1
|
Boivin FJ, Schmidt-Ott KM. Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation. Ann N Y Acad Sci 2017. [PMID: 28636799 DOI: 10.1111/nyas.13367] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epithelial tissues form a selective barrier via direct cell-cell interactions to separate and establish concentration gradients between the different compartments of the body. Proper function and formation of this barrier rely on the establishment of distinct intercellular junction complexes. These complexes include tight junctions, adherens junctions, desmosomes, and gap junctions. The tight junction is by far the most diverse junctional complex in the epithelial barrier. Its composition varies greatly across different epithelial tissues to confer various barrier properties. Thus, epithelial cells rely on tightly regulated transcriptional mechanisms to ensure proper formation of the epithelial barrier and to achieve tight junction diversity. Here, we review different transcriptional mechanisms utilized during embryogenesis and disease development to promote tight junction assembly and maintenance of intercellular barrier integrity. We focus particularly on the Grainyhead-like transcription factors and ligand-activated nuclear hormone receptors, two central families of proteins in epithelialization.
Collapse
Affiliation(s)
- Felix J Boivin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology, Charité Medical University, Berlin, Germany
| |
Collapse
|
2
|
Janesick A, Tang W, Nguyen TTL, Blumberg B. RARβ2 is required for vertebrate somitogenesis. Development 2017; 144:1997-2008. [PMID: 28432217 DOI: 10.1242/dev.144345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
During vertebrate somitogenesis, retinoic acid is known to establish the position of the determination wavefront, controlling where new somites are permitted to form along the anteroposterior body axis. Less is understood about how RAR regulates somite patterning, rostral-caudal boundary setting, specialization of myotome subdivisions or the specific RAR subtype that is required for somite patterning. Characterizing the function of RARβ has been challenging due to the absence of embryonic phenotypes in murine loss-of-function studies. Using the Xenopus system, we show that RARβ2 plays a specific role in somite number and size, restriction of the presomitic mesoderm anterior border, somite chevron morphology and hypaxial myoblast migration. Rarβ2 is the RAR subtype whose expression is most upregulated in response to ligand and its localization in the trunk somites positions it at the right time and place to respond to embryonic retinoid levels during somitogenesis. RARβ2 positively regulates Tbx3 a marker of hypaxial muscle, and negatively regulates Tbx6 via Ripply2 to restrict the anterior boundaries of the presomitic mesoderm and caudal progenitor pool. These results demonstrate for the first time an early and essential role for RARβ2 in vertebrate somitogenesis.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Weiyi Tang
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL, Sekido Y, Huang THM, Issa JPJ. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 2008; 40:741-50. [PMID: 18488029 DOI: 10.1038/ng.159] [Citation(s) in RCA: 475] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 03/19/2008] [Indexed: 12/16/2022]
Abstract
Epigenetic silencing in cancer cells is mediated by at least two distinct histone modifications, polycomb-based histone H3 lysine 27 trimethylation (H3K27triM) and H3K9 dimethylation. The relationship between DNA hypermethylation and these histone modifications is not completely understood. Using chromatin immunoprecipitation microarrays (ChIP-chip) in prostate cancer cells compared to normal prostate, we found that up to 5% of promoters (16% CpG islands and 84% non-CpG islands) were enriched with H3K27triM. These genes were silenced specifically in prostate cancer, and those CpG islands affected showed low levels of DNA methylation. Downregulation of the EZH2 histone methyltransferase restored expression of the H3K27triM target genes alone or in synergy with histone deacetylase inhibition, without affecting promoter DNA methylation, and with no effect on the expression of genes silenced by DNA hypermethylation. These data establish EZH2-mediated H3K27triM as a mechanism of tumor-suppressor gene silencing in cancer that is potentially independent of promoter DNA methylation.
Collapse
Affiliation(s)
- Yutaka Kondo
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
5
|
Qian DZ, Ren M, Wei Y, Wang X, van de Geijn F, Rasmussen C, Nakanishi O, Sacchi N, Pili R. In vivo imaging of retinoic acid receptor beta2 transcriptional activation by the histone deacetylase inhibitor MS-275 in retinoid-resistant prostate cancer cells. Prostate 2005; 64:20-8. [PMID: 15651062 DOI: 10.1002/pros.20209] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND In retinoid resistant epithelial tumors, the lack of retinoic acid receptor beta2 (RARbeta2) expression due to epigenetic silencing impairs the activation of retinoid target genes including RARbeta2, and has been associated with the development of cancer. In this study we developed a strategy to monitor the re-activation of RARbeta2 by chromatin remodeling agents combined with retinoids in real time, and to correlate the RARbeta2 re-activation with anti-tumor activity. METHODS We selected the RARbeta2-negative retinoid resistant human prostate carcinoma cell line PC3 and stably transfected it with a luciferase expression vector under the control of a functional segment of RARbeta2 promoter (pGL2-RARbeta2-PC3). Then, we used the bioluminescence technology to monitor the reporter gene expression in real time both in vitro and in vivo following combination treatment with the histone deacetylase inhibitor MS-275 and 13-cis retinoic acid (CRA). Based on the effective dose for the RARbeta2 re-activation, we tested the anti-tumor activity of this drug combination. RESULTS Following combination treatment with MS-275 and CRA, we observed endogenous RARbeta2 re-expression, acetylation at the RARbeta2 promoter level, and synergistic activation of the luciferase reporter gene by real time imaging both in vitro and in vivo. Combination treatment with MS-275 and CRA restored retinoid sensitivity in human prostate carcinoma cell lines, and had a greater inhibitory effect on tumor cell growth than single agents in vitro and in vivo. CONCLUSIONS This study provides evidence that HDAC inhibitors restore retinoid sensitivity in prostate cancer cells, and in vivo real time imaging of RARbeta2 activation may represent a useful tool to study the pharmacodynamics of combination therapy with HDAC inhibitors and retinoids.
