1
|
Bolhuis DL, Fleifel D, Bonacci T, Wang X, Mouery BL, Cook JG, Brown NG, Emanuele MJ. USP37 prevents unscheduled replisome unloading through MCM complex deubiquitination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610997. [PMID: 39282338 PMCID: PMC11398414 DOI: 10.1101/2024.09.03.610997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The CMG helicase (CDC45-MCM2-7-GINS) unwinds DNA as a component of eukaryotic replisomes. Replisome (dis)assembly is tightly coordinated with cell cycle progression to ensure genome stability. However, factors that prevent premature CMG unloading and replisome disassembly are poorly described. Since disassembly is catalyzed by ubiquitination, deubiquitinases (DUBs) represent attractive candidates for safeguarding against untimely and deleterious CMG unloading. We combined a targeted loss-of-function screen with quantitative, single-cell analysis to identify human USP37 as a key DUB preventing replisome disassembly. We demonstrate that USP37 maintains active replisomes on S-phase chromatin and promotes normal cell cycle progression. Proteomics and enzyme assays revealed USP37 interacts with the CMG complex to deubiquitinate MCM7, thus antagonizing replisome disassembly. Significantly, USP37 protects normal epithelial cells from oncoprotein-induced replication stress. Our findings reveal USP37 to be critical to the maintenance of replisomes in S-phase and suggest USP37-targeting as a potential strategy for treating malignancies with defective DNA replication control.
Collapse
Affiliation(s)
- Derek L. Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dalia Fleifel
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Thomas Bonacci
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brandon L. Mouery
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicholas G. Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael J. Emanuele
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Lee SY, Lee J, Park HL, Park YW, Kim H, Nam JH. The Adenylyl Cyclase Activator Forskolin Increases Influenza Virus Propagation in MDCK Cells by Regulating ERK1/2 Activity. J Microbiol Biotechnol 2023; 33:1576-1586. [PMID: 37644733 PMCID: PMC10772552 DOI: 10.4014/jmb.2306.06027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Vaccination is the most effective method for preventing the spread of the influenza virus. Cell-based influenza vaccines have been developed to overcome the disadvantages of egg-based vaccines and their production efficiency has been previously discussed. In this study, we investigated whether treatment with forskolin (FSK), an adenylyl cyclase activator, affected the output of a cell-based influenza vaccine. We found that FSK increased the propagation of three influenza virus subtypes (A/H1N1/California/4/09, A/H3N2/Mississippi/1/85, and B/Shandong/7/97) in Madin-Darby canine kidney (MDCK) cells. Interestingly, FSK suppressed the growth of MDCK cells. This effect could be a result of protein kinase A (PKA)-Src axis activation, which downregulates extracellular signal-regulated kinase (ERK)1/2 activity and delays cell cycle progression from G1 to S. This delay in cell growth might benefit the binding and entry of the influenza virus in the early stages of viral replication. In contrast, FSK dramatically upregulated ERK1/2 activity via the cAMP-PKA-Raf-1 axis at a late stage of viral replication. Thus, increased ERK1/2 activity might contribute to increased viral ribonucleoprotein export and influenza virus propagation. The increase in viral titer induced by FSK could be explained by the action of cAMP in assisting the entry and binding of the influenza virus. Therefore, FSK addition to cell culture systems could help increase the production efficiency of cell-based vaccines against the influenza virus.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye-Lim Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yong-Wook Park
- Department of R&D, SK Bioscience, Seongnam 13493, Republic of Korea
| | - Hun Kim
- Department of R&D, SK Bioscience, Seongnam 13493, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea
| |
Collapse
|
3
|
Mouery BL, Baker EM, Mills CA, Herring LE, Fleifel D, Cook JG. APC/C prevents non-canonical order of cyclin/CDK activity to maintain CDK4/6 inhibitor-induced arrest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566394. [PMID: 37986787 PMCID: PMC10659421 DOI: 10.1101/2023.11.09.566394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase APC/C (anaphase promoting complex/cyclosome), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear if APC/C maintains all types of arrest. Here by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological CDK4/6 inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves cyclin-dependent kinases acting in an atypical order to inactivate RB-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.
Collapse
Affiliation(s)
- Brandon L Mouery
- Curriculum in Genetics and Molecular Biology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Eliyambuya M Baker
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Christine A Mills
- UNC Proteomics Core Facility, Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill NC, 27599, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill NC, 27599, USA
| | - Dalia Fleifel
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill NC, 27599, USA
| |
Collapse
|
4
|
Kumar N, Mathur A, Bunker SK, John PJ. Cell Cycle dysregulation on prenatal and postnatal Arsenic exposure in skin of Wistar rat neonates. Xenobiotica 2023:1-15. [PMID: 37449383 DOI: 10.1080/00498254.2023.2237102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This study explores the effects of prenatal and postnatal (until weaning period) arsenic exposure given via pregnant females on Wistar rat neonates. Pregnant female rats were divided in four groups - control, low dose, moderate dose and high dose groups of sodium arsenite exposure during gestation and weaning period. Half of the neonates were sacrificed at day 1 of birth and other half at day 21 of birth. Cell cycle analysis in epidermal keratinocytes using flowcytometer revealed that there was a consistent increase in number of cells in G2/M phase from 0.04% in control group to 0.88%, 1.59% and 2.77% in low, moderate and high dose groups respectively for neonates sacrificed at day-1. Whereas, the increase in number of cells with increasing doses in G2/M phase of neonates sacrificed at day-21 was from 3.44% to 5.1%, 6.82%, and 9.17%. At postnatal day 21, mRNA expression of Cyclin A and B1, p53, Caspases 3, 7 and 9, and Bax were found to be up-regulated. Whereas that of Cyclin E, CDK 1 and 2 and Bcl2 were down regulated consistently in skin tissues of arsenic exposed groups.
Collapse
Affiliation(s)
- Navneet Kumar
- Centre for advanced studies, Department of Zoology, University of Rajasthan, Jaipur, India - 302004
| | - Astha Mathur
- Centre for advanced studies, Department of Zoology, University of Rajasthan, Jaipur, India - 302004
| | - Suresh Kumar Bunker
- Centre for advanced studies, Department of Zoology, University of Rajasthan, Jaipur, India - 302004
| | - Placheril J John
- Centre for advanced studies, Department of Zoology, University of Rajasthan, Jaipur, India - 302004
| |
Collapse
|
5
|
Qin A. An anti-cancer surveillance by the interplay between interferon-beta and retinoblastoma protein RB1. Front Oncol 2023; 13:1173467. [PMID: 37182173 PMCID: PMC10174298 DOI: 10.3389/fonc.2023.1173467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Interferon-beta (IFN-β), an extracellular cytokine that initiates signaling pathways for gene regulation, has been demonstrated to function as a tumor suppressor protein through lentiviral gene transduction. In this article, I review the relevant previous works and propose a cell cycle-based, tumor suppressor protein-mediated mechanism of anti-cancer surveillance. IFN-β induces a tumor cell cycle alteration that leads to S phase accumulation, senescence entry, and a loss of tumorigenicity in solid tumor cells. IFN-β does not show a significant cell cycle effect in their normal counterparts. Retinoblastoma protein RB1, another tumor suppressor protein, tightly controls the cell cycle and differentiation of normal cells, preventing them from being significantly impacted by the IFN-β effect. The interplay between IFN-β and RB1 acts as a mechanism of cell cycle-based, tumor suppressor protein-mediated anti-cancer surveillance that can selectively suppress solid tumor or proliferating transformed cells from the loss of control leading to cancer. This mechanism has important implications for the treatment of solid tumors.
Collapse
Affiliation(s)
- Albert Qin
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| |
Collapse
|
6
|
Limas JC, Littlejohn AN, House AM, Kedziora KM, Mouery BL, Ma B, Fleifel D, Walens A, Aleman MM, Dominguez D, Cook JG. Quantitative profiling of adaptation to cyclin E overproduction. Life Sci Alliance 2022; 5:e202201378. [PMID: 35173014 PMCID: PMC8860095 DOI: 10.26508/lsa.202201378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 01/03/2023] Open
Abstract
Cyclin E/CDK2 drives cell cycle progression from G1 to S phase. Despite the toxicity of cyclin E overproduction in mammalian cells, the cyclin E gene is overexpressed in some cancers. To further understand how cells can tolerate high cyclin E, we characterized non-transformed epithelial cells subjected to chronic cyclin E overproduction. Cells overproducing cyclin E, but not cyclins D or A, briefly experienced truncated G1 phases followed by a transient period of DNA replication origin underlicensing, replication stress, and impaired proliferation. Individual cells displayed substantial intercellular heterogeneity in cell cycle dynamics and CDK activity. Each phenotype improved rapidly despite high cyclin E-associated activity. Transcriptome analysis revealed adapted cells down-regulated a cohort of G1-regulated genes. Withdrawing cyclin E from adapted cells only partially reversed underlicensing indicating that adaptation is at least partly non-genetic. This study provides evidence that mammalian cyclin E/CDK inhibits origin licensing indirectly through premature S phase onset and provides mechanistic insight into the relationship between CDKs and licensing. It serves as an example of oncogene adaptation that may recapitulate molecular changes during tumorigenesis.
