1
|
Zang M, Gan H, Zhou X, Wang L, Dong H. Dual-Site Targeting by Peptide Inhibitors of the N-Terminal Domain of Hsp90: Mechanism and Design. J Chem Inf Model 2025; 65:5113-5123. [PMID: 40310892 DOI: 10.1021/acs.jcim.5c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Heat shock protein 90 (Hsp90) is a pivotal molecular chaperone crucial in the maturation of client proteins, positioning it as a significant target for cancer therapy. However, the design of effective Hsp90 inhibitors presents substantial challenges due to the complex interaction network and the requisite specificity of the inhibitors. This study tackles the task of designing peptide inhibitors capable of concurrently binding to both the ATP-binding pocket and the Cdc37-binding site within the N-terminal domain of Hsp90. In response to these challenges, we developed an advanced peptide screening protocol that merges machine learning with various molecular simulation techniques to boost the identification and optimization of potent inhibitors. Our integrated approach employs a convolutional neural network-based framework to predict peptide binding propensities. This predictive model is augmented by comprehensive molecular docking and dynamic simulations to assess the stability and interaction dynamics of Hsp90/peptide complexes. We successfully identified three heptapeptides that demonstrate the ability to interact with both binding sites, effectively obstructing the entrance to the ATP-binding pocket. This study elucidates the inhibitory mechanisms of these peptides, paves the way for the development of more efficacious therapeutic agents targeting Hsp90, and underscores the value of integrating machine learning techniques with molecular modeling in the peptide design process.
Collapse
Affiliation(s)
- Min Zang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Haipeng Gan
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xuejie Zhou
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Centre (ChemBIC), ChemBioMed Interdisciplinary Research Centre, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Engler S, Buchner J. The evolution and diversification of the Hsp90 co-chaperone system. Biol Chem 2025:hsz-2025-0112. [PMID: 40261701 DOI: 10.1515/hsz-2025-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The molecular chaperone Hsp90 is the central element of a chaperone machinery in the cytosol of eukaryotic cells that is characterized by a large number of structurally and functionally different co-chaperones that influence the core chaperone component in different ways and increase its influence on the proteome. From yeast to humans, the number of Hsp90 co-chaperones has increased from 14 to over 40, and new co-chaperones are still being discovered. While Hsp90 itself has only undergone limited changes in structure and mechanism from yeast to humans, its increased importance and contribution to different processes in humans is based on the evolution and expansion of the cohort of co-chaperones. In this review, we provide an overview of Hsp90 co-chaperones, focusing on their roles in regulating Hsp90 function and their evolution from yeast to humans.
Collapse
Affiliation(s)
- Sonja Engler
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| |
Collapse
|
3
|
Silbermann LM, Vermeer B, Schmid S, Tych K. The known unknowns of the Hsp90 chaperone. eLife 2024; 13:e102666. [PMID: 39737863 PMCID: PMC11687934 DOI: 10.7554/elife.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.
Collapse
Affiliation(s)
- Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Benjamin Vermeer
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Sonja Schmid
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
4
|
Backe SJ, Mollapour M, Woodford MR. Saccharomyces cerevisiae as a tool for deciphering Hsp90 molecular chaperone function. Essays Biochem 2023; 67:781-795. [PMID: 36912239 PMCID: PMC10497724 DOI: 10.1042/ebc20220224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Yeast is a valuable model organism for their ease of genetic manipulation, rapid growth rate, and relative similarity to higher eukaryotes. Historically, Saccharomyces cerevisiae has played a major role in discovering the function of complex proteins and pathways that are important for human health and disease. Heat shock protein 90 (Hsp90) is a molecular chaperone responsible for the stabilization and activation of hundreds of integral members of the cellular signaling network. Much important structural and functional work, including many seminal discoveries in Hsp90 biology are the direct result of work carried out in S. cerevisiae. Here, we have provided a brief overview of the S. cerevisiae model system and described how this eukaryotic model organism has been successfully applied to the study of Hsp90 chaperone function.
Collapse
Affiliation(s)
- Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
5
|
Crunden JL, Diezmann S. Hsp90 interaction networks in fungi-tools and techniques. FEMS Yeast Res 2021; 21:6413543. [PMID: 34718512 PMCID: PMC8599792 DOI: 10.1093/femsyr/foab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) is a central regulator of cellular proteostasis. It stabilizes numerous proteins that are involved in fundamental processes of life, including cell growth, cell-cycle progression and the environmental response. In addition to stabilizing proteins, Hsp90 governs gene expression and controls the release of cryptic genetic variation. Given its central role in evolution and development, it is important to identify proteins and genes that interact with Hsp90. This requires sophisticated genetic and biochemical tools, including extensive mutant collections, suitable epitope tags, proteomics approaches and Hsp90-specific pharmacological inhibitors for chemogenomic screens. These usually only exist in model organisms, such as the yeast Saccharomyces cerevisiae. Yet, the importance of other fungal species, such as Candida albicans and Cryptococcus neoformans, as serious human pathogens accelerated the development of genetic tools to study their virulence and stress response pathways. These tools can also be exploited to map Hsp90 interaction networks. Here, we review tools and techniques for Hsp90 network mapping available in different fungi and provide a summary of existing mapping efforts. Mapping Hsp90 networks in fungal species spanning >500 million years of evolution provides a unique vantage point, allowing tracking of the evolutionary history of eukaryotic Hsp90 networks.
Collapse
Affiliation(s)
- Julia L Crunden
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephanie Diezmann
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
6
|
Sanchez J, Carter TR, Cohen MS, Blagg BSJ. Old and New Approaches to Target the Hsp90 Chaperone. Curr Cancer Drug Targets 2020; 20:253-270. [PMID: 31793427 DOI: 10.2174/1568009619666191202101330] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The 90-kDa heat shock protein (Hsp90) is a molecular chaperone that ensures cellular proteostasis by maintaining the folding, stabilization, activation, and degradation of over 400 client proteins. Hsp90 is not only critical for routine protein maintenance in healthy cells, but also during states of cellular stress, such as cancer and neurodegenerative diseases. Due to its ability to affect phosphorylation of numerous client proteins, inhibition of Hsp90 has been an attractive anticancer approach since the early 1990's, when researchers identified a druggable target on the amino terminus of Hsp90 for a variety of cancers. Since then, 17 Hsp90 inhibitors that target the chaperone's Nterminal domain, have entered clinical trials. None, however, have been approved thus far by the FDA as a cancer monotherapy. In these trials, a major limitation observed with Hsp90 inhibition at the N-terminal domain was dose-limiting toxicities and relatively poor pharmacokinetic profiles. Despite this, preclinical and clinical research continues to show that Hsp90 inhibitors effectively target cancer cell death and decrease tumor progression supporting the rationale for the development of novel Hsp90 inhibitors. Here, we present an in-depth overview of the Hsp90 inhibitors used in clinical trials. Finally, we present current shifts in the field related to targeting the carboxy-terminal domain of Hsp90 as well as to the development of isoform-selective inhibitors as a means to bypass the pitfalls of current Hsp90 inhibitors and improve clinical trial outcomes.
Collapse
Affiliation(s)
- Jackee Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trever R Carter
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Mark S Cohen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.,Department of Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
7
|
The Yeast Hsp70 Cochaperone Ydj1 Regulates Functional Distinction of Ssa Hsp70s in the Hsp90 Chaperoning Pathway. Genetics 2020; 215:683-698. [PMID: 32299842 DOI: 10.1534/genetics.120.303190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
Heat-shock protein (Hsp) 90 assists in the folding of diverse sets of client proteins including kinases and growth hormone receptors. Hsp70 plays a major role in many Hsp90 functions by interacting and modulating conformation of its substrates before being transferred to Hsp90s for final maturation. Each eukaryote contains multiple members of the Hsp70 family. However, the role of different Hsp70 isoforms in Hsp90 chaperoning actions remains unknown. Using v-Src as an Hsp90 substrate, we examined the role of each of the four yeast cytosolic Ssa Hsp70s in regulating Hsp90 functions. We show that the strain expressing stress-inducible Ssa3 or Ssa4, and the not constitutively expressed Ssa1 or Ssa2, as the sole Ssa Hsp70 isoform reduces v-Src-mediated growth defects. The study shows that although different Hsp70 isoforms interact similarly with Hsp90s, v-Src maturation is less efficient in strains expressing Ssa4 as the sole Hsp70. We further show that the functional distinction between Ssa2 and Ssa4 is regulated by its C-terminal domain. Further studies reveal that Ydj1, which is known to assist substrate transfer to Hsp70s, interacts relatively weakly with Ssa4 compared with Ssa2, which could be the basis for poor maturation of the Hsp90 client in cells expressing stress-inducible Ssa4 as the sole Ssa Hsp70. The study thus reveals a novel role of Ydj1 in determining the functional distinction among Hsp70 isoforms with respect to the Hsp90 chaperoning action.