Collapse
Affiliation(s)
- David Z Qian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Altucci L, Gronemeyer H. Retinoids and TRAIL: two cooperating actors to fight against cancer. VITAMINS AND HORMONES 2004; 67:319-45. [PMID: 15110184 DOI: 10.1016/s0083-6729(04)67017-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple studies performed in in vitro and in vivo settings have confirmed the cancer therapeutic and cancer preventive capacity of retinoids and rexinoids. These compounds mediate their actions through the retinoid and rexinoid receptors, respectively, which exist in multiple isoforms and form a plethora of distinct heterodimers. Despite their apparent anticancer potential, with one exception the molecular basis of this activity has remained largely elusive. The exception concerns acute promyelocytic leukemia (APL), the prototype of retinoic acid-dependent differentiation therapy, for which both the molecular nature of the disease and the mechanism of action of retinoids are well understood. However, retinoids and rexinoids are active beyond the borderlines of the well-defined chromosomal translocation that gives rise to curable APL. In this context, particularly interesting is that retinoic acid induces a member of the tumor necrosis factor family, tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or Apo2L. This ligand is exceptional in that it is capable of inducing apoptosis in cancer cells but not in normal cells. It is possible that this connection to the TRAIL signaling pathway contributes to the anti-tumor activity of retinoids and rexinoids. This review focuses on what is presently known about the regulation of cell life and death by the retinoid/rexinoid and TRAIL signaling pathways.
Collapse
Affiliation(s)
- Lucia Altucci
- Dipartimento di Patologia Generale Seconda Università degli Studi di Napoli 80138, Napoli, Italy
| | | |
Collapse
|
7
|
Lefebvre B, Ozato K, Lefebvre P. Phosphorylation of histone H3 is functionally linked to retinoic acid receptor beta promoter activation. EMBO Rep 2002; 3:335-40. [PMID: 11897660 PMCID: PMC1084054 DOI: 10.1093/embo-reports/kvf066] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ligand-dependent transcriptional activation of retinoic acid receptors (RARs) is a multistep process culminating in the formation of a multimeric co-activator complex on regulated promoters. Several co-activator complexes harbor an acetyl transferase activity, which is required for retinoid-induced transcription of reporter genes. Using murine P19 embryonal carcinoma cells, we examined the relationship between histone post-translational modifications and activation of the endogenous RARbeta2 promoter, which is under the control of a canonical retinoic acid response element and rapidly induced upon retinoid treatment. While histones H3 and H4 were constitutively acetylated at this promoter, retinoid agonists induced a rapid phosphorylation at Ser10 of histone H3. A retinoid antagonist, whose activity was independent of co-repressor binding to RAR, could oppose this agonist-induced H3 phosphorylation. Since such post-translational modifications were not observed at several other promoters, we conclude that histone H3 phosphorylation may be a molecular signature of the activated, retinoid-controlled mRARbeta2 gene promoter.
Collapse
Affiliation(s)
- Bruno Lefebvre
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
8
|
Abstract
Thyroid hormones (THs) play critical roles in the differentiation, growth, metabolism, and physiological function of virtually all tissues. TH binds to receptors that are ligand-regulatable transcription factors belonging to the nuclear hormone receptor superfamily. Tremendous progress has been made recently in our understanding of the molecular mechanisms that underlie TH action. In this review, we present the major advances in our knowledge of the molecular mechanisms of TH action and their implications for TH action in specific tissues, resistance to thyroid hormone syndrome, and genetically engineered mouse models.
Collapse
Affiliation(s)
- P M Yen
- Molecular Regulation and Neuroendocrinology Section, Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
9
|
Dilworth FJ, Chambon P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 2001; 20:3047-54. [PMID: 11420720 DOI: 10.1038/sj.onc.1204329] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in the field of in vitro chromatin assembly have led to in vitro transcription systems which reproduce in the test tube, in vivo characteristics of ligand-dependent transcriptional activation by nuclear receptors. Dissection of these systems has begun to provide us with information concerning the underlying molecular mechanisms. Through recruitment of coactivator proteins, nuclear receptors act first to remodel chromatin within the promoter region and then to recruit the transcriptional machinery to the promoter region in order to initiate transcription. Here we present a possible sequential mechanism for ligand-dependent transcriptional activation by nuclear receptors and discuss the in vitro and in vivo data that support this model.
Collapse
Affiliation(s)
- F J Dilworth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/Collège de France, BP163, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | |
Collapse
|
10
|
Depoix C, Delmotte MH, Formstecher P, Lefebvre P. Control of retinoic acid receptor heterodimerization by ligand-induced structural transitions. A novel mechanism of action for retinoid antagonists. J Biol Chem 2001; 276:9452-9. [PMID: 11254657 DOI: 10.1074/jbc.m008004200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterodimerization of retinoic acid receptors (RARs) with 9-cis-retinoic receptors (RXRs) is a prerequisite for binding of RXR.RAR dimers to DNA and for retinoic acid-induced gene regulation. Whether retinoids control RXR/RAR solution interaction remains a debated question, and we have used in vitro and in vivo protein interaction assays to investigate the role of ligand in modulating RXR/RAR interaction in the absence of DNA. Two-hybrid assay in mammalian cells demonstrated that only RAR agonists were able to increase significantly RAR interaction with RXR, whereas RAR antagonists inhibited RXR binding to RAR. Quantitative glutathione S-transferase pull-down assays established that there was a strict correlation between agonist binding affinity for the RAR monomer and the affinity of RXR for liganded RAR, but RAR antagonists were inactive in inducing RXR recruitment to RAR in vitro. Alteration of coactivator- or corepressor-binding interfaces of RXR or RAR did not alter ligand-enhanced dimerization. In contrast, preventing the formation of a stable holoreceptor structure upon agonist binding strongly altered RXR.RAR dimerization. Finally, we observed that RAR interaction with RXR silenced RXR ligand-dependent activation function. We propose that ligand-controlled dimerization of RAR with RXR is an important step in the RXR.RAR activation process. This interaction is dependent upon adequate remodeling of the AF-2 structure and amenable to pharmacological inhibition by structurally modified retinoids.
