCID: PMC6104693 DOI: 10.1080/21541264.2017.1416268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
While structures of the RNA polymerase (Pol) II initiation complex have been resolved and extensively studied, the Pol I initiation complex remained elusive. Here, we review the recent structural analyses of the yeast Pol I transcription initiation complex that reveal several unique and unexpected Pol I-specific properties.
Collapse
Affiliation(s)
- Ashleigh J. Jackobel
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210
| | - Yan Han
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, IL 60208
| | - Yuan He
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, IL 60208
| | - Bruce A. Knutson
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210,Bruce A. Knutson , SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
3
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
4
|
Srivastava A, Bhattacharya A, Bhattacharya S, Jhingan GD. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA. J Biosci 2016; 41:51-62. [PMID: 26949087 DOI: 10.1007/s12038-016-9587-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.
Collapse
Affiliation(s)
- Ankita Srivastava
- School of Environmental Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110 067, India
| | | | | | | |
Collapse
|
5
|
Regulation of ribosomal RNA production by RNA polymerase I: does elongation come first? GENETICS RESEARCH INTERNATIONAL 2012; 2012:276948. [PMID: 22567380 PMCID: PMC3335655 DOI: 10.1155/2012/276948] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 11/17/2022]
Abstract
Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35-47S) can be achieved by up to 150 RNA polymerase I (Pol I) enzymes simultaneously transcribing each rRNA gene. In this paper, we present recent advances made in understanding the regulatory mechanisms that control elongation. Built-in Pol I elongation factors, such as Rpa34/Rpa49 in budding yeast and PAF53/CAST in humans, are instrumental to the extremely high rate of rRNA production per gene. rRNA elongation mechanisms are intrinsically linked to chromatin structure and to the higher-order organization of the rRNA genes (rDNA). Factors such as Hmo1 in yeast and UBF1 in humans are key players in rDNA chromatin structure in vivo. Finally, elongation factors known to regulate messengers RNA production by RNA polymerase II are also involved in rRNA production and work cooperatively with Rpa49 in vivo.
Collapse
|
6
|
Fan X, Shi H, Lis JT. Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP. Nucleic Acids Res 2005; 33:838-45. [PMID: 15701755 PMCID: PMC549393 DOI: 10.1093/nar/gki212] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TATA-binding protein (TBP) is a general factor that is involved in transcription by all three types of nuclear RNA polymerase. To delineate the roles played by the DNA-binding surface of TBP in these transcription reactions, we used a set of RNA aptamers directed against TBP and examined their ability to perturb transcription in vitro by the different RNA polymerases. Distinct responses to the TBP aptamers were observed for transcription by different types of polymerase at either the initiation, reinitiation or both stages of the transcription cycle. We further probed the TBP interactions in the TFIIIB•DNA complex to elucidate the mechanism for the different sensitivity of Pol III dependent transcription before and after preinitiation complex (PIC) formation. Lastly, the aptamers were employed to measure the time required for Pol III PIC formation in vitro. This approach can be generalized to define the involvement of a particular region on the surface of a protein at particular stages in a biological process.
Collapse
Affiliation(s)
| | | | - John T. Lis
- To whom correspondence should be addressed. Tel: +1 607 255 2442; Fax: +1 607 255 6249;
| |
Collapse
|
7
|
Chen L, Peng Z, Bateman E. In vivo interactions of the Acanthamoeba TBP gene promoter. Nucleic Acids Res 2004; 32:1251-60. [PMID: 14976219 PMCID: PMC390285 DOI: 10.1093/nar/gkh297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription of the TATA box binding protein (TBP) gene in Acanthamoeba castellanii is regulated by TATA box binding protein promoter binding factor (TPBF), which binds to an upstream TBP promoter element to stimulate transcription, and to a TATA proximal element, where it represses transcription. In order to extend these observations to the in vivo chromatin context, the TBP gene was examined by in situ footprinting and chromatin immunoprecipitation (ChIP). Acanthamoeba DNA is nucleosomal with a repeat of approximately 160 bp, and an intranucleosomal DNA periodicity of 10.5 bp. The TBP gene comprises a 220 bp micrococcal nuclease hypersensitive site corresponding to the promoter regulatory elements previously identified, flanked by protected regions of a size consistent with the presence of nucleosomes. ChIP data indicated that TPBF is associated with the TBP, TPBF and MIL gene promoters, but not to the CSP21, MIIHC, 5SrRNA or 39SrRNA promoters, or to the MIL gene C-terminal region. Binding by TPBF to the TPBF and MIL gene promoters was confirmed by in vitro assays. These results validate the in vitro model for TBP gene regulation and further suggest that TPBF may be autoregulated and may participate in the regulation of the MIL gene.