Collapse
Affiliation(s)
- Juanita C Limas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amiee N Littlejohn
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy M House
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Bioinformatics and Analytics Research Collaborative (BARC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandon L Mouery
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyang Ma
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dalia Fleifel
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea Walens
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria M Aleman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeanette Gowen Cook
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Sethi S, Epstein-Peterson Z, Kumar A, Ho C. Current Knowledge in Genetics, Molecular Diagnostic Tools, and Treatments for Mantle Cell Lymphomas. Front Oncol 2021; 11:739441. [PMID: 34888236 PMCID: PMC8649949 DOI: 10.3389/fonc.2021.739441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/29/2021] [Indexed: 12/04/2022] Open
Abstract
Mantle Cell lymphoma (MCL) is a mature B-cell lymphoma with a well-known hallmark genetic alteration in most cases, t (11,14)(q13q32)/CCND1-IGH. However, our understanding of the genetic and epigenetic alterations in MCL has evolved over the years, and it is now known that translocations involving CCND2, or cryptic insertion of enhancer elements of IGK or IGL gene, can also lead to MCL. On a molecular level, MCL can be broadly classified into two subtypes, conventional MCL (cMCL) and non-nodal MCL (nnMCL), each with different postulated tumor cell origin, clinical presentation and behavior, mutational pattern as well as genomic complexity. This article reviews both the common and rare alterations in MCL on a gene mutational, chromosomal arm, and epigenetic level, in the context of their contribution to the lymphomagenesis and disease evolution in MCL. This article also summarizes the important prognostic factors, molecular diagnostic tools, and treatment options based on the most recent MCL literature.
Collapse
Affiliation(s)
- Shenon Sethi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zachary Epstein-Peterson
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Anita Kumar
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
8
|
Zhu H, Zou X, Lin S, Hu X, Gao J. Effects of naringin on reversing cisplatin resistance and the Wnt/ β-catenin pathway in human ovarian cancer SKOV3/CDDP cells. J Int Med Res 2021; 48:300060519887869. [PMID: 33086930 PMCID: PMC7588763 DOI: 10.1177/0300060519887869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Ovarian cancer is one of three malignant tumors of the female reproductive system. Our
previous studies showed that the traditional Chinese medicine naringin significantly
inhibited the proliferation of platinum-resistant ovarian cancer cells in
vitro, and that the mechanism may be related to the NF-κB pathway. Methods The MTT assay was used to detect the sensitivity of SKOV3 and SKOV3/CDDP cells to
cisplatin, the effect of different naringin concentrations on the proliferation of
SKOV3/CDDP cells, and the reversal of cisplatin resistance in naringin-treated
SKOV3/CDDP cells. Western blotting was used to detect β-catenin, c-Myc, and cyclin D1
protein levels in the different cell lines. Results MTT results showed that different concentrations of naringin inhibited the
proliferation of SKOV3 and SKOV3/CDDP cells, and that the inhibition increased with
increasing concentrations and prolonged incubation times. Western blotting revealed that
compared with controls (SKOV3/CDDP-0), β-catenin, c-Myc and cyclin D1 proteins levels
were significantly decreased in SKOV3/CDDP-C, SKOV3/CDDP-N 20, and SKOV3/CDDP-CN 20
cells, suggesting that naringin inhibited the proliferation of SKOV3/CDDP cells in a
concentration and time dependent manner. Conclusions Non-cytotoxic naringin reduced the expression of β-catenin, c-Myc, and cyclin D1 in
SKOV3/CDDP cells and partially reversed cisplatin resistance in SKOV3/CDDP CN 20
cells.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Gynecology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xia Zou
- Department of Gynecology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - ShiXin Lin
- Department of Gynecology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Hu
- Department of Gynecology, The People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jun Gao
- Department of Gynecology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
9
|
Fouad S, Hauton D, D'Angiolella V. E2F1: Cause and Consequence of DNA Replication Stress. Front Mol Biosci 2021; 7:599332. [PMID: 33665206 PMCID: PMC7921158 DOI: 10.3389/fmolb.2020.599332] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, cell cycle entry occurs in response to the correct stimuli and is promoted by the transcriptional activity of E2F family members. E2F proteins regulate the transcription of S phase cyclins and genes required for DNA replication, DNA repair, and apoptosis. The activity of E2F1, the archetypal and most heavily studied E2F family member, is tightly controlled by the DNA damage checkpoints to modulate cell cycle progression and initiate programmed cell death, when required. Altered tumor suppressor and oncogenic signaling pathways often result in direct or indirect interference with E2F1 regulation to ensure higher rates of cell proliferation independently of external cues. Despite a clear link between dysregulated E2F1 activity and cancer progression, literature on the contribution of E2F1 to DNA replication stress phenotypes is somewhat scarce. This review discusses how dysfunctional tumor suppressor and oncogenic signaling pathways promote the disruption of E2F1 transcription and hence of its transcriptional targets, and how such events have the potential to drive DNA replication stress. In addition to the involvement of E2F1 upstream of DNA replication stress, this manuscript also considers the role of E2F1 as a downstream effector of the response to this type of cellular stress. Lastly, the review introduces some reflections on how E2F1 activity is integrated with checkpoint control through post-translational regulation, and proposes an exploitable tumor weakness based on this axis.
Collapse
Affiliation(s)
- Shahd Fouad
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - David Hauton
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Park J, Ahn SH, Shin MG, Kim HK, Chang S. tRNA-Derived Small RNAs: Novel Epigenetic Regulators. Cancers (Basel) 2020; 12:cancers12102773. [PMID: 32992597 PMCID: PMC7599909 DOI: 10.3390/cancers12102773] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cells must synthesize new proteins to maintain its life and tRNA (transfer RNA) is an essential component of the translation process. tRNA-derived small RNA (tsRNA) is a relatively uncharacterized small RNA, derived from enzymatic cleavage of the tRNAs. Accumulating evidences suggest that tsRNA is an abundant, highly modified, dynamically regulated small-RNA and interacts with other types of RNAs or proteins. Moreover, it is abnormally expressed in multiple human diseases including systemic lupus, neurological disorder, metabolic disorder and cancer, implying its diverse function in the initiation or progression of such diseases. In this review, we summarize the classification of tsRNA and its role focused on the epigenetic regulation. Further, we discuss the limitation of current knowledge about the tsRNA and its potential applications. Abstract An epigenetic change is a heritable genetic alteration that does not involve any nucleotide changes. While the methylation of specific DNA regions such as CpG islands or histone modifications, including acetylation or methylation, have been investigated in detail, the role of small RNAs in epigenetic regulation is largely unknown. Among the many types of small RNAs, tRNA-derived small RNAs (tsRNAs) represent a class of noncoding small RNAs with multiple roles in diverse physiological processes, including neovascularization, sperm maturation, immune modulation, and stress response. Regarding these roles, several pioneering studies have revealed that dysregulated tsRNAs are associated with human diseases, such as systemic lupus, neurological disorder, metabolic disorder, and cancer. Moreover, recent findings suggest that tsRNAs regulate the expression of critical genes linked with these diseases by a variety of mechanisms, including epigenetic regulation. In this review, we will describe different classes of tsRNAs based on their biogenesis and will focus on their role in epigenetic regulation.
Collapse
Affiliation(s)
- Joonhyeong Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Se Hee Ahn
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Myung Geun Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| |
Collapse
|
11
|
Pennycook BR, Barr AR. Restriction point regulation at the crossroads between quiescence and cell proliferation. FEBS Lett 2020; 594:2046-2060. [PMID: 32564372 DOI: 10.1002/1873-3468.13867] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/11/2024]
Abstract
The coordination of cell proliferation with reversible cell cycle exit into quiescence is crucial for the development of multicellular organisms and for tissue homeostasis in the adult. The decision between quiescence and proliferation occurs at the restriction point, which is widely thought to be located in the G1 phase of the cell cycle, when cells integrate accumulated extracellular and intracellular signals to drive this binary cellular decision. On the molecular level, decision-making is exerted through the activation of cyclin-dependent kinases (CDKs). CDKs phosphorylate the retinoblastoma (Rb) transcriptional repressor to regulate the expression of cell cycle genes. Recently, the classical view of restriction point regulation has been challenged. Here, we review the latest findings on the activation of CDKs, Rb phosphorylation and the nature and position of the restriction point within the cell cycle.
Collapse
Affiliation(s)
- Betheney R Pennycook
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexis R Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
12
|
Bojkova D, Westhaus S, Costa R, Timmer L, Funkenberg N, Korencak M, Streeck H, Vondran F, Broering R, Heinrichs S, Lang KS, Ciesek S. Sofosbuvir Activates EGFR-Dependent Pathways in Hepatoma Cells with Implications for Liver-Related Pathological Processes. Cells 2020; 9:cells9041003. [PMID: 32316635 PMCID: PMC7225999 DOI: 10.3390/cells9041003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Direct acting antivirals (DAAs) revolutionized the therapy of chronic hepatitis C infection. However, unexpected high recurrence rates of hepatocellular carcinoma (HCC) after DAA treatment became an issue in patients with advanced cirrhosis and fibrosis. In this study, we aimed to investigate an impact of DAA treatment on the molecular changes related to HCC development and progression in hepatoma cell lines and primary human hepatocytes. We found that treatment with sofosbuvir (SOF), a backbone of DAA therapy, caused an increase in EGFR expression and phosphorylation. As a result, enhanced translocation of EGFR into the nucleus and transactivation of factors associated with cell cycle progression, B-MYB and Cyclin D1, was detected. Serine/threonine kinase profiling identified additional pathways, especially the MAPK pathway, also activated during SOF treatment. Importantly, the blocking of EGFR kinase activity by erlotinib during SOF treatment prevented all downstream events. Altogether, our findings suggest that SOF may have an impact on pathological processes in the liver via the induction of EGFR signaling. Notably, zidovudine, another nucleoside analogue, exerted a similar cell phenotype, suggesting that the observed effects may be induced by additional members of this drug class.