Collapse
Affiliation(s)
- C Depoix
- INSERM U459, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille Cedex, France
| | | | | | | |
Collapse
|
11
|
Abstract
Nerve growth factor (NGF) and retinoic acid (RA) exert important actions on PC12 cells. We have previously shown that incubation with NGF induces retinoic acid receptor beta (RARbeta) binding to a hormone response element in PC12 cells. In this study we show that NGF increases RARbeta protein levels by enhancing basal RARbeta2 promoter activity, and potentiates stimulation by RA in transient transfection assays. The effect of RA is mediated by a RA response element (RARE) located at -37/-53 and mutation of this element abolishes activation by the retinoid, as well as cooperation with NGF. However, the action of NGF is independent of the RARE and is mediated by sequences overlapping the TATA box and the INR comprising nucleotides -59 to +14. NGF produces a strong decrease in some of the complexes that bind to the INR. These results suggest that the RARbeta2 gene could be in a basal repressed state and NGF could increase RARbeta2 transcription by inducing the release of some inhibitory factors from the INR. Functional Ras is required for RARbeta2 promoter activation by NGF because expression of oncogenic Ras increases promoter activity and a dominant inhibitory Ras mutant blocks the effect of NGF. Oncogenic Raf also mimics the effect of NGF on the promoter. Other ligands of tyrosine kinase receptors that stimulate Ras also cause RARbeta2 promoter activation and act cooperatively with RA. These results indicate the existence of cross-coupling of the Ras-Raf signal transduction pathway with retinoid receptor pathways which could increase sensitivity to RA and be important for PC12 cell function.
Collapse
Affiliation(s)
- J M Cosgaya
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
12
|
Kim J, Petz LN, Ziegler YS, Wood JR, Potthoff SJ, Nardulli AM. Regulation of the estrogen-responsive pS2 gene in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol 2000; 74:157-68. [PMID: 11162921 DOI: 10.1016/s0960-0760(00)00119-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand how hormones and antihormones regulate transcription of estrogen-responsive genes, in vivo footprinting was used to examine the endogenous pS2 gene in MCF-7 cells. While the consensus pS2 estrogen response element (ERE) half site was protected in the absence of hormone, both the consensus and imperfect ERE half sites were protected in the presence of estrogen. 4-Hydroxytamoxifen and ICI 182,780 elicited distinct footprinting patterns, which differed from those observed with vehicle- or with estrogen-treated cells suggesting that the partial agonist/antagonist and antagonist properties of 4-hydroxytamoxifen or ICI 182,780, respectively, may be partially explained by modulation of protein-DNA interactions. Footprinting patterns in and around the TATA and CAAT sequences were identical in the presence and in the absence of estrogen suggesting that the basal promoter is accessible and poised for transcription even in the absence of hormone. In vitro DNase I footprinting experiments demonstrated that the estrogen receptor bound to the pS2 ERE and that adjacent nucleotides were protected by MCF-7 nuclear proteins. These findings indicate that transcription of the pS2 gene is modulated by alterations in protein binding to multiple sites upstream of the basal promoter, but not by changes in protein-DNA interactions in the basal promoter.
Collapse
Affiliation(s)
- J Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Ave., Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
13
|
Arapshian A, Kuppumbatti YS, Mira-y-Lopez R. Methylation of conserved CpG sites neighboring the beta retinoic acid response element may mediate retinoic acid receptor beta gene silencing in MCF-7 breast cancer cells. Oncogene 2000; 19:4066-70. [PMID: 10962564 DOI: 10.1038/sj.onc.1203734] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated the mechanism of retinoic acid receptor (RAR) beta2 gene silencing in breast cancer cells. Transfection experiments indicated that MCF-7 cells transactivate an exogenous beta2 promoter (-1470/+156) to the same extent as MTSV1.7 breast epithelial cells, which express endogenous RARbeta2. This was true even in the context of replicated chromatin, suggesting a cis-acting rather than a trans-acting defect. Cytosine methylation, a cis-acting DNA modification, has been implicated in RARbeta2 silencing in cancer cells. Upon bisulfite genomic sequencing, we found that 3 CpG sites in the beta2 RARE region were variably methylated in MCF-7 cells but were not methylated in MTSV1.7 cells or in 2 MDA-MB-231 subclones that differed in RARbeta2 expression (high in clone A2, low in clone A4). However, the 5'-UTR region was hypermethylated in clone A4 relative to clone A2 cells. Following 5-azacytidine treatment, RA and trichostatin A markedly induced RARbeta2 expression in MCF-7 cells but not in MDA-MB-231 clone A4 cells. A beta2 RARE reporter construct in which the methylation-susceptible cytosines in the sense strand were replaced by thymine displayed marked loss of activity in a replicated chromatin-dependent manner. We conclude that cytosine methylation contributes to RARbeta2 gene silencing in MCF-7 cells and that methylation of the RARE region may be particularly important. Oncogene (2000) 19, 4066 - 4070.
Collapse
Affiliation(s)
- A Arapshian
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
14
|
Jones G, Chu YX, Schelling D, Jones D. Regulation of the juvenile hormone esterase gene by a composite core promoter. Biochem J 2000; 346 Pt 1:233-40. [PMID: 10657262 PMCID: PMC1220845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Transcription from the core promoter of the juvenile hormone esterase gene (-61 to +28) requires the presence of both an AT-rich motif (TATA box) and an initiator motif for any transcription to occur, when assayed by either transcription in vitro with lepidopteran Sf9 nuclear extracts or by transient-transfection assay in Sf9 cells. Additional gel-shift experiments indicated that at least one additional binding site is essential for transcription to occur. Mutational analysis in the transcription-in vitro and cell-transfection assays demonstrated that a 14-bp region from +13 to +27 relative to the transcription start site is also essential for transcription to occur. Whereas the wild-type core promoter is highly transcriptionally active, inclusion of additional flanking sequences to position -212 reduces that activity approx. 100-fold, and inclusion of the 5' region out to position -500 reduces transcription by 200-fold. The pattern of dependence on both the AT-rich motif and the initiator for detectable transcription, and the high innate activity being repressed by 5'-binding factors, was recapitulated in mosquito C7-10 cells. This study demonstrates that the cellular juvenile hormone esterase gene is organized as a composite core promoter, dependent on both TATA-box and initiator-binding factors, an organization that has been more commonly reported for viral promoters. This highly active composite core promoter is made more complex by the absolute dependence on the presence of a third site shortly downstream from the initiator, which is distinct from the 'downstream promoter element' described from some TATA-less genes. The juvenile hormone esterase gene thus appears to be a model of a cellular composite core promoter with a multipartite, indispensible requirement for not just both the TATA box and initiator, but also for at least a third core element as well.