Collapse
Affiliation(s)
- Li Chen
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
8
|
Polakowski N, Paule MR. Purification and characterization of transcription factor IIIA from Acanthamoeba castellanii. Nucleic Acids Res 2002; 30:1977-84. [PMID: 11972335 PMCID: PMC113847 DOI: 10.1093/nar/30.9.1977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TFIIIA is required to activate RNA polymerase III transcription from 5S RNA genes. Although all known TFIIIA homologs harbor nine zinc fingers that mediate DNA binding, very limited sequence homology is found among these proteins, which reflects unique properties of some TFIIIA homologs. For example, the Acanthamoeba castellanii homolog directly regulates 5S RNA transcription. We have purified and characterized A.castellanii TFIIIA (AcTFIIIA) as a step toward obtaining a clearer understanding of these differences and of the regulatory process. AcTFIIIA is 59 kDa, significantly larger than all other TFIIIA homologs isolated to date. Nevertheless, it exhibits a DNase I footprint very similar to those produced by the smaller vertebrate TFIIIA homologs, but distinct from the smaller footprint of the 51 kDa TFIIIA from Saccharomyces cerevisiae. Similar footprinting is not reflected in greater sequence similarity between the A.castellanii and vertebrate promoters.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
9
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
10
|
Yamamoto K, Koga A, Yamamoto M, Nishi Y, Tamura T, Nogi Y, Muramatsu M. Identification of a novel 70 kDa protein that binds to the core promoter element and is essential for ribosomal DNA transcription. Nucleic Acids Res 2000; 28:1199-205. [PMID: 10666463 PMCID: PMC102616 DOI: 10.1093/nar/28.5.1199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian ribosomal RNA genes (rDNA) are transcribed by RNA polymerase I and at least two auxiliary factors, UBF and SL1/TFID/TIF-IB. It has also been reported that an additional factor(s) is required to reconstitute efficient initiation of rDNA transcription in vitro, depending upon the procedures of chromatographic separation. In an attempt to elucidate the molecular identity of such yet uncertain activities, we have developed agarose gel shift and UV cross-linking assays to detect proteins directly bound to the core promoter region of murine rDNA. With these techniques, we identified a 70 kDa protein (p70) in the flow-through fraction of a phosphocellulose column (TFIA-fraction). Interestingly, the binding of p70 to the rDNA core promoter was observed only in the presence of the SL1-containing fraction. The probable human orthologue of p70 was also detected in HeLa cells. Consistent with the observation that p70 bound to the core promoter only in the presence of the TFIA- and SL1-fractions, alteration of DNase I footprint pattern over the core promoter element was demonstrated by cooperative action of the TFIA- and SL1-fractions. A reconstituted in vitro transcription assay with further purified p70 indicated that p70 was required for accurate initiation of rDNA transcription. These results indicate that the p70 identified recently by the current DNA-binding experiments represents a novel transcription factor in rDNA transcription.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Milkereit P, Tschochner H. A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J 1998; 17:3692-703. [PMID: 9649439 PMCID: PMC1170705 DOI: 10.1093/emboj/17.13.3692] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Only a small proportion (<2%) of RNA polymerase I (pol I) from whole-cell extracts appeared to be competent for specific initiation at the ribosomal gene promoter in a yeast reconstituted transcription system. Initiation-competent pol I molecules were found exclusively in salt-resistant complexes that contain the pol I-specific initiation factor Rrn3p. Levels of initiation-competent complexes in extracts were independent of total Rrn3p content and varied with the growth state of the cells. Although extracts from stationary phase cells contained substantial amounts of Rrn3p and pol I, they lacked the pol I-Rrn3p complex and were inactive in promoter-dependent transcription. Activity was restored by adding purified pol I-Rrn3p complex to extracts from stationary phase cells. The pol I-Rrn3p complex dissociated during transcription and lost its capacity for subsequent reinitiation in vitro, suggesting a stoichiometric rather than a catalytic activity in initiation. We propose that the formation and disruption of the pol I-Rrn3p complex reflects a molecular switch for regulating rRNA synthesis and its growth rate-dependent regulation.