Collapse
Affiliation(s)
- Denisa Bojkova
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Sandra Westhaus
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Rui Costa
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Lejla Timmer
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Nora Funkenberg
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Marek Korencak
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Hendrik Streeck
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Florian Vondran
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany;
- German Center for Infection Research (DZIF), 45147 Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Sandra Ciesek
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
- German Center for Infection Research (DZIF), 45147 Essen, Germany
- Correspondence: ; Tel.: +49-69-63015219
| |
Collapse
|
13
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
14
|
Lemmens B, Lindqvist A. DNA replication and mitotic entry: A brake model for cell cycle progression. J Cell Biol 2019; 218:3892-3902. [PMID: 31712253 PMCID: PMC6891093 DOI: 10.1083/jcb.201909032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Lemmens and Lindqvist discuss how DNA replication and mitosis are coordinated and propose a cell cycle model controlled by brakes. The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Genome-Wide Analysis of Cell Cycle-Regulating Genes in the Symbiotic Dinoflagellate Breviolum minutum. G3-GENES GENOMES GENETICS 2019; 9:3843-3853. [PMID: 31551286 PMCID: PMC6829154 DOI: 10.1534/g3.119.400363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A delicate relationship exists between reef-building corals and their photosynthetic endosymbionts. Unfortunately, this relationship can be disrupted, with corals expelling these algae when temperatures rise even marginally above the average summer maximum. Interestingly, several studies indicate that failure of corals to regulate symbiont cell divisions at high temperatures may underlie this disruption; increased proliferation of symbionts may stress host cells by over-production of reactive oxygen species or by disrupting the flow of nutrients. This needs to be further investigated, so to begin deciphering the molecular mechanisms controlling the cell cycle in these organisms, we used a computational approach to identify putative cell cycle-regulating genes in the genome of the dinoflagellate Breviolum minutum. This species is important as an endosymbiont of Aiptasia pallida—an anemone that is used as a model for studying coral biology. We then correlated expression of these putative cell cycle genes with cell cycle phase in diurnally growing B. minutum in culture. This approach allowed us to identify a cyclin/cyclin-dependent kinase pair that may function in the G1/S transition—a likely point for coral cells to exert control over algal cell divisions.
Collapse
|
16
|
Alofe O, Kisanga E, Inayat-Hussain SH, Fukumura M, Garcia-Milian R, Perera L, Vasiliou V, Whirledge S. Determining the endocrine disruption potential of industrial chemicals using an integrative approach: Public databases, in vitro exposure, and modeling receptor interactions. ENVIRONMENT INTERNATIONAL 2019; 131:104969. [PMID: 31310931 PMCID: PMC6728168 DOI: 10.1016/j.envint.2019.104969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/18/2023]
Abstract
Environmental and occupational exposure to industrial chemicals has been linked to toxic and carcinogenic effects in animal models and human studies. However, current toxicology testing does not thoroughly explore the endocrine disrupting effects of industrial chemicals, which may have low dose effects not predicted when determining the limit of toxicity. The objective of this study was to evaluate the endocrine disrupting potential of a broad range of chemicals used in the petrochemical sector. Therefore, 139 chemicals were classified for reproductive toxicity based on the United Nations Globally Harmonized System for hazard classification. These chemicals were evaluated in PubMed for reported endocrine disrupting activity, and their endocrine disrupting potential was estimated by identifying chemicals with active nuclear receptor endpoints publicly available databases. Evaluation of ToxCast data suggested that these chemicals preferentially alter the activity of the estrogen receptor (ER). Four chemicals were prioritized for in vitro testing using the ER-positive, immortalized human uterine Ishikawa cell line and a range of concentrations below the reported limit of toxicity in humans. We found that 2,6-di-tert-butyl-p-cresol (BHT) and diethanolamine (DEA) repressed the basal expression of estrogen-responsive genes PGR, NPPC, and GREB1 in Ishikawa cells, while tetrachloroethylene (PCE) and 2,2'-methyliminodiethanol (MDEA) induced the expression of these genes. Furthermore, low-dose combinations of PCE and MDEA produced additive effects. All four chemicals interfered with estradiol-mediated induction of PGR, NPPC, and GREB1. Molecular docking demonstrated that these chemicals could bind to the ligand binding site of ERα, suggesting the potential for direct stimulatory or inhibitory effects. We found that these chemicals altered rates of proliferation and regulated the expression of cell proliferation associated genes. These findings demonstrate previously unappreciated endocrine disrupting effects and underscore the importance of testing the endocrine disrupting potential of chemicals in the future to better understand their potential to impact public health.
Collapse
Affiliation(s)
- Olubusayo Alofe
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Edwina Kisanga
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Salmaan H Inayat-Hussain
- Department of Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, Petroliam Nasional Berhad, Kuala Lumpur, Malaysia; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Masao Fukumura
- Department of Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, Petroliam Nasional Berhad, Kuala Lumpur, Malaysia
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
17
|
Fan Y, Gan M, Tan Y, Chen L, Shen L, Niu L, Liu Y, Tang G, Jiang Y, Li X, Zhang S, Bai L, Zhu L. Mir-152 Regulates 3T3-L1 Preadipocyte Proliferation and Differentiation. Molecules 2019; 24:molecules24183379. [PMID: 31533306 PMCID: PMC6766927 DOI: 10.3390/molecules24183379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/14/2023] Open
Abstract
Adipogenesis is a complex biological process and the main cause of obesity. Recently, microRNAs (miRNAs), a class of small endogenous non-coding RNAs, have been proven to play an important role in adipogenesis by the post-transcriptional regulation of target genes. In this current study, we observed an increment of miR-152 expression during the process of 3T3-L1 cell audiogenic differentiation. A functional analysis indicated that the overexpression of miR-152 inhibited pre-adipocyte proliferation and suppressed the expression of some cell cycle-related genes. Moreover, the overexpression of miR-152 promoted lipid accumulation in 3T3-L1 preadipocytes accompanied by increase of the expression of some pro-audiogenic genes. Additionally, a dual-luciferase reporter assay demonstrated lipoprotein lipase (LPL) was a direct target gene of miR-152 during preadipocyte differentiation. Further analysis showed that miR-152 was positively correlated with adipogenesis and intramuscular fat formation in vivo. Taken together, our findings suggest that miR-152 could suppress 3T3-L1 preadipocyte proliferation, whereas it could promote 3T3-L1 preadipocyte differentiation by negatively regulating LPL. The findings indicate that miR-152 might have a therapeutic significance for obesity and obesity-related metabolic syndrome.
Collapse
Affiliation(s)
- Yuan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mailin Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ya Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, Guizhou, China.
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yihui Liu
- Sichuan Province General Station of Animal Husbandry, Chengdu 611130, Sichuan, China.
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yanzhi Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
18
|
tRNA-Derived Small Non-Coding RNAs as Novel Epigenetic Molecules Regulating Adipogenesis. Biomolecules 2019; 9:biom9070274. [PMID: 31336727 PMCID: PMC6681357 DOI: 10.3390/biom9070274] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
tRNA-derived fragments (tRFs), a novel type of non-coding RNA derived from tRNAs, play an important part in governing gene expressions at a post-transcriptional level. To date, the regulatory mechanism of tRFs governing fat deposition and adipogenesis is completely unknown. In this study, high fat diet was employed to induce an obese rat model, and tRFs transcriptome sequencing was conducted to identify differentially expressed tRFs that response to obesity. We found out that tRFGluTTC, which promoted preadipocyte proliferation by increasing expressions of cell cycle regulatory factors, had the highest fold change in the 296 differentially expressed tRFs. Moreover, tRFGluTTC also suppressed preadipocyte differentiation by reducing triglyceride content and lipid accumulation, and by decreasing expressions of genes that related to fatty acid synthesis. According to results of luciferase activity analysis, tRFGluTTC directly targeted Kruppel-like factor (KLF) 9, KLF11, and KLF12, thus significantly suppressing mRNA expressions of these target genes. Moreover, tRFGluTTC suppressed adipogenesis, accompanying by suppressing expressions of adipogenic transcription factors (aP2, PPARγ, and C/EBPα). In conclusion, these results imply that tRFGluTTC may act as a novel epigenetic molecule regulating adipogenesis and could provide a new strategy for the intervention treatment of obesity.