Collapse
Affiliation(s)
- G Jones
- Cellular and Molecular Biology Section, School of Biological Sciences, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | |
Collapse
|
15
|
Perez-Juste G, Aranda A. Differentiation of neuroblastoma cells by phorbol esters and insulin-like growth factor 1 is associated with induction of retinoic acid receptor beta gene expression. Oncogene 1999; 18:5393-402. [PMID: 10498893 DOI: 10.1038/sj.onc.1202906] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retinoic acid (RA) receptor beta isoform (RARbeta) plays an important role in RA-induced differentiation of human neuroblastoma. In this study we show that insulin-like growth factor 1 (IGF-1) and tetradecanoyl phorbol acetate (TPA) induce RARbeta gene expression in neuroblastoma SH-SY5Y cells. IGF-1 and TPA caused a marked induction of RARbeta2 promoter activity and had a synergistic effect with RA that also upregulates transcription. The effect of RA is mediated by two RA responsive elements (RAREs), whereas the IGF-1 and TPA actions are independent of the RAREs and map to sequences that overlap the TATA box. These results suggest that the signaling pathways stimulated by TPA and IGF-1 could modify the components assembled at the core RARbeta2 promoter and activate transcription. Expression of RasVal12 mimics the effect of IGF-1 and TPA on the promoter, and a dominant negative Ras mutant abrogates activation. A dominant negative Raf also blocks activation showing that the Ras-Raf pathway mediates stimulation of the RARbeta2 promoter. Our results show that neuronal differentiation induced by non-retinoid agents that activate Ras is accompanied by increased transcription of the RARbeta gene.
Collapse
Affiliation(s)
- G Perez-Juste
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | | |
Collapse
|
16
|
Accolla RS, Tosi G, Sartoris S, De Lerma Barbaro A. MHC class II gene regulation: some historical considerations on a still ontogenetic and phylogenetic puzzle. Microbes Infect 1999; 1:871-7. [PMID: 10614004 DOI: 10.1016/s1286-4579(99)00231-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- R S Accolla
- Department of Clinical and Biological Sciences, University of Insubria, Varese, Italy
| | | | | | | |
Collapse
|
17
|
Géhin M, Vivat V, Wurtz JM, Losson R, Chambon P, Moras D, Gronemeyer H. Structural basis for engineering of retinoic acid receptor isotype-selective agonists and antagonists. CHEMISTRY & BIOLOGY 1999; 6:519-29. [PMID: 10421757 DOI: 10.1016/s1074-5521(99)80084-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Many synthetic retinoids have been generated that exhibit a distinct pattern of agonist/antagonist activities with the three retinoic acid receptors (RARalpha, RARbeta and RARgamma). Because these retinoids are selective tools with which to dissect the pleiotropic functions of the natural pan-agonist, retinoic acid, and might constitute new therapeutic drugs, we have determined the structural basis of their receptor specificity and compared their activities in animal and yeast cells. RESULTS There are only three divergent amino acid residues in the ligand binding pockets (LBPs) of RARalpha, RARbeta and RARgamma. We demonstrate here that the ability of monospecific (class I) retinoid agonists and antagonists to bind to and induce or inhibit transactivation by a given isotype is directly linked to the nature of these residues. The agonist/antagonist potential of class II retinoids, which bind to all three RARs but depending on the RAR isotype have the potential to act as agonists or antagonists, was also largely determined by the three divergent LBP residues. These mutational studies were complemented by modelling, on the basis of the three-dimensional structures of the RAR ligand-binding domains, and a comparison of the retinoid agonist/antagonist activities in animal and yeast cells. CONCLUSIONS Our results reveal the rational basis of RAR isotype selectivity, explain the existence of class I and II retinoids, and provide a structural concept of ligand-mediated antagonism. Interestingly, the agonist/antagonist characteristics of retinoids are not conserved in yeast cells, suggesting that yeast co-regulators interact with RARs in a different way than the animal cell homologues do.
Collapse
Affiliation(s)
- M Géhin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/Collège de France, BP 163, 67404, Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Physical Interaction Between Retinoic Acid Receptor and Sp1: Mechanism for Induction of Urokinase by Retinoic Acid. Blood 1999. [DOI: 10.1182/blood.v93.12.4264.412k27_4264_4276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of urokinase plasminogen activator (uPA) by retinoic acid (RA) is the initial event preceding certain subsequent biological changes in vascular endothelial cells. We investigated the molecular mechanism by which RA stimulates the expression of uPA, which lacks a canonical RA receptor (RAR)-responsive element, in bovine and human aortic endothelial cells. Upon stimulation with RA, mRNA levels of RAR and β transiently increased in parallel with the induction of uPA, and this increase was inhibited by cycloheximide. Results of transient transfection of RAR/RXR cDNAs and experiments using specific agonists and antagonists suggested that uPA induction is dependent upon RAR (initially, RAR) with the help of RXR. Deletion analysis of the uPA promoter suggested that RAR/RXR acts on GC box region within the uPA promoter. This was further supported by inhibition of Sp1 binding to this region. Coimmunoprecipitation studies, glutathioneS-transferase pull-down experiment, and mammalian two-hybrid assays suggested a physical interaction between RAR/RXR and Sp1. Furthermore, gel shift studies showed that the binding of Sp1 to the uPA GC box is significantly potentiated in the presence of RARs/RXRs. Finally, Sp1 and RAR/RXR synergistically enhanced the transactivation activity of the uPA promoter. These results suggest that (1) RA induces RARs mainly via RAR and that (2) RAR/RXR physically and functionally interact with Sp1, resulting in a potentiation of uPA transcription.
Collapse
|
19
|
Physical Interaction Between Retinoic Acid Receptor and Sp1: Mechanism for Induction of Urokinase by Retinoic Acid. Blood 1999. [DOI: 10.1182/blood.v93.12.4264] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Induction of urokinase plasminogen activator (uPA) by retinoic acid (RA) is the initial event preceding certain subsequent biological changes in vascular endothelial cells. We investigated the molecular mechanism by which RA stimulates the expression of uPA, which lacks a canonical RA receptor (RAR)-responsive element, in bovine and human aortic endothelial cells. Upon stimulation with RA, mRNA levels of RAR and β transiently increased in parallel with the induction of uPA, and this increase was inhibited by cycloheximide. Results of transient transfection of RAR/RXR cDNAs and experiments using specific agonists and antagonists suggested that uPA induction is dependent upon RAR (initially, RAR) with the help of RXR. Deletion analysis of the uPA promoter suggested that RAR/RXR acts on GC box region within the uPA promoter. This was further supported by inhibition of Sp1 binding to this region. Coimmunoprecipitation studies, glutathioneS-transferase pull-down experiment, and mammalian two-hybrid assays suggested a physical interaction between RAR/RXR and Sp1. Furthermore, gel shift studies showed that the binding of Sp1 to the uPA GC box is significantly potentiated in the presence of RARs/RXRs. Finally, Sp1 and RAR/RXR synergistically enhanced the transactivation activity of the uPA promoter. These results suggest that (1) RA induces RARs mainly via RAR and that (2) RAR/RXR physically and functionally interact with Sp1, resulting in a potentiation of uPA transcription.
