1
|
Zhang Z, Hu X, Sun Y, Lei L, Liu Z. Early inhibition of BRD4 facilitates iPSC reprogramming via accelerating rDNA dynamic expression. BMC Biol 2024; 22:195. [PMID: 39256730 PMCID: PMC11389306 DOI: 10.1186/s12915-024-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND iPSC reprogramming technology exhibits significant promise in the realms of clinical therapeutics, disease modeling, pharmaceutical drug discovery, and various other applications. However, the extensive utilization of this technology has encountered impediments in the form of inefficiency, prolonged procedures, and ambiguous biological processes. Consequently, in order to improve this technology, it is of great significance to delve into the underlying mechanisms involved in iPSC reprogramming. The BET protein BRD4 plays a crucial role in the late stage of reprogramming; however, its precise function in the early stage remains unclear. RESULTS Our study aims to investigate BRD4's role in the early stages of iPSC reprogramming. Our investigation reveals that early inhibition of BRD4 substantially enhances iPSC reprogramming, whereas its implementation during the middle-late stage impedes the process. During the reprogramming, ribosome DNA expression initially increases before decreasing and then gradually recovers. Early inhibition of BRD4 improved the decline and restoration of rDNA expression in the early and middle-late stages, respectively. Additionally, we uncovered the mechanism of BRD4's regulation of rDNA transcription throughout reprogramming. Specifically, BRD4 interacts with UBF and co-localizes to both the rDNA promoter and enhancer regions. Ultimately, BRD4 facilitates rDNA transcription by promoting the enrichment of histone H3 lysine 27 acetylation in the surrounding chromatin. Moreover, we also discovered that early inhibition of BRD4 facilitates cells' transition out of the somatic cell state and activate pluripotent genes. CONCLUSIONS In conclusion, our results demonstrate that early inhibition of BRD4 promotes sequential dynamic expression of rDNA, which improves iPSC reprogramming efficiency.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Yuchen Sun
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China.
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China.
| |
Collapse
|
2
|
Daiß JL, Griesenbeck J, Tschochner H, Engel C. Synthesis of the ribosomal RNA precursor in human cells: mechanisms, factors and regulation. Biol Chem 2023; 404:1003-1023. [PMID: 37454246 DOI: 10.1515/hsz-2023-0214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
3
|
Daiß JL, Pilsl M, Straub K, Bleckmann A, Höcherl M, Heiss FB, Abascal-Palacios G, Ramsay EP, Tlučková K, Mars JC, Fürtges T, Bruckmann A, Rudack T, Bernecky C, Lamour V, Panov K, Vannini A, Moss T, Engel C. The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans. Life Sci Alliance 2022; 5:5/11/e202201568. [PMID: 36271492 PMCID: PMC9438803 DOI: 10.26508/lsa.202201568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
We characterize the human RNA polymerase I by evolutionary biochemistry and cryo-EM revealing a built-in structural domain that apparently serves as transcription factor–binding platform in metazoans. Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk, and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This “dock II” domain resembles a truncated HMG box incapable of DNA binding which may serve as a downstream transcription factor–binding platform in metazoans. Biochemical analysis, in situ modelling, and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG box domain–containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michael Pilsl
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Kristina Straub
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andrea Bleckmann
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Mona Höcherl
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Florian B Heiss
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Guillermo Abascal-Palacios
- Division of Structural Biology, The Institute of Cancer Research, London, UK
- Biofisika Institute (CSIC, UPV/EHU), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ewan P Ramsay
- Division of Structural Biology, The Institute of Cancer Research, London, UK
- Fondazione Human Technopole, Structural Biology Research Centre, Milan, Italy
| | | | - Jean-Clement Mars
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Borden Laboratory, IRIC, Université de Montréal, Montréal, Québec, Canada
| | - Torben Fürtges
- Protein Crystallography, Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Till Rudack
- Protein Crystallography, Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Carrie Bernecky
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Valérie Lamour
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Integrated Structural Biology, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Konstantin Panov
- School of Biological Sciences and PGJCCR, Queen’s University Belfast, Belfast, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, UK
- Fondazione Human Technopole, Structural Biology Research Centre, Milan, Italy
| | - Tom Moss
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Lawrimore CJ, Bloom K. Common Features of the Pericentromere and Nucleolus. Genes (Basel) 2019; 10:E1029. [PMID: 31835574 PMCID: PMC6947172 DOI: 10.3390/genes10121029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA;
| |
Collapse
|
5
|
Abstract
Ribosome biogenesis is a complex and highly energy-demanding process that requires the concerted action of all three nuclear RNA polymerases (Pol I-III) in eukaryotes. The three largest ribosomal RNAs (rRNAs) originate from a precursor transcript (pre-rRNA) that is encoded by multicopy genes located in the nucleolus. Transcription of these rRNA genes (rDNA) by Pol I is the key regulation step in ribosome production and is tightly controlled by an intricate network of signaling pathways and epigenetic mechanisms. In this article, we give an overview of the composition of the basal Pol I machinery and rDNA chromatin. We discuss rRNA gene regulation in response to environmental signals and developmental cues and focus on perturbations occurring in diseases linked to either excessive or limited rRNA levels. Finally, we discuss the emerging view that rDNA integrity and activity may be involved in the aging process.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; , .,Leibniz-Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; , .,Leibniz-Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|
6
|
Xie Q, Li C, Song X, Wu L, Jiang Q, Qiu Z, Cao H, Yu K, Wan C, Li J, Yang F, Huang Z, Niu B, Jiang Z, Zhang T. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription. Nucleic Acids Res 2017; 45:2472-2489. [PMID: 27924000 PMCID: PMC5389733 DOI: 10.1093/nar/gkw1208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022] Open
Abstract
The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development.