Collapse
|
8
|
Morishima Y, Mehta RK, Yoshimura M, Lau M, Southworth DR, Lawrence TS, Pratt WB, Nyati MK, Osawa Y. Chaperone Activity and Dimerization Properties of Hsp90 α and Hsp90 β in Glucocorticoid Receptor Activation by the Multiprotein Hsp90/Hsp70-Dependent Chaperone Machinery. Mol Pharmacol 2018; 94:984-991. [PMID: 29941666 PMCID: PMC6064783 DOI: 10.1124/mol.118.112516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022] Open
Abstract
Several hundred proteins cycle into heterocomplexes with a dimer of the chaperone heat shock protein 90 (Hsp90), regulating their activity and turnover. There are two isoforms of Hsp90, Hsp90α and Hsp90β, and their relative chaperone activities and composition in these client protein•Hsp90 heterocomplexes has not been determined. Here, we examined the activity of human Hsp90α and Hsp90β in a purified five-protein chaperone machinery that assembles glucocorticoid receptor (GR)•Hsp90 heterocomplexes to generate high-affinity steroid-binding activity. We found that human Hsp90α and Hsp90β have equivalent chaperone activities, and when mixed together in this assay, they formed only GR•Hsp90αα and GR•Hsp90ββ homodimers and no GR•Hsp90αβ heterodimers. In contrast, GR•Hsp90 heterocomplexes formed in human embryonic kidney (HEK) cells also contain GR•Hsp90αβ heterodimers. The formation of GR•Hsp90αβ heterodimers in HEK cells probably reflects the longer time permitted for exchange to form Hsp90αβ heterodimers in the cell versus in the cell-free assembly conditions. This purified GR-activating chaperone machinery can be used to determine how modifications of Hsp90 affect its chaperone activity. To that effect, we have tested whether the unique phosphorylation of Hsp90α at threonines 5 and 7 that occurs during DNA damage repair affects its chaperone activity. We showed that the phosphomimetic mutant Hsp90α T5/7D has the same intrinsic chaperone activity as wild-type human Hsp90α in activation of GR steroid-binding activity by the five-protein machinery, supporting the conclusion that T5/7 phosphorylation does not affect Hsp90α chaperone activity.
Collapse
Affiliation(s)
- Yoshihiro Morishima
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Ranjit K Mehta
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Miyako Yoshimura
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Miranda Lau
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Daniel R Southworth
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Theodore S Lawrence
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - William B Pratt
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Mukesh K Nyati
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Yoichi Osawa
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| |
Collapse
|
9
|
A switch point in the molecular chaperone Hsp90 responding to client interaction. Nat Commun 2018; 9:1472. [PMID: 29662162 PMCID: PMC5902578 DOI: 10.1038/s41467-018-03946-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a dimeric molecular chaperone that undergoes large conformational changes during its functional cycle. It has been established that conformational switch points exist in the N-terminal (Hsp90-N) and C-terminal (Hsp90-C) domains of Hsp90, however information for switch points in the large middle-domain (Hsp90-M) is scarce. Here we report on a tryptophan residue in Hsp90-M as a new type of switch point. Our study shows that this conserved tryptophan senses the interaction of Hsp90 with a stringent client protein and transfers this information via a cation–π interaction with a neighboring lysine. Mutations at this position hamper the communication between domains and the ability of a client protein to affect the Hsp90 cycle. The residue thus allows Hsp90 to transmit information on the binding of a client from Hsp90-M to Hsp90-N which is important for progression of the conformational cycle and the efficient processing of client proteins. The heat shock protein 90 (Hsp90) chaperone undergoes large conformational changes during its functional cycle. Here the authors combine in vivo, biochemical, biophysical and computational approaches and provide insights into the allosteric regulation of Hsp90 by identifying and characterizing a switch point in the Hsp90 middle domain.
Collapse
|
10
|
Jin Y, Hoxie RS, Street TO. Molecular mechanism of bacterial Hsp90 pH-dependent ATPase activity. Protein Sci 2017; 26:1206-1213. [PMID: 28383119 DOI: 10.1002/pro.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 11/08/2022]
Abstract
Hsp90 is a dimeric molecular chaperone that undergoes an essential and highly regulated open-to-closed-to-open conformational cycle upon ATP binding and hydrolysis. Although it has been established that a large energy barrier to closure is responsible for Hsp90's low ATP hydrolysis rate, the specific molecular contacts that create this energy barrier are not known. Here we discover that bacterial Hsp90 (HtpG) has a pH-dependent ATPase activity that is unique among other Hsp90 homologs. The underlying mechanism is a conformation-specific electrostatic interaction between a single histidine, H255, and bound ATP. H255 stabilizes ATP only while HtpG adopts a catalytically inactive open configuration, resulting in a striking anti-correlation between nucleotide binding affinity and chaperone activity over a wide range of pH. Linkage analysis reveals that the H255-ATP salt bridge contributes 1.5 kcal/mol to the energy barrier of closure. This energetic contribution is structurally asymmetric, whereby only one H255-ATP salt-bridge per dimer of HtpG controls ATPase activation. We find that a similar electrostatic mechanism regulates the ATPase of the endoplasmic reticulum Hsp90, and that pH-dependent activity can be engineered into eukaryotic cytosolic Hsp90. These results reveal site-specific energetic information about an evolutionarily conserved conformational landscape that controls Hsp90 ATPase activity.
Collapse
Affiliation(s)
- Yi Jin
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| | - Reyal S Hoxie
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| |
Collapse
|
11
|
Maharaj KA, Que NLS, Hong F, Huck JD, Gill SK, Wu S, Li Z, Gewirth DT. Exploring the Functional Complementation between Grp94 and Hsp90. PLoS One 2016; 11:e0166271. [PMID: 27824935 PMCID: PMC5100913 DOI: 10.1371/journal.pone.0166271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 01/02/2023] Open
Abstract
Grp94 and Hsp90 are the ER and cytoplasmic paralog members, respectively, of the hsp90 family of molecular chaperones. The structural and biochemical differences between Hsp90 and Grp94 that allow each paralog to efficiently chaperone its particular set of clients are poorly understood. The two paralogs exhibit a high degree of sequence similarity, yet also display significant differences in their quaternary conformations and ATPase activity. In order to identify the structural elements that distinguish Grp94 from Hsp90, we characterized the similarities and differences between the two proteins by testing the ability of Hsp90/Grp94 chimeras to functionally substitute for the wild-type chaperones in vivo. We show that the N-terminal domain or the combination of the second lobe of the Middle domain plus the C-terminal domain of Grp94 can functionally substitute for their yeast Hsp90 counterparts but that the equivalent Hsp90 domains cannot functionally replace their counterparts in Grp94. These results also identify the interface between the Middle and C-terminal domains as an important structural unit within the Hsp90 family.