Collapse
Affiliation(s)
- P Milkereit
- BZH Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
12
|
Chen L, Guo A, Pape L. An immunoaffinity purified Schizosaccharomyces pombe TBP-containing complex directs correct initiation of the S.pombe rRNA gene promoter. Nucleic Acids Res 1997; 25:1633-40. [PMID: 9092673 PMCID: PMC146630 DOI: 10.1093/nar/25.8.1633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The multi-protein complex SL1, containing TBP, which is essential for RNA polymerase I catalyzed transcription, has been analyzed in fission yeast. It was immunopurified based on association of component subunits with epitope-tagged TBP. To enable this analysis, a strain of Schizosaccharomyces pombe was created where the only functional TBP coding sequences were those of FLAG-TBP. RNA polymerase I transcription components were fractionated from this strain and the TBP-associated polypeptides were subsequently immunopurified together with the epitope- tagged TBP. An assessment of the activity of this candidate SL1 complex was undertaken cross-species. This fission yeast TBP-containing complex displays two activities in redirecting transcriptional initiation of an S. pombe rDNA gene promoter cross-species in Saccharomyces cerevisiae transcription reactions: it both blocks an incorrect transcriptional start site at +7 and directs initiation at the correct site for S. pombe rRNA synthesis. This complex is essential for accurate initiation of the S.pombe rRNA gene: rRNA synthesis is reconstituted when this S.pombe TBP-containing complex is combined with a S.pombe fraction immunodepleted of TBP.
Collapse
MESH Headings
- Base Sequence
- Chromatography, Affinity
- Chromosomes, Fungal
- Cloning, Molecular
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Escherichia coli
- Molecular Sequence Data
- Oligopeptides
- Peptides
- Pol1 Transcription Initiation Complex Proteins
- Promoter Regions, Genetic
- RNA Polymerase I/metabolism
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- TATA-Box Binding Protein
- Transcription Factor TFIID
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- L Chen
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
13
|
Doelling JH, Pikaard CS. Species-specificity of rRNA gene transcription in plants manifested as a switch in RNA polymerase specificity. Nucleic Acids Res 1996; 24:4725-32. [PMID: 8972859 PMCID: PMC146310 DOI: 10.1093/nar/24.23.4725] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rapid evolution of ribosomal RNA (rRNA) gene promoters often prevents their recognition in a foreign species. Unlike animal systems, we show that foreign plant rRNA gene promoters are recognized in an alien species, but tend to program transcription by a different polymerase. In plants, RNA polymerase I transcripts initiate at a TATATA element (+1 is underlined) important for promoter strength and start-site selection. However, transcripts initiate from +32 following transfection of a tomato promoter into Arabidopsis. The rRNA gene promoter of a more closely related species, Brassica oleracea, programs both +1 and +29 transcription. A point mutation at +2 improving the identity between the Brassica and Arabidopsis promoters increases +1 transcription, indicating a role for the initiator element in species-specificity. Brassica +29 transcripts can be translated to express a luciferase reporter gene, implicating RNA polymerase II. TATA mutations that disrupt TATA-binding protein (TBP) interactions inhibit +29 transcription and luciferase expression. Co-expressed TBP proteins bearing compensatory mutations restore +29 transcription and luciferase activity, suggesting a direct TBP-TATA interaction. Importantly, +1 transcription is unaffected by the TATA mutations, suggesting that in the context of pol I recognition, the TATA-containing initiator element serves a function other than TBP binding.