Collapse
Affiliation(s)
- Qiu Xie
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Caihua Li
- Genesky Biotechnologies Inc, Shanghai 200120, China
| | - Xiaozhen Song
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Lihua Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Qian Jiang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Haiyan Cao
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kaihui Yu
- Department of Pathophysiology, Guangxi Medical University, Guangxi 530021, China
| | - Chunlei Wan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Jianting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Feng Yang
- Genesky Biotechnologies Inc, Shanghai 200120, China
| | - Zebing Huang
- Genesky Biotechnologies Inc, Shanghai 200120, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | | | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| |
Collapse
|
7
|
Abstract
Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle.
Collapse
Affiliation(s)
- Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Ouellet Lavallée G, Pearson A. Upstream binding factor inhibits herpes simplex virus replication. Virology 2015; 483:108-16. [PMID: 25965800 DOI: 10.1016/j.virol.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/09/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus 1 (HSV-1) infection induces changes to the host cell nucleus including relocalization of the cellular protein Upstream Binding Factor (UBF) from the nucleolus to viral replication compartments (VRCs). Herein, we tested the hypothesis that UBF is recruited to VRCs to promote viral DNA replication. Surprisingly, infection of UBF-depleted HeLa cells with HSV-1 or HSV-2 produced higher viral titers compared to controls. Reduced expression of UBF also led to a progressive increase in the relative amount of HSV-1 DNA versus controls, and increased levels of HSV-1 ICP27 and TK mRNA and protein, regardless of whether viral DNA replication was inhibited or not. Our results suggest that UBF can inhibit gene expression from viral DNA prior to its replication. A similar but smaller effect on viral titers was observed in human foreskin fibroblasts. This is the first report of UBF having a restrictive effect on replication of a virus.
Collapse
|
9
|
Diesch J, Hannan RD, Sanij E. Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease. Cell Biosci 2014; 4:43. [PMID: 25949792 PMCID: PMC4422213 DOI: 10.1186/2045-3701-4-43] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/27/2014] [Indexed: 01/05/2023] Open
Abstract
Ribosomal RNA (rRNA) gene (rDNA) transcription by RNA Polymerase I (Pol I) drives cell growth and underlies nucleolar structure and function, indirectly coordinating many fundamental cellular processes. The importance of keeping rDNA transcription under tight control is reflected by the fact that deranged Pol I transcription is a feature of cancer and other human disorders. In this review, we discuss multiple aspects of rDNA function including the relationship between Pol I transcription and proliferative capacity, the role of Pol I transcription in mediating nucleolar structure and integrity, and rDNA/nucleolar interactions with the genome and their influence on heterochromatin and global genome stability. Furthermore, we discuss how perturbations in the structure of the rDNA loci might contribute to human disease, in some cases independent of effects on ribosome biogenesis.
Collapse
Affiliation(s)
- Jeannine Diesch
- Growth Control Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross D Hannan
- Growth Control Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia ; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia ; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia ; Division of Cancer Medicine, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elaine Sanij
- Growth Control Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia ; Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Workman JJ, Chen H, Laribee RN. Environmental signaling through the mechanistic target of rapamycin complex 1: mTORC1 goes nuclear. Cell Cycle 2014; 13:714-25. [PMID: 24526113 PMCID: PMC3979908 DOI: 10.4161/cc.28112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a well-known regulator of cell growth and proliferation in response to environmental stimuli and stressors. To date, the majority of mTORC1 studies have focused on its function as a cytoplasmic effector of translation regulation. However, recent studies have identified additional, nuclear-specific roles for mTORC1 signaling related to transcription of the ribosomal DNA (rDNA) and ribosomal protein (RP) genes, mitotic cell cycle control, and the regulation of epigenetic processes. As this area of study is still in its infancy, the purpose of this review to highlight these significant findings and discuss the relevance of nuclear mTORC1 signaling dysregulation as it pertains to health and disease.
Collapse
Affiliation(s)
- Jason J Workman
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Hongfeng Chen
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| |
Collapse
|
11
|
Grob A, McStay B. Construction of synthetic nucleoli and what it tells us about propagation of sub-nuclear domains through cell division. Cell Cycle 2014; 13:2501-8. [PMID: 25486191 PMCID: PMC4614152 DOI: 10.4161/15384101.2014.949124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
The cell nucleus is functionally compartmentalized into numerous membraneless and dynamic, yet defined, bodies. The cell cycle inheritance of these nuclear bodies (NBs) is poorly understood at the molecular level. In higher eukaryotes, their propagation is challenged by cell division through an "open" mitosis, where the nuclear envelope disassembles along with most NBs. A deeper understanding of the mechanisms involved can be achieved using the engineering principles of synthetic biology to construct artificial NBs. Successful biogenesis of such synthetic NBs demonstrates knowledge of the basic mechanisms involved. Application of this approach to the nucleolus, a paradigm of nuclear organization, has highlighted a key role for mitotic bookmarking in the cell cycle propagation of NBs.