Collapse
|
19
|
Aziz K, Limzerwala JF, Sturmlechner I, Hurley E, Zhang C, Jeganathan KB, Nelson G, Bronk S, Velasco RF, van Deursen EJ, O’Brien DR, Kocher JPA, Youssef SA, van Ree JH, de Bruin A, van den Bos H, Spierings DC, Foijer F, van de Sluis B, Roberts LR, Gores G, Li H, van Deursen JM. Ccne1 Overexpression Causes Chromosome Instability in Liver Cells and Liver Tumor Development in Mice. Gastroenterology 2019; 157:210-226.e12. [PMID: 30878468 PMCID: PMC6800187 DOI: 10.1053/j.gastro.2019.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The CCNE1 locus, which encodes cyclin E1, is amplified in many types of cancer cells and is activated in hepatocellular carcinomas (HCCs) from patients infected with hepatitis B virus or adeno-associated virus type 2, due to integration of the virus nearby. We investigated cell-cycle and oncogenic effects of cyclin E1 overexpression in tissues of mice. METHODS We generated mice with doxycycline-inducible expression of Ccne1 (Ccne1T mice) and activated overexpression of cyclin E1 from age 3 weeks onward. At 14 months of age, livers were collected from mice that overexpress cyclin E1 and nontransgenic mice (controls) and analyzed for tumor burden and by histology. Mouse embryonic fibroblasts (MEFs) and hepatocytes from Ccne1T and control mice were analyzed to determine the extent to which cyclin E1 overexpression perturbs S-phase entry, DNA replication, and numbers and structures of chromosomes. Tissues from 4-month-old Ccne1T and control mice (at that age were free of tumors) were analyzed for chromosome alterations, to investigate the mechanisms by which cyclin E1 predisposes hepatocytes to transformation. RESULTS Ccne1T mice developed more hepatocellular adenomas and HCCs than control mice. Tumors developed only in livers of Ccne1T mice, despite high levels of cyclin E1 in other tissues. Ccne1T MEFs had defects that promoted chromosome missegregation and aneuploidy, including incomplete replication of DNA, centrosome amplification, and formation of nonperpendicular mitotic spindles. Whereas Ccne1T mice accumulated near-diploid aneuploid cells in multiple tissues and organs, polyploidization was observed only in hepatocytes, with losses and gains of whole chromosomes, DNA damage, and oxidative stress. CONCLUSIONS Livers, but not other tissues of mice with inducible overexpression of cyclin E1, develop tumors. More hepatocytes from the cyclin E1-overexpressing mice were polyploid than from control mice, and had losses or gains of whole chromosomes, DNA damage, and oxidative stress; all of these have been observed in human HCC cells. The increased risk of HCC in patients with hepatitis B virus or adeno-associated virus type 2 infection might involve activation of cyclin E1 and its effects on chromosomes and genomes of liver cells.
Collapse
Affiliation(s)
- Khaled Aziz
- Departments of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jazeel F. Limzerwala
- Departments of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ines Sturmlechner
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA,Department of Pediatrics, and, University Medical Center Groningen, Groningen, The Netherlands
| | - Erin Hurley
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Cheng Zhang
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Karthik B. Jeganathan
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Grace Nelson
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Steve Bronk
- Departments of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Raul Fierro Velasco
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik-Jan van Deursen
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel R. O’Brien
- Departments of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA,Departments of Health Sciences Research, and, Mayo Clinic, Rochester, MN 55905, USA
| | - Jean-Pierre A. Kocher
- Departments of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA,Departments of Health Sciences Research, and, Mayo Clinic, Rochester, MN 55905, USA
| | - Sameh A. Youssef
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Janine H. van Ree
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands,Department of Pediatrics, and, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, and, University Medical Center Groningen, Groningen, The Netherlands
| | - Lewis R. Roberts
- Departments of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Gores
- Departments of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hu Li
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan M. van Deursen
- Departments of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA,Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA,Department of Pediatrics, and, University Medical Center Groningen, Groningen, The Netherlands,Correspondence: Please address all correspondence to Dr. Jan M. van Deursen, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA. Phone: 507.284.2524;
| |
Collapse
|
20
|
Di Sante G, Pagé J, Jiao X, Nawab O, Cristofanilli M, Skordalakes E, Pestell RG. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev Anticancer Ther 2019; 19:569-587. [PMID: 31219365 PMCID: PMC6834352 DOI: 10.1080/14737140.2019.1615889] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Jessica Pagé
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
21
|
Matson JP, House AM, Grant GD, Wu H, Perez J, Cook JG. Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence. J Cell Biol 2019; 218:2169-2184. [PMID: 31186278 PMCID: PMC6605788 DOI: 10.1083/jcb.201902143] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
To maintain tissue homeostasis, cells transition between cell cycle quiescence and proliferation. An essential G1 process is minichromosome maintenance complex (MCM) loading at DNA replication origins to prepare for S phase, known as origin licensing. A p53-dependent origin licensing checkpoint normally ensures sufficient MCM loading before S phase entry. We used quantitative flow cytometry and live cell imaging to compare MCM loading during the long first G1 upon cell cycle entry and the shorter G1 phases in the second and subsequent cycles. We discovered that despite the longer G1 phase, the first G1 after cell cycle re-entry is significantly underlicensed. Consequently, the first S phase cells are hypersensitive to replication stress. This underlicensing results from a combination of slow MCM loading with a severely compromised origin licensing checkpoint. The hypersensitivity to replication stress increases over repeated rounds of quiescence. Thus, underlicensing after cell cycle re-entry from quiescence distinguishes a higher-risk first cell cycle that likely promotes genome instability.
Collapse
Affiliation(s)
- Jacob Peter Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amy M House
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gavin D Grant
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Huaitong Wu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joanna Perez
- Biochemistry, Cell and Developmental Biology Program, Emory University, Atlanta, GA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
22
|
Petropoulos M, Champeris Tsaniras S, Taraviras S, Lygerou Z. Replication Licensing Aberrations, Replication Stress, and Genomic Instability. Trends Biochem Sci 2019; 44:752-764. [PMID: 31054805 DOI: 10.1016/j.tibs.2019.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023]
Abstract
Strict regulation of DNA replication is of fundamental significance for the maintenance of genome stability. Licensing of origins of DNA replication is a critical event for timely genome duplication. Errors in replication licensing control lead to genomic instability across evolution. Here, we present accumulating evidence that aberrant replication licensing is linked to oncogene-induced replication stress and poses a major threat to genome stability, promoting tumorigenesis. Oncogene activation can lead to defects in where along the genome and when during the cell cycle licensing takes place, resulting in replication stress. We also discuss the potential of replication licensing as a specific target for novel anticancer therapies.
Collapse
Affiliation(s)
- Michalis Petropoulos
- Department of Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece.
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras 26504, Greece.
| |
Collapse
|
23
|
Özer Ö, Hickson ID. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biol 2019; 8:rsob.180018. [PMID: 29695617 PMCID: PMC5936717 DOI: 10.1098/rsob.180018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Oncogene activation during tumour development leads to changes in the DNA replication programme that enhance DNA replication stress. Certain regions of the human genome, such as common fragile sites and telomeres, are particularly sensitive to DNA replication stress due to their inherently ‘difficult-to-replicate’ nature. Indeed, it appears that these regions sometimes fail to complete DNA replication within the period of interphase when cells are exposed to DNA replication stress. Under these conditions, cells use a salvage pathway, termed ‘mitotic DNA repair synthesis (MiDAS)’, to complete DNA synthesis in the early stages of mitosis. If MiDAS fails, the ensuing mitotic errors threaten genome integrity and cell viability. Recent studies have provided an insight into how MiDAS helps cells to counteract DNA replication stress. However, our understanding of the molecular mechanisms and regulation of MiDAS remain poorly defined. Here, we provide an overview of how DNA replication stress triggers MiDAS, with an emphasis on how common fragile sites and telomeres are maintained. Furthermore, we discuss how a better understanding of MiDAS might reveal novel strategies to target cancer cells that maintain viability in the face of chronic oncogene-induced DNA replication stress.
Collapse
Affiliation(s)
- Özgün Özer
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
24
|
Schoonen PM, Guerrero Llobet S, van Vugt MATM. Replication stress: Driver and therapeutic target in genomically instable cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:157-201. [PMID: 30798931 DOI: 10.1016/bs.apcsb.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomically instable cancers are characterized by progressive loss and gain of chromosomal fragments, and the acquisition of complex genomic rearrangements. Such cancers, including triple-negative breast cancers and high-grade serous ovarian cancers, typically show aggressive behavior and lack actionable driver oncogenes. Increasingly, oncogene-induced replication stress or defective replication fork maintenance is considered an important driver of genomic instability. Paradoxically, while replication stress causes chromosomal instability and thereby promotes cancer development, it intrinsically poses a threat to cellular viability. Apparently, tumor cells harboring high levels of replication stress have evolved ways to cope with replication stress. As a consequence, therapeutic targeting of such compensatory mechanisms is likely to preferentially target cancers with high levels of replication stress and may prove useful in potentiating chemotherapeutic approaches that exert their effects by interfering with DNA replication. Here, we discuss how replication stress drives chromosomal instability, and the cell cycle-regulated mechanisms that cancer cells employ to deal with replication stress. Importantly, we discuss how mechanisms involving DNA structure-specific resolvases, cell cycle checkpoint kinases and mitotic processing of replication intermediates offer possibilities in developing treatments for difficult-to-treat genomically instable cancers.
Collapse
Affiliation(s)
- Pepijn M Schoonen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Shen L, Li Q, Wang J, Zhao Y, Niu L, Bai L, Shuai S, Li X, Zhang S, Zhu L. miR-144-3p Promotes Adipogenesis Through Releasing C/EBPα From Klf3 and CtBP2. Front Genet 2018; 9:677. [PMID: 30619490 PMCID: PMC6305703 DOI: 10.3389/fgene.2018.00677] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs, have been proved as novel and potent regulators of adipogenesis. A previous study has found out that miR-144-3p was a biomarker of type 2 diabetes, but the role of miR-144-3p in regulating adipogenesis was still unclear. In the present study, the expression of miR-144-3p increased in obese mice and during the 3T3-L1 differentiation process. Overexpression of miR-144-3p suppressed the expression of cell cycle regulatory factors and inhibited pre-adipocytes proliferation. Besides, overexpression of miR-144-3p accelerated lipid accumulation in adipocytes and positively regulated adipogenesis, which was also accompanied by increasing the expression of genes related to fatty acid synthesis and decreasing the expression of genes involved in fatty acid oxidation. Furthermore, luciferase activity assays indicated that miR-144-3p directly targeted Klf3 and CtBP2. The process was also confirmed by the mRNA and protein expression of Klf3 and CtBP2, which were suppressed by miR-144-3p. Furthermore, miR-144-3p targeting Klf3/CtBP2 would induce C/EBPα activity by releasing corepressors (Klf3 and CtBP2) from its promoter region. Moreover, we also observed that miR-144-3p could promote adipogenesis in mice injected with miR-144-3p agomir through tail-vein injection. Taken together, these results support that miR-144-3p can facilitate adipogenesis both in vitro and in vivo, which implies that miR-144-3p could be a target for therapeutic intervention in obesity and metabolic syndrome in the future.