Collapse
Affiliation(s)
- Kevin A. Maharaj
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
- Department of Structural Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Nanette L. S. Que
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
| | - Feng Hong
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John D. Huck
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
- Department of Structural Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Sabrina K. Gill
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
| | - Shuang Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Daniel T. Gewirth
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
- Department of Structural Biology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Calpain Genetic Disruption and HSP90 Inhibition Combine To Attenuate Mammary Tumorigenesis. Mol Cell Biol 2016; 36:2078-88. [PMID: 27215381 DOI: 10.1128/mcb.01062-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Calpain is an intracellular Ca(2+)-regulated protease system whose substrates include proteins involved in proliferation, survival, migration, invasion, and sensitivity to therapeutic drugs. Genetic disruption of calpain attenuated the tumorigenic potential of breast cancer cells and hypersensitized cells to 17AAG, an inhibitor of the molecular chaperone HSP90. Calpain-1 or -2 overexpression rendered cells resistant to 17AAG, whereas downregulation or inhibition of calpain-1/2 led to increased cell death in multiple breast cancer cell lines, including models of HER2(+) (SKBR3) and triple-negative basal-cell-like (MDA-MB-231) breast cancer. In an MDA-MB-231 orthotopic xenograft model, calpain knockdown or 17AAG treatment independently attenuated tumor growth and metastasis, while the combination was most effective. Calpain knockdown was associated with increased 17AAG-induced degradation of the HSP90 clients cyclin D1 and AKT and multidrug resistance protein 2, which correlated with increased expression of antimitogenic p27(KIP1) and proapoptotic BIM proteins. Like other therapeutics, 17AAG can be effluxed by specific ABC transporters. Calpain expression positively correlated with the expression of P glycoprotein in mouse embryonic fibroblasts. Importantly, we show that calpain affects ABC transporter function and efflux of clinically relevant doxorubicin. These observations provide a compelling rationale for exploring the combination of calpain inhibition with new or existing cancer therapeutics.
Collapse
|
13
|
Shenkman BS, Nemirovskaya TL, Lomonosova YN. No-dependent signaling pathways in unloaded skeletal muscle. Front Physiol 2015; 6:298. [PMID: 26582991 PMCID: PMC4628111 DOI: 10.3389/fphys.2015.00298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/09/2015] [Indexed: 01/22/2023] Open
Abstract
The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e., plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS) and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle.
Collapse
Affiliation(s)
- Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia
| | - Tatiana L Nemirovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Fundamental Medicine, Lomonosov Moscow State University Moscow, Russia
| | - Yulia N Lomonosova
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
14
|
Sun Y, Sheng Y, Bai L, Zhang Y, Xiao Y, Xiao L, Tan Y, Shen Y. Characterizing heat shock protein 90 gene of Apolygus lucorum (Meyer-Dür) and its expression in response to different temperature and pesticide stresses. Cell Stress Chaperones 2014; 19:725-39. [PMID: 24623316 PMCID: PMC4147072 DOI: 10.1007/s12192-014-0500-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/27/2022] Open
Abstract
In this study, we cloned a full-length cDNA of heat shock protein (HSP) gene of Apolygus lucorum (Meyer-Dür) [AlHSP90, KC109781] and investigated its expression in response to temperature and pesticide stresses. The open reading frame (ORF) of AlHSP90 is 2,169 bp in length, encoding a 722 amino acid polypeptide with a predicted molecular weight of 82.99 kDa. Transcriptional and translational expression profiles of AlHSP90 under extreme temperature or pesticide stresses were examined by fluorescent real-time quantitative PCR and Western blot. Results showed that the expression profiles of AlHSP90 protein were in high agreement with those of AlHSP90 RNA and indicated that AlHSP90 was not only an important gene for A. lucorum adults in response to extremely high temperature, but also involved in the resistance or tolerance to cyhalothrin, imidacloprid, chlorpyrifos, and emamectin benzoate, especially for female adults to emamectin benzoate and for male adults to cyhalothrin. Transcriptional results of AlHSP90 also confirmed that AlHSP90 was an important gene involved in the resistance or tolerance to both temperature and pesticide stresses. In addition, our study also revealed that ∼24 °C may be the suitable temperature range for A. lucorum survival, which is also confirmed by the results of the expression of AlHSP90, the nymph mortality, and the intrinsic rate of increase (r m) when A. lucorum is reared at six different temperatures. Therefore, these studies are significant in elucidating the AlHSP90 in response to temperature and pesticide stresses and would provide guidance for A. lucorum management with different pesticides or temperatures in fields.
Collapse
Affiliation(s)
- Yang Sun
- />Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- />Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yang Sheng
- />Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Lixin Bai
- />Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yongjun Zhang
- />Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yingfang Xiao
- />Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL USA 32703
| | - Liubin Xiao
- />Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yongan Tan
- />Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Youmi Shen
- />Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| |
Collapse
|
15
|
Ciglia E, Vergin J, Reimann S, Smits SHJ, Schmitt L, Groth G, Gohlke H. Resolving hot spots in the C-terminal dimerization domain that determine the stability of the molecular chaperone Hsp90. PLoS One 2014; 9:e96031. [PMID: 24760083 PMCID: PMC3997499 DOI: 10.1371/journal.pone.0096031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/02/2014] [Indexed: 12/24/2022] Open
Abstract
Human heat shock protein of 90 kDa (hHsp90) is a homodimer that has an essential role in facilitating malignant transformation at the molecular level. Inhibiting hHsp90 function is a validated approach for treating different types of tumors. Inhibiting the dimerization of hHsp90 via its C-terminal domain (CTD) should provide a novel way to therapeutically interfere with hHsp90 function. Here, we predicted hot spot residues that cluster in the CTD dimerization interface by a structural decomposition of the effective energy of binding computed by the MM-GBSA approach and confirmed these predictions using in silico alanine scanning with DrugScore(PPI). Mutation of these residues to alanine caused a significant decrease in the melting temperature according to differential scanning fluorimetry experiments, indicating a reduced stability of the mutant hHsp90 complexes. Size exclusion chromatography and multi-angle light scattering studies demonstrate that the reduced stability of the mutant hHsp90 correlates with a lower complex stoichiometry due to the disruption of the dimerization interface. These results suggest that the identified hot spot residues can be used as a pharmacophoric template for identifying and designing small-molecule inhibitors of hHsp90 dimerization.
Collapse
Affiliation(s)
- Emanuele Ciglia
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Janina Vergin
- Institute for Biochemical Plant Physiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Georg Groth
- Institute for Biochemical Plant Physiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
16
|
Abstract
Hsp90 is a major molecular chaperone that is expressed abundantly and plays a pivotal role in assisting correct folding and functionality of its client proteins in cells. The Hsp90 client proteins include a wide variety of signal transducing molecules such as protein kinases and steroid hormone receptors. Cancer is a complex disease, but most types of human cancer share common hallmarks, including self-sufficiency in growth signals, insensitivity to growth-inhibitory mechanism, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. A surprisingly large number of Hsp90-client proteins play crucial roles in establishing cancer cell hallmarks. We start the review by describing the structure and function of Hsp90 since conformational changes during the ATPase cycle of Hsp90 are closely related to its function. Many co-chaperones, including Hop, p23, Cdc37, Aha1, and PP5, work together with Hsp90 by modulating the chaperone machinery. Post-translational modifications of Hsp90 and its cochaperones are vital for their function. Many tumor-related Hsp90-client proteins, including signaling kinases, steroid hormone receptors, p53, and telomerase, are described. Hsp90 and its co-chaperones are required for the function of these tumor-promoting client proteins; therefore, inhibition of Hsp90 by specific inhibitors such as geldanamycin and its derivatives attenuates the tumor progression. Hsp90 inhibitors can be potential and effective cancer chemotherapeutic drugs with a unique profile and have been examined in clinical trials. We describe possible mechanisms why Hsp90 inhibitors show selectivity to cancer cells even though Hsp90 is essential also for normal cells. Finally, we discuss the "Hsp90-addiction" of cancer cells, and suggest a role for Hsp90 in tumor evolution.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell & Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