Collapse
Key Words
- 1°, primary
- 2°, secondary
- CBs, Cajal bodies
- CDK, cyclin-dependent kinase
- DFC, dense fibrillar component
- DJ, distal junction
- FCs, fibrillar centers
- GC, granular component
- HLBs, histone locus bodies
- HMG, high mobility group
- IGS, intergenic spacers
- NBs, nuclear bodies
- NORs, nucleolar organizer regions
- Nucleolar Organizer Region (NOR)
- PJ, proximal junction
- PML, promyelocytic leukemia
- PNBs, pre-nucleolar bodies
- TFs, transcription factors
- UBF
- UBF, Upstream binding factor
- XEn, Xenopus enhancer
- cell cycle
- mitotic bookmarking
- neo-NOR
- neonucleoli
- nuclear bodies
- nucleolus
- pol, RNA polymerase
- pre-rRNA, precursor rRNA
- pseudo-NOR
- rDNA, ribosomal genes
- rRNA, ribosomal RNA; RNP, ribonucleoprotein
- synthetic biology
- t-UTPs, transcription U 3 proteins
Collapse
Affiliation(s)
- Alice Grob
- Center for Chromosome Biology; School of Natural Sciences; National University of Ireland; Galway, Ireland
| | - Brian McStay
- Center for Chromosome Biology; School of Natural Sciences; National University of Ireland; Galway, Ireland
| |
Collapse
|
12
|
Tsoi H, Chan HYE. Roles of the nucleolus in the CAG RNA-mediated toxicity. Biochim Biophys Acta Mol Basis Dis 2013; 1842:779-84. [PMID: 24269666 DOI: 10.1016/j.bbadis.2013.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
The nucleolus is a subnuclear compartment within the cell nucleus that serves as the site for ribosomal RNA (rRNA) transcription and the assembly of ribosome subunits. Apart from its classical role in ribosomal biogenesis, a number of cellular regulatory roles have recently been assigned to the nucleolus, including governing the induction of apoptosis. "Nucleolar stress" is a term that is used to describe a signaling pathway through which the nucleolus communicates with other subcellular compartments, including the mitochondria, to induce apoptosis. It is an effective mechanism for eliminating cells that are incapable of performing protein synthesis efficiently due to ribosome biogenesis defects. The down-regulation of rRNA transcription is a common cause of nucleolar function disruption that subsequently triggers nucleolar stress, and has been associated with the pathogenesis of neurological disorders such as spinocerebellar ataxias (SCAs) and Huntington's diseases (HD). This article discusses recent advances in mechanistic studies of how expanded CAG trinucleotide repeat RNA transcripts trigger nucleolar stress in SCAs, HD and other trinucleotide repeat disorders. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Ho Tsoi
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Cell and Molecular Biology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
13
|
Ray S, Panova T, Miller G, Volkov A, Porter ACG, Russell J, Panov KI, Zomerdijk JCBM. Topoisomerase IIα promotes activation of RNA polymerase I transcription by facilitating pre-initiation complex formation. Nat Commun 2013; 4:1598. [PMID: 23511463 PMCID: PMC3615473 DOI: 10.1038/ncomms2599] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/09/2013] [Indexed: 11/15/2022] Open
Abstract
Type II DNA topoisomerases catalyse DNA double-strand cleavage, passage and re-ligation to effect topological changes. There is considerable interest in elucidating topoisomerase II roles, particularly as these proteins are targets for anti-cancer drugs. Here we uncover a role for topoisomerase IIα in RNA polymerase I-directed ribosomal RNA gene transcription, which drives cell growth and proliferation and is upregulated in cancer cells. Our data suggest that topoisomerase IIα is a component of the initiation-competent RNA polymerase Iβ complex and interacts directly with RNA polymerase I-associated transcription factor RRN3, which targets the polymerase to promoter-bound SL1 in pre-initiation complex formation. In cells, activation of rDNA transcription is reduced by inhibition or depletion of topoisomerase II, and this is accompanied by reduced transient double-strand DNA cleavage in the rDNA-promoter region and reduced pre-initiation complex formation. We propose that topoisomerase IIα functions in RNA polymerase I transcription to produce topological changes at the rDNA promoter that facilitate efficient de novo pre-initiation complex formation.
