1
|
Yao Z, Chen Y, Cao W, Shyh‐Chang N. Chromatin-modifying drugs and metabolites in cell fate control. Cell Prolif 2020; 53:e12898. [PMID: 32979011 PMCID: PMC7653270 DOI: 10.1111/cpr.12898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
For multicellular organisms, it is essential to produce a variety of specialized cells to perform a dazzling panoply of functions. Chromatin plays a vital role in determining cellular identities, and it dynamically regulates gene expression in response to changing nutrient metabolism and environmental conditions. Intermediates produced by cellular metabolic pathways are used as cofactors or substrates for chromatin modification. Drug analogues of metabolites that regulate chromatin-modifying enzyme reactions can also regulate cell fate by adjusting chromatin organization. In recent years, there have been many studies about how chromatin-modifying drug molecules or metabolites can interact with chromatin to regulate cell fate. In this review, we systematically discuss how DNA and histone-modifying molecules alter cell fate by regulating chromatin conformation and propose a mechanistic model that explains the process of cell fate transitions in a concise and qualitative manner.
Collapse
Affiliation(s)
- Ziyue Yao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ng Shyh‐Chang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Yu X, Buck MJ. Pioneer factors and their in vitro identification methods. Mol Genet Genomics 2020; 295:825-835. [PMID: 32296927 DOI: 10.1007/s00438-020-01675-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/02/2020] [Indexed: 11/27/2022]
Abstract
Pioneer transcription factors are a special group of transcription factors that can interact with nucleosomal DNA and initiate regulatory events. Their binding to regulatory regions is the first event in gene activation and can occur in silent or heterochromatin regions. Several research groups have endeavored to define pioneer factors and study their binding characteristics using various techniques. In this review, we describe the in vitro methods used to define and characterize pioneer factors, paying particular attention to differences in methodologies and how these differences can affect results.
Collapse
Affiliation(s)
- Xinyang Yu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, P.R. China.
| | - Michael J Buck
- Department of Biochemistry, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
- Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Yu X, Buck MJ. Defining TP53 pioneering capabilities with competitive nucleosome binding assays. Genome Res 2018; 29:107-115. [PMID: 30409772 PMCID: PMC6314159 DOI: 10.1101/gr.234104.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
Accurate gene expression requires the targeting of transcription factors (TFs) to regulatory sequences often occluded within nucleosomes. The ability to target a TF binding site (TFBS) within a nucleosome has been the defining characteristic for a special class of TFs known as pioneer factors. Recent studies suggest TP53 functions as a pioneer factor that can target its TFBS within nucleosomes, but it remains unclear how TP53 binds to nucleosomal DNA. To comprehensively examine TP53 nucleosome binding, we competitively bound TP53 to multiple in vitro–formed nucleosomes containing a high- or low-affinity TP53 TFBS located at differing translational and rotational positions within the nucleosome. Stable TP53–nucleosome complexes were isolated and quantified using next-generation sequencing. Our results demonstrate TP53 binding is limited to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. Binding site affinity only affects TP53 binding for TFBSs located at the same nucleosomal positions; otherwise, nucleosome position takes precedence. Furthermore, TP53 has strong nonspecific nucleosome binding facilitating its interaction with chromatin. Our in vitro findings were confirmed by examining TP53-induced binding in a cell line model, showing induced binding at nucleosome edges flanked by a nucleosome-free region. Overall, our results suggest that the pioneering capabilities of TP53 are driven by nonspecific nucleosome binding with specific binding at nucleosome edges.
Collapse
Affiliation(s)
- Xinyang Yu
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14203, USA
| | - Michael J Buck
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14203, USA.,Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
4
|
Bilotti K, Kennedy EE, Li C, Delaney S. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment. DNA Repair (Amst) 2017; 59:1-8. [PMID: 28892740 DOI: 10.1016/j.dnarep.2017.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022]
Abstract
If unrepaired, damage to genomic DNA can cause mutations and/or be cytotoxic. Single base lesions are repaired via the base excision repair (BER) pathway. The first step in BER is the recognition and removal of the nucleobase lesion by a glycosylase enzyme. For example, human oxoguanine glycosylase 1 (hOGG1) is responsible for removal of the prototypic oxidatively damaged nucleobase, 8-oxo-7,8-dihydroguanine (8-oxoG). To date, most studies of glycosylases have used free duplex DNA substrates. However, cellular DNA is packaged as repeating nucleosome units, with 145 base pair segments of DNA wrapped around histone protein octamers. Previous studies revealed inhibition of hOGG1 at the nucleosome dyad axis and in the absence of chromatin remodelers. In this study, we reveal that even in the absence of chromatin remodelers or external cofactors, hOGG1 can initiate BER at positions off the dyad axis and that this activity is facilitated by spontaneous and transient unwrapping of DNA from the histones. Additionally, we find that solution accessibility as determined by hydroxyl radical footprinting is not fully predictive of glycosylase activity and that histone tails can suppress hOGG1 activity. We therefore suggest that local nuances in the nucleosome environment and histone-DNA interactions can impact glycosylase activity.
Collapse
Affiliation(s)
- Katharina Bilotti
- Department of Chemistry, Brown University, Providence, RI 02912, United States
| | - Erin E Kennedy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Chuxuan Li
- Department of Chemistry, Brown University, Providence, RI 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
5
|
Scovell WM. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression. World J Biol Chem 2016; 7:206-222. [PMID: 27247709 PMCID: PMC4877529 DOI: 10.4331/wjbc.v7.i2.206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 02/19/2016] [Accepted: 03/14/2016] [Indexed: 02/05/2023] Open
Abstract
High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.
Collapse
|
6
|
Wakamori M, Fujii Y, Suka N, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S. Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation. Sci Rep 2015; 5:17204. [PMID: 26607036 PMCID: PMC4660432 DOI: 10.1038/srep17204] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023] Open
Abstract
Post-translational modifications (PTMs) of histones, such as lysine acetylation of the N-terminal tails, play crucial roles in controlling gene expression. Due to the difficulty in reconstituting site-specifically acetylated nucleosomes with crystallization quality, structural analyses of histone acetylation are currently performed using synthesized tail peptides. Through engineering of the genetic code, translation termination, and cell-free protein synthesis, we reconstituted human H4-mono- to tetra-acetylated nucleosome core particles (NCPs), and solved the crystal structures of the H4-K5/K8/K12/K16-tetra-acetylated NCP and unmodified NCP at 2.4 Å and 2.2 Å resolutions, respectively. The structure of the H4-tetra-acetylated NCP resembled that of the unmodified NCP, and the DNA wrapped the histone octamer as precisely as in the unmodified NCP. However, the B-factors were significantly increased for the peripheral DNAs near the N-terminal tail of the intra- or inter-nucleosomal H4. In contrast, the B-factors were negligibly affected by the H4 tetra-acetylation in histone core residues, including those composing the acidic patch, and at H4-R23, which interacts with the acidic patch of the neighboring NCP. The present study revealed that the H4 tetra-acetylation impairs NCP self-association by changing the interactions of the H4 tail with DNA, and is the first demonstration of crystallization quality NCPs reconstituted with genuine PTMs.