17
|
Miyata Y, Nakamoto H, Neckers L. The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 2013; 19:347-65. [PMID: 22920906 DOI: 10.2174/138161213804143725] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/15/2012] [Indexed: 01/22/2023]
Abstract
Hsp90 is a major molecular chaperone that is expressed abundantly and plays a pivotal role in assisting correct folding and functionality of its client proteins in cells. The Hsp90 client proteins include a wide variety of signal transducing molecules such as protein kinases and steroid hormone receptors. Cancer is a complex disease, but most types of human cancer share common hallmarks, including self-sufficiency in growth signals, insensitivity to growth-inhibitory mechanism, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. A surprisingly large number of Hsp90-client proteins play crucial roles in establishing cancer cell hallmarks. We start the review by describing the structure and function of Hsp90 since conformational changes during the ATPase cycle of Hsp90 are closely related to its function. Many co-chaperones, including Hop, p23, Cdc37, Aha1, and PP5, work together with Hsp90 by modulating the chaperone machinery. Post-translational modifications of Hsp90 and its cochaperones are vital for their function. Many tumor-related Hsp90-client proteins, including signaling kinases, steroid hormone receptors, p53, and telomerase, are described. Hsp90 and its co-chaperones are required for the function of these tumor-promoting client proteins; therefore, inhibition of Hsp90 by specific inhibitors such as geldanamycin and its derivatives attenuates the tumor progression. Hsp90 inhibitors can be potential and effective cancer chemotherapeutic drugs with a unique profile and have been examined in clinical trials. We describe possible mechanisms why Hsp90 inhibitors show selectivity to cancer cells even though Hsp90 is essential also for normal cells. Finally, we discuss the "Hsp90-addiction" of cancer cells, and suggest a role for Hsp90 in tumor evolution.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell & Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
18
|
Ikebe E, Kawaguchi A, Tezuka K, Taguchi S, Hirose S, Matsumoto T, Mitsui T, Senba K, Nishizono A, Hori M, Hasegawa H, Yamada Y, Ueno T, Tanaka Y, Sawa H, Hall W, Minami Y, Jeang KT, Ogata M, Morishita K, Hasegawa H, Fujisawa J, Iha H. Oral administration of an HSP90 inhibitor, 17-DMAG, intervenes tumor-cell infiltration into multiple organs and improves survival period for ATL model mice. Blood Cancer J 2013; 3:e132. [PMID: 23955587 PMCID: PMC3763384 DOI: 10.1038/bcj.2013.30] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 12/29/2022] Open
Abstract
In the peripheral blood leukocytes (PBLs) from the carriers of the human T-lymphotropic virus type-1 (HTLV-1) or the patients with adult T-cell leukemia (ATL), nuclear factor kappaB (NF-κB)-mediated antiapoptotic signals are constitutively activated primarily by the HTLV-1-encoded oncoprotein Tax. Tax interacts with the I κB kinase regulatory subunit NEMO (NF-κB essential modulator) to activate NF-κB, and this interaction is maintained in part by a molecular chaperone, heat-shock protein 90 (HSP90), and its co-chaperone cell division cycle 37 (CDC37). The antibiotic geldanamycin (GA) inhibits HSP90's ATP binding for its proper interaction with client proteins. Administration of a novel water-soluble and less toxic GA derivative, 17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride (17-DMAG), to Tax-expressing ATL-transformed cell lines, C8166 and MT4, induced significant degradation of Tax. 17-DMAG also facilitated growth arrest and cellular apoptosis to C8166 and MT4 and other ATL cell lines, although this treatment has no apparent effects on normal PBLs. 17-DMAG also downregulated Tax-mediated intracellular signals including the activation of NF-κB, activator protein 1 or HTLV-1 long terminal repeat in Tax-transfected HEK293 cells. Oral administration of 17-DMAG to ATL model mice xenografted with lymphomatous transgenic Lck-Tax (Lck proximal promoter-driven Tax transgene) cells or HTLV-1-producing tumor cells dramatically attenuated aggressive infiltration into multiple organs, inhibited de novo viral production and improved survival period. These observations identified 17-DMAG as a promising candidate for the prevention of ATL progression.
Collapse
Affiliation(s)
- E Ikebe
- Department of Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hill JA, Ammar R, Torti D, Nislow C, Cowen LE. Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations. PLoS Genet 2013; 9:e1003390. [PMID: 23593013 PMCID: PMC3617151 DOI: 10.1371/journal.pgen.1003390] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/30/2013] [Indexed: 12/19/2022] Open
Abstract
The evolution of drug resistance in fungal pathogens compromises the efficacy of the limited number of antifungal drugs. Drug combinations have emerged as a powerful strategy to enhance antifungal efficacy and abrogate drug resistance, but the impact on the evolution of drug resistance remains largely unexplored. Targeting the molecular chaperone Hsp90 or its downstream effector, the protein phosphatase calcineurin, abrogates resistance to the most widely deployed antifungals, the azoles, which inhibit ergosterol biosynthesis. Here, we evolved experimental populations of the model yeast Saccharomyces cerevisiae and the leading human fungal pathogen Candida albicans with azole and an inhibitor of Hsp90, geldanamycin, or calcineurin, FK506. To recapitulate a clinical context where Hsp90 or calcineurin inhibitors could be utilized in combination with azoles to render resistant pathogens responsive to treatment, the evolution experiment was initiated with strains that are resistant to azoles in a manner that depends on Hsp90 and calcineurin. Of the 290 lineages initiated, most went extinct, yet 14 evolved resistance to the drug combination. Drug target mutations that conferred resistance to geldanamycin or FK506 were identified and validated in five evolved lineages. Whole-genome sequencing identified mutations in a gene encoding a transcriptional activator of drug efflux pumps, PDR1, and a gene encoding a transcriptional repressor of ergosterol biosynthesis genes, MOT3, that transformed azole resistance of two lineages from dependent on calcineurin to independent of this regulator. Resistance also arose by mutation that truncated the catalytic subunit of calcineurin, and by mutation in LCB1, encoding a sphingolipid biosynthetic enzyme. Genome analysis revealed extensive aneuploidy in four of the C. albicans lineages. Thus, we identify molecular determinants of the transition of azole resistance from calcineurin dependence to independence and establish multiple mechanisms by which resistance to drug combinations evolves, providing a foundation for predicting and preventing the evolution of drug resistance. Fungal infections are a leading cause of mortality worldwide and are difficult to treat due to the limited number of antifungal drugs, whose effectiveness is compromised by the emergence of drug resistance. A powerful strategy to combat drug resistance is combination therapy. Inhibiting the molecular chaperone Hsp90 or its downstream effector calcineurin cripples fungal stress responses and abrogates drug resistance. Here we provide the first analysis of the genetic and genomic changes that underpin the evolution of resistance to antifungal drug combinations in the leading human fungal pathogen, Candida albicans, and model yeast, Saccharomyces cerevisiae. We evolved experimental populations with combinations of inhibitors of Hsp90 or calcineurin and the most widely used antifungal in the clinic, the azoles, which inhibit ergosterol biosynthesis. We harnessed whole-genome sequencing to identify diverse resistance mutations among the 14 lineages that evolved resistance to the drug combination. These included mutations in genes encoding the drug targets, a transcriptional regulator of multidrug transporters, a transcriptional repressor of ergosterol biosynthesis enzymes, and a regulator of sphingolipid biosynthesis. We also identified extensive aneuploidies in several C. albicans lineages. Our study reveals multiple mechanisms by which resistance to drug combination can evolve, suggesting new strategies to combat drug resistance.
Collapse
Affiliation(s)
- Jessica A. Hill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ron Ammar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Dax Torti
- Donnelly Sequencing Centre, University of Toronto, Toronto, Ontario, Canada
| | - Corey Nislow
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Ho N, Li A, Li S, Zhang H. Heat shock protein 90 and role of its chemical inhibitors in treatment of hematologic malignancies. Pharmaceuticals (Basel) 2012; 5:779-801. [PMID: 24280675 PMCID: PMC3763672 DOI: 10.3390/ph5080779] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a conserved and constitutively expressed molecular chaperone and it has been shown to stabilize oncoproteins and facilitate cancer development. Hsp90 has been considered as a therapeutic target for cancers and three classes of Hsp90 inhibitors have been developed: (1) benzoquinone ansamycin and its derivatives, (2) radicicol and its derivates, and (3) small synthetic inhibitors. The roles of these inhibitors in cancer treatment have been studied in laboratories and clinical trials, and some encouraging results have been obtained. Interestingly, targeting of Hsp90 has been shown to be effective in inhibition of cancer stem cells responsible for leukemia initiation and progression, providing a strategy for finding a cure. Because cancer stem cells are well defined in some human leukemias, we will focus on hematologic malignancies in this review.