Collapse
Affiliation(s)
- Swagat Ray
- School of Biological Sciences and the Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Tatiana Panova
- School of Biological Sciences and the Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL, UK
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gail Miller
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Arsen Volkov
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, Du Cane Road, London W12 0NN, UK
| | - Andrew C. G. Porter
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, Du Cane Road, London W12 0NN, UK
| | - Jackie Russell
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Konstantin I. Panov
- School of Biological Sciences and the Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL, UK
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- These authors contributed equally to this work
| | - Joost C. B. M. Zomerdijk
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- These authors contributed equally to this work
| |
Collapse
|
14
|
Prieto JL, McStay B. Pseudo-NORs: a novel model for studying nucleoli. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:2116-23. [PMID: 18687368 DOI: 10.1016/j.bbamcr.2008.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 11/21/2022]
Abstract
Nucleolar organiser regions (NORs) are comprised of tandem arrays of ribosomal gene (rDNA) repeats that are transcribed by RNA polymerase I (Pol I), ultimately resulting in formation of a nucleolus. Upstream binding factor (UBF), a DNA binding protein and component of the Pol I transcription machinery, binds extensively across the rDNA repeat in vivo. Pseudo-NORs are tandem arrays of a heterologous DNA sequence with high affinity for UBF introduced into human chromosomes. In this review we describe how analysis of pseudo-NORs has provided important insights into nucleolar formation. Pseudo-NORs mimic endogenous NORs in a number of important respects. On metaphase chromosomes both appear as secondary constrictions comprised of undercondensed chromatin. The transcriptional silence of pseudo-NORs provides a platform for studying the transcription independent recruitment of factors required for nucleolar formation by this specialised chromatin structure. During interphase, pseudo-NORs appear as distinct and novel sub-nuclear bodies. Analysis of these bodies and comparison to their endogenous counterpart has provided insights into nucleolar formation and structure.
Collapse
Affiliation(s)
- José-Luis Prieto
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY Scotland, UK
| | | |
Collapse
|
15
|
Abstract
In eukaryotes, the genes encoding ribosomal RNAs (rDNA) exist in two distinct epigenetic states that can be distinguished by a specific chromatin structure that is maintained throughout the cell cycle and is inherited from one cell to another. The fact that even in proliferating cells with a high demand of protein synthesis a fraction of rDNA is silenced provides a unique possibility to decipher the mechanism underlying epigenetic regulation of rDNA. This chapter summarizes our knowledge of the molecular mechanisms that establish and propagate the epigenetic state of rRNA genes, unraveling a complex interplay of DNA methyltransferases and histone-modifying enzymes that act in concert with chromatin remodeling complexes and RNA-guided mechanisms to define the transcriptional state of rDNA. We also review the critical role of the RNA polymerase I transcription factor UBF in the formation of active nucleolar organizer regions (NORs) and maintenance of the euchromatic state of rRNA genes.
Collapse
Affiliation(s)
- Brian McStay
- Biomedical Research Center, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, United Kingdom.
| | | |
Collapse
|
16
|
Preuss S, Pikaard CS. rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1769:383-92. [PMID: 17439825 PMCID: PMC2000449 DOI: 10.1016/j.bbaexp.2007.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/25/2007] [Accepted: 02/27/2007] [Indexed: 01/25/2023]
Abstract
Ribosomal RNA (rRNA) gene transcription accounts for most of the RNA in prokaryotic and eukaryotic cells. In eukaryotes, there are hundreds (to thousands) of rRNA genes tandemly repeated head-to-tail within nucleolus organizer regions (NORs) that span millions of basepairs. These nucleolar rRNA genes are transcribed by RNA Polymerase I (Pol I) and their expression is regulated according to the physiological need for ribosomes. Regulation occurs at several levels, one of which is an epigenetic on/off switch that controls the number of active rRNA genes. Additional mechanisms then fine-tune transcription initiation and elongation rates to dictate the total amount of rRNA produced per gene. In this review, we focus on the DNA and histone modifications that comprise the epigenetic on/off switch. In both plants and animals, this system is important for controlling the dosage of active rRNA genes. The dosage control system is also responsible for the chromatin-mediated silencing of one parental set of rRNA genes in genetic hybrids, a large-scale epigenetic phenomenon known as nucleolar dominance.
Collapse
Affiliation(s)
- Sasha Preuss
- Biology Department, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Craig S. Pikaard
- Biology Department, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
17
|
Abstract
Mammalian cells contain approximately 400 copies of the ribosomal RNA genes organized as tandem, head-to-tail repeats spread among 6-8 chromosomes. Only a subset of the genes is transcribed at any given time. Experimental evidence suggests that, in a specific cell type, only a fraction of the genes exists in a conformation that can be transcribed. An increasing body of study indicates that eukaryotic ribosomal RNA genes exist in either a heterochromatic nucleosomal state or in open euchromatic states in which they can be, or are, transcribed. This review will attempt to summarize our current understanding of the structure and organization of ribosomal chromatin.
Collapse
Affiliation(s)
- Sui Huang
- Department of Cell and Molecular Biology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
18
|
Panov KI, Friedrich JK, Russell J, Zomerdijk JCBM. UBF activates RNA polymerase I transcription by stimulating promoter escape. EMBO J 2006; 25:3310-22. [PMID: 16858408 PMCID: PMC1523182 DOI: 10.1038/sj.emboj.7601221] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 06/09/2006] [Indexed: 01/10/2023] Open
Abstract
Ribosomal RNA gene transcription by RNA polymerase I (Pol I) is the driving force behind ribosome biogenesis, vital to cell growth and proliferation. The key activator of Pol I transcription, UBF, has been proposed to act by facilitating recruitment of Pol I and essential basal factor SL1 to rDNA promoters. However, we found no evidence that UBF could stimulate recruitment or stabilization of the pre-initiation complex (PIC) in reconstituted transcription assays. In this, UBF is fundamentally different from archetypal activators of transcription. Our data imply that UBF exerts its stimulatory effect on RNA synthesis, after PIC formation, promoter opening and first phosphodiester bond formation and before elongation. We provide evidence to suggest that UBF activates transcription in the transition between initiation and elongation, at promoter escape by Pol I. This novel role for UBF in promoter escape would allow control of rRNA synthesis at active rDNA repeats, independent of and complementary to the promoter-specific targeting of SL1 and Pol I during PIC assembly. We posit that stimulation of promoter escape could be a general mechanism of activator function.