Collapse
Affiliation(s)
- Masatoshi Wakamori
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yoshifumi Fujii
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Noriyuki Suka
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Umehara
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan,
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan,
| |
Collapse
|
7
|
Galati A, Micheli E, Alicata C, Ingegnere T, Cicconi A, Pusch MC, Giraud-Panis MJ, Gilson E, Cacchione S. TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization. Nucleic Acids Res 2015; 43:5824-37. [PMID: 25999344 PMCID: PMC4499135 DOI: 10.1093/nar/gkv507] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/04/2015] [Indexed: 01/22/2023] Open
Abstract
The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection.
Collapse
Affiliation(s)
- Alessandra Galati
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy Institute Pasteur-Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Emanuela Micheli
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy Institute Pasteur-Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudia Alicata
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy
| | - Tiziano Ingegnere
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Cicconi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy Institute Pasteur-Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Marie-Josèphe Giraud-Panis
- Institute for Research on Cancer and Aging, Nice (IRCAN) CNRS UMR 7284/INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| | - Eric Gilson
- Institute for Research on Cancer and Aging, Nice (IRCAN) CNRS UMR 7284/INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France Department of Medical Genetics, Hospital, CHU of Nice, 06202 Nice, France
| | - Stefano Cacchione
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, 00185 Rome, Italy Institute Pasteur-Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
8
|
Cutter AR, Hayes JJ. A brief review of nucleosome structure. FEBS Lett 2015; 589:2914-22. [PMID: 25980611 DOI: 10.1016/j.febslet.2015.05.016] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022]
Abstract
The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones.
Collapse
Affiliation(s)
- Amber R Cutter
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Jeffrey J Hayes
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States.
| |
Collapse
|
9
|
Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma 2013; 123:3-13. [PMID: 23996014 DOI: 10.1007/s00412-013-0435-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/17/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Eukaryotic chromatin is a hierarchical collection of nucleoprotein structures that package DNA to form chromosomes. The initial levels of packaging include folding of long strings of nucleosomes into secondary structures and array-array association into higher-order tertiary chromatin structures. The core histone tail domains are required for the assembly of higher-order structures and mediate short- and long-range intra- and inter-nucleosome interactions with both DNA and protein targets to direct their assembly. However, important details of these interactions remain unclear and are a subject of much interest and recent investigations. Here, we review work defining the interactions of the histone N-terminal tails with DNA and protein targets relevant to chromatin higher-order structures, with a specific emphasis on the contributions of H3 and H4 tails to oligonucleosome folding and stabilization. We evaluate both classic and recent experiments determining tail structures, effect of tail cleavage/loss, and posttranslational modifications of the tails on nucleosomes and nucleosome arrays, as well as inter-nucleosomal and inter-array interactions of the H3 and H4 N-terminal tails.
Collapse
|
10
|
Joshi SR, Sarpong YC, Peterson RC, Scovell WM. Nucleosome dynamics: HMGB1 relaxes canonical nucleosome structure to facilitate estrogen receptor binding. Nucleic Acids Res 2012; 40:10161-71. [PMID: 22941653 PMCID: PMC3488250 DOI: 10.1093/nar/gks815] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
High mobility group protein 1 (HMGB1) interacts with DNA and chromatin to influence the regulation of transcription, DNA repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, ATP-independent manner. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N′ and N″) remain stable and exhibit characteristics distinctly different from the canonical nucleosome. These findings complement previous studies that showed (i) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (ii) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that one aspect of the mechanism of HMGB1 action involves a restructuring of the nucleosome that appears to relax structural constraints within the nucleosome.
Collapse
Affiliation(s)
- Sachindra R Joshi
- Department of Chemistry and Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | | | |
Collapse
|
11
|
Chakravarthy S, Patel A, Bowman GD. The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome. Nucleic Acids Res 2012; 40:8285-95. [PMID: 22753032 PMCID: PMC3458575 DOI: 10.1093/nar/gks645] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MacroH2A is a histone H2A variant that is typically found in heterochromatic regions of the genome. A positively charged linker that connects the histone-fold with the macro-domain was suggested to have DNA-binding properties, and has been shown to promote oligomerization of chromatin fibers. Here we examine the influence of this basic linker on DNA of mononucleosomes. We find that the macro-linker reduces accessibility to extranucleosomal DNA, and appears to increase compaction of the nucleosome. These properties arise from interactions between the H1-like basic linker region and DNA around the entry/exit site, which increases protection of nucleosomal DNA from exonuclease III digestion by ∼10 bp. By stabilizing the wrapping of DNA around the histone core, this basic linker of macroH2A may alter the distribution of nucleosome-associated factors, and potentially contribute to the more compacted nature of heterochromatin.
Collapse
Affiliation(s)
- Srinivas Chakravarthy
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
12
|
Abstract
Alterations of chromatin structure have been shown to be crucial for response to cell signaling and for programmed gene expression in development. Posttranslational histone modifications influence changes in chromatin structure both directly and by targeting or activating chromatin-remodeling complexes. Histone modifications intersect with cell signaling pathways to control gene expression and can act combinatorially to enforce or reverse epigenetic marks in chromatin. Through their recognition by protein complexes with enzymatic activities cross talk is established between different modifications and with other epigenetic pathways, including noncoding RNAs (ncRNAs) and DNA methylation. Here, we review the functions of histone modifications and their exploitation in the programming of gene expression during several events in development.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
13
|
Pavangadkar K, Thomashow MF, Triezenberg SJ. Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2010; 74:183-200. [PMID: 20661629 DOI: 10.1007/s11103-010-9665-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/07/2010] [Indexed: 05/11/2023]
Abstract
In Arabidopsis, CBF transcription factors bind to and activate certain cold-regulated (COR) gene promoters during cold acclimation. Consistent with the prevailing model that histone acetylation and nucleosomal depletion correspond with transcriptionally active genes, we now report that H3 acetylation increases and nucleosome occupancy decreases at COR gene promoters upon cold acclimation. Overexpression of CBF1 resulted in a constitutive increase in H3 acetylation and decrease in nucleosome occupancy, consistent with the constitutive activation of COR gene expression. Overexpression of a truncated form of CBF2 lacking its transcriptional activation domain resulted in a cold-stimulated increase in H3 acetylation, but no change in nucleosomal occupancy or COR gene expression, indicating that histone acetylation is congruent with but not sufficient for cold-activation of COR gene expression. Plants homozygous for T-DNA disruption alleles of GCN5 (encoding a histone acetyltransferase) or ADA2b (a GCN5-interacting protein) show diminished expression of COR genes during cold acclimation. Contrary to expectations, H3 acetylation at COR gene promoters was stimulated upon cold acclimation in ada2b and gcn5 plants as in wild type plants, but the decrease in nucleosome occupancy was diminished. Thus, GCN5 is not the HAT responsible for histone acetylation at COR gene promoters during cold acclimation. Several other HAT mutant plants were also tested; although some do affect COR gene expression, none affected histone acetylation. Therefore, H3 acetylation at the COR gene promoters is not solely dependent on any of the HATs tested.