Collapse
|
20
|
Jiménez-Lara AM, Aranda A. Vitamin D represses retinoic acid-dependent transactivation of the retinoic acid receptor-beta2 promoter: the AF-2 domain of the vitamin D receptor is required for transrepression. Endocrinology 1999; 140:2898-907. [PMID: 10342883 DOI: 10.1210/endo.140.6.6770] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinoic acid (RA)-dependent activation of the RA receptor beta2 (RARbeta2) gene in embryonal carcinoma cells is mediated by binding of retinoid receptor heterodimers (RAR/RXR) to a RA response element (RARE) located closely to the TATA box. We have analyzed the effect of vitamin D on the response of the RARbeta2 promoter to RA in pituitary GH4C1 cells that coexpress receptors for retinoids and vitamin D. Incubation with vitamin D markedly reduced the response to RA caused by transcriptional interference of the vitamin D receptor (VDR) on the RARE. This DNA element binds VDR/RXR heterodimers with high affinity, and these inactive heterodimers can displace active RAR/RXR from the RARE. Overexpression of RXR in GH4C1 cells, as well as incubation with BMS649 (a RXR-specific ligand), increased the inhibitory effect of vitamin D, suggesting that the VDR/RXR heterodimer is the repressive species and that titration of RXR is not responsible for this inhibition. Although DNA binding could be required for full potency of the inhibitory activity of VDR, it is not absolutely required because a truncated receptor (VDR delta1-111), lacking the DNA binding domain, also displays repressor activity. Furthermore, the ability to mediate transrepression by vitamin D was strongly decreased when a mutant VDR in which the last 12 C-terminal aminoacids have been deleted (VDR deltaAF-2) was used. Because this region contains the domain responsible for ligand-dependent recruitment of coactivators, titration of common coactivators for VDR and RAR could be involved in the inhibitory effect of vitamin D. In agreement with this hypothesis, overexpression of E1A, which can act as a RARbeta2 promoter-specific coactivator, significantly reversed repression by vitamin D.
Collapse
Affiliation(s)
- A M Jiménez-Lara
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
21
|
Deconstructing a Disease: RAR, Its Fusion Partners, and Their Roles in the Pathogenesis of Acute Promyelocytic Leukemia. Blood 1999. [DOI: 10.1182/blood.v93.10.3167.410k44_3167_3215] [Citation(s) in RCA: 734] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Abstract
Vitamin A and its biologically active derivatives, retinal and retinoic acid (RA), together with a large repertoire of synthetic analogues are collectively referred to as retinoids. Naturally occurring retinoids regulate the growth and differentiation of a wide variety of cell types and play a crucial role in the physiology of vision and as morphogenic agents during embryonic development. Retinoids and their analogues have been evaluated as chemoprevention agents, and also in the management of acute promyelocytic leukaemia. Retinoids exert most of their effects by binding to specific receptors and modulating gene expression. The development of new active retinoids and the identification of two distinct families of retinoid receptors has led to an increased understanding of the cellular effects of activation of these receptors. In this article we review the use of retinoids in chemoprevention strategies, discuss the cellular consequences of activated retinoid receptors, and speculate on how our increasing understanding of retinoid-induced signalling pathways may contribute to future therapeutic strategies in the management of malignant disease.
Collapse
Affiliation(s)
- T R Evans
- CRC Department of Medical Oncology, University of Glasgow, Bearsden, UK
| | | |
Collapse
|
23
|
Folkers GE, van der Burg B, van der Saag PT. Promoter architecture, cofactors, and orphan receptors contribute to cell-specific activation of the retinoic acid receptor beta2 promoter. J Biol Chem 1998; 273:32200-12. [PMID: 9822698 DOI: 10.1074/jbc.273.48.32200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of retinoic acid receptor beta (RARbeta) is spatially and temporally restricted during embryonal development. Also during retinoic acid (RA)-dependent embryonal carcinoma (EC) cell differentiation, RARbeta expression is initially up-regulated, while in later phases of differentiation expression is down-regulated, by an unknown mechanism. To gain insight into the regulation of RARbeta, we studied the activity of the RARbeta2 promoter and mutants thereof in various cell lines. While the RARbeta2 promoter is activated by RA in a limited number of cell lines, synthetic RA-responsive reporters are activated in most cell types. We show that the expression levels of proteins that bind to the beta-retinoic acid response element (RAR/retinoid X receptors and orphan receptors) and also the differential expression of a number of coactivators modulate the RA response on both natural and synthetic reporters. We further show that cell type-specific activation of the RARbeta2 promoter is dependent on the promoter architecture including the spacing between retinoic acid response element and TATA-box and initiator sequence (betaINR). Mutation within these regions caused a decrease in the activity of this promoter in responsive EC cells, while an increase in activity in non-EC cell lines was observed. Cell-specific complexes were formed on the betaINR, suggesting that the betaINR contributes to cell-specific activation of the promoter. On this basis we propose that promoter context-dependent and more general RA response-determining mechanisms contribute to cell-specific RA-dependent activation of transcription.