Collapse
Affiliation(s)
- Ngoc Ho
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
21
|
Knorr E, Vilcinskas A. Post-embryonic functions of HSP90 in Tribolium castaneum include the regulation of compound eye development. Dev Genes Evol 2011; 221:357-62. [PMID: 22081039 DOI: 10.1007/s00427-011-0379-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
Heat shock protein 90 (HSP90) belongs to a family of conserved chaperons with multiple roles in stress adaptation and development, including spermatogenesis, oogenesis and embryogenesis in insects. In the red flour beetle, Tribolium castaneum, we found that HSP90 is transiently upregulated during larval development, in prepupae, in female pupae and in adults, suggesting multiple post-embryonic roles. We found that silencing HSP90 expression by RNA interference was lethal within 10 days at all developmental stages. Titration experiments revealed that larvae were more susceptible than pupae or beetles. Interestingly, HSP90 silencing in final instar larvae resulted in abnormal pupal phenotypes lacking compound eyes and exhibiting prepupal features, suggesting developmental arrest at the prepupal stage. Our results suggest that HSP90 functions can be expanded beyond the known ones in insect embryogenesis to include roles in post-embryonic development such as the regulation of compound eye development.
Collapse
Affiliation(s)
- Eileen Knorr
- Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | |
Collapse
|
22
|
Patterson C, Portbury A, Schisler JC, Willis MS. Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ Res 2011; 109:453-62. [PMID: 21817165 PMCID: PMC3151485 DOI: 10.1161/circresaha.110.239749] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiac hypertrophy develops most commonly in response to hypertension and is an independent risk factor for the development of heart failure. The mechanisms by which cardiac hypertrophy may be reversed to reduce this risk have not been fully determined to the point where mechanism-specific therapies have been developed. Recently, proteases in the calpain family have been implicated in the regulation of the development of cardiac hypertrophy in preclinical animal models. In this review, we summarize the molecular mechanisms by which calpain inhibition has been shown to modulate the development of cardiac (specifically ventricular) hypertrophy. The context within which calpain inhibition might be developed for therapeutic intervention of cardiac hypertrophy is then discussed.
Collapse
Affiliation(s)
- Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Departments of Medicine, Pharmacology, Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrea Portbury
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | | | - Monte S. Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Hildenbrand ZL, Molugu SK, Herrera N, Ramirez C, Xiao C, Bernal RA. Hsp90 can accommodate the simultaneous binding of the FKBP52 and HOP proteins. Oncotarget 2011; 2:43-58. [PMID: 21378414 PMCID: PMC3248148 DOI: 10.18632/oncotarget.225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The regulation of steroidogenic hormone receptor-mediated activity plays an important role in the development of hormone-dependent cancers. For example, during prostate carcinogenesis, the regulatory function played by the androgen receptor is often converted from a growth suppressor to an oncogene thus promoting prostate cancer cell survival and eventual metastasis. Within the cytoplasm, steroid hormone receptor activity is regulated by the Hsp90 chaperone in conjunction with a series of co-chaperone proteins. Collectively, Hsp90 and its binding associates form a large heteromeric complex that scaffold the fully mature receptor for binding with the respective hormone. To date our understanding of the interactions between Hsp90 with the various TPR domain-containing co-chaperone proteins is limited due to a lack of available structural information. Here we present the stable formation of Hsp902-FKBP521- HOP2 and Hsp902-FKBP521-p232-HOP2 complexes as detected by immunoprecipitation, time course dynamic light scattering and electron microscopy. The simultaneous binding of FKBP52 and HOP to the Hsp90 dimer provide direct evidence of a novel chaperone sub-complex that likely plays a transient role in the regulation of the fully mature steroid hormone receptor.
Collapse
Affiliation(s)
- Zacariah L Hildenbrand
- Department of Chemistry, University of Texas at El Paso, 500 W. University Ave, El Paso, Texas 79968, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Background The human 90-kDa heat shock protein (HSP90) functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood. Principal Findings Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90. Conclusions While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis.
Collapse
|
25
|
Grad I, Cederroth CR, Walicki J, Grey C, Barluenga S, Winssinger N, De Massy B, Nef S, Picard D. The molecular chaperone Hsp90α is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One 2010; 5:e15770. [PMID: 21209834 PMCID: PMC3013136 DOI: 10.1371/journal.pone.0015770] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/27/2010] [Indexed: 11/18/2022] Open
Abstract
The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90β. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90β die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90β levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects.
Collapse
Affiliation(s)
- Iwona Grad
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland
| | - Christopher R. Cederroth
- Département de Médecine Génétique et Développement, Université de Genève, Centre Médical Universitaire, Genève, Switzerland
| | - Joël Walicki
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland
| | - Corinne Grey
- Institut de Génétique Humaine, IGH – CNRS, Montpellier, France
| | - Sofia Barluenga
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, Strasbourg, France
| | - Nicolas Winssinger
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, Strasbourg, France
| | | | - Serge Nef
- Département de Médecine Génétique et Développement, Université de Genève, Centre Médical Universitaire, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Abstract
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that facilitates the maturation of a wide range of proteins (known as clients). Clients are enriched in signal transducers, including kinases and transcription factors. Therefore, HSP90 regulates diverse cellular functions and exerts marked effects on normal biology, disease and evolutionary processes. Recent structural and functional analyses have provided new insights on the transcriptional and biochemical regulation of HSP90 and the structural dynamics it uses to act on a diverse client repertoire. Comprehensive understanding of how HSP90 functions promises not only to provide new avenues for therapeutic intervention, but to shed light on fundamental biological questions.
Collapse
|
27
|
Yi F, Doudevski I, Regan L. HOP is a monomer: investigation of the oligomeric state of the co-chaperone HOP. Protein Sci 2010; 19:19-25. [PMID: 19866486 DOI: 10.1002/pro.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The co-chaperone Hsp70-Hsp90 organizing protein (HOP) plays a central role in protein folding in vivo, binding to both Hsp70 and Hsp90 and bringing them together in a functional complex. Reports in the literature concerning the oligomeric state of HOP have been inconsistent-is it a monomer, dimer, or higher order oligomer? Knowing the oligomeric state of HOP is important, because it places limits on the number and types of multiprotein complexes that can form during the folding cycle. Thus, the number of feasible models is simplified. Here, we explicitly investigate the oligomeric state of HOP using three complementary methods: gel filtration chromatography, sedimentation equilibrium analytical ultracentrifugation (AUC), and an in vivo coexpression assay. We find that HOP does not behave like a monomeric globular protein on gel filtration. Rather its behavior is consistent with it being either an elongated monomer or a dimer. We follow-up on these studies using sedimentation equilibrium AUC, which separates on the basis of molecular weight (MW), independent of shape. Sedimentation equilibrium AUC clearly shows that HOP is a monomer, with no indication of higher MW species. Finally, we use an in vivo coexpression assay that also supports the conclusion that HOP is a monomer.
Collapse
Affiliation(s)
- Fang Yi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
28
|
Moullintraffort L, Bruneaux M, Nazabal A, Allegro D, Giudice E, Zal F, Peyrot V, Barbier P, Thomas D, Garnier C. Biochemical and biophysical characterization of the Mg2+-induced 90-kDa heat shock protein oligomers. J Biol Chem 2010; 285:15100-15110. [PMID: 20228408 DOI: 10.1074/jbc.m109.094698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The 90-kDa heat shock protein (Hsp90) is involved in the regulation and activation of numerous client proteins essential for diverse functions such as cell growth and differentiation. Although the function of cytosolic Hsp90 is dependent on a battery of cochaperone proteins regulating both its ATPase activity and its interaction with client proteins, little is known about the real Hsp90 molecular mechanism. Besides its highly flexible dimeric state, Hsp90 is able to self-oligomerize in the presence of divalent cations or under heat shock. In addition to dimers, oligomers exhibit a chaperone activity. In this work, we focused on Mg(2+)-induced oligomers that we named Type I, Type II, and Type III in increasing molecular mass order. After stabilization of these quaternary structures, we optimized a purification protocol. Combining analytical ultracentrifugation, size exclusion chromatography coupled to multiangle laser light scattering, and high mass matrix-assisted laser desorption/ionization time of flight mass spectrometry, we determined biochemical and biophysical characteristics of each Hsp90 oligomer. We demonstrate that Type I oligomer is a tetramer, and Type II is an hexamer, whereas Type III is a dodecamer. These even-numbered structures demonstrate that the building brick for oligomerization is the dimer up to the Type II, whereas Type III probably results from the association of two Type II. Moreover, the Type II oligomer structure, studied by negative stain transmission electron microscopy tomography, exhibits a "nest-like" shape that forms a "cozy chaperoning chamber" where the client protein folding/protection could occur.