Collapse
Affiliation(s)
- Kostya I Panov
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - J Karsten Friedrich
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Jackie Russell
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Joost C B M Zomerdijk
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK. Tel.: +44 1382 384242; Fax: +44 1382 388072; E-mail:
| |
Collapse
|
19
|
Lawrence FJ, McStay B, Matthews DA. Nucleolar protein upstream binding factor is sequestered into adenovirus DNA replication centres during infection without affecting RNA polymerase I location or ablating rRNA synthesis. J Cell Sci 2006; 119:2621-31. [PMID: 16763197 DOI: 10.1242/jcs.02982] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
When human adenovirus infects human cells there is disruption of rRNA biogenesis. This report examines the effect of adenovirus infection on the nucleolar protein, upstream binding factor (UBF) which plays a major role in regulating rRNA synthesis. We determined that early after infection, UBF associates with the replication of viral DNA, preferentially associating with the ends of the linear viral genome, and that addition of anti-UBF serum to in vitro replication assays markedly reduced viral DNA replication. Regions of UBF important to these observations are also established. Interestingly, sequestering the majority of UBF from the nucleolus did not lead to the ablation of rRNA synthesis or the sequestration of RNA pol I. In infected cells the bulk of RNA synthesis was RNA pol I associated and distinct from the location of most of the detectable UBF. We propose that UBF plays a role in viral DNA replication, further strengthening the role of nucleolar antigens in the adenovirus life cycle.
Collapse
Affiliation(s)
- Fiona J Lawrence
- Division of Virology, Department of Cellular and Molecular Medicine, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
20
|
Affiliation(s)
- Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
21
|
Abstract
An organism ultimately reflects the coordinate expression of its genome. The misexpression of a gene can have catastrophic consequences for an organism, yet the mechanics of transcription is a local phenomenon within the cell nucleus. Chromosomal and nuclear position often dictate the activity of a specific gene. Transcription occurs in territories and in discrete localized foci within these territories. The proximity of a gene or trans-acting factor to heterochromatin can have profound functional significance. The organization of heterochromatin changes with cell development, thus conferring temporal changes on gene activity. The protein-protein interactions that engage the trans-acting factor also contribute to context-dependent transcription. Multi-protein assemblages known as enhanceosomes govern gene expression by local committee thus dictating regional transcription factor function. Local DNA architecture can prescribe enhancesome membership. The local bending of the double helix, typically mediated by architectural transcription factors, is often critical for stabilizing enhanceosomes formed from trans-acting proteins separated over small and large distances. The recognition element to which a transcription factor binds is of functional significance because DNA may act as an allosteric ligand influencing the conformation and thus the activity of the transactivation domain of the binding protein, as well as the recruitment of other proteins to the enhanceosome. Here, we review and attempt to integrate these local determinants of gene expression.
Collapse
Affiliation(s)
- Marta Alvarez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
22
|
Beloin C, Jeusset J, Revet B, Mirambeau G, Le Hégarat F, Le Cam E. Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein. J Biol Chem 2003; 278:5333-42. [PMID: 12458218 DOI: 10.1074/jbc.m207489200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Bacillus subtilis LrpC protein belongs to the Lrp/AsnC family of transcriptional regulators. It binds the upstream region of the lrpC gene and autoregulates its expression. In this study, we have dissected the mechanisms that govern the interaction of LrpC with DNA by electrophoretic mobility shift assay, electron microscopy, and atomic force microscopy. LrpC is a structure-specific DNA binding protein that forms stable complexes with curved sequences containing phased A tracts and wraps DNA to form spherical, nucleosome-like structures. Formation of such wraps, initiated by cooperative binding of LrpC to DNA, results from optimal protein/protein interactions specified by the DNA conformation. In addition, we have demonstrated that LrpC constrains positive supercoils by wrapping the DNA in a right-handed superhelix, as visualized by electron microscopy.