Collapse
Affiliation(s)
- G E Folkers
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
24
|
Lefebvre P, Mouchon A, Lefebvre B, Formstecher P. Binding of retinoic acid receptor heterodimers to DNA. A role for histones NH2 termini. J Biol Chem 1998; 273:12288-95. [PMID: 9575180 DOI: 10.1074/jbc.273.20.12288] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoic acid signaling pathway is controlled essentially through two types of nuclear receptors, RARs and RXRs. Ligand dependent activation or repression of retinoid-regulated genes is dependent on the binding of retinoic acid receptor (RAR)/9-cis-retinoic acid receptor (RXR) heterodimers to retinoic acid response element (RARE). Although unliganded RXR/RAR heterodimers bind constitutively to DNA in vitro, a clear in vivo ligand-dependent occupancy of the RARE present in the RARbeta2 gene promoter has been reported (Dey, A., Minucci, S., and Ozato, K. (1994) Mol. Cell. Biol. 14, 8191-8201). Nucleosomes are viewed as general repressors of the transcriptional machinery, in part by preventing the access of transcription factors to DNA. The ability of hRXRalpha/hRARalpha heterodimers to bind to a nucleosomal template in vitro has therefore been examined. The assembly of a fragment from the RARbeta2 gene promoter, which contains a canonical DR5 RARE, into a nucleosome core prevented hRXRalpha/hRARalpha binding to this DNA, in conditions where a strong interaction is observed with a linear DNA template. However, histone tails removal by limited proteolysis and histone hyperacetylation yielded nucleosomal RAREs able to bind to hRXRalpha/hRARalpha heterodimers. These data establish therefore the role of histones NH2 termini as a major impediment to retinoid receptors access to DNA, and identify histone hyperacetylation as a potential physiological regulator of retinoid-induced transcription.
Collapse
Affiliation(s)
- P Lefebvre
- INSERM U459, Laboratoire de Biochimie Structurale, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille cedex, France
| | | | | | | |
Collapse
|
25
|
Ikeda M, Spanjaard RA, Noordhoek EW, Kawaguchi A, Onaya T, Chin WW. Ligand-inducible retinoid X receptor-mediated protein: DNA interactions in the retinoic acid receptor beta2 gene promoter in vivo. Mol Cell Endocrinol 1998; 136:109-18. [PMID: 9548214 DOI: 10.1016/s0303-7207(97)00217-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retinoid X receptors (RXRs) are recently characterized transcription factors that are members of the nuclear hormone receptor superfamily. However, it is not known whether the endogenous RXR complex requires its ligand for access to its hormone response element (HRE) of a target gene in vivo. Hence, dimethyl sulfate-based genomic footprinting was carried out to examine occupancy of HREs in the retinoic acid (RA) receptor beta2 (RARbeta2) gene promoter in the murine melanoma cell line S91 cultured in the absence or presence of T3, all-trans-RA (atRA), or CD2624, an RXR-selective retinoid. No footprint was observed at the RA-response element (betaRARE) in the absence of ligands. However, a footprint was detected at the betaRARE and other cis-acting elements after a 6 h incubation with CD2624 and atRA. Interestingly, only the betaRARE was footprinted after 60 min incubation with CD2624. These results suggest that the endogenous RXR complex can interact with an HRE of a target gene in the presence of ligand, and subsequently may initiate additional interactions between DNA and other transcription factors.
Collapse
Affiliation(s)
- M Ikeda
- The Third Department of Internal Medicine, Yamanashi Medical University, Tamaho, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Choi HS, Chung M, Tzameli I, Simha D, Lee YK, Seol W, Moore DD. Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem 1997; 272:23565-71. [PMID: 9295294 DOI: 10.1074/jbc.272.38.23565] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified a new murine orphan member of the nuclear hormone receptor superfamily, termed mCAR, that is closely related to the previously described human orphan MB67, referred to here as hCAR. Like hCAR, mCAR expression is highest in liver. In addition to the most abundant mCAR1 isoform, the mCAR gene expresses a truncated mCAR2 variant that is missing the C-terminal portion of the ligand binding/dimerization domain. The mCAR gene has 8 introns, and this mCAR2 variant is generated by a splicing event that skips the 8th exon. mCAR1, like hCAR, binds as a heterodimer with the retinoid X receptor to the retinoic acid response element from the promoter of the retinoic acid receptor beta2 isoform. Consistent with its lack of a critical heterodimerization interface, the mCAR2 variant does not bind this site. Both mCAR1 and hCAR are apparently constitutive transcriptional activators. This activity is dependent on the presence of the conserved C-terminal AF-2 transcriptional activation motif. As expected from its inability to bind DNA, the mCAR2 variant neither transactivates by itself nor inhibits transactivation by hCAR or mCAR1.
Collapse
Affiliation(s)
- H S Choi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Collingwood TN, Butler A, Tone Y, Clifton-Bligh RJ, Parker MG, Chatterjee VK. Thyroid hormone-mediated enhancement of heterodimer formation between thyroid hormone receptor beta and retinoid X receptor. J Biol Chem 1997; 272:13060-5. [PMID: 9148917 DOI: 10.1074/jbc.272.20.13060] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A subset of nuclear receptors, including those for thyroid hormone (TR), retinoic acid, vitamin D3, and eicosanoids, can form heterodimers with the retinoid X receptor (RXR) on DNA regulatory elements in the absence of their cognate ligands. In a mammalian two-hybrid assay, we have found that recruitment of a VP16-RXR chimera by a Gal4-TRbeta ligand-binding domain fusion is enhanced up to 50-fold by thyroid hormone (T3). This was also observed with a mutant fusion, Gal4-TR(L454A), lacking ligand-inducible activation function (AF-2) and unable to interact with putative coactivators, suggesting that the AF-2 activity of TR or intermediary cofactors is not involved in this effect. The wild-type and mutant Gal4-TR fusions also exhibited hormone-dependent recruitment of RXR in yeast. Hormone-dependent recruitment of RXR was also evident with another Gal4-TR mutant, AHTm, which does not interact with the nuclear receptor corepressor N-CoR, suggesting that ligand-enhanced dimerization is not a result of T3-induced corepressor release. Finally, we have shown that the interaction between RXR and TR is augmented by T3 in vitro, arguing against altered expression of either partner in vivo mediating this effect. We propose that ligand-dependent heterodimerization of TR and RXR in solution may provide a further level of control in nuclear receptor signaling.