Collapse
|
14
|
Radman-Livaja M, Rando OJ. Nucleosome positioning: how is it established, and why does it matter? Dev Biol 2009; 339:258-66. [PMID: 19527704 DOI: 10.1016/j.ydbio.2009.06.012] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 11/18/2022]
Abstract
Packaging of eukaryotic genomes into chromatin affects every process that occurs on DNA. The positioning of nucleosomes on underlying DNA plays a key role in the regulation of these processes, as the nucleosome occludes underlying DNA sequences. Here, we review the literature on mapping nucleosome positions in various organisms, and discuss how nucleosome positions are established, what effect nucleosome positioning has on control of gene expression, and touch on the correlations between chromatin packaging, sequence evolution, and the evolution of gene expression programs.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
15
|
Pisano S, Marchioni E, Galati A, Mechelli R, Savino M, Cacchione S. Telomeric Nucleosomes Are Intrinsically Mobile. J Mol Biol 2007; 369:1153-62. [PMID: 17498745 DOI: 10.1016/j.jmb.2007.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 03/15/2007] [Accepted: 04/10/2007] [Indexed: 11/26/2022]
Abstract
Nucleosomes are no longer considered only static basic units that package eukaryotic DNA but they emerge as dynamic players in all chromosomal processes. Regulatory proteins can gain access to recognition sequences hidden by the histone octamer through the action of ATP-dependent chromatin remodeling complexes that cause nucleosome sliding. In addition, it is known that nucleosomes are able to spontaneously reposition along the DNA due to intrinsic dynamic properties, but it is not clear yet to what extent sequence-dependent dynamic properties contribute to nucleosome repositioning. Here, we study mobility of nucleosomes formed on telomeric sequences as a function of temperature and ionic strength. We find that telomeric nucleosomes are highly intrinsically mobile under physiological conditions, whereas nucleosomes formed on an average DNA sequence mostly remain in the initial position. This indicates that DNA sequence affects not only the thermodynamic stability and the positioning of nucleosomes but also their dynamic properties. Moreover, our findings suggest that the high mobility of telomeric nucleosomes may be relevant to the dynamics of telomeric chromatin.
Collapse
Affiliation(s)
- Sabrina Pisano
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Ulyanova NP, Schnitzler GR. Inverted Factor Access and Slow Reversion Characterize SWI/SNF-altered Nucleosome Dimers. J Biol Chem 2007; 282:1018-28. [PMID: 17121825 DOI: 10.1074/jbc.m609473200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human SWI/SNF (hSWI/SNF) is an ATP-dependent chromatin remodeling complex with important functions in activation and repression of cellular genes. Previously, we showed that hSWI/SNF creates structurally altered dimers from mononucleosome cores. More recently we found that hSWI/SNF also generates abundant structurally altered dinucleosomes, called altosomes, on polynucleosomal templates. Here, we find that dimers revert to normal nucleosomes at a similar rate as altosomes and can also be cleaved to yield nucleosomal particles with mobilities similar to mononucleosomes. Using these and other shared properties we propose a single model for both types of hSWI/SNF product. In addition, we further characterize the accessibility of altered dimers to transcription factors, and find that the DNA in dimers is most accessible in the middle and least accessible at the ends, directly opposite the profile of normal mononucleosomes. We also find that transcription factor binding can influence the ratio of normal nucleosomes and dimers as hSWI/SNF products. Implications for the interplay between hSWI/SNF products and transcription factors are discussed.
Collapse
Affiliation(s)
- Natalia P Ulyanova
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
17
|
Galati A, Rossetti L, Pisano S, Chapman L, Rhodes D, Savino M, Cacchione S. The human telomeric protein TRF1 specifically recognizes nucleosomal binding sites and alters nucleosome structure. J Mol Biol 2006; 360:377-85. [PMID: 16756990 DOI: 10.1016/j.jmb.2006.04.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 04/26/2006] [Accepted: 04/30/2006] [Indexed: 11/30/2022]
Abstract
Telomeres are dynamic nucleoprotein structures that cap the ends of eukaryotic chromosomes. In humans, the long (TTAGGG)(n) double-stranded telomeric DNA repeats are bound specifically by the two related proteins TRF1 and TRF2, and are organized in nucleosomes. Whereas the role of TRF1 and TRF2 in telomeric function has been studied extensively, little is known about the involvement of telomeric nucleosomes in telomere structures or how chromatin formation may affect binding of the TRFs. Here, we address the question of whether TRF1 is able to bind to telomeric binding sites in a nucleosomal context. We show that TRF1 is able to specifically recognize telomeric binding sites located within nucleosomes, forming a ternary complex. The formation of this complex is strongly dependent on the orientation of binding sites on the nucleosome surface, rather than on the location of the binding sites with respect to the nucleosome dyad. Strikingly, TRF1 binding causes alterations in nucleosome structure without dissociation of histone subunits. These results indicate that nucleosomes contribute to the establishment of a telomeric capping complex, whose structure and dynamics can be modulated by the binding of telomeric factors.
Collapse
Affiliation(s)
- Alessandra Galati
- Dipartimento di Genetica e Biologia Molecolare, Fondazione Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang Z, Hayes JJ. Large scale preparation of nucleosomes containing site-specifically chemically modified histones lacking the core histone tail domains. Methods 2005; 33:25-32. [PMID: 15039084 DOI: 10.1016/j.ymeth.2003.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2003] [Indexed: 10/26/2022] Open
Abstract
The core histone tail domains are critical regulators of chromatin structure and function and modifications such as acetylation of lysine residues within the tails are central to this regulation. Studies have shown that the removal of core histone tail domains by trypsinization in which one-half to two-thirds of each core histone tail domain are removed in gross aspects mimics the acetylation of core histone tails. In addition, removal of the tails has been useful in understanding general tail function. Thus, removal of native core histone tails by trypsinization is a widely used method. In addition, many in vitro studies now employ core histones site-specifically modified with photo activatable cross-linking probes or fluorescent probes. However, in our experience, standard methods employing trypsinized donor chromatin for reconstitution of nucleosomes containing certain chemically modified histones lacking the core histone tail domains are not uniformly applicable. Here, we describe various methods for preparing nucleosomes containing a core histone modified with a cross-linking agent, APB, and lacking the core histone tail domains.
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, Box 712 University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
19
|
Aoyagi S, Trotter KW, Archer TK. ATP-dependent chromatin remodeling complexes and their role in nuclear receptor-dependent transcription in vivo. VITAMINS AND HORMONES 2005; 70:281-307. [PMID: 15727808 DOI: 10.1016/s0083-6729(05)70009-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that mediate transcription of target genes in chromatin. Modulation of chromatin structure plays an important part in the NR-mediated transcription process. ATP-dependent chromatin remodeling complexes have been shown to be intimately involved in NR-mediated transcription. In this review, we examine the role of chromatin remodeling complexes in facilitating the recruitment of coregulators and basal transcription factors. In addition, the role of subunit specificity within the chromatin remodeling complexes, the complexes' influence on remodeling activity, and complexes' recruitment to the NR-responsive promoters are discussed.