Collapse
Affiliation(s)
- Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiang Li
- Sichuan Province General Station of Animal Husbandry, Chengdu, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Surong Shuai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Atarbashi Moghadam S, Ghorbanpour M. Evaluation of Cyclin D1 Expression in Aggressive and Nonaggressive Central Giant Cell Granuloma of the Jaws. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2018; 19:253-258. [PMID: 30680296 PMCID: PMC6338689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STATEMENT OF THE PROBLEM Central giant cell granuloma of the jaws is comprised of two types namely aggressive and nonaggressive. Controversy exists regarding the histogenesis of this lesion. Up to now, there are no reliable histologic or molecular methods to differentiate aggressive from nonaggressive central giant cell granuloma of the jaw. Moreover, because of different treatment of two groups, correct diagnosis is needed. PURPOSE The purpose of this study was to evaluate and compare the expression of cyclin D1 between aggressive and nonaggressive central giant cell granulomas of the jaws. MATERIALS AND METHOD This retrospective study was performed on 16 paraffin blocks of aggressive central giant cell granuloma, and 16 nonaggressive central giant cell granulomas from Shahid Beheshti Oral Pathology Department and evaluated the expression of cyclin D1 on giant cells and mononuclear cells of the lesions. T-test was used for quantitative evaluation and comparison of cyclin D1 expression between two groups. RESULTS Overexpression of cyclin D1 in giant cells and mononuclear cells of the lesions of both groups was apparent, but no significant statistical difference was seen. Cyclin D1 positivity was seen predominantly in the nuclei of giant cells. When a giant cell was positive, all the nuclei showed immunoreactivity. In each group mean percentage of the positive giant cells were higher than positive mononuclear cells and significant statistical difference (p= 0.000) was seen between them. CONCLUSION Probably overexpression of cyclin D1 implicates in the pathogenesis of the central giant cell granulomas but it seems that this protein could not be used as a marker for identifying the clinical behavior of these lesions.
Collapse
Affiliation(s)
- Saede Atarbashi Moghadam
- Dept. of Oral and Maxillofacial Pathology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maedeh Ghorbanpour
- Dept. of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
27
|
Ambhore NS, Katragadda R, Raju Kalidhindi RS, Thompson MA, Pabelick CM, Prakash YS, Sathish V. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation. Mol Cell Endocrinol 2018; 476:37-47. [PMID: 29680290 PMCID: PMC6120801 DOI: 10.1016/j.mce.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways, and may point to a novel perception for blunting airway remodeling.
Collapse
Affiliation(s)
| | - Rathnavali Katragadda
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
28
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
29
|
Curcumin analogue 1,5-bis(4-hydroxy-3-((4-methylpiperazin-1-yl)methyl)phenyl)penta-1,4-dien-3-one mediates growth arrest and apoptosis by targeting the PI3K/AKT/mTOR and PKC-theta signaling pathways in human breast carcinoma cells. Bioorg Chem 2018. [DOI: 10.1016/j.bioorg.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
MicroRNA-200b regulates preadipocyte proliferation and differentiation by targeting KLF4. Biomed Pharmacother 2018; 103:1538-1544. [DOI: 10.1016/j.biopha.2018.04.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/17/2023] Open
|
31
|
Pierre K, Rao RT, Hartmanshenn C, Androulakis IP. Modeling the Influence of Seasonal Differences in the HPA Axis on Synchronization of the Circadian Clock and Cell Cycle. Endocrinology 2018; 159:1808-1826. [PMID: 29444258 PMCID: PMC6044315 DOI: 10.1210/en.2017-03226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Synchronization of biological functions to environmental signals enables organisms to anticipate and appropriately respond to daily external fluctuations and is critical to the maintenance of homeostasis. Misalignment of circadian rhythms with environmental cues is associated with adverse health outcomes. Cortisol, the downstream effector of hypothalamic-pituitary-adrenal (HPA) activity, facilitates synchronization of peripheral biological processes to the environment. Cortisol levels exhibit substantial seasonal rhythmicity, with peak levels occurring during the short-photoperiod winter months and reduced levels occurring in the long-photoperiod summer season. Seasonal changes in cortisol secretion could therefore alter its entraining capabilities, resulting in a season-dependent modification in the alignment of biological activities with the environment. We develop a mathematical model to investigate the influence of photoperiod-induced seasonal differences in the circadian rhythmicity of the HPA axis on the synchronization of the peripheral circadian clock and cell cycle in a heterogeneous cell population. Model simulations predict that the high-amplitude cortisol rhythms in winter result in the greatest entrainment of peripheral oscillators. Furthermore, simulations predict a circadian gating of the cell cycle with respect to the expression of peripheral clock genes. Seasonal differences in cortisol rhythmicity are also predicted to influence mitotic synchrony, with a high-amplitude winter rhythm resulting in the greatest synchrony and a shift in timing of the cell cycle phases, relative to summer. Our results highlight the primary interactions among the HPA axis, the peripheral circadian clock, and the cell cycle and thereby provide an improved understanding of the implications of circadian misalignment on the synchronization of peripheral regulatory processes.
Collapse
Affiliation(s)
- Kamau Pierre
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rohit T Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
32
|
Macheret M, Halazonetis TD. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature 2018; 555:112-116. [PMID: 29466339 PMCID: PMC5837010 DOI: 10.1038/nature25507] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022]
Abstract
Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.
Collapse
Affiliation(s)
- Morgane Macheret
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland
| | | |
Collapse
|
33
|
Zuniga MC, Raghuraman G, Zhou W. Physiologic levels of resistin induce a shift from proliferation to apoptosis in macrophage and VSMC co-culture. Surgery 2018; 163:906-911. [PMID: 29361366 DOI: 10.1016/j.surg.2017.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/26/2017] [Accepted: 10/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Resistin, an adipokine with inflammatory properties, has been associated with plaque vulnerability. Vascular smooth muscle cells and macrophages are the major cellular components in advanced atherosclerotic plaques and interdependently affect plaque stability. The purpose of this study was to examine the effects of resistin on the interactions of vascular smooth muscle cells and macrophages using co-culture systems. METHODS Human monocytes were differentiated into macrophages. Vascular smooth muscle cells were grown and starved prior to co-culture condition. Indirect co-culture was performed by treating macrophages with resistin at 10 ng/mL for 24 hours with/without εV1-2, a selective protein kinase C epsilon inhibitor. Macrophages supernatants were then used to treat vascular smooth muscle cells for 24 hours. Direct co-culture was performed by culturing macrophages and vascular smooth muscle cells together for 24 to 48 hours. Cultures were evaluated for changes in proliferation, apoptosis, and gene expression of apoptosis, proliferation, and inflammation-associated genes. RESULTS Macrophages induced vascular smooth muscle cells proliferation, which was further exaggerated in resistin-treated macrophages in the indirect co-culture model. Resistin also upregulated cyclin D1 and proliferating cell nuclear antigen via protein kinase C epsilon in the indirect co-culture. Augmented proliferation was further confirmed in the direct co-culture model, particularly at increased macrophage ratios. However, resistin treatment induced apoptosis in the presence of direct cell to cell interactions. Along with the shift to apoptosis, expressions of caspase 3 and caspase 8 were upregulated. The expression of kappa-light-chain-enhancer of activated B cells 1 and 2 was similar in direct and indirect co-cultures. CONCLUSION Resistin promotes a shift from proliferation to apoptosis in vascular smooth muscle cells and macrophage co-culture systems with cellular composition similar to that found in vulnerable regions of plaques. Protein kinase C epsilon mediates the effects of resistin, suggesting that protein kinase C epsilon may represent a therapeutic strategy in resistin-associated atherosclerotic complications.
Collapse
Affiliation(s)
- Mary C Zuniga
- Department of Vascular Surgery, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Gayatri Raghuraman
- Department of Vascular Surgery, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Wei Zhou
- Division of Vascular Surgery, Department of Surgery, University of Arizona, Tucson, AZ, USA; Department of Vascular Surgery, Southern Arizona VA Health Care System, Tucson, AZ, USA.
| |
Collapse
|
34
|
Wang Q, Zhang F, Hong Y. Blocking of autocrine IGF-1 reduces viability of human umbilical cord mesenchymal stem cells via inhibition of the Akt/Gsk-3β signaling pathway. Mol Med Rep 2018; 17:4681-4687. [PMID: 29344668 DOI: 10.3892/mmr.2018.8445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) are able to secrete growth factors, such as hepatocyte growth factor, vascular endothelial growth factor and insulin‑like growth factor‑1 (IGF‑1). The secretion of these growth factors by transplanted hUCMSCs have been identified to stimulate the growth of the host cells in the target organs or tissues. The aim of the present study was to investigate the effect of autocrine IGF‑1 on cell viability of hUCMSCs. The expression levels of IGF‑1 and the IGF‑1 receptor (IGF‑1R) in hUCMSCs were identified using immunocytochemistry staining. In order to block autocrine IGF‑1, hUCMSCs were treated with 5 µg/ml αIR‑3, a specific IGF‑1R antibody, for 24 h. The cells cultured in medium without αIR‑3 were used as the control group. Cell viability, apoptosis, cell cycle and the proliferation‑associated proteins were quantified using an MTT assay, flow cytometry and western blotting. The findings of the present study revealed that IGF‑1 and IGF‑1R were positively expressed in hUCMSCs. Treatment with αIR‑3 significantly reduced cell viability and increased apoptosis of hUCMSCs (P<0.01). Cell cycle analysis indicated that the number of cells in the G2/M phase was reduced in the αIR‑3‑treated group compared with the control group. Western blotting revealed that the expression levels of phosphorylated (p)‑protein kinase B (Akt), p‑glycogen synthase kinase 3β (GSK‑3β), p‑p70 S6 kinase and cyclin D1 were markedly reduced and p21 expression was markedly increased in the αIR‑3‑treated group as compared with the control group (P<0.05). However, no significant difference was identified in the p‑extracellular‑signal regulated kinase 1/2 expression when the αIR‑3 treatment group was compared with the control group. (P>0.05). The findings of the present study suggested that the autocrine IGF‑1 from hUCMSCs may be capable of influencing cell viability of hUCMSCs, which may be associated with activation of Akt/GSK‑3β signaling pathway.