Collapse
Affiliation(s)
- J H Doelling
- Biology Department, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
14
|
McBryant SJ, Meier E, Leresche A, Sharp SJ, Wolf VJ, Gottesfeld JM. TATA-box DNA binding activity and subunit composition for RNA polymerase III transcription factor IIIB from Xenopus laevis. Mol Cell Biol 1996; 16:4639-47. [PMID: 8756620 PMCID: PMC231463 DOI: 10.1128/mcb.16.9.4639] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The RNA polymerase III transcription initiation factor TFIIIB contains the TATA-box-binding protein (TBP) and polymerase III-specific TBP-associated factors (TAFs). Previous studies have shown that DNA oligonucleotides containing the consensus TATA-box sequence inhibit polymerase III transcription, implying that the DNA binding domain of TBP is exposed in TFIIIB. We have investigated the TATA-box DNA binding activity of Xenopus TFIIIB, using transcription inhibition assays and a gel mobility shift assay. Gel shift competition assays with mutant and nonspecific DNAs demonstrate the specificity of the TFIIIB-TATA box DNA complex. The apparent dissociation constant for this protein-DNA interaction is approximately 0.4 nM, similar to the affinity of yeast TBP for the same sequence. TFIIIB transcriptional activity and TATA-box binding activity cofractionate during a series of four ion-exchange chromatographic steps, and reconstituted transcription reactions demonstrate that the TATA-box DNA-protein complex contains TFIIIB TAF activity. Polypeptides with apparent molecular masses of 75 and 92 kDa are associated with TBP in this complex. These polypeptides were renatured after elution from sodium dodecyl sulfate-gels and tested individually and in combination for TFIIIB TAF activity. Recombinant TBP along with protein fractions containing the 75- and 92-kDa polypeptides were sufficient to reconstitute TFIIIB transcriptional activity and DNA binding activity, suggesting that Xenopus TFIIIB is composed of TBP along with these polypeptides.
Collapse
Affiliation(s)
- S J McBryant
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
15
|
Gottesfeld JM, Johnson DL, Nyborg JK. Transcriptional activation of RNA polymerase III-dependent genes by the human T-cell leukemia virus type 1 tax protein. Mol Cell Biol 1996; 16:1777-85. [PMID: 8657153 PMCID: PMC231164 DOI: 10.1128/mcb.16.4.1777] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human T-cell leukemia virus-encoded tax protein is a potent activator of many viral and cellular genes transcribed by RNA polymerase II. We find that both chromatin and cell extracts derived from human T-cell leukemia virus type 1-infected human T lymphocytes support higher levels of 5S rRNA and tRNA gene transcription than chromatin or extracts from uninfected T lymphocytes. The viral protein Tax was likely responsible for this higher level of class II gene transcription, as purified Tax was found to stimulate both genes when added to the uninfected cell extract or in reconstituted systems. Both limiting-component transcription assays and DNA binding assays identified the class III gene transcription factor TFIIIB as the principle target of Tax activity. Surprisingly, we find that Tax increases the effective concentration of active TFIIIB molecules. These data suggest that Tax stimulates RNA polymerase III-dependent gene expression by accelerating the rate and/or extent of transcription initiation complex assembly.
Collapse
Affiliation(s)
- J M Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
16
|
Huang W, Wong JM, Bateman E. TATA elements direct bi-directional transcription by RNA polymerases II and III. Nucleic Acids Res 1996; 24:1158-63. [PMID: 8604352 PMCID: PMC145742 DOI: 10.1093/nar/24.6.1158] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic promoter elements specify the direction and efficiency of transcription, as well as the type of RNA polymerase to be used. One such element, the TATA box, is thought to participate in determining the direction of transcription and can function within promoters for RNA polymerase II or III, depending on the sequence context. In this report the ability of four different TATA boxes to support transcription in vitro was determined. It was found that TATA elements are not directional. However, they support transcription by RNA polymerases II and III. An upstream activating sequence was found to stimulate downstream transcription by RNA polymerase II and to inhibit upstream transcription by RNA polymerases II and III. Thus a promoter necessarily consists of a TATA element and upstream sequences in order to specify the direction of transcription and the type of polymerase to be used.