Collapse
Affiliation(s)
- Laura Moullintraffort
- Structure et Dynamique des Macromolecules, UMR-CNRS 6026, Université de Rennes 1, 35042 Rennes Cedex France
| | - Matthieu Bruneaux
- Equipe Ecophysiologie des Invertébrés Marins des Milieux Extrêmes, Université Pierre et Marie Curie Paris VI, CNRS UMR 7144, Station Biologique de Roscoff, B.P. 74, 29682 Roscoff, France
| | | | - Diane Allegro
- CRO2 UMR Inserm 911, Université de la Méditerranée, Faculté de Pharmacie, 13385 Marseille Cedex 5, France
| | - Emmanuel Giudice
- Structure et Dynamique des Macromolecules, UMR-CNRS 6026, Université de Rennes 1, 35042 Rennes Cedex France
| | - Franck Zal
- Equipe Ecophysiologie des Invertébrés Marins des Milieux Extrêmes, Université Pierre et Marie Curie Paris VI, CNRS UMR 7144, Station Biologique de Roscoff, B.P. 74, 29682 Roscoff, France
| | - Vincent Peyrot
- CRO2 UMR Inserm 911, Université de la Méditerranée, Faculté de Pharmacie, 13385 Marseille Cedex 5, France
| | | | - Daniel Thomas
- Structure et Dynamique des Macromolecules, UMR-CNRS 6026, Université de Rennes 1, 35042 Rennes Cedex France
| | - Cyrille Garnier
- Structure et Dynamique des Macromolecules, UMR-CNRS 6026, Université de Rennes 1, 35042 Rennes Cedex France.
| |
Collapse
|
29
|
Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 2009; 16:287-93. [PMID: 19234467 DOI: 10.1038/nsmb.1565] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 01/22/2009] [Indexed: 12/12/2022]
Abstract
The molecular chaperone heat-shock protein 90 (Hsp90) couples ATP hydrolysis to conformational changes driving a reaction cycle that is required for substrate activation. Recent structural analysis provided snapshots of the open and closed states of Hsp90, which mark the starting and end points of these changes. Using fluorescence resonance energy transfer (FRET), we dissected the cycle kinetically and identified the intermediates on the pathway. The conformational transitions are orders of magnitude slower than the ATP-hydrolysis step and thus are the limiting events during the reaction cycle. Furthermore, these structural changes can be tightly regulated by cochaperones, being completely inhibited by Sti1 or accelerated by Aha1. In fact, even in the absence of nucleotide, Aha1 induces Hsp90 rearrangements that speed up the conformational cycle. This comprehensive reconstitution of the Hsp90 cycle defines a controlled progression through distinct intermediates that can be modulated by conformation-sensitive cochaperones.
Collapse
|
30
|
Kobayakawa T, Yamada SI, Mizuno A, Nemoto TK. Substitution of only two residues of human Hsp90alpha causes impeded dimerization of Hsp90beta. Cell Stress Chaperones 2008; 13:97-104. [PMID: 18347946 PMCID: PMC2666221 DOI: 10.1007/s12192-008-0017-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/07/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022] Open
Abstract
Two isoforms of the 90-kDa heat-shock protein (Hsp90), i.e., Hsp90alpha and Hsp90beta, are expressed in the cytosol of mammalian cells. Although Hsp90 predominantly exists as a dimer, the dimer-forming potential of the beta isoform of human and mouse Hsp90 is less than that of the alpha isoform. The 16 amino acid substitutions located in the 561-685 amino acid region of the C-terminal dimerization domain should be responsible for this impeded dimerization of Hsp90beta (Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T, Yokoyama K. Eur J Biochem 233: 1-8, 1995). The present study was performed to define the amino acid substitutions that cause the impeded dimerization of Hsp90beta. Bacterial two-hybrid analysis revealed that among the 16 amino acids, the conversion from Ala(558) of Hsp90beta to Thr(566) of Hsp90alpha and that from Met(621) of Hsp90beta to Ala(629) of Hsp90alpha most efficiently reversed the dimeric interaction, and that the inverse changes from those of Hsp90alpha to Hsp90beta primarily explained the impeded dimerization of Hsp90beta We conclude that taken together, the conversion of Thr(566) and Ala(629) of Hsp90alpha to Ala(558) and Met(621) is primarily responsible for impeded dimerization of Hsp90beta.
Collapse
Affiliation(s)
- Takeshi Kobayakawa
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| | - Shin-ichi Yamada
- Department of Oral and Maxillofacial Surgery, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| | - Akio Mizuno
- Department of Oral and Maxillofacial Surgery, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| | - Takayuki K. Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| |
Collapse
|
31
|
Milton CC, Batterham P, McKenzie JA, Hoffmann AA. Effect of E(sev) and Su(Raf) Hsp83 mutants and trans-heterozygotes on bristle trait means and variation in Drosophila melanogaster. Genetics 2006; 171:119-30. [PMID: 16183907 PMCID: PMC1456505 DOI: 10.1534/genetics.104.038463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Hsp90 protein encoded by the Hsp83 gene is required for the development of many traits in Drosophila. Hsp83 is also thought to play a role in the expression of phenotypic and genetic variability for subsequent selection and evolutionary change. Here we examine the impact of different E(sev) and Su(Raf) Hsp83 mutants on means and phenotypic variances of invariant and variable bristle traits. One of the mutants influenced the normally invariant thoracic bristle number, while none affected invariant scutellar bristle number. E(sev) alleles consistently influenced variable bristle traits while there were fewer effects of the Su(Raf) alleles. For the variable traits, none of the Hsp83 alleles had any effect on phenotypic variance, environmental variance, or developmental stability of the bristle traits. When alleles were combined in trans-heterozygotes, there were both cumulative and complementary effects on thoracic and variable bristle trait numbers, depending on the allelic combination. Overall, the results suggest that Hsp83 mutants do not have detectable effects on the phenotypic or environmental variance of bristle traits and that complementation of E(sev) and Su(Raf) Hsp83 mutants can extend to thoracic bristles as well as previously reported effects on viability. Some allelic combinations lead to more severe effects on variable bristle trait means than do single Hsp83 mutations.
Collapse
Affiliation(s)
- Claire C Milton
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
32
|
Kishimoto J, Fukuma Y, Mizuno A, Nemoto TK. Identification of the pentapeptide constituting a dominant epitope common to all eukaryotic heat shock protein 90 molecular chaperones. Cell Stress Chaperones 2005; 10:296-311. [PMID: 16333984 PMCID: PMC1283875 DOI: 10.1379/csc-129r.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 07/01/2005] [Accepted: 07/05/2005] [Indexed: 01/13/2023] Open
Abstract
We previously reported that, in human heat shock protein (Hsp) 90 (hHsp90), there are 4 highly immunogenic sites, designated sites Ia, Ib, Ic, and II. This study was performed to further characterize their epitopes and to identify the epitope that is potentially common to all members of the Hsp90 family. Panning of a bacterial library carrying randomized dodecapeptides revealed that Glu251-Ser-X-Asp254 constituted site Ia and Pro295-Ile-Trp-Thr-Arg299, site Ic. Site II (Asp701-Pro717) was composed of several epitopes. When 19 anti-hHsp90 monoclonal antibodies (mAbs) were subjected to immunoblotting against recombinant forms of 7 Hsp90-family members, 2 mAbs (K41110 and K41116C) that recognized site Ic bound to yeast Hsp90 with affinity identical to that for hHsp90, and 1 mAb (K3729) that recognized Glu222-Ala23, of hHsp90beta could bind to human 94-kDa glucose-regulated protein (Grp94), an endoplasmic reticulum paralog of Hsp90. Among the 5 amino acids constituting site Ic, Trp297 and Pro295 were essential for recognition by all anti-site-Ic mAbs, and Arg299 was important for most of them. The necessity of Ile296, Thr298, and Arg299, which are replaced by Leu, Met/Leu, and Lys, respectively, in some eukaryotic Hsp90, was dependent on the mAbs, and K41110 and K41116C could react with Hsp90s carrying these substitutions. From these data taken together, we propose that the pentapeptide Pro295-Ile-Trp-Thr-Arg299 of hHsp90 functions as an immunodominant epitope common to all eukaryotic Hsp90.