Collapse
Affiliation(s)
- Christophe Beloin
- Institut de Génétique et Microbiologie, Université Paris XI, Unité Mixte Recherche 8621, Bâtiment 360, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Cheutin T, O'Donohue MF, Beorchia A, Vandelaer M, Kaplan H, Deféver B, Ploton D, Thiry M. Three-dimensional organization of active rRNA genes within the nucleolus. J Cell Sci 2002; 115:3297-307. [PMID: 12140261 DOI: 10.1242/jcs.115.16.3297] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this work, we have localized transcribing rRNA genes at the ultrastructural level and described their three-dimensional organization within the nucleolus by electron tomography. Isolated nucleoli, which exhibit a reduced transcriptional rate, were used to determine the sites of initial BrUTP incorporation (i.e. rRNA synthesis by the transcriptional machinery). Using pulse-chase experiments with BrUTP and an elongation inhibitor,cordycepin, it was possible to precisely localize the initial sites of BrUTP incorporation. Our data show that BrUTP incorporation initially takes place in the fibrillar centers and that elongating rRNAs rapidly enter the surrounding dense fibrillar component. Furthermore, we investigated the spatial arrangement of RNA polymerase I molecules within the whole volume of the fibrillar centers. Electron tomography was performed on thick sections of cells that had been labeled with anti-RNA polymerase I antibodies prior to embedding. Detailed tomographic analyses revealed that RNA polymerase I molecules are mainly localized within discrete clusters. In each of them, RNA polymerase I molecules were grouped as several coils, 60 nm in diameter. Overall, these findings have allowed us to propose a model for the three-dimensional organization of transcribing rDNA genes within the nucleolus.
Collapse
Affiliation(s)
- Thierry Cheutin
- Unité MéDIAN, CNRS UMR 6142, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Reeder RH. Regulation of RNA polymerase I transcription in yeast and vertebrates. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:293-327. [PMID: 9932458 DOI: 10.1016/s0079-6603(08)60511-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This article focuses on what is currently known about the regulation of transcription by RNA polymerase I (pol I) in eukaryotic organisms at opposite ends of the evolutionary spectrum--a yeast, Saccharomyces cerevisiae, and vertebrates, including mice, frogs, and man. Contemporary studies that have defined the DNA sequence elements are described, as well as the majority of the basal transcription factors essential for pol I transcription. Situations in which pol I transcription is known to be regulated are reviewed and possible regulatory mechanisms are critically discussed. Some aspects of basal pol I transcription machinery appear to have been conserved from fungi to vertebrates, but other aspects have evolved, perhaps to meet the needs of a metazoan organism. Different parts of the pol I transcription machinery are regulatory targets depending on different physiological stimuli. This suggests that multiple signaling pathways may also be involved. The involvement of ribosomal genes and their transcripts in events such as mitosis, cancer, and aging is discussed.
Collapse
Affiliation(s)
- R H Reeder
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
25
|
Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:109-54. [PMID: 9932453 DOI: 10.1016/s0079-6603(08)60506-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
All cells, from prokaryotes to vertebrates, synthesize vast amounts of ribosomal RNA to produce the several million new ribosomes per generation that are required to maintain the protein synthetic capacity of the daughter cells. Ribosomal gene (rDNA) transcription is governed by RNA polymerase I (Pol I) assisted by a dedicated set of transcription factors that mediate the specificity of transcription and are the targets of the pleiotrophic pathways the cell uses to adapt rRNA synthesis to cell growth. In the past few years we have begun to understand the specific functions of individual factors involved in rDNA transcription and to elucidate on a molecular level how transcriptional regulation is achieved. This article reviews our present knowledge of the molecular mechanism of rDNA transcriptional regulation.
Collapse
Affiliation(s)
- I Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
26
|
Radebaugh CA, Kubaska WM, Hoffman LH, Stiffler K, Paule MR. A novel transcription initiation factor (TIF), TIF-IE, is required for homogeneous Acanthamoeba castellanii TIF-IB (SL1) to form a committed complex. J Biol Chem 1998; 273:27708-15. [PMID: 9765308 DOI: 10.1074/jbc.273.42.27708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fundamental transcription initiation factor (TIF) for ribosomal RNA expression by eukaryotic RNA polymerase I, TIF-IB, has been purified to near homogeneity from Acanthamoeba castellanii using standard techniques. The purified factor consists of the TATA-binding protein and four TATA-binding protein-associated factors with relative molecular weights of 145,000, 99,000, 96,000, and 91,000. This yields a calculated native molecular weight of 460, 000, which compares well with its mass determined by scanning transmission electron microscopy (493,000) and its sedimentation rate, which is close to RNA polymerase I (515,000). Both impure and nearly homogeneous TIF-IB exhibit an apparent equilibrium dissociation constant of 56 +/- 3 pM. However, although impure TIF-IB can form a promoter-DNA complex resistant to challenge by other promoter-containing DNAs, near homogeneous TIF-IB cannot do so. An additional transcription factor, dubbed TIF-IE, restores the ability of near homogeneous TIF-IB to sequester DNA into a committed complex.
Collapse
Affiliation(s)
- C A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|
27
|
Travers A, Muskhelishvili G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J Mol Biol 1998; 279:1027-43. [PMID: 9642081 DOI: 10.1006/jmbi.1998.1834] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prokaryotic transcriptional activation often involves the formation of DNA microloops upstream of the polymerase binding site. There is substantial evidence that these microloops function to bring activator and polymerase into close spatial proximity. However additional functions are suggested by the ability of certain activators, of which FIS is the best characterised example, to facilitate polymerase binding, promoter opening and polymerase escape. We review here the evidence for the concept that the topology of the microloop formed by such activators is tightly coupled to the structural transitions in DNA mediated by RNA polymerase. In this process, which we term torsional transmission, a major function of the activator is to act as a local topological homeostat. We argue that the same mechanism may also be employed in site-specific DNA inversion.