Collapse
Affiliation(s)
- T N Collingwood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Retinoids, used therapeutically primarily in the treatment of skin disorders, are potent teratogens. Several craniofacial, neural tube, and limb defects derive from a selective increase in cell death by retinoic acid in sites of spontaneous programmed cell death. Previously we showed that programmed cell death in the limb was apoptotic, and that the webbing of the foot of the Hammertoe mutant mouse correlates with diminished cell death in these regions of webbing. We therefore examined the effect of the induction of cell death by retinoic acid in normal and mutant limbs. Here we report that exogenously administered retinoic acid enhances cell death in the interdigital and marginal regions of the limb. This cell killing is apoptotic by several criteria. We also report that retinoic acid induces cell death in areas of the Hammertoe limb that display a suppression of cell death during development. This induction of cell death ameliorates the mutant phenotype. These results establish that a genetic defect in cell death can be modified by retinoic acid. Retinoic acid, therefore, may be a signal involved in the regulation of cell death during normal limb development. However, neither the effect of retinoic acid on cell death nor the defect of cell death in Hammertoe correlates with an altered expression pattern of the homeobox-containing Msx genes, the retinoic acid receptor beta gene, or the ability of endogenous retinoic acid to bind its receptors. We conclude that retinoic acid may influence pattern formation and cell death through an indirect mechanism.
Collapse
Affiliation(s)
- H S Ahuja
- Department of Biology, Queens College, Flushing, NY 11367, USA
| | | | | |
Collapse
|
29
|
Bulens F, Merchiers P, Ibañez-Tallon I, De Vriese A, Nelles L, Claessens F, Belayew A, Collen D. Identification of a multihormone responsive enhancer far upstream from the human tissue-type plasminogen activator gene. J Biol Chem 1997; 272:663-71. [PMID: 8995310 DOI: 10.1074/jbc.272.1.663] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A 2.4-kilobase (kb) DNA fragment, located 7.1 kb upstream from the human tissue-type plasminogen activator (t-PA) gene (t-PA2.4), acts as an enhancer which is activated by glucocorticoids, progesterone, androgens, and mineralocorticoids. Transient expression of t-PA-chloramphenicol acetyltransferase reporter constructs in HT1080 human fibrosarcoma cells identified a glucocorticoid responsive unit with four functional binding sites for the glucocorticoid receptor, located between bp -7,501 and -7,974. The region from bp -7,145 to -9,578 (t-PA2.4) was found to confer a cooperative induction by dexamethasone and all-trans-retinoic acid (RA) to its homologous and a heterologous promoter, irrespective of its orientation. The minimal enhancer, defined by progressive deletion analysis, comprised the region from -7.1 to -8.0 kb (t-PA0.9) and encompassed the glucocorticoid responsive unit and the previously identified RA-responsive element located at -7.3 kb (Bulens, F., Ibañez-Tallon, I., Van Acker, P., De Vriese, A., Nelles, L., Belayew, A., and Collen, D. (1995) J. Biol. Chem. 270, 7167-7175). The amplitude of the synergistic response to dexamethasone and RA increased by reducing the distance between the enhancer and the proximal t-PA promoter. The synergistic interaction was also observed between the aldosterone and the RA receptors. It is postulated that the t-PA0.9 enhancer might play a role in the hormonal regulation of the expression of human t-PA in vivo.
Collapse
Affiliation(s)
- F Bulens
- Center for Molecular and Vascular Biology, University of Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Müschen M, Sies H, Schulz WA. Induction of mouse embryonal carcinoma cell differentiation and activation of the retinoic acid receptor beta 2 promoter by 1,25-dihydroxyvitamin D3. Biol Chem 1996; 377:703-10. [PMID: 8960371 DOI: 10.1515/bchm3.1996.377.11.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1,25-Dihydroxyvitamin D3 (calcitriol) at 100 nmol/l elicited morphological differentiation and expression of collagen IV in mouse F9 embryonal carcinoma cells, and its effect was enhanced and accelerated by dibutyryl-cAMP (db-cAMP). The RAR beta 2 promoter was also activated, as evidenced by an increase in beta-galactosidase activity in an F9 reporter cell line with a stably integrated RAR beta 2-lacZ construct. All three effects were slower and less extensive with calcitriol than with retinoic acid, even in the presence of db-cAMP. Activation of the RAR beta 2 promoter by calcitriol required its TRE sequence, whereas db-cAMP required the CRE. TPA also activated the RAR beta 2 promoter, requiring a functional TRE. Thus, in the RAR beta 2 promoter the TRE sequence, whose function has so far been unidentified, mediates the effects of calcitriol and TPA. RAR beta 2 promoter activation by calcitriol was blocked by inhibitors of protein kinase C indicating that calcitriol elicits its effect via protein kinase C. Therefore, calcitriol induces differentiation of F9 mouse embryonal carcinoma cells at least in part by a pathway different from the classical one operative with retinoic acids.
Collapse
Affiliation(s)
- M Müschen
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
31
|
Chen JY, Clifford J, Zusi C, Starrett J, Tortolani D, Ostrowski J, Reczek PR, Chambon P, Gronemeyer H. Two distinct actions of retinoid-receptor ligands. Nature 1996; 382:819-22. [PMID: 8752277 DOI: 10.1038/382819a0] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Signalling by all-trans retinoic acid is mediated through RXR-RAR retinoid receptor heterodimers, in which RXR has been considered to act as a transcriptionally silent partner. However, we show here that in cultured NB4 (ref. 6) human acute promyelocytic leukaemia cells treated with either an RAR-alpha-selective agonist alone, or certain RAR-alpha antagonists in combination with an RXR agonist, receptor-DNA binding is induced in vivo, resulting in expression of the target genes of retinoic acid as well as acute promyelocytic leukaemia protein (PML) relocation to nuclear bodies and differentiation before apoptosis. These results indicate that RAR-alpha ligands can induce two separate events: one enables RXR-RAR-alpha heterodimers to bind to DNA in vivo and allows RXR agonists to act; the other induces transcriptional activity of RAR-alpha. The availability of receptor-specific synthetic retinoids that can induce distinct receptor functions has potential in extending the therapeutic repertoire of retinoids.
Collapse
Affiliation(s)
- J Y Chen
- Institut de Génetique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, College de France, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Morgan GA, Hamilton EA, Black SJ. The requirements for G1 checkpoint progression of Trypanosoma brucei S 427 clone 1. Mol Biochem Parasitol 1996; 78:195-207. [PMID: 8813689 DOI: 10.1016/s0166-6851(96)02625-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Trypanosoma brucei S 427 clone 1 accumulated in G1 when incubated under growth-limiting conditions. Further incubation of the G1-restricted organisms in medium containing 10% fetal bovine serum (FBS) and 2 mM hydroxyurea resulted in their reversible arrest after a G1 checkpoint beyond which serum was not required for progress into and through S. Progress of the G1-restricted T. brucei through the G1 checkpoint was linear and required continuous incubation with exogenous serum growth factors. These were principally low and high density lipoproteins; both lipoproteins triggered G1 progression in a dose- and time-dependent manner whilst their removal by immunoaffinity chromatography severely reduced the capacity of FBS to stimulate G1 progression. Serum-induced progress of T. brucei through G1 was Ca(2+)-independent, but required gene transcription, protein synthesis, and continuous kinase activity that was inhibited by tyrphostin 51 and DAPH 1 which typically inhibit epidermal growth factor receptor protein tyrosine kinase activity. The tyrphostin 51-sensitive catalytic activity was not required for T. brucei protein synthesis, glycolysis, or S phase progression but was required for tyrosine phosphorylation of several polypeptides, none of which was specifically associated with serum-induced G1 progression.