Collapse
Affiliation(s)
- Sayura Aoyagi
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
20
|
Li G, Widom J. Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 2004; 11:763-9. [PMID: 15258568 DOI: 10.1038/nsmb801] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 05/12/2004] [Indexed: 12/19/2022]
Abstract
DNA wrapped in nucleosomes is sterically occluded, creating obstacles for polymerase, regulatory, remodeling, repair and recombination complexes, which require access to the wrapped DNA. How such complexes recognize and gain access to their DNA target sites is not known. Here we report the direct detection of a dynamic equilibrium conformational transition in nucleosomes that greatly increases the distance between the end of the nucleosomal DNA and the histone core. We quantified the equilibrium constant for this transition under physiological conditions. As predicted by these findings, addition of LexA protein to nucleosomes containing the LexA target site drives this conformational equilibrium toward the unwrapped, accessible state, simultaneously allowing stable LexA binding. This inherent property of nucleosomes allows any protein, whether an energy-dependent machine or a passive binder, to gain access even to buried stretches of nucleosomal DNA.
Collapse
Affiliation(s)
- Gu Li
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
21
|
Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J 2004; 22:6027-34. [PMID: 14609949 PMCID: PMC275441 DOI: 10.1093/emboj/cdg583] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Blood pressure is regulated by a number of key molecules involving G-protein-coupled receptors, ion channels and monomeric small G-proteins. The relative contribution of these different signaling pathways to blood pressure regulation remains to be determined. Tamoxifen-induced, smooth muscle-specific inactivation of the L-type Cav1.2 Ca2+ channel gene in mice (SMAKO) reduced mean arterial blood pressure (MAP) in awake, freely moving animals from 120 +/- 4.5 to 87 +/- 8 mmHg. Phenylephrine (PE)- and angiotensin 2 (AT2)-induced MAP increases were blunted in SMAKO mice, whereas the Rho-kinase inhibitor Y-27632 reduced MAP to the same extent in control and SMAKO mice. Depolarization-induced contraction was abolished in tibialis arteries of SMAKO mice, and development of myogenic tone in response to intravascular pressure (Bayliss effect) was absent. Hind limb perfusion experiments suggested that 50% of the PE-induced resistance is due to calcium influx through the Cav1.2 channel. These results show that Cav1.2 calcium channels are key players in the hormonal regulation of blood pressure and development of myogenic tone.
Collapse
Affiliation(s)
- Sven Moosmang
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Strasse 29, D-80802 München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Suto RK, Edayathumangalam RS, White CL, Melander C, Gottesfeld JM, Dervan PB, Luger K. Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J Mol Biol 2003; 326:371-80. [PMID: 12559907 DOI: 10.1016/s0022-2836(02)01407-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We determined the crystal structures of three nucleosome core particles in complex with site-specific DNA-binding ligands, the pyrrole-imidazole polyamides. While the structure of the histone octamer and its interaction with the DNA remain unaffected by ligand binding, nucleosomal DNA undergoes significant structural changes at the ligand-binding sites and in adjacent regions to accommodate the ligands. Our findings suggest that twist diffusion occurs over long distances through tightly bound nucleosomal DNA. This may be relevant to the mechanism of ATP-dependent and spontaneous nucleosome translocation, and to the effect of bound factors on nucleosome dynamics.
Collapse
Affiliation(s)
- Robert K Suto
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Stein GS, Lian JB, Stein JL, Wijnen AJV, Montecino M, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D. Intranuclear trafficking of transcription factors: Requirements for vitamin D-mediated biological control of gene expression. J Cell Biochem 2003; 88:340-55. [PMID: 12520536 DOI: 10.1002/jcb.10364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The architecturally associated subnuclear organization of nucleic acids and cognate regulatory factors suggest functional interrelationships between nuclear structure and gene expression. Mechanisms that contribute to the spatial distribution of transcription factors within the three-dimensional context of nuclear architecture control the sorting of regulatory information as well as the assembly and activities of sites within the nucleus that support gene expression. Vitamin D control of gene expression serves as a paradigm for experimentally addressing mechanisms that govern the intranuclear targeting of regulatory factors to nuclear domains where transcription of developmental and tissue-specific genes occur. We will present an overview of molecular, cellular, genetic, and biochemical approaches that provide insight into the trafficking of regulatory factors that mediate vitamin D control of gene expression to transcriptionally active subnuclear sites. Examples will be presented that suggest modifications in the intranuclear targeting of transcription factors abrogate competency for vitamin D control of skeletal gene expression during development and fidelity of gene expression in tumor cells.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cirillo LA, Zaret KS. Preparation of Defined Mononucleosomes, Dinucleosomes, and Nucleosome Arrays In Vitro and Analysis of Transcription Factor Binding. Methods Enzymol 2003; 375:131-58. [PMID: 14870664 DOI: 10.1016/s0076-6879(03)75009-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Lisa Ann Cirillo
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Washington, Milwaukee, Wisconsin 53149, USA
| | | |
Collapse
|
25
|
Urnov FD. A feel for the template: zinc finger protein transcription factors and chromatin. Biochem Cell Biol 2003; 80:321-33. [PMID: 12123285 DOI: 10.1139/o02-084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transcription factors and chromatin collaborate in bringing the eukaryotic genome to life. An important, and poorly understood, aspect of this collaboration involves targeting the regulators to correct binding sites in vivo. An implicit and insufficiently tested assumption in the field has been that chromatin simply obstructs most sites and leaves only a few functionally relevant ones accessible. The major class of transcription factors in all metazoa, zinc finger proteins (ZFPs), can bind to chromatin in vitro (as clearly shown for Spl, GATA-1 and -4, and the nuclear hormone receptors, for example). Data on the accessibility of DNA within heterochromatin to nonhistone regulators (E.A. Sekinger and D.S. Gross. 2001. Mol. Cell 105: 403-414; C. Jolly et al. 2002. J. Cell. Biol. 156: 775-781) and the ability of the basal transcription machinery to reside within highly condensed chromatin (most recently, R. Christova and T. Oelgeschlaeger. 2002. Nat. Cell Biol. 4: 79-82) further weaken the argument that chromatin acts as an across-the-board deterrent to ZFP binding. These proteins, however, do not bind promiscuously in vivo, and recent data on human cells (C.E. Horak et al. 2002. Proc. Natl. Acad. Sci. U.S.A. 99: 2924-2929) confirm earlier data on budding yeast (B. Ren et al. 2000. Science (Washington, D.C.), 290: 2306-2309) that primary DNA sequence, i.e., density of binding sites per unit DNA length, is not the primary determinant of where a ZFP transcription factor will bind in vivo. This article reviews these data and uses ZFP transcription factors as a model system to compare in vitro binding to chromatin by transcription factors with their in vivo behavior in gene regulation. DNA binding domain structure, nonrandom nucleoprotein organization of chromatin at target promoters, and cooperativity of regulator action may all contribute to target site selection in vivo.