Collapse
Affiliation(s)
- A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | |
Collapse
|
28
|
Zlatanova J, Holde K. Binding to four‐way junction DNA: a common property of architectural proteins? FASEB J 1998. [DOI: 10.1096/fasebj.12.6.421] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jordanka Zlatanova
- Department of Biochemistry and BiophysicsOregon State University Corvallis Oregon 97331–7305 USA
| | - Kensal Holde
- Institute of GeneticsBulgarian Academy of Sciences 1113 Sofia Bulgaria
| |
Collapse
|
29
|
Gariglio M, Ying GG, Hertel L, Gaboli M, Clerc RG, Landolfo S. The high-mobility group protein T160 binds to both linear and cruciform DNA and mediates DNA bending as determined by ring closure. Exp Cell Res 1997; 236:472-81. [PMID: 9367632 DOI: 10.1006/excr.1997.3742] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The high-mobility group protein T160 was isolated by screening a phage library from a murine pre-B-cell line L1210. South-Western experiments have previously shown that this protein binds to V-(D)-J recombination signal sequences, suggesting that it may be a sequence-specific DNA-binding protein. However, neither gel-shift nor footprinting analyses have been successfully employed with the T160 protein, despite an extensive effort. In this study, the T160 protein or truncated forms made soluble through denaturing and renaturing cycles in urea were successfully used in gel-shift experiments showing that T160 binds to cruci-form or linear duplex DNA with no apparent sequence specificity. Furthermore, fragments longer than 100 bp efficiently formed covalently closed circular monomers in the presence of T160 and T4 DNA ligase, indicating that the protein is capable of introducing bends into the duplex. Last, tissue distribution by Western blotting analysis showed that the T160 protein is expressed in various murine tissues in addition to those of lymphoid origin. Considering its broad evolutionary conservation (from plants to mammals) also, these results suggest that the functional role of the T160 protein is not limited to V-(D)-J recombination, but might be involved in basic processes such as DNA replication and repairing, where irregular DNA structures are generated and very likely recognized by HMG domain proteins.
Collapse
Affiliation(s)
- M Gariglio
- Institute of Microbiology, Medical School of Novara, University of Torino, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Mougey EB, Pape LK, Sollner-Webb B. Virtually the entire Xenopus laevis rDNA multikilobase intergenic spacer serves to stimulate polymerase I transcription. J Biol Chem 1996; 271:27138-45. [PMID: 8900206 DOI: 10.1074/jbc.271.43.27138] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The promoter-distal half of the spacer separating the tandem Xenopus laevis rRNA genes consists of "0" and "1" repetitive elements that have been considered unimportant in polymerase I transcriptional activation. Utilizing oocyte microinjection, we now demonstrate that the 0/1 region, as well as its component 0 and 1 repeats, substantially stimulate transcription from a ribosomal promoter in cis and inhibit transcription when located in trans. Both the cis and trans responses increase linearly with increasing numbers of 0 or 1 repeats until saturation is approached. The 0/1 block and its component elements stimulate transcription in both orientations, over distances, and when placed downstream of the initiation site, properties for which the 60/81-base pair (bp) repeats have been defined as polymerase I enhancers. In their natural promoter-distal rDNA location, the 0/1 repeats can stimulate transcription from the rRNA gene promoter, above the level afforded by the intervening 60/81-bp repeats and spacer promoter. In addition, as with the 60/81-bp repeats, the 0/1 repeats bind a factor in common with the rDNA promoter. Thus, the entire X. laevis rDNA intergenic spacer (the 0 repeats, 1 repeats, spacer promoter repeats, and 60/81-bp repeats) acts together to enhance ribosomal transcription.
Collapse
Affiliation(s)
- E B Mougey
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
31
|
Yamamoto RT, Nogi Y, Dodd JA, Nomura M. RRN3 gene of Saccharomyces cerevisiae encodes an essential RNA polymerase I transcription factor which interacts with the polymerase independently of DNA template. EMBO J 1996; 15:3964-73. [PMID: 8670901 PMCID: PMC452116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RRN3 is one of the RRN genes specifically required for the transcription of rDNA by RNA polymerase I (Pol I) in Saccharomyces cerevisiae. We have cloned the gene, determined the nucleotide sequence, and found that it is an essential gene which encodes a protein of calculated molecular weight of 72 369. Extracts prepared from rrn3 mutants were defective in in vitro transcription of rDNA templates. We used extracts from a strain containing an epitope-tagged Rrn3 protein to purify a factor that could complement the mutant extracts. Using immunoaffinity purification combined with Mono Q chromatography, we obtained an essentially pure preparation of Rrn3p which complements the mutant extracts. By carrying out template commitment experiments, we found that Rrn3p is not part of the pre-initiation complex that is stable through multiple rounds of transcription. We also found that pre-incubation of Rrn3p with purified Pol I leads to stimulation of transcription upon subsequent mixing with DNA template and other transcription reaction components. Single-round transcription experiments using the detergent Sarkosyl showed that this stimulation is due to increased efficiency of formation of a Sarkosyl-resistant pre-initiation complex. Thus, Rrn3p appears to interact directly with Pol I, apparently stimulating Pol I recruitment to the promoter, and is distinct from two other Pol I-specific transcription factors, the Rrn6/7 complex and the Rrn5/9/10 complex (UAF), characterized previously.