Collapse
Affiliation(s)
- W Huang
- Department of Microbiology, University of Vermont, Burlington 05405 USA
| | | | | |
Collapse
|
17
|
Yang Q, Radebaugh CA, Kubaska W, Geiss GK, Paule MR. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions. Nucleic Acids Res 1995; 23:4345-52. [PMID: 7501455 PMCID: PMC307389 DOI: 10.1093/nar/23.21.4345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF.
Collapse
Affiliation(s)
- Q Yang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| | | | | | | | | |
Collapse
|
18
|
Gong X, Radebaugh CA, Geiss GK, Simon MN, Paule MR. Site-directed photo-cross-linking of rRNA transcription initiation complexes. Mol Cell Biol 1995; 15:4956-63. [PMID: 7651413 PMCID: PMC230742 DOI: 10.1128/mcb.15.9.4956] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Site-specific photo-cross-linking of the rRNA committed transcription complex was carried out by using 5-[N-(p-azidobenzoyl)-3-aminoallyl]-dUMP-derivatized promoter DNA. Putative TAFIs of 145, 99, 96, and 91 kDa, as well as TATA-binding protein (TBP), were found to specifically photo-cross-link to different positions along the promoter. These had been identified as potential subunits of the fundamental transcription initiation factor TIF-IB (also known as SL1, factor D, and TFID) from Acanthamoeba castellanii by purification to apparent homogeneity. No other polypeptides attributable to the rRNA architectural transcription factor UBF were identified, suggesting that this protein is not part of the committed complex. Scanning transmission electron microscopy of the complexes was used to estimate the mass of the complex and the contour length of the DNA in the complex. This showed that a single molecule of TIF-IB is in each committed complex and that the DNA is not looped around the protein, as would be expected if UBF were in the complex. A circular permutation analysis of DNA bending resulting from TIF-IB binding revealed a 45 +/- 3.1 degrees (n = 14) bend centered 23 bp upstream of the transcription initiation site. This degree of bending and the position of the bend relative to the site of TBP photo-cross-linking are consistent with earlier data showing that the TBP TATA box-binding domain is not utilized in the assembly of the rRNA committed complex (C. A. Radebaugh, J. L. Mathews, G. K. Geiss, F. Liu, J. Wong, E. Bateman, S. Camier, A. Sentenac, and M. R. Paule, Mol. Cell. Biol. 14:597-605, 1994).
Collapse
Affiliation(s)
- X Gong
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | | | | | | | |
Collapse
|
19
|
Matthews JL, Zwick MG, Paule MR. Coordinate regulation of ribosomal component synthesis in Acanthamoeba castellanii: 5S RNA transcription is down regulated during encystment by alteration of TFIIIA activity. Mol Cell Biol 1995; 15:3327-35. [PMID: 7760828 PMCID: PMC230566 DOI: 10.1128/mcb.15.6.3327] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcription of large rRNA precursor and 5S RNA were examined during encystment of Acanthamoeba castellanii. Both transcription units are down regulated almost coordinately during this process, though 5S RNA transcription is not as completely shut down as rRNA transcription. The protein components necessary for transcription of 5S RNA and tRNA were determined, and fractions containing transcription factors comparable to TFIIIA, TFIIIB, and TFIIIC, as well as RNA polymerase III and a 3'-end processing activity, were identified. Regulation of 5S RNA transcription could be recapitulated in vitro, and the activities of the required components were compared. In contrast to regulation of precursor rRNA, there is no apparent change during encystment in the activity of the polymerase dedicated to 5S RNA expression. Similarly, the transcriptional and promoter-binding activities of TFIIIC are not altered in parallel with 5S RNA regulation. TFIIIB transcriptional activity is unaltered in encysting cells. In contrast, both the transcriptional and DNA-binding activities of TFIIIA are strongly reduced in nuclear extracts from transcriptionally inactive cells. These results were analyzed in terms of mechanisms for coordinate regulation of rRNA and 5S RNA expression.