Collapse
Affiliation(s)
- Fyodor D Urnov
- Sangamo Biosciences, Pt Richmond Tech Centre, Richmond, CA 94804, USA.
| |
Collapse
|
26
|
Zheng C, Hayes JJ. Probing core histone tail-DNA interactions in a model dinucleosome system. Methods Enzymol 2003; 375:179-93. [PMID: 14870667 DOI: 10.1016/s0076-6879(03)75012-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chunyang Zheng
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
27
|
Hernández-Munain C, Krangel MS. Distinct roles for c-Myb and core binding factor/polyoma enhancer-binding protein 2 in the assembly and function of a multiprotein complex on the TCR delta enhancer in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4362-9. [PMID: 12370369 DOI: 10.4049/jimmunol.169.8.4362] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enhancers and promoters within TCR loci functionally collaborate to modify chromatin structure and to confer accessibility to the transcription and V(D)J recombination machineries during T cell development in the thymus. Two enhancers at the TCRalphadelta locus, the TCR alpha enhancer and the TCR delta enhancer (Edelta), are responsible for orchestrating the distinct developmental programs for V(D)J recombination and transcription of the TCR alpha and delta genes, respectively. Edelta function depends critically on transcription factors core binding factor (CBF)/polyoma enhancer-binding protein 2 (PEBP2) and c-Myb as measured by transcriptional activation of transiently transfected substrates in Jurkat cells, and by activation of V(D)J recombination within chromatin-integrated substrates in transgenic mice. To understand the molecular mechanisms for synergy between these transcription factors in the context of chromatin, we used in vivo footprinting to study the requirements for protein binding to Edelta within wild-type and mutant versions of a human TCR delta minilocus in stably transfected Jurkat cells. Our data indicate that CBF/PEBP2 plays primarily a structural role as it induces a conformational change in the enhanceosome that is associated with augmented binding of c-Myb. In contrast, c-Myb has no apparent affect on CBF/PEBP2 binding, but is critical for transcriptional activation. Thus, our data reveal distinct functions for c-Myb and CBF/PEBP2 in the assembly and function of an Edelta enhanceosome in the context of chromatin in vivo.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Binding Sites/immunology
- Core Binding Factor Alpha 1 Subunit
- Core Binding Factor beta Subunit
- Core Binding Factors
- DNA Footprinting
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Enhancer Elements, Genetic/immunology
- Humans
- Jurkat Cells
- Molecular Sequence Data
- Neoplasm Proteins
- Protein Conformation
- Proto-Oncogene Proteins c-myb/metabolism
- Proto-Oncogene Proteins c-myb/physiology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Transcription Factor AP-2
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcriptional Activation/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
|
28
|
Castillo J, Zúñiga A, Franco L, Rodrigo MI. A chromatin-associated protein from pea seeds preferentially binds histones H3 and H4. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4641-8. [PMID: 12230577 DOI: 10.1046/j.1432-1033.2002.03164.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pisum sativum p16 is a protein present in the chromatin of ungerminated embryonic axes. The purification of p16 and the isolation of a cDNA clone of psp54, the gene encoding its precursor have been recently reported [Castillo, J., Rodrigo, M. I., Márquez, J. A., Zúñiga, A and Franco, L. (2000) Eur. J. Biochem.267, 2156-2165]. In the present paper, we present data showing that p16 is a nuclear protein. First, after subcellular fractionation, p16 was clearly found in nuclei, although the protein is also present in other organelles. Immunocytochemical methods also confirm the above results. p16 seems to be firmly anchored to chromatin, as only extensive DNase I digestion of nuclei allows its release. Far Western and pull-down experiments demonstrate a strong in vitro interaction between p16 and histones, especially H3 and H4, suggesting that p16 is tethered to chromatin through histones. Because the psp54 gene is specifically expressed during the late development of seed, the role of p16 might be related to the changes that occur in chromatin during the processes of seed maturation and germination.
Collapse
Affiliation(s)
- Josefa Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | | | | | | |
Collapse
|
29
|
An W, Palhan VB, Karymov MA, Leuba SH, Roeder RG. Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. Mol Cell 2002; 9:811-21. [PMID: 11983172 DOI: 10.1016/s1097-2765(02)00497-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The N-terminal tails of the core histones play important roles in transcriptional regulation, but their mechanism(s) of action are poorly understood. Here, pure chromatin templates assembled with varied combinations of recombinant wild-type and mutant core histones have been employed to ascertain the role of individual histone tails, both in overall acetylation patterns and in transcription. In vitro assays show an indispensable role for H3 and H4 tails, especially major lysine substrates, in p300-dependent transcriptional activation, as well as activator-targeted acetylation of promoter-proximal histone tails by p300. These results indicate, first, that constraints to transcription are imposed by nucleosomal histone components other than histone N-terminal tails and, second, that the histone N-terminal tails have selective roles, which can be modulated by targeted acetylation, in transcriptional activation by p300.
Collapse
Affiliation(s)
- Woojin An
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
The Drosophila nucleosome remodeling factor (NURF) is an imitation switch (ISWI)-containing chromatin remodeling complex that can catalyze nucleosome repositioning at promoter regions to regulate access by the transcription machinery. Mononucleosomes reconstituted in vitro by salt dialysis adopt an ensemble of translational positions on DNA templates. NURF induces bi-directional 'sliding' of these nucleosomes to a subset of preferred positions. Here we show that mononucleosome sliding catalyzed by NURF bears similarity to nucleosome movement induced by elevated temperature. Moreover, we demonstrate that the GAL4 DNA-binding domain can extend NURF-induced nucleosome movement on a GAL4-E4 promoter, expanding the stretch of histone-free DNA at GAL4 recognition sites. The direction of NURF-induced nucleosome movement can be significantly modulated by asymmetric placement of tandem GAL4 sites relative to the nucleosome core particle. As such, sequence-specific, transcription factor-directed nucleosome sliding is likely to have substantial influence on promoter activation.
Collapse
Affiliation(s)
| | - Ali Hamiche
- Laboratory of Molecular Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
Present address: LBME–IBCG–CNRS, 118 Route de Narbonne, 31062 Toulouse, France Corresponding author e-mail:
| | - Carl Wu
- Laboratory of Molecular Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
Present address: LBME–IBCG–CNRS, 118 Route de Narbonne, 31062 Toulouse, France Corresponding author e-mail:
| |
Collapse
|
31
|
Brickwood SJ, Myers FA, Chandler SP. Methods for the analysis of protein-chromatin interactions. Mol Biotechnol 2002; 20:1-15. [PMID: 11876294 DOI: 10.1385/mb:20:1:001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The analysis of protein interactions with chromatin is vital for the understanding of DNA sequence recognition in vivo. Chromatin binding requires the interaction of proteins with DNA lying on the macromolecular protein surface of nucleosomes, a situation that can alter factor binding characteristics substantially when compared with naked DNA. It is therefore important to study these protein-DNA interactions in the context of a chromatin substrate, the more physiologically relevant binding situation. In this article we review techniques used in the investigation of protein interactions with defined nucleosomal templates.
Collapse
Affiliation(s)
- Sarah J Brickwood
- Sangamo Biosciences Inc., Point Richmond Tech Center, Richmond, CA 04804, USA
| | | | | |
Collapse
|
32
|
Abstract
The ATPase ISWI is the molecular motor of several remodeling factors that trigger nucleosome sliding in vitro. In search for the underlying mechanism, we found that unilateral binding of ISWI to a model nucleosome correlated with directional movement of the nucleosome toward the enzyme. It has been proposed that ISWI might loosen histone-DNA interactions through twisting DNA. However, nucleosome sliding assays on nicked DNA substrates suggest that propagation of altered twist is not involved. Surprisingly, nicks in the linker DNA in front of the nucleosome facilitate sliding. These data suggest that the rate of nucleosome sliding is limited by a conformational change other than twisting, such as the formation of a short loop, of DNA at the entry into the nucleosome.