Collapse
Affiliation(s)
- R T Yamamoto
- Department of Biological Chemistry, University of California, Irvine, CA 92717, USA
| | | | | | | |
Collapse
|
32
|
Gögel E, Längst G, Grummt I, Kunkel E, Grummt F. Mapping of replication initiation sites in the mouse ribosomal gene cluster. Chromosoma 1996; 104:511-8. [PMID: 8625739 DOI: 10.1007/bf00352115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have used nascent strand determination analysis to map start sites of DNA replication in the mouse ribosomal gene cluster in which individual copies of the ribosomal genes are separated by intergenic spacer regions. One origin of bidirectional replication (OBR) was localized within a 3 kb region centered about 1.6 kb upstream of the rDNA transcription start site. At least one additional initiation site is situated near the 3' end of the transcription unit. Adjacent to the OBR at the transcription start site are located two amplification-promoting sequences, i.e., APS1 and APS2. Nuclease-hypersensitive sites were identified in both of the two APSs as well as in the OBR region, thus indicating that these sequences have an altered chromatin structure. In the OBR an intrinsically bent region, a purine-rich element and other prospective initiation zone components are found.
Collapse
Affiliation(s)
- E Gögel
- Institut für Biochemie, Universität Würzburg, Biozentrum, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:35-100. [PMID: 8768072 DOI: 10.1016/s0079-6603(08)60360-8] [Citation(s) in RCA: 575] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Bustin
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
34
|
Grosschedl R. Higher-order nucleoprotein complexes in transcription: analogies with site-specific recombination. Curr Opin Cell Biol 1995; 7:362-70. [PMID: 7662366 DOI: 10.1016/0955-0674(95)80091-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Regulation of transcription involves the assembly of multiprotein complexes at enhancers and promoters. Interactions between adjacent and non-adjacent DNA-binding proteins can augment the specificity and stability of multi-component nucleoprotein complexes. Recently, several proteins have been identified that can function as 'architectural' elements in the assembly of higher-order nucleoprotein structures reminiscent of those involved in site-specific recombination in prokaryotes.
Collapse
Affiliation(s)
- R Grosschedl
- Howard Hughes Medical Institute, Department of Microbiology, University of California, San Francisco 94143-0414, USA
| |
Collapse
|
35
|
Geiduschek EP, Kassavetis GA. Comparing transcriptional initiation by RNA polymerases I and III. Curr Opin Cell Biol 1995; 7:344-51. [PMID: 7662364 DOI: 10.1016/0955-0674(95)80089-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We comment on the current understanding of transcriptional initiation by RNA polymerases I and III, and look for common modes of operation of these enzymes, emphasizing selected recent developments. These include definitive experiments on the constitution of the human RNA polymerase I transcription factor SL1/TIF-IB, the development of a genetic system for analyzing the function of RNA polymerase I in yeast, the elucidation of the structure of the human snRNA gene transcription factor SNAPc, and initial stages of mapping the protein-protein interactions involved in the assembly of transcriptional initiation complexes.
Collapse
Affiliation(s)
- E P Geiduschek
- Department of Biology, University of California at San Diego, La Jolla 92093-0634, USA
| | | |
Collapse
|
36
|
Riggs DL, Peterson CL, Wickham JQ, Miller LM, Clarke EM, Crowell JA, Sergere JC. Characterization of the components of reconstituted Saccharomyces cerevisiae RNA polymerase I transcription complexes. J Biol Chem 1995; 270:6205-10. [PMID: 7890756 DOI: 10.1074/jbc.270.11.6205] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have reconstituted specific RNA polymerase I transcription from three partially purified chromatographic fractions (termed A, B, and C). Here, we present the chromatographic scheme and the initial biochemical characterization of these fractions. The A fraction contained the RNA polymerase I transcription factor(s), which was necessary and sufficient to form stable preinitiation complexes at the promoter. Of the three fractions, only fraction A contained a significant amount of the TATA binding factor. The B fraction contributed RNA polymerase I, and it contained an essential RNA polymerase I transcription factor that was specifically inactivated in response to a significant decrease in growth rate. The function of the C fraction remains unclear. This reconstituted transcription system provides a starting point for the biochemical dissection of the yeast RNA polymerase I transcription complex, thus allowing in vitro experiments designed to elucidate the molecular mechanisms controlling rRNA synthesis.
Collapse
Affiliation(s)
- D L Riggs
- Department of Botany and Microbiology, University of Oklahoma, Norman 73019
| | | | | | | | | | | | | |
Collapse
|
37
|
UBF, an Architectural Element for RNA Polymerase I Promoters. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1995. [DOI: 10.1007/978-3-642-79488-9_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Moss T, Stefanovsky VY. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:25-66. [PMID: 7754036 DOI: 10.1016/s0079-6603(08)60810-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Moss
- Cancer Research Centre, Laval University, Hôtel-Dieu de Québec, Canada
| | | |
Collapse
|