Collapse
Affiliation(s)
- J L Matthews
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| | | | | |
Collapse
|
20
|
Affiliation(s)
- S T Jacob
- Department of Pharmacology and Molecular Biology, Chicago Medical School, North Chicago, IL 60064
| |
Collapse
|
21
|
Yang Q, Zwick MG, Paule MR. Sequence organization of the Acanthamoeba rRNA intergenic spacer: identification of transcriptional enhancers. Nucleic Acids Res 1994; 22:4798-805. [PMID: 7984432 PMCID: PMC308533 DOI: 10.1093/nar/22.22.4798] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The primary sequence of the entire 2330 bp intergenic spacer of the A.castellanii ribosomal RNA gene was determined. Repeated sequence elements averaging 140 bp were identified and found to bind a protein required for optimum initiation at the core promoter. These repeated elements were shown to stimulate rRNA transcription by RNA polymerase I in vitro. The repeats inhibited transcription when placed in trans, and stimulated transcription when in cis, in either orientation, but only when upstream of the core promoter. Thus, these repeated elements have characteristics similar to polymerase I enhancers found in higher eukaryotes. The number of rRNA repeats in Acanthamoeba cells was determined to be 24 per haploid genome, the lowest number so far identified in any eukaryote. However, because Acanthamoeba is polyploid, each cell contains approximately 600 rRNA genes.
Collapse
MESH Headings
- Acanthamoeba/genetics
- Animals
- Base Composition
- Base Sequence
- Cloning, Molecular
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Enhancer Elements, Genetic/genetics
- Gene Dosage
- Genes, Protozoan/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Protozoan/genetics
- RNA, Ribosomal/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Q Yang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
22
|
The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA. Mol Cell Biol 1994. [PMID: 7935371 DOI: 10.1128/mcb.14.10.6476] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upstream binding factor (UBF) is an important transactivator of RNA polymerase I and is a member of a family of proteins that contain nucleic acid binding domains named high-mobility-group (HMG) boxes because of their similarity to HMG chromosomal proteins. UBF is a highly sequence-tolerant DNA-binding protein for which no binding consensus sequence has been identified. Therefore, it has been suggested that UBF may recognize preformed structural features of DNA, a hypothesis supported by UBF's ability to bind synthetic DNA cruciforms, four-way junctions, and even tRNA. We show here that full-length UBF can also bend linear DNA to mediate circularization of probes as small as 102 bp in the presence of DNA ligase. Longer probes in the presence of UBF become positively supercoiled when ligated, suggesting that UBF wraps the DNA in a right-handed direction, opposite the direction of DNA wrapping around a nucleosome. The dimerization domain and HMG box 1 are necessary and sufficient to circularize short probes and supercoil longer probes in the presence of DNA ligase. UBF's sequence tolerance coupled with its ability to bend and wrap DNA makes UBF an unusual eukaryotic transcription factor. However, UBF's ability to bend DNA might explain how upstream and downstream rRNA gene promoter domains interact. UBF-induced DNA wrapping could also be a mechanism by which UBF counteracts histone-mediated gene repression.