Collapse
Affiliation(s)
- G Längst
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, 80336, München, Germany
| | | |
Collapse
|
33
|
MESH Headings
- Animals
- Cell Nucleus/metabolism
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Rearrangement
- Hematopoiesis/genetics
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/physiopathology
- Mice
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Proteins
- RUNX1 Translocation Partner 1 Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- F Guidez
- Leukaemia Research Fund Centre, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
34
|
Affiliation(s)
- F D Urnov
- Sangamo Biosciences, Pt. Richmond Tech Center, 501 Canal Blvd., Suite A100, Richmond, CA 94804, USA
| | | | | |
Collapse
|
35
|
Anderson JD, Lowary PT, Widom J. Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol 2001; 307:977-85. [PMID: 11286549 DOI: 10.1006/jmbi.2001.4528] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Posttranslational acetylation of the conserved core histone N-terminal tail domains is linked to gene activation, but the molecular mechanisms involved are not known. In an earlier study we showed that removing the tail domains altogether by trypsin proteolysis (which leaves nucleosomes nevertheless intact) leads to 1.5 to 14-fold increases in the dynamic equilibrium accessibility of nucleosomal DNA target sites. These observations suggested that, by modestly increasing the equilibrium accessibility of buried DNA target sites, histone acetylation could result in an increased occupancy by regulatory proteins, ultimately increasing the probability of transcription initiation. Here, we extend these observations to a more natural system involving intact but hyperacetylated nucleosomes. We find that histone hyperacetylation leads to 1.1 to 1.8-fold increases in position-dependent equilibrium constants for exposure of nucleosomal DNA target sites, with an average increase of 1.4(+/-0.1)-fold. The mechanistic and biological implications of these results are discussed.
Collapse
Affiliation(s)
- J D Anderson
- Department of Biochemistry Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL, 60208-3500, USA
| | | | | |
Collapse
|
36
|
Rossetti L, Cacchione S, De Menna A, Chapman L, Rhodes D, Savino M. Specific interactions of the telomeric protein Rap1p with nucleosomal binding sites. J Mol Biol 2001; 306:903-13. [PMID: 11237607 DOI: 10.1006/jmbi.2001.4458] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The telomeres of Saccharomyces cerevisiae are structurally and functionally well characterized. Their telomeric DNA is packaged by the protein Rap1p (repressor activator protein 1). Rap1p is a multifunctional, sequence-specific, DNA-binding protein which, besides participating in the regulation of telomeres structure and length, is also involved in transcriptional regulation of genes essential for cell growth and in silencing. Whereas the long tracts of telomeric DNA repeats of higher eukaryotes are mostly organized in closely spaced canonical nucleosomal arrays, it has been proposed that the 300 base-pairs of S. cerevisiae telomeric DNA are organized in a large non-nucleosomal structure that has been called the telosome. Recently, nucleosomes have been found also in Tetrahymena thermophila telomeres, suggesting that, in general, telomere structural differences between lower and higher eukaryotes could be quantitative, rather than qualitative. Using an in vitro model system, we have addressed the question of whether Rap1p can form a stable ternary complex with nucleosomes containing telomeric binding sites, or competes with nucleosome core formation. The approach we have taken is to place a single Rap1p-binding site at different positions within a nucleosome core and then test the binding of Rap1p and its DNA-binding domain (Rap1p-DBD). We show here that both proteins are able to specifically recognize their nucleosomal binding site, but that binding is dependent on the location of the site within the nucleosome core structure. These results show that a ternary complex between a nucleosome and Rap1p is stable and could be a possible intermediate between telomeric nucleosomes and telosomes in the dynamics of S. cerevisiae telomere organization.
Collapse
Affiliation(s)
- L Rossetti
- Dipartimento di Genetica e Biologia Molecolare, Fondazione Istituto Pasteur -Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Piazzale A Moro 5,00185, Roma, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Lian JB, Stein JL, Stein GS, Montecino M, van Wijnen AJ, Javed A, Gutierrez S. Contributions of nuclear architecture and chromatin to vitamin D-dependent transcriptional control of the rat osteocalcin gene. Steroids 2001; 66:159-70. [PMID: 11179723 DOI: 10.1016/s0039-128x(00)00160-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vitamin D response element in the bone tissue-specific osteocalcin gene has served as a prototype for understanding molecular mechanisms regulating physiologic responsiveness of vitamin D-dependent genes in bone cells. We briefly review factors which contribute to vitamin D transcriptional control. The organization of the vitamin D response element (VDRE), the multiple activities of the vitamin D receptor transactivation complex, and the necessity for protein-protein interactions between the VDR-RXR heterodimer activation complex and DNA binding proteins at other regulatory elements, including AP-1 sites and TATA boxes, provide for precise regulation of gene activity in concert with basal levels of transcription. We present evidence for molecular mechanisms regulating vitamin D-dependent mediated transcription of the osteocalcin gene that involve chromatin structure of the gene and nuclear architecture. Modifications in nucleosomal organization, DNase I hypersensitivity and localization of vitamin D receptor interacting proteins in subnuclear domains are regulatory components of vitamin D-dependent gene transcription. A model is proposed to account for the inability of vitamin D induction of the osteocalcin gene in the absence of ongoing basal transcription by competition of the YY1 nuclear matrix-associated transcription factor for TFIIB-VDR interactions. Activation of the VDR-RXR complex at the OC VDRE occurs through modifications in chromatin mediated in part by interaction of OC gene regulatory sequences with the nuclear matrix-associated Cbfa1 (Runx2) transcription factor which is required for osteogenesis.
Collapse
Affiliation(s)
- J B Lian
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655-1016, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Smith CL, Wolford RG, O'Neill TB, Hager GL. Characterization of transiently and constitutively expressed progesterone receptors: evidence for two functional states. Mol Endocrinol 2000; 14:956-71. [PMID: 10894147 DOI: 10.1210/mend.14.7.0482] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activated steroid receptors induce chromatin remodeling events in the promoters of some target genes. We previously reported that transiently expressed progesterone receptor (PR) cannot activate mouse mammary tumor virus (MMTV) promoter when it adopts the form of ordered chromatin. However, when expressed continuously, the PR acquires this ability. In this study we explored whether this gain of function occurs through alterations in nucleoprotein structure at the MMTV promoter or through changes in receptor status. We observed no major structural differences at the MMTV promoter in the presence of constitutively expressed PR and found its mechanism of activation to be very similar to that of the glucocorticoid receptor (GR). However, a systematic comparison of the functional behavior of the transiently and constitutively expressed PR elucidated significant differences. The transiently expressed PR is activated in the absence of ligand by cAMP and by components in FBS and has significantly increased sensitivity to progestins. In contrast, the constitutively expressed PR is refractory to activation by cAMP and serum and has normal sensitivity to its ligand. In addition, while the PR is localized to the nucleus in both cases, a significant fraction of the transiently expressed PR is tightly bound to the nucleus even in the absence of ligand, while the majority of constitutively expressed PR is not. These results strongly suggest that the PR undergoes processing in the cell subsequent to its initial expression and that this processing is important for various aspects of its function, including its ability to productively interact with target genes that require chromatin remodeling for activation.