Collapse
Affiliation(s)
- Qi Wang
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Fenxi Zhang
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan Hong
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
35
|
Cao L, Zhang P, Li J, Wu M. LAST, a c-Myc-inducible long noncoding RNA, cooperates with CNBP to promote CCND1 mRNA stability in human cells. eLife 2017; 6:30433. [PMID: 29199958 PMCID: PMC5739540 DOI: 10.7554/elife.30433] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cyclin D1 is a critical regulator of cell cycle progression and works at the G1 to S-phase transition. Here, we report the isolation and characterization of the novel c-Myc-regulated lncRNA LAST (LncRNA-Assisted Stabilization of Transcripts), which acts as a CCND1 mRNA stabilizer. Mechanistically, LAST was shown to cooperate with CNBP to bind to the 5′UTR of CCND1 mRNA to protect against possible nuclease targeting. In addition, data from CNBP RIP-seq and LAST RNA-seq showed that CCND1 mRNA might not be the only target of LAST and CNBP; three additional mRNAs were shown to be post-transcriptional targets of LAST and CNBP. In a xenograft model, depletion of LAST diminished and ectopic expression of LAST induced tumor formation, which are suggestive of its oncogenic function. We thus report a previously unknown lncRNA involved in the fine-tuned regulation of CCND1 mRNA stability, without which CCND1 exhibits, at most, partial expression. Cell division involves a series of steps in which the cell grows, duplicates its contents, and then divides into two. Together these steps are called the cell cycle, and the transition between each step must be controlled to make sure that events take place in the right order. Any loss of control can cause cells to divide in an unrestrained manner, which may lead to cancer. Proteins called cyclins control progression through the cell cycle. As such, these proteins need to be produced in the correct amounts and at the correct times. Transcription factors are proteins that switch genes on or off to help regulate how much protein is made from those genes. A transcription factor known as c-Myc regulates the expression of the genes that encode the cyclins. Among these genes, one called CCND1 is particularly important because it encodes a protein that controls a crucial transition in the cell cycle: it marks a ‘point of no return’, beyond which cells are committed to dividing. When a transcription factor switches on a gene, the gene gets copied into a molecule of messenger RNA, which is then translated into protein. But, cells also contain genes that do not code for proteins. Transcription factors can bind to such non-coding genes, leading to the production of so-called long non-coding RNAs (often abbreviated to lncRNAs). Many lncRNAs can affect the expression of other genes. Cao, Zhang et al. have now asked whether any lncRNAs regulate CCND1 in human cells. The analysis revealed that the transcription factor c-Myc promotes the expression of a previously unidentified lncRNA. Cao, Zhang et al. name this lncRNA LAST, which is officially short for LncRNA-assisted stabilization of transcripts, and show thatit makes the CCND1 messenger RNA more stable. In other words, it makes the messenger RNAs ‘last’ longer in the cell. This in turn, ensures that the cell cycle progresses in the correct manner, allowing cells to complete their division. In the absence of LAST, the CCND1 messenger RNA becomes unstable and as a result the cell cycle does not progress. Cao, Zhang et al. then explored the role of LAST in cancer cells. When human colon cancer cells that expressed LAST were implanted into mice, they formed tumors. Yet, reducing the expression of LAST in the colon cancer cells made the tumors grow slower. Future challenges will be to understand how LAST makes messenger RNAs stable and further explore its role in cancer. A better understanding of this molecule could reveal whether it can be used to help doctors diagnose or treat cancers.
Collapse
Affiliation(s)
- Limian Cao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Pengfei Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, China
| | - Mian Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, China.,Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
36
|
Matson JP, Dumitru R, Coryell P, Baxley RM, Chen W, Twaroski K, Webber BR, Tolar J, Bielinsky AK, Purvis JE, Cook JG. Rapid DNA replication origin licensing protects stem cell pluripotency. eLife 2017; 6:30473. [PMID: 29148972 PMCID: PMC5720591 DOI: 10.7554/elife.30473] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022] Open
Abstract
Complete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single-cell analyses, we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation toward all lineages, MCM loading slows concurrently with G1 lengthening, revealing developmental control of MCM loading. In contrast, ectopic Cyclin E overproduction uncouples short G1 from fast MCM loading. Rapid licensing in stem cells is caused by accumulation of the MCM loading protein, Cdt1. Prematurely slowing MCM loading in pluripotent cells not only lengthens G1 but also accelerates differentiation. Thus, rapid origin licensing is an intrinsic characteristic of stem cells that contributes to pluripotency maintenance. From red blood cells to nerve cells, animals’ bodies contain many different types of specialized cells. These all begin as stem cells, which have the potential to divide and make more stem cells or to specialize. All dividing cells must first unwind their DNA so that it can be copied. To achieve this, cells load DNA-unwinding enzymes called helicases onto their DNA during the part of the cell cycle known as G1 phase. Cells must load enough helicase enzymes to ensure that their DNA is copied completely and in time. Stem cells divide faster than their specialized descendants, and have a much shorter G1 phase too. Yet these cells still manage to load enough helicases to copy their DNA. Little is known about how the amount, rate and timing of helicase loading varies between cells that divide at different speeds. Now Matson et al. have measured how quickly helicase enzymes are loaded onto DNA in individual human cells, including stem cells and specialized or “differentiated” cells. Stem cells loaded helicases rapidly to make up for the short time they spent in G1 phase, while differentiated cells loaded the enzymes more slowly. Measuring how the loading rate changed when stem cells were triggered to specialize showed that helicase loading slowed as the G1 phase got longer. Matson et al. found that the levels of key proteins required for helicase loading correlated with the rates of loading. Altering the levels of the proteins changed how quickly the enzymes were loaded and how the cells behaved – for example, slowing down the loading of helicases made the stem cells specialize quicker. These findings show that the processes of cell differentiation and DNA replication are closely linked. This study and future ones will help scientists understand what is happening during early animal development, when specialization first takes place, as well as what has gone wrong in cancer cells, which also divide quickly. A better understanding of this process also helps in regenerative medicine – where one of the challenges is to make enough specialized cells to transplant into a patient with tissue damage without those cells becoming cancerous.
Collapse
Affiliation(s)
- Jacob Peter Matson
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, United States
| | - Raluca Dumitru
- Human Pluripotent Stem Cell Core Facility, The University of North Carolina, Chapel Hill, United States
| | - Philip Coryell
- Department of Genetics, The University of North Carolina, Chapel Hill, United States
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, The University of Minnesota, Minneapolis, United States
| | - Weili Chen
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Kirk Twaroski
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Beau R Webber
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, The University of Minnesota, Minneapolis, United States
| | - Jeremy E Purvis
- Department of Genetics, The University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
37
|
Yao K, Qiu S, Tian L, Snider WD, Flannery JG, Schaffer DV, Chen B. Wnt Regulates Proliferation and Neurogenic Potential of Müller Glial Cells via a Lin28/let-7 miRNA-Dependent Pathway in Adult Mammalian Retinas. Cell Rep 2017; 17:165-178. [PMID: 27681429 DOI: 10.1016/j.celrep.2016.08.078] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/04/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022] Open
Abstract
In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of β-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3β stabilizes β-catenin and activates MG proliferation. Downstream of Wnt, β-catenin binds to the Lin28 promoter and activates transcription. Deletion of Lin28 abolishes β-catenin-mediated effects on MG proliferation, and Lin28 gene transfer stimulates MG proliferation. We further demonstrate that let-7 miRNAs are critically involved in Wnt/Lin28-regulated MG proliferation. Intriguingly, a subset of cell-cycle-reactivated MGs express markers for amacrine cells. Together, these results reveal a key role of Wnt-Lin28-let7 miRNA signaling in regulating proliferation and neurogenic potential of MGs in the adult mammalian retina.