Collapse
Affiliation(s)
- Jun Kishimoto
- Division of Oral and Maxillofacial Surgery, Department of Developmental and Reconstructive Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | |
Collapse
|
33
|
David CL, Smith HE, Raynes DA, Pulcini EJ, Whitesell L. Expression of a unique drug-resistant Hsp90 ortholog by the nematode Caenorhabditis elegans. Cell Stress Chaperones 2003; 8:93-104. [PMID: 12820659 PMCID: PMC514859 DOI: 10.1379/1466-1268(2003)8<93:eoaudh>2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In all species studied to date, the function of heat shock protein 90 (Hsp90), a ubiquitous and evolutionarily conserved molecular chaperone, is inhibited selectively by the natural product drugs geldanamycin (GA) and radicicol. Crystal structures of the N-terminal region of yeast and human Hsp90 have revealed that these compounds interact with the chaperone in a Bergerat-type adenine nucleotide-binding fold shared throughout the gyrase, Hsp90, histidine kinase mutL (GHKL) superfamily of adenosine triphosphatases. To better understand the consequences of disrupting Hsp90 function in a genetically tractable multicellular organism, we exposed the soil-dwelling nematode Caenorhabditis elegans to GA under a variety of conditions designed to optimize drug uptake. Mutations in the gene encoding C elegans Hsp90 affect larval viability, dauer development, fertility, and life span. However, exposure of worms to GA produced no discernable phenotypes, although the amino acid sequence of worm Hsp90 is 85% homologous to that of human Hsp90. Consistent with this observation, we found that solid phase-immobilized GA failed to bind worm Hsp90 from worm protein extracts or when translated in a rabbit reticulocyte lysate system. Further, affinity precipitation studies using chimeric worm-vertebrate fusion proteins or worm C-terminal truncations expressed in reticulocyte lysate revealed that the conserved nucleotide-binding fold of worm Hsp90 exhibits the novel ability to bind adenosine triphosphate but not GA. Despite its unusual GA resistance, worm Hsp90 appeared fully functional when expressed in a vertebrate background. It heterodimerized with its vertebrate counterpart and showed no evidence of compromising its essential cellular functions. Heterologous expression of worm Hsp90 in tumor cells, however, did not render them GA resistant. These findings provide new insights into the nature of unusual N-terminal nucleotide-binding fold of Hsp90 and suggest that target-related drug resistance is unlikely to emerge in patients receiving GA-like chemotherapeutic agents.
Collapse
Affiliation(s)
- Cynthia L David
- Steele Memorial Children's Research Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
34
|
Nemoto TK, Ono T, Tanaka K. Substrate-binding characteristics of proteins in the 90 kDa heat shock protein family. Biochem J 2001; 354:663-70. [PMID: 11237871 PMCID: PMC1221698 DOI: 10.1042/0264-6021:3540663] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study we investigated the substrate-binding characteristics of three members of the 90 kDa heat shock protein (HSP90) family, namely the alpha isoform of human HSP90 (HSP90alpha), human GRP94 (94 kDa glucose-regulated protein, a form of HSP90 from endoplasmic reticulum), and HtpG (the Escherichia coli homologue of HSP90) and the domain responsible for these characteristics. The recombinant forms of HSP90alpha, GRP94 and HtpG existed as dimers and became oligomerized at higher temperatures. Among the three family members, HtpG required the highest temperature (65 degrees C) for its transition to oligomeric forms. The precipitation of the substrate protein, glutathione S-transferase, which occurred at 55 degrees C, was efficiently prevented by the simultaneous presence of a sufficient amount of HSP90alpha or GRP94, but not by HtpG, which was still present as a dimer at that temperature. However, precipitation was stopped completely at 65-70 degrees C, at which temperature HtpG was oligomerized. Thus the transition of HSP90-family proteins to a state with self-oligomerization ability is essential for preventing the precipitation of substrate proteins. We then investigated the domain responsible for the substrate binding of HtpG on the basis of the three domain structures. The self-oligomerizing and substrate-binding activities towards glutathione S-transferase and citrate synthase were both located in a single domain, the N-terminal domain (residues 1-336) of HtpG. We therefore propose that the primary peptide-binding site is located in the N-terminal domain of HSP90-family proteins.
Collapse
Affiliation(s)
- T K Nemoto
- Department of Oral Biochemistry, Nagasaki University School of Dentistry, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | | | | |
Collapse
|
35
|
Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs 2000; 17:361-73. [PMID: 10759403 DOI: 10.1023/a:1006382320697] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heat shock protein 90 is one of the most abundant cellular proteins. Although its functions are still being characterized, it appears to serve as a chaperone for a growing list of cell signaling proteins, including many tyrosine and serine/threonine kinases, involved in proliferation and/or survival. The benzoquinone ansamycin geldanamycin has been shown to bind to Hsp90 and to specifically inhibit this chaperone's function, resulting in client protein destabilization. Its ability to simultaneously stimulate depletion of multiple oncogenic proteins suggests that geldanamycin, or other molecules capable of targeting Hsp90 in cancer cells, may be of clinical benefit.
Collapse
Affiliation(s)
- L Neckers
- Department of Cell and Cancer Biology, Medicine Branch, National Cancer Institute, Rockville, MD, USA
| | | | | |
Collapse
|
36
|
Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 1999; 19:1661-72. [PMID: 10022854 PMCID: PMC83960 DOI: 10.1128/mcb.19.3.1661] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Genetic screens in Drosophila have identified p50(cdc37) to be an essential component of the sevenless receptor/mitogen-activated kinase protein (MAPK) signaling pathway, but neither the function nor the target of p50(cdc37) in this pathway has been defined. In this study, we examined the role of p50(cdc37) and its Hsp90 chaperone partner in Raf/Mek/MAPK signaling biochemically. We found that coexpression of wild-type p50(cdc37) with Raf-1 resulted in robust and dose-dependent activation of Raf-1 in Sf9 cells. In addition, p50(cdc37) greatly potentiated v-Src-mediated Raf-1 activation. Moreover, we found that p50(cdc37) is the primary determinant of Hsp90 recruitment to Raf-1. Overexpression of a p50(cdc37) mutant which is unable to recruit Hsp90 into the Raf-1 complex inhibited Raf-1 and MAPK activation by growth factors. Similarly, pretreatment with geldanamycin (GA), an Hsp90-specific inhibitor, prevented both the association of Raf-1 with the p50(cdc37)-Hsp90 heterodimer and Raf-1 kinase activation by serum. Activation of Raf-1 via baculovirus coexpression with oncogenic Src or Ras in Sf9 cells was also strongly inhibited by dominant negative p50(cdc37) or by GA. Thus, formation of a ternary Raf-1-p50(cdc37)-Hsp90 complex is crucial for Raf-1 activity and MAPK pathway signaling. These results provide the first biochemical evidence for the requirement of the p50(cdc37)-Hsp90 complex in protein kinase regulation and for Raf-1 function in particular.
Collapse
Affiliation(s)
- N Grammatikakis
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | |
Collapse
|
37
|
Scheibel T, Siegmund HI, Jaenicke R, Ganz P, Lilie H, Buchner J. The charged region of Hsp90 modulates the function of the N-terminal domain. Proc Natl Acad Sci U S A 1999; 96:1297-302. [PMID: 9990018 PMCID: PMC15457 DOI: 10.1073/pnas.96.4.1297] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/1998] [Indexed: 11/18/2022] Open
Abstract
Hsp90, an abundant heat shock protein that is highly expressed even under physiological conditions, is involved in the folding of key molecules of the cellular signal transduction system such as kinases and steroid receptors. It seems to contain two chaperone sites differing in substrate specificity. Binding of ATP or the antitumor drug geldanamycin alters the substrate affinity of the N-terminal chaperone site, whereas both substances show no influence on the C-terminal one. In wild-type Hsp90 the fragments containing the chaperone sites are connected by a highly charged linker of various lengths in different organisms. As this linker region represents the most striking difference between bacterial and eukaryotic Hsp90s, it may be involved in a gain of function of eukaryotic Hsp90s. Here, we have analyzed a fragment of yeast Hsp90 consisting of the N-terminal domain and the charged region (N272) in comparison with the isolated N-terminal domain (N210). We show that the charged region causes an increase in the affinity of the N-terminal domain for nonnative protein and establishes a crosstalk between peptide and ATP binding. Thus, the binding of peptide to N272 decreases its affinity for ATP and geldanamycin, whereas the ATP-binding properties of the monomeric N-terminal domain N210 are not influenced by peptide binding. We propose that the charged region connecting the two chaperone domains plays an important role in regulating chaperone function of Hsp90.
Collapse
Affiliation(s)
- T Scheibel
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Nathan DF, Vos MH, Lindquist S. Identification of SSF1, CNS1, and HCH1 as multicopy suppressors of a Saccharomyces cerevisiae Hsp90 loss-of-function mutation. Proc Natl Acad Sci U S A 1999; 96:1409-14. [PMID: 9990037 PMCID: PMC15476 DOI: 10.1073/pnas.96.4.1409] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hsp90 functions in a multicomponent chaperone system to promote the maturation and maintenance of a diverse, but specific, set of target proteins that play key roles in the regulation of cell growth and development. To identify additional components of the Hsp90 chaperone system and its targets, we searched for multicopy suppressors of various temperature-sensitive mutations in the yeast Hsp90 gene, HSP82. Three suppressors were isolated for one Hsp90 mutant (glutamate --> lysine at amino acid 381). Each exhibited a unique, allele-specific pattern of suppression with other Hsp90 mutants and had unique structural and biological properties. SSF1 is a member of an essential gene family and functions in the response to mating pheromones. CNS1 is an essential gene that encodes a component of the Hsp90 chaperone machinery. The role of HCH1 is unknown; its sequence has no strong homology to any protein of known function. SSF1 and CNS1 were weak suppressors, whereas HCH1 restored wild-type growth rates at all temperatures tested to cells expressing the E381K mutant. Overexpression of CNS1 or HCH1, but not SSF1, enhanced the maturation of a heterologous Hsp90 target protein, p60(v-src). These results suggest that like Cns1p, Hch1p is a general modulator of Hsp90 chaperone functions, whereas Ssf1p likely is either an Hsp90 target protein or functions in the same pathway as an Hsp90 target protein.
Collapse
Affiliation(s)
- D F Nathan
- Department of Molecular Genetics and Cell Biology and Howard Hughes Medical Institute, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
39
|
Xu Y, Singer MA, Lindquist S. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc Natl Acad Sci U S A 1999; 96:109-14. [PMID: 9874780 PMCID: PMC15101 DOI: 10.1073/pnas.96.1.109] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/1998] [Indexed: 02/04/2023] Open
Abstract
Although Hsp90 displays general chaperone activity in vitro, few substrates of the chaperone have been identified in vivo, and the characteristics that render these substrates dependent on Hsp90 remain elusive. To investigate this issue, we exploited a paradoxical observation: several unrelated oncogenic viral tyrosine kinases, including v-src, attain their native conformation after association with Hsp90, yet their nearly identical cellular homologs interact only weakly with the chaperone. It has been controversial whether Hsp90 is vital for normal maturation of the cellular kinases or is simply binding a misfolded subfraction of the proteins. By modulating Hsp90 levels in Saccharomyces cerevisiae, we determined that Hsp90 is indeed necessary for the maturation of c-src (the normal homolog of v-src). c-src maturation is, however, less sensitive to Hsp90 perturbations than is v-src maturation. Dependence of the two proteins on Hsp90 does not correspond to their relative efficiency in reaching their final destination (the plasma membrane); we observed that in yeast, unlike in vertebrate cells, neither c-src nor v-src concentrate in the membrane. Expression of different v/c-src chimeras in cells carrying wild-type or temperature-sensitive Hsp90 alleles revealed that the difference between the proteins instead arises from multiple, naturally occurring mutations in the C-terminal region of v-src.
Collapse
Affiliation(s)
- Y Xu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
40
|
Louvion JF, Abbas-Terki T, Picard D. Hsp90 is required for pheromone signaling in yeast. Mol Biol Cell 1998; 9:3071-83. [PMID: 9802897 PMCID: PMC25590 DOI: 10.1091/mbc.9.11.3071] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The heat-shock protein 90 (Hsp90) is a cytosolic molecular chaperone that is highly abundant even at normal temperature. Specific functions for Hsp90 have been proposed based on the characterization of its interactions with certain transcription factors and kinases including Raf in vertebrates and flies. We therefore decided to address the role of Hsp90 for MAP kinase pathways in the budding yeast, an organism amenable to both genetic and biochemical analyses. We found that both basal and induced activities of the pheromone-signaling pathway depend on Hsp90. Signaling is defective in strains expressing low levels or point mutants of yeast Hsp90 (Hsp82), or human Hsp90beta instead of the wild-type protein. Ste11, a yeast equivalent of Raf, forms complexes with wild-type Hsp90 and depends on Hsp90 function for accumulation. For budding yeast, Ste11 represents the first identified endogenous "substrate" of Hsp90. Moreover, Hsp90 functions in steroid receptor and pheromone signaling can be genetically separated as the Hsp82 point mutant T525I and the human Hsp90beta are specifically defective for the former and the latter, respectively. These findings further corroborate the view that molecular chaperones must also be considered as transient or stable components of signal transduction pathways.
Collapse
Affiliation(s)
- J F Louvion
- Département de Biologie Cellulaire, Université de Genève Sciences III, CH-1211 Genève 4, Switzerland
| | | | | |
Collapse
|
41
|
Louvion JF, Warth R, Picard D. Two eukaryote-specific regions of Hsp82 are dispensable for its viability and signal transduction functions in yeast. Proc Natl Acad Sci U S A 1996; 93:13937-42. [PMID: 8943039 PMCID: PMC19473 DOI: 10.1073/pnas.93.24.13937] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 90-kDa heat shock protein (Hsp90) is a molecular chaperone that is very abundant even at normal temperature. It is highly conserved and essential for viability in yeast. To delineate functional domains of Hsp90, we have performed a deletion analysis of one of the two Hsp90 isoforms from budding yeast, Hsp82. The Hsp82 derivatives were tested for complementation of a Hsp90-deficient yeast strain and for their ability to function in two signal transduction pathways that depend on Hsp90. Surprisingly, we found that two salient features of Hsp90 sequences from eukaryotes, the N-terminal charged domain and the extremely conserved C-terminal pentapeptide MEEVD, are dispensable for viability as well as for proper regulation of vertebrate steroid receptors and for pheromone signaling. Moreover, we describe, to our knowledge, the first dominant negative mutant of Hsp90; A Hsp82 derivative that lacks amino acids 538-552 fails to complement but has a dominant negative effect on viability of wild-type strains at moderately elevated temperatures. This mutant may become a valuable tool to study Hsp90 functions both in yeast and in mammalian cells.
Collapse
Affiliation(s)
- J F Louvion
- Départment de Biologie Cellulaire, Université de Genève, Switzerland
| | | | | |
Collapse
|
42
|
Nathan DF, Lindquist S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol 1995; 15:3917-25. [PMID: 7791797 PMCID: PMC230631 DOI: 10.1128/mcb.15.7.3917] [Citation(s) in RCA: 349] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a protein chaperone whose functions are focused on a specific set of target proteins. The nature of Hsp90's interactions with these proteins is poorly understood. To provide tools for examining these interactions, we have isolated eight broadly distributed temperature-sensitive (ts) point mutations in the Hsp90 gene (HSP82) of Saccharomyces cerevisiae. The mutants fall into two distinct classes. One has a classic ts phenotype, with nearly wild-type activity at 25 degrees C and a precipitous loss of function at 34 degrees C. The remaining seven mutants, in contrast, cause a general reduction in Hsp90 function and are ts because they do not provide the high level of function required for growth at high temperatures. The effects of these mutants on two target proteins, a transcription factor (glucocorticoid receptor) and a tyrosine kinase (pp60v-src), provided several insights on Hsp90 function. First, Hsp90 is not only required to help the glucocorticoid receptor achieve a hormone-activable state, it is continuously required to maintain that state. Second, Hsp90's function in the maturation of pp60v-src involves separable roles in protein accumulation and kinase activation. Thus, Hsp90 is an integral component of both the steroid receptor and kinase signaling pathways. Finally, all eight point mutants affect the activation of both the glucocorticoid receptor and pp60v-src, indicating that Hsp90 promotes the activity of these very different target proteins through common mechanisms.
Collapse
Affiliation(s)
- D F Nathan
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|