Collapse
Affiliation(s)
- C L Smith
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
39
|
Polach KJ, Lowary PT, Widom J. Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes. J Mol Biol 2000; 298:211-23. [PMID: 10764592 DOI: 10.1006/jmbi.2000.3644] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The N and C-terminal tail domains of the core histones play important roles in gene regulation, but the mechanisms through which they act are not known. These tail domains are highly positively charged and are the sites of numerous post-translational modifications, including many sites for lysine acetylation. Nucleosomes in which these tail domains have been removed by trypsin remain otherwise intact, and are used by many laboratories as a model system for highly acetylated nucleosomes. Here, we test the hypothesis that one role of the tail domains is to directly regulate the accessibility of nucleosomal DNA to other DNA-binding proteins. Three assays are used: equilibrium binding by a site-specific, DNA-binding protein, and dynamic accessibility to restriction enzymes or to a non-specific exonuclease. The effects of removal of the tail domains as monitored by each of these assays can be understood within the framework of the site exposure model for the dynamic equilibrium accessibility of target sites located within the nucleosomal DNA. Removal of the tail domains leads to a 1.5 to 14-fold increase in position-dependent equilibrium constants for site exposure. The smallness of the effect weighs against models for gene activation in which histone acetylation is a mandatory initial event, required to facilitate subsequent access of regulatory proteins to nucleosomal DNA target sites. Alternative roles for histone acetylation in gene regulation are discussed.
Collapse
Affiliation(s)
- K J Polach
- Department of Biochemistry Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
40
|
Wolffe AP, Guschin D. Review: chromatin structural features and targets that regulate transcription. J Struct Biol 2000; 129:102-22. [PMID: 10806063 DOI: 10.1006/jsbi.2000.4217] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nucleosome and chromatin fiber provide the common structural framework for transcriptional control in eukaryotes. The folding of DNA within these structures can both promote and impede transcription dependent on structural context. Importantly, neither the nucleosome nor the chromatin fiber is a static structure. Histone dissociation, histone modification, nucleosome mobility, and assorted allosteric transitions contribute to transcriptional control. Chromatin remodeling is associated with gene activation and repression. Energy-dependent processes mediate the assembly of both activating and repressive proteins into the nucleosomal infrastructure. Recent progress allows the structural consequences of these processes to be visualized at the chromosomal level. DNA and RNA polymerase, SWI/SNF complexes, histone deacetylases, and acetyltransferases are targeted by gene-specific regulators to mediate these structural transitions. The mistargeting of these enzymes contributes to human developmental abnormalities and tumorigenesis. These observations illuminate the roles of chromatin and chromosomal structural biology in human disease.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Building 18T, Room 106, Bethesda, Maryland, 20892-5431, USA
| | | |
Collapse
|
41
|
Wolffe AP, Collingwood TN, Li Q, Yee J, Urnov F, Shi YB. Thyroid hormone receptor, v-ErbA, and chromatin. VITAMINS AND HORMONES 2000; 58:449-92. [PMID: 10668407 DOI: 10.1016/s0083-6729(00)58033-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The thyroid hormone receptor and the highly related viral oncoprotein v-erbA are found exclusively in the nucleus as stable constituents of chromatin. Unlike most transcriptional regulators, the thyroid hormone receptor binds with comparable affinity to naked and nucleosomal DNA. In vitro reconstitution experiments and in vivo genomic footprinting have delineated the chromatin structural features that facilitate association with the receptor. Chromatin bound thyroid hormone receptor and v-erbA generate Dnase I hypersensitive sites independent of ligand. The unliganded thyroid hormone receptor and v-erbA associate with a corepressor complex containing NCoR, SIN3, and histone deacetylase. The enzymatic activity of the deacetylase and a chromatin environment are essential for the dominant repression of transcription by both the unliganded thyroid hormone receptor and v-erbA. In the presence of ligand, the thyroid hormone receptor undergoes a conformational change that weakens interactions with the corepressor complex while facilitating the recruitment of transcriptional coactivators such as p300 and PCAF possessing histone acetyltransferase activity. The ligand-bound thyroid hormone receptor directs chromatin disruption events in addition to histone acetylation. Thus, the thyroid hormone receptor and v-erbA make very effective use of their stable association with chromatin and their capacity to alter the chromatin environment as a major component of the transcription regulation process. This system provides an exceptionally useful paradigm for investigating the structural and functional consequences of targeted chromatin modification.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-5431, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sullivan WJ, Smith CK. Cloning and characterization of a novel histone acetyltransferase homologue from the protozoan parasite Toxoplasma gondii reveals a distinct GCN5 family member. Gene 2000; 242:193-200. [PMID: 10721712 DOI: 10.1016/s0378-1119(99)00526-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In an effort to identify gene products involved in transcriptional regulation in apicomplexan parasites, the Toxoplasma gondii expressed sequence tag (EST) database was examined for sequences containing similarity to known transcriptional components. One EST (dbEST ID #466792) exhibited strong similarity to yeast GCN5 and other histone acetyltransferases (HATs). Primers were designed based on the EST sequence and used to amplify an 850 bp fragment (containing an intron) from T. gondii genomic DNA which was used to identify four cDNA clones from a tachyzoite cDNA library. The complete open reading frame (ORF) of 3.5 kb was elucidated using 5' RACE and genomic sequence. The deduced amino acid sequence of the coding region shows that the C-terminal domain possesses unequivocal similarity to GCN5 family members. However, unlike other lower eukaryotes, T. gondii GCN5 has an extended N-terminal domain similar in length, but not in composition, to metazoan HAT proteins. These features distinguish T. gondii GCN5 as a novel member of the GCN5 family. A portion of the cDNA sequence was used as a probe to isolate three overlapping clones from a T. gondii genomic library, generating a approximately 7.5 kb map of the GCN5 locus which contains seven exons separated by six introns. Southern analysis verifies the predicted map and suggests that a similar locus may be present elsewhere in the genome.
