1
|
Abbasi E, Goodarzi MT, Tayebinia H, Saidijam M, Khodadadi I. Favorable effects of Anethum graveolens on liver oxidative stress and cholesterol 7 alpha-hydroxylase levels in non-alcoholic fatty liver disease (NAFLD) rat models. Metabol Open 2021; 12:100140. [PMID: 34704009 PMCID: PMC8526761 DOI: 10.1016/j.metop.2021.100140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-fat high-cholesterol diet induces a phenotype similar to non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) in humans. In NAFLD and NASH, cholesterol and bile acid metabolisms are impaired to accumulate lipids and toxic bile acids along with cholestatic hepatic damage. Recently, the use of herbal-derived cholesterol lowering products has attracted much attention as possible therapeutic strategies for NAFLD. Hence, the aim of this study was to determine the effects of an Anethum graveolens (dill) on liver cholesterol 7 alpha-hydroxylase and liver fat accumulation in rats. METHOD Thirty-six rats were randomly divided into 6 groups (n = 6) and received normal diet (ND) or a mixture of chow diet+2% cholesterol+0.5% cholic acid + 20% corn oil as high cholesterol/fat (HC-HF) diet (NAFLD model). Animals were also treated daily with dill tablet or dill extract (300 mg/kg). At the end of the 30 days experiments, serum and liver lipid profile and liver total antioxidant capacity were determined. Cholesterol 7 alpha-hydroxylase mRNA and protein expression levels were determined in the liver and histopathological changes in liver tissues were analyzed by microscope. RESULTS Lipid profiles significantly decreased in dill treated groups (p < 0.05). Liver total antioxidant capacity significantly (p < 0.05) increased and MDA levels markedly (p < 0.05) reduced both in dill tablet and dill extract treated groups (p < 0.05). Both types of treatments caused significant increases in liver cholesterol 7 alpha-hydroxylase gene expression (p < 0.05). Histopathological examinations showed that treatment with dill normalized the hypercholesterolemia-induced changes in liver histology. CONCLUSION Administration of dill significantly reduced liver fat, oxidative stress and increased cholesterol 7 alpha-hydroxylase enzyme at the both mRNA and protein levels. Dill extract was found more effective than its commercially available tablet.
Collapse
Affiliation(s)
- Ebrahim Abbasi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Heidar Tayebinia
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Impaired bile acid metabolism with defectives of mitochondrial-tRNA taurine modification and bile acid taurine conjugation in the taurine depleted cats. Sci Rep 2020; 10:4915. [PMID: 32188916 PMCID: PMC7080809 DOI: 10.1038/s41598-020-61821-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/03/2020] [Indexed: 11/28/2022] Open
Abstract
Taurine that conjugates with bile acid (BA) and mitochondrial-tRNA (mt-tRNA) is a conditional essential amino acid in humans, similarly to cats. To better understand the influence of acquired depletion of taurine on BA metabolism, the profiling of BAs and its intermediates, BA metabolism-enzyme expression, and taurine modified mt-tRNAs were evaluated in the taurine deficient diet-supplemented cats. In the taurine depleted cats, taurine-conjugated bile acids in bile and taurine-modified mt-tRNA in liver were significantly decreased, whereas unconjugated BA in serum was markedly increased. Impaired bile acid metabolism in the liver was induced accompanied with the decreases of mitochondrial cholesterol 27-hydroxylase expression and mitochondrial activity. Consequently, total bile acid concentration in bile was significantly decreased by the low activity of mitochondrial bile acid synthesis. These results implied that the insufficient dietary taurine intake causes impaired bile acid metabolism, and in turn, a risk for the various diseases similar to the mitochondrial diseases would be enhanced.
Collapse
|
3
|
Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019; 11:nu11112588. [PMID: 31661763 PMCID: PMC6893479 DOI: 10.3390/nu11112588] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, the main contributor to coronary heart disease, is characterised by an accumulation of lipids such as cholesterol in the arterial wall. Reverse cholesterol transport (RCT) reduces cholesterol via its conversion into bile acids (BAs). During RCT in non-hepatic peripheral tissues, cholesterol is transferred to high-density lipoprotein (HDL) particles and returned to the liver for conversion into BAs predominantly via the rate-limiting enzyme, cholesterol 7 α-hydroxylase (CYP7A1). Numerous reports have described that polyphenol induced increases in BA excretion and corresponding reductions in total and LDL cholesterol in animal and in-vitro studies, but the process whereby this occurs has not been extensively reviewed. There are three main mechanisms by which BA excretion can be augmented: (1) increased expression of CYP7A1; (2) reduced expression of intestinal BA transporters; and (3) changes in the gut microbiota. Here we summarise the BA metabolic pathways focusing on CYP7A1, how its gene is regulated via transcription factors, diurnal rhythms, and microRNAs. Importantly, we will address the following questions: (1) Can polyphenols enhance BA secretion by modulating the CYP7A1 biosynthetic pathway? (2) Can polyphenols alter the BA pool via changes in the gut microbiota? (3) Which polyphenols are the most promising candidates for future research? We conclude that while in rodents some polyphenols induce CYP7A1 expression predominantly by the LXRα pathway, in human cells, this may occur through FXR, NF-KB, and ERK signalling. Additionally, gut microbiota is important for the de-conjugation and excretion of BAs. Puerarin, resveratrol, and quercetin are promising candidates for further research in this area.
Collapse
|
4
|
Abdulkhaleq FM, Alhussainy TM, Badr MM, Khalil AAA, Gammoh O, Ghanim BY, Qinna NA. Antioxidative stress effects of vitamins C, E, and B 12, and their combination can protect the liver against acetaminophen-induced hepatotoxicity in rats. Drug Des Devel Ther 2018; 12:3525-3533. [PMID: 30425454 PMCID: PMC6201998 DOI: 10.2147/dddt.s172487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Several vitamins, including C, E, and B12, have been recognized as antioxidants and have shown hepatoprotective effects against the hepatotoxicity caused by acetaminophen (APAP) overdose. The current investigation aims to study the effect of these vitamins and their combination in protecting the liver from APAP hepatotoxicity in rats. MATERIALS AND METHODS An in vitro model of freshly isolated rat hepatocytes was utilized for assessing hepatocyte mitochondrial activity conducted by cell proliferation assay (MTT). The isolated hepatocytes were treated with vitamin C, vitamin E, vitamin B12 and their combination, with and without further addition of toxic concentrations