Collapse
|
23
|
Putnam CD, Copenhaver GP, Denton ML, Pikaard CS. The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA. Mol Cell Biol 1994; 14:6476-88. [PMID: 7935371 PMCID: PMC359177 DOI: 10.1128/mcb.14.10.6476-6488.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Upstream binding factor (UBF) is an important transactivator of RNA polymerase I and is a member of a family of proteins that contain nucleic acid binding domains named high-mobility-group (HMG) boxes because of their similarity to HMG chromosomal proteins. UBF is a highly sequence-tolerant DNA-binding protein for which no binding consensus sequence has been identified. Therefore, it has been suggested that UBF may recognize preformed structural features of DNA, a hypothesis supported by UBF's ability to bind synthetic DNA cruciforms, four-way junctions, and even tRNA. We show here that full-length UBF can also bend linear DNA to mediate circularization of probes as small as 102 bp in the presence of DNA ligase. Longer probes in the presence of UBF become positively supercoiled when ligated, suggesting that UBF wraps the DNA in a right-handed direction, opposite the direction of DNA wrapping around a nucleosome. The dimerization domain and HMG box 1 are necessary and sufficient to circularize short probes and supercoil longer probes in the presence of DNA ligase. UBF's sequence tolerance coupled with its ability to bend and wrap DNA makes UBF an unusual eukaryotic transcription factor. However, UBF's ability to bend DNA might explain how upstream and downstream rRNA gene promoter domains interact. UBF-induced DNA wrapping could also be a mechanism by which UBF counteracts histone-mediated gene repression.
Collapse
Affiliation(s)
- C D Putnam
- Biology Department, Washington University, St. Louis, Missouri 63130
| | | | | | | |
Collapse
|
24
|
Rudloff U, Eberhard D, Grummt I. The conserved core domain of the human TATA binding protein is sufficient to assemble the multisubunit RNA polymerase I-specific transcription factor SL1. Proc Natl Acad Sci U S A 1994; 91:8229-33. [PMID: 8058785 PMCID: PMC44579 DOI: 10.1073/pnas.91.17.8229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human ribosomal RNA polymerase (Pol) I promoter selectivity factor SL1 is a complex consisting of the TATA binding protein (TBP) and three TBP-associated factors (TAFs). We have investigated which elements of TBP are involved in the assembly of Pol I-specific TBP-TAF complexes by comparing SL1 isolated from two human cell lines, one expressing epitope-tagged full-length TBP and another expressing a deletion of nearly the entire N-terminal domain (e delta NTBP). We have immunopurified epitope-tagged full-length TBP- and e delta NTBP-TAF complexes and show that e delta NTBP reconstitutes SL1 activity almost as well as full-length TBP. Moreover, e delta NTBP is shown to be associated with all three Pol I-specific TAFs. Thus, the core of TBP alone is sufficient for the correct assembly of the Pol I-specific TBP-TAF complex, and the variable N-terminal region of human TBP is not required for transcriptional activity. We also demonstrate by an in vitro protein-protein interaction assay that TBP directly interacts with the smallest TAF, TAFI48.
Collapse
Affiliation(s)
- U Rudloff
- German Cancer Research Center, Division of Molecular Biology of the Cell II, Heidelberg
| | | | | |
Collapse
|
25
|
Copenhaver GP, Putnam CD, Denton ML, Pikaard CS. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Nucleic Acids Res 1994; 22:2651-7. [PMID: 8041627 PMCID: PMC308223 DOI: 10.1093/nar/22.13.2651] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Upstream Binding Factor (UBF) is important for activation of ribosomal RNA transcription and belongs to a family of proteins containing nucleic acid binding domains, termed HMG-boxes, with similarity to High Mobility Group (HMG) chromosomal proteins. Proteins in this family can be sequence-specific or highly sequence-tolerant binding proteins. We show that Xenopus UBF can be classified among the sequence-tolerant class. Methylation interference assays using enhancer DNA probes failed to reveal any critical nucleotides required for UBF binding. Selection by UBF of optimal binding sites among a population of enhancer oligonucleotides with randomized sequences also failed to reveal any consensus sequence. The minor groove specific drugs chromomycin A3, distamycin A and actinomycin D competed against UBF for enhancer binding, suggesting that UBF, like other HMG-box proteins, probably interacts with the minor groove. UBF also shares with other HMG box proteins the ability to bind synthetic cruciform DNA. However, UBF appears different from other HMG-box proteins in that it can bind both RNA (tRNA) and DNA. The sequence-tolerant nature of UBF-nucleic acid interactions may accommodate the rapid evolution of ribosomal RNA gene sequences.
Collapse
Affiliation(s)
- G P Copenhaver
- Biology Department, Washington University, St Louis, MO 63130
| | | | | | | |
Collapse
|