Collapse
Affiliation(s)
- Kai Yao
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suo Qiu
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - William D Snider
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David V Schaffer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, Bioengineering, Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bo Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
38
|
Coleman KE, Békés M, Chapman JR, Crist SB, Jones MJK, Ueberheide BM, Huang TT. SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function. eLife 2017; 6:e24325. [PMID: 28475037 PMCID: PMC5419743 DOI: 10.7554/elife.24325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 01/02/2023] Open
Abstract
NEDD8 is a ubiquitin-like modifier most well-studied for its role in activating the largest family of ubiquitin E3 ligases, the cullin-RING ligases (CRLs). While many non-cullin neddylation substrates have been proposed over the years, validation of true NEDD8 targets has been challenging, as overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery. Here, we developed a deconjugation-resistant form of NEDD8 to stabilize the neddylated form of cullins and other non-cullin substrates. Using this strategy, we identified Ubc12, a NEDD8-specific E2 conjugating enzyme, as a substrate for auto-neddylation. Furthermore, we characterized SENP8/DEN1 as the protease that counteracts Ubc12 auto-neddylation, and observed aberrant neddylation of Ubc12 and other NEDD8 conjugation pathway components in SENP8-deficient cells. Importantly, loss of SENP8 function contributes to accumulation of CRL substrates and defective cell cycle progression. Thus, our study highlights the importance of SENP8 in maintaining proper neddylation levels for CRL-dependent proteostasis.
Collapse
Affiliation(s)
- Kate E Coleman
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Miklós Békés
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Jessica R Chapman
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, United States
| | - Sarah B Crist
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Mathew JK Jones
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, Unites States
| | - Beatrix M Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, United States
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| |
Collapse
|
39
|
Effect of sinapic acid on hair growth promoting in human hair follicle dermal papilla cells via Akt activation. Arch Dermatol Res 2017; 309:381-388. [PMID: 28321536 DOI: 10.1007/s00403-017-1732-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/07/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022]
Abstract
Hair loss known as alopecia is caused by abnormal hair follicle cycling including shortening of the anagen (growth) phase and changing of hair follicle morphology with miniaturization. In accordance with the life extension, the quality of life is considered to be a most important thing. The yearning for healthy and beautiful hair and low self esteem due to hair loss had negative influence on the quality of life with psychosocial maladjustment. The objective of this research was to identify new compound that can be used as a drug to promote hair growth. We investigated whether the function of sinapic acid (SA) is able to promote hair growth in human hair follicle dermal papilla cells (hHFDPC). We showed that treatment of SA in hHFDPC could induce proliferation and the activation of Akt signaling in HFDPC. In addition, SA could stimulate the expressions of the several growth factors, insulin-like growth factor 1, and vascular endothelial growth factor for hair growth. We showed that SA led to an increased level of phospho-GSK-3β and β-catenin accumulation in HFDPC. Finally, the promoting effect of SA in hHFDPC cell growth occurred by the induction of cell cycle progression. These results suggest that SA could be one of the potential candidate compounds for the treatment of alopecia by inducing hair growth through triggering the expressions of growth factors via activation of Akt and subsequent inactivation of GSK-3β /β-catenin pathway.
Collapse
|
40
|
Martín-Ibáñez R, Pardo M, Giralt A, Miguez A, Guardia I, Marion-Poll L, Herranz C, Esgleas M, Garcia-Díaz Barriga G, Edel MJ, Vicario-Abejón C, Alberch J, Girault JA, Chan S, Kastner P, Canals JM. Helios expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development 2017; 144:1566-1577. [PMID: 28289129 PMCID: PMC5399659 DOI: 10.1242/dev.138248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
Here, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in an increase of S-phase entry and S-phase length of NPCs, which in turn impairs striatal neurogenesis and produces an accumulation of the number of cycling NPCs in the germinal zone (GZ), which end up dying at postnatal stages. Therefore, He−/− mice show a reduction in the number of dorso-medial striatal MSNs in the adult that produces deficits in motor skills acquisition. In addition, overexpression of He in NPCs induces misexpression of DARPP-32 when transplanted in mouse striatum. These findings demonstrate that He is involved in the correct development of a subset of striatopallidal MSNs and reveal new cellular mechanisms for neuronal development. Summary: The transcription factor Helios regulates G1-S transition to promote neuronal differentiation of a striatopallidal neuronal subpopulation involved in motor skill acquisition.
Collapse
Affiliation(s)
- Raquel Martín-Ibáñez
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Research and Development Unit, Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Mónica Pardo
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Albert Giralt
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Pathophysiology of Neurodegenerative Diseases Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Andrés Miguez
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Inés Guardia
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Lucile Marion-Poll
- Inserm UMR-S839; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Institut du Fer à Moulin, 75005 Paris, France
| | - Cristina Herranz
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Research and Development Unit, Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Miriam Esgleas
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Gerardo Garcia-Díaz Barriga
- Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Pathophysiology of Neurodegenerative Diseases Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Michael J Edel
- Control of Pluripotency Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain.,Victor Chang Cardiac Research Institute, Sydney, New South Wales, 2010 Australia.,School of Medicine and Pharmacology, Anatomy, Physiology and Human Biology, CCTRM, University of Western Australia, Western Australia, 6009 Australia
| | - Carlos Vicario-Abejón
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - Jordi Alberch
- Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Jean-Antoine Girault
- Inserm UMR-S839; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Institut du Fer à Moulin, 75005 Paris, France
| | - Susan Chan
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain
| | - Philippe Kastner
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67400 Illkirch-Graffenstaden, France.,Faculté de Médecine, Université de Strasbourg, 67081 Strasbourg, France
| | - Josep M Canals
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain .,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Research and Development Unit, Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
41
|
Herlihy AE, de Bruin RAM. The Role of the Transcriptional Response to DNA Replication Stress. Genes (Basel) 2017; 8:E92. [PMID: 28257104 PMCID: PMC5368696 DOI: 10.3390/genes8030092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/14/2023] Open
Abstract
During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.
Collapse
Affiliation(s)
- Anna E Herlihy
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Robertus A M de Bruin
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
- The UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Cyclin E Deregulation and Genomic Instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:527-547. [PMID: 29357072 DOI: 10.1007/978-981-10-6955-0_22] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Precise replication of genetic material and its equal distribution to daughter cells are essential to maintain genome stability. In eukaryotes, chromosome replication and segregation are temporally uncoupled, occurring in distinct intervals of the cell cycle, S and M phases, respectively. Cyclin E accumulates at the G1/S transition, where it promotes S phase entry and progression by binding to and activating CDK2. Several lines of evidence from different models indicate that cyclin E/CDK2 deregulation causes replication stress in S phase and chromosome segregation errors in M phase, leading to genomic instability and cancer. In this chapter, we will discuss the main findings that link cyclin E/CDK2 deregulation to genomic instability and the molecular mechanisms by which cyclin E/CDK2 induces replication stress and chromosome aberrations during carcinogenesis.
Collapse
|
43
|
Lu Y, Wan Z, Zhang X, Zhong X, Rui L, Li Z. PRDM14 inhibits 293T cell proliferation by influencing the G1/S phase transition. Gene 2016; 595:180-186. [DOI: 10.1016/j.gene.2016.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 11/29/2022]
|
44
|
Arsenic trioxide induces cell cycle arrest and alters DNA methylation patterns of cell cycle regulatory genes in colorectal cancer cells. Life Sci 2016; 167:67-77. [PMID: 27769816 DOI: 10.1016/j.lfs.2016.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
Abstract
AIMS Cell cycle dysregulation is important in tumorigenesis. Transcriptional silencing of cell cycle regulatory genes, due to DNA methylation, is a common epigenetic event in malignancies. As2O3 has been shown to induce cell cycle arrest and also to be a potential hypomethylating agent. Our study aimed to investigate DNA methylation patterns of cell cycle regulatory genes promoters, the effects of Arsenic trioxide (As2O3) on the methylated genes and cell cycle distribution in colorectal cancer (CRC) cell lines. MAIN METHODS The methylation-specific PCR (MSP) and/or restriction enzyme-based methods were used to study the promoter methylation patterns of 24 cell cycle regulatory genes in CRC cell lines. Gene expression level and cell cycle distribution were determined by Real-time PCR and flow cytometric analyses, respectively. KEY FINDINGS Our methylation analysis indicated that only promoters of RBL1 (p107), CHFR and p16 genes were aberrantly methylated in three cell lines. As2O3 significantly decreased DNA methylation in promoter regions of these genes and restored their expression. We found that As2O3 significantly reduced the expression of DNA methyltransferase 1 (DNMT1) and increased arsenic methyltransferase (AS3MT). Furthermore, As2O3 altered transcriptional activity of several unmethylated cell cycle regulatory genes including cyclin B1, E1, D1, GADD45A and p21. Cell cycle flow cytometry analysis showed As2O3 induced G2/M arrest in all three cell lines. SIGNIFICANCE These data suggest that demethylation and alteration in the expression level of the cell cycle-related genes may be possible mechanisms in As2O3-induced cell cycle arrest in colorectal cancer cells.
Collapse
|
45
|
Ogura Y, Sasakura Y. Switching the rate and pattern of cell division for neural tube closure. NEUROGENESIS 2016; 3:e1235938. [PMID: 27928549 PMCID: PMC5120683 DOI: 10.1080/23262133.2016.1235938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 01/04/2023]
Abstract
The morphogenetic movement associated with neural tube closure (NTC) requires both positive and negative regulations of cell proliferation. The dual requirement of cell division control during NTC underscores the importance of the developmental control of cell division. In the chordate ascidian, midline fusions of the neural ectoderm and surface ectoderm (SE) proceed in the posterior-to-anterior direction, followed by a single wave of asynchronous and patterned cell division in SE. Before NTC, SE exhibits synchronous mitoses; disruption of the synchrony causes a failure of NTC. Therefore, NTC is the crucial turning point at which SE switches from synchronous to patterned mitosis. Our recent work discovered that the first sign of patterned cell division in SE appears was an asynchronous S-phase length along the anterior-posterior axis before NTC: the asynchrony of S-phase is offset by the compensatory G2-phase length, thus maintaining the apparent synchrony of cell division. By the loss of compensatory G2 phase, the synchronized cell division harmoniously switches to a patterned cell division at the onset of NTC. Here we review the developmental regulation of rate and pattern of cell division during NTC with emphasis on the switching mechanism identified in our study.