Collapse
Affiliation(s)
- G A Morgan
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
33
|
Hallenbeck PL, Minucci S, Lippoldt R, Phyillaier M, Horn V, Ozato K, Nikodem VM. Differential 9-cis-retinoic acid-dependent transcriptional activation by murine retinoid X receptor alpha (RXR alpha) and RXR beta. Role of cell type and RXR domains. J Biol Chem 1996; 271:10503-7. [PMID: 8631847 DOI: 10.1074/jbc.271.18.10503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 9-cis-retinoic acid (9cRA)-inducible enhancer of the rat cellular retinol-binding protein type II gene (CRBP II) was shown to be differentially regulated by the murine retinoid X receptor alpha (RXR alpha) as compared with RXR beta. Transient transfection assays performed in NIH 3T3 fibroblast cells demonstrated that RXR alpha yielded a high level of 9cRA-dependent transcription of a reporter gene linked to the CRBP II enhancer, when compared with RXR beta. This effect was cell type-dependent, since both receptors elicited comparable transcriptional activation of the same reporter in P19 embryonal carcinoma cells. To further explore the structural determinants responsible for the differences between these two receptors, a series of chimeric receptor constructs were made. Co-transfection assays utilizing these chimeras demonstrated that both the N terminus and the hinge region connecting the DNA binding domain with the ligand binding domain of RXR alpha were responsible for the high level of 9cRA-dependent transcription observed in NIH 3T3 cells, Furthermore, the hinge region of RXR alpha was shown to be necessary to repress, in the absence of hormone, the transcriptional activation function located in the N-terminal domain of RXR alpha. These results stress the importance of functional links between different RXR domains and suggest an RXR subtype and cell type-dependent specificity in the control of the 9cRA response.
Collapse
Affiliation(s)
- P L Hallenbeck
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Minucci S, Botquin V, Yeom YI, Dey A, Sylvester I, Zand DJ, Ohbo K, Ozato K, Scholer HR. Retinoic acid-mediated down-regulation of Oct3/4 coincides with the loss of promoter occupancy in vivo. EMBO J 1996; 15:888-99. [PMID: 8631309 PMCID: PMC450286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Oct3/4, a hallmark of the earliest stages of embryogenesis, is expressed in undifferentiated embryonal carcinoma (EC) and embryonic stem (ES) cells. Oct3/4 gene expression is dependent on the promoter region, the proximal enhancer and the newly identified distal enhancer. We have analysed in vivo occupancy of these elements. In undifferentiated EC and ES cells, strong footprints were detected at specific sites of all three regulatory elements. These were promptly lost upon RA treatment in ES cells and in P19 EC cells, in parallel with sharply reduced Oct3/4 mRNA levels. Thus, the occupancy of regulatory elements is coupled with Oct3/4 expression, and RA treatment causes coordinated factor displacement, leading to extinction of gene activity. In F9 EC cells, footprint was first abolished at the proximal enhancer. However, this loss of binding site occupancy did not result in a decrease in Oct3/4 mRNA levels. The partial factor displacement seen in F9 EC cells, combined with the observation that EC and ES cells utilize the proximal and distal enhancers in differential manner, indicate the complex pattern of Oct3/4 gene regulation, which could reflect a cell type- and lineage-specific expression of the gene in vivo.
Collapse
Affiliation(s)
- S Minucci
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, Gronemeyer H. A canonical structure for the ligand-binding domain of nuclear receptors. NATURE STRUCTURAL BIOLOGY 1996; 3:87-94. [PMID: 8548460 DOI: 10.1038/nsb0196-87] [Citation(s) in RCA: 672] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of nuclear receptors (NRs) to activate transcription of target genes requires the binding of cognate ligands to their ligand-binding domains (LBDs). Information provided by the three-dimensional structures of the unliganded RXR alpha and the liganded RAR gamma LBDs has been incorporated into a general alignment of the LBDs of all NRs. A twenty amino-acid region constitutes a NR-specific signature and contains most of the conserved residues that stabilize the core of the canonical fold of NR LBDs. A common ligand-binding pocket, involving predominantly hydrophobic residues, is inferred by homology modelling of the human RXR alpha and glucocorticoid receptor ligand-binding sites according to the RAR gamma holo-LBD structure. Mutant studies support these models, as well as a general mechanism for ligand-induced activation deduced from the comparison of the transcriptionally active RAR gamma holo- and inactive RXR alpha apo-LBD structures.
Collapse
Affiliation(s)
- J M Wurtz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/C, Collège de France, Illkrich, C.U. de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Martínez-Balbás MA, Dey A, Rabindran SK, Ozato K, Wu C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 1995; 83:29-38. [PMID: 7553870 DOI: 10.1016/0092-8674(95)90231-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The general inhibition in transcriptional activity during mitosis abolishes the stress-inducible expression of the human hsp70 gene. Among the four transcription factors that bind to the human hsp70 promoter, the DNA-binding activities of three (C/EBP, GBP, and HSF1) were normal, while Sp1 showed reduced binding activity in mitotic cell extracts. In vivo footprinting and immunocytochemical analyses revealed that all of the sequence-specific transcription factors were displaced from promoter sequences as well as from bulk chromatin during mitosis. The correlation of transcription factor displacement with chromatin condensation suggests an involvement of chromatin structure in mitotic repression. However, retention of DNase I hypersensitivity suggests that the hsp70 promoter was not organized in a canonical nucleosome structure in mitotic chromatin. Displacement of transcription factors from mitotic chromosomes could present another window in the cell cycle for resetting transcriptional programs.
Collapse
Affiliation(s)
- M A Martínez-Balbás
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|