Collapse
Affiliation(s)
- W J Sullivan
- Animal Science Discovery Research, Elanco Animal Health, Greenfield, IN 46140, USA.
| | | |
Collapse
|
43
|
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
44
|
Ruh MF, Tian S, Cox LK, Ruh TS. The effects of histone acetylation on estrogen responsiveness in MCF-7 cells. Endocrine 1999; 11:157-64. [PMID: 10709763 DOI: 10.1385/endo:11:2:157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Revised: 06/29/1999] [Accepted: 07/26/1999] [Indexed: 11/11/2022]
Abstract
Because histone acetylation is implicated in the facilitation of specific gene transcription, the effect of increasing histone acetylation on the expression of an endogenous gene was investigated. The ability of trichostatin A (TSA), a histone deacetylase inhibitor, to potentiate the estradiol (E2) induction of progesterone receptor (PR) levels in MCF-7 cells was studied. Although TSA alone had no effect on PR synthesis, measured by a whole-cell binding assay with [3H]R5020, TSA potentiated the effect of 10(-11) ME2 such that 10 ng of TSA/mL approximately doubled the hormone response. When TSA was removed from the cells after various incubation times (24 and 48 h) by successive washings with TSA-free medium, it was determined that TSA was required throughout the 96-h incubation period in order to achieve maximal potentiation for the E2 response. In addition, TSA potentiated E2 induction of pS2 mRNA. These results suggested that the estrogen receptor (ER) complex might alter histone acetylation as part of the gene activation process. To test this directly, MCF-7 cells were incubated for 48 h with E2 followed by incubation with sodium [3H]acetate for 1 h. From two-dimensional polyacrylamide gel electrophoresis, an increase in total acetate incorporation into histones in estrogen- treated cells compared to control was observed as well as a preferential increase in the mono- and diacetylated histone H4. Experiments with lysine-specific antiacetylated H4 antibodies suggest a preferential increase in acetylation at lysine 16, but not 5, 8, or 12. The results of this study support an important role for histone acetylation in the mechanism of action of the ER.
Collapse
Affiliation(s)
- M F Ruh
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, MO 63104, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Chromatin disruption and modification are associated with transcriptional regulation by diverse coactivators and corepressors. Here we discuss the possible structural basis and functional consequences of the observed alterations in chromatin associated with transcriptional activation and repression. Recent advances in defining the roles of individual histones and their domains in the assembly and maintenance of regulatory architectures provide a framework for understanding how chromatin remodelling machines, histone acetyltransferases and deacetylases function.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, Natational Institute of Child Health and Human Development, NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA.
| | | |
Collapse
|
46
|
Motta MC, Caretti G, Badaracco GF, Mantovani R. Interactions of the CCAAT-binding trimer NF-Y with nucleosomes. J Biol Chem 1999; 274:1326-33. [PMID: 9880503 DOI: 10.1074/jbc.274.3.1326] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-Y is a sequence-specific evolutionary conserved activator binding to CCAAT boxes with high affinity and specificity. It is a trimer formed by NF-YA and two putative histone-like subunits, NF-YB and NF-YC, showing similarity to histones H2B and H2A, respectively. We investigated the relationships between NF-Y and chromatin using an Artemia franciscana chromatin assembly system with plasmids containing the Major HistoCompatibility complex class II Ea promoter. The NF-Y trimer, but not single subunits, protects the Y box in the presence of reconstituted chromatin, and it can bind the target sequence during and after assembly. Using reconstitution assays with purified chicken histones, we show that NF-Y associates with preformed nucleosomes. Translational analysis of various Ea fragments of identical length in which the CCAAT box is at different positions indicated that the lateral fragment was slightly more prone to NF-Y binding. In competition experiments, NF-Y is able to prevent formation of nucleosomes significantly. These data support the idea that NF-Y is a gene-specific activator with a built-in capacity to interface with chromatin structures.
Collapse
Affiliation(s)
- M C Motta
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
47
|
Blomquist P, Belikov S, Wrange O. Increased nuclear factor 1 binding to its nucleosomal site mediated by sequence-dependent DNA structure. Nucleic Acids Res 1999; 27:517-25. [PMID: 9862974 PMCID: PMC148209 DOI: 10.1093/nar/27.2.517] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The organization of DNA into chromatin is important in the regulation of transcription, by influencing the access of transcription factors to their DNA binding sites. Nuclear factor 1 (NF-1) is a transcription factor which binds to DNA constitutively and which interacts with its cognate DNA site with high affinity. However, this affinity is drastically reduced, approximately 100- to 300-fold, when the binding site is organized into a nucleosome. Here we demonstrate that the introduction of stretches of adenines of length 5 nt (A-tracts) on both sides of the NF-1 binding site has a distinct effect on NF-1 binding to a nucleosomal, but not to a free, NF-1 binding site. The position of the A-tracts, relative to the rotational phase of a synthetic DNA bending sequence, the TG-motif, decides whether the NF-1 affinity increases or decreases. The NF-1 binding affinity is seven times stronger when the flanking A-tracts are positioned out-of-phase with the TG-motif than it is when the A-tracts are positioned in-phase with the TG-motif. We demonstrate that this effect correlates with differences in DNA curvature and apparent histone octamer affinity. We conclude that DNA curvature influences the local histone-DNA contacts and hence the accessibility of the NF-1 site in a nucleosome context.
Collapse
Affiliation(s)
- P Blomquist
- Laboratory of Molecular Genetics, Department of Cell and Molecular Biology, Medical Nobel Institute,Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 1998; 67:545-79. [PMID: 9759497 DOI: 10.1146/annurev.biochem.67.1.545] [Citation(s) in RCA: 882] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nucleosome, which is the primary building block of chromatin, is not a static structure: It can adopt alternative conformations. Changes in solution conditions or changes in histone acetylation state cause nucleosomes and nucleosomal arrays to behave with altered biophysical properties. Distinct subpopulations of nucleosomes isolated from cells have chromatographic properties and nuclease sensitivity different from those of bulk nucleosomes. Recently, proteins that were initially identified as necessary for transcriptional regulation have been shown to alter nucleosomal structure. These proteins are found in three types of multiprotein complexes that can acetylate nucleosomes, deacetylate nucleosomes, or alter nucleosome structure in an ATP-dependent manner. The direct modification of nucleosome structure by these complexes is likely to play a central role in appropriate regulation of eukaryotic genes.
Collapse
Affiliation(s)
- J L Workman
- Howard Hughes Medical Institute, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
49
|
Thiriet C, Hayes JJ. Functionally relevant histone-DNA interactions extend beyond the classically defined nucleosome core region. J Biol Chem 1998; 273:21352-8. [PMID: 9694896 DOI: 10.1074/jbc.273.33.21352] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that core histones can affect the accessibility of a DNA element positioned outside of the classically defined nucleosome core region. The distance between a well positioned nucleosome and the binding site for the 5 S-specific transcription factor TFIIIA was systematically varied and the relative binding affinity for TFIIIA determined. We found that core histone-DNA interactions attenuate the affinity of TFIIIA for its cognate DNA element by a factor of 50-100-fold even when the critical binding region lies well outside of the classically defined nucleosome core region. These results have implications for the validity of parallels drawn between the accessibility of general nucleases to DNA sequences in chromatin and the activity of actual sequence-specific DNA binding factors.
Collapse
Affiliation(s)
- C Thiriet
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
50
|
Abstract
Tremendous advances in the study of chromatin have revealed new classes of transcriptional regulators distinct from classical DNA-binding proteins. Many previously described transcription factors, coactivators, and adaptors are regulators of chromatin structure, interacting directly with the core histone proteins or with nucleosomes. This review describes a method used by our laboratory to examine the interactions of regulatory proteins with the core histone proteins. Far-Western analysis uses a protein probe to detect interactions with histones immobilized on membranes. Variations of this technique can detect the acetylation state of the interacting histones and whether the interaction occurs through the globular domain or the amino-terminal "tail" domain. In addition, we discuss complementary techniques for confirming histone-regulatory protein interactions.
Collapse
Affiliation(s)
- D G Edmondson
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|