Collapse
Affiliation(s)
- Yosuke Ogura
- Shimoda Marine Research Center, University of Tsukuba , Shimoda, Shizuoka, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba , Shimoda, Shizuoka, Japan
| |
Collapse
|
46
|
Hao J, Song X, Wang J, Guo C, Li Y, Li B, Zhang Y, Yin Y. Cancer-testis antigen MAGE-C2 binds Rbx1 and inhibits ubiquitin ligase-mediated turnover of cyclin E. Oncotarget 2016; 6:42028-39. [PMID: 26540345 PMCID: PMC4747207 DOI: 10.18632/oncotarget.5973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer-testis antigen MAGE-C2 is normally expressed in testis but aberrantly expressed in various kinds of tumors. Its functions in tumor cells are mostly unknown. Here, we show that MAGE-C2 binds directly to the RING domain protein Rbx1, and participates in Skp1-Cullin1-F box protein (SCF) complex. Furthermore, MAGE-C2 can inhibit the E3 ubiquitin ligase activity of SCF complex. Ablation of endogenous MAGE-C2 decreases the level of cyclin E and accelerates cyclin E turnover by inhibiting ubiquitin-mediated proteasome degradation. Overexpression of MAGE-C2 increases the level of cyclin E and promotes G1-S transition and cell proliferation, and the results are further confirmed by knockdown of MAGE-C2. Overall, the study indicates that MAGE-C2 is involved in SCF complex and increases the stability of cyclin E in tumor cells.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiao Song
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingjing Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chengli Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
47
|
Cheng SY, Seo J, Huang BT, Napolitano T, Champeil E. Mitomycin C and decarbamoyl mitomycin C induce p53-independent p21WAF1/CIP1 activation. Int J Oncol 2016; 49:1815-1824. [PMID: 27666201 PMCID: PMC5063421 DOI: 10.3892/ijo.2016.3703] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
Mitomycin C (MC), a commonly used anticancer drug, induces DNA damage via DNA alkylation. Decarbamoyl mitomycin C (DMC), another mitomycin lacking the carbamate at C10, generates similar lesions as MC. Interstrand cross-links (ICLs) are believed to be the lesions primarily responsible for the cytotoxicity of MC and DMC. The major ICL generated by MC (α-ICL) has a trans stereochemistry at the guanine-drug linkage whereas the major ICL from DMC (β-ICL) has the opposite, cis, stereochemistry. In addition, DMC can provoke strong p53-independent cell death. Our hypothesis is that the stereochemistry of the major unique β-ICL generated by DMC is responsible for this p53-independent cell death signaling. p53 gene is inactively mutated in more than half of human cancers. p21WAF1/CIP1 known as a major effector of p53 is involved in p53-dependent and -independent control of cell proliferation and death. This study revealed the role of p21WAF1/CIP1 on MC and DMC triggered cell damage. MCF-7 (p53-proficient) and K562 (p53-deficient) cells were used. Cell cycle distributions were shifted to the G1/S phase in MCF-7 treated with MC and DMC, but were shifted to the S phase in K562. p21WAF1/CIP1 activation was observed in both cells treated with MC and DMC, and DMC triggered more significant activation. Knocking down p53 in MCF-7 did not attenuate MC and DMC induced p21WAF1/CIP1 activation. The α-ICL itself was enough to cause p21WAF1/CIP1 activation.
Collapse
Affiliation(s)
- Shu-Yuan Cheng
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| | - Jiwon Seo
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| | - Bik Tzu Huang
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| | - Tanya Napolitano
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| | - Elise Champeil
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| |
Collapse
|
48
|
Liu Q, Xu C, Ji G, Liu H, Mo Y, Tollerud DJ, Gu A, Zhang Q. Sublethal effects of zinc oxide nanoparticles on male reproductive cells. Toxicol In Vitro 2016; 35:131-8. [DOI: 10.1016/j.tiv.2016.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/08/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
49
|
Ikawa-Yoshida A, Matsumoto T, Okano S, Aoyagi Y, Matsubara Y, Furuyama T, Nakatsu Y, Tsuzuki T, Onimaru M, Ohkusa T, Nomura M, Maehara Y. BubR1 Insufficiency Impairs Liver Regeneration in Aged Mice after Hepatectomy through Intercalated Disc Abnormality. Sci Rep 2016; 6:32399. [PMID: 27561386 PMCID: PMC4999951 DOI: 10.1038/srep32399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/04/2016] [Indexed: 02/08/2023] Open
Abstract
A delay in liver regeneration after partial hepatectomy (PHx) leads to acute liver injury, and such delays are frequently observed in aged patients. BubR1 (budding uninhibited by benzimidazole-related 1) controls chromosome mitotic segregation through the spindle assembly checkpoint, and BubR1 down-regulation promotes aging-associated phenotypes. In this study we investigated the effects of BubR1 insufficiency on liver regeneration in mice. Low-BubR1-expressing mutant (BubR1L/L) mice had a delayed recovery of the liver weight-to-body weight ratio and increased liver deviation enzyme levels after PHx. Microscopic observation of BubR1L/L mouse liver showed an increased number of necrotic hepatocytes and intercalated disc anomalies, resulting in widened inter-hepatocyte and perisinusoidal spaces, smaller hepatocytes and early-stage microvilli atrophy. Up-regulation of desmocollin-1 (DSC1) was observed in wild-type, but not BubR1L/L, mice after PHx. In addition, knockdown of BubR1 expression caused down-regulation of DSC1 in a human keratinocyte cell line. BubR1 insufficiency results in the impaired liver regeneration through weakened microstructural adaptation against PHx, enhanced transient liver failure and delayed hepatocyte proliferation. Thus, our data suggest that a reduction in BubR1 levels causes failure of liver regeneration through the DSC1 abnormality.
Collapse
Affiliation(s)
- Ayae Ikawa-Yoshida
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Matsumoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Okano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiko Aoyagi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Matsubara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Furuyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuho Onimaru
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Ohkusa
- Center for Clinical and Translational Research, Kyushu University, Fukuoka, Japan
| | - Masatoshi Nomura
- Department of Endocrine and Metabolic Diseases / Diabetes Mellitus Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
50
|
Hossain M, Stillman B. Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription. eLife 2016; 5. [PMID: 27458800 PMCID: PMC4987141 DOI: 10.7554/elife.12785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
Newly born cells either continue to proliferate or exit the cell division cycle. This decision involves delaying expression of Cyclin E that promotes DNA replication. ORC1, the Origin Recognition Complex (ORC) large subunit, is inherited into newly born cells after it binds to condensing chromosomes during the preceding mitosis. We demonstrate that ORC1 represses Cyclin E gene (CCNE1) transcription, an E2F1 activated gene that is also repressed by the Retinoblastoma (RB) protein. ORC1 binds to RB, the histone methyltransferase SUV39H1 and to its repressive histone H3K9me3 mark. ORC1 cooperates with SUV39H1 and RB protein to repress E2F1-dependent CCNE1 transcription. In contrast, the ORC1-related replication protein CDC6 binds Cyclin E-CDK2 kinase and in a feedback loop removes RB from ORC1, thereby hyper-activating CCNE1 transcription. The opposing effects of ORC1 and CDC6 in controlling the level of Cyclin E ensures genome stability and a mechanism for linking directly DNA replication and cell division commitment. DOI:http://dx.doi.org/10.7554/eLife.12785.001 Living cells must replicate their DNA before they divide so that the newly formed cells can each receive an identical copy of the genetic material. Before DNA replication can begin, a number of proteins must come together to form so-called pre-replicative complexes at many locations along the DNA molecules. These protein complexes then serve as landing pads for many other DNA replication proteins. One component of the pre-replicative complex, a protein called ORC1, helps to recruit another protein called CDC6 that in turn acts with Cyclin E to promote the replication of the DNA. Cyclin E is a protein that is only expressed when cells commit to divide. Previous research has shown that a lack of ORC1 causes the levels of Cyclin E to rise in human cells, but it was not understood how cells regulate the levels of Cyclin E. Now, Hossain and Stillman show that the ORC1 protein switches off the gene that encodes Cyclin E early on in newly born cells, and therefore prevents the Cyclin E protein from being produced. The experiments show that ORC1 does this by binding near one end of the gene for Cyclin E and interacting with two other proteins to inactivate the gene. Thus, ORC1 establishes a period when Cyclin E is absent from a newly formed cell. This essentially gives the cell time to ‘decide’ (based on external cues and its own signaling) whether it will divide again or enter into a non-dividing state. When a cell does decide to divide, the levels of CDC6 rise. CDC6 is another component of the pre-replicative complex and Hossain and Stillman find that CDC6 works to counteract the effects of ORC1 and reactivate the gene for Cyclin E. This activity leads to a dramatic increase in the production of Cyclin E, which in turn allows the cells to commit to another round of DNA replication and division. The opposing effects of ORC1 and CDC6 control the levels of Cyclin E and provide a link between DNA replication and a cell’s decision to divide. Further work is now needed to see whether ORC1 inactivates other genes in addition to the one that encodes Cyclin E. DOI:http://dx.doi.org/10.7554/eLife.12785.002
Collapse
Affiliation(s)
- Manzar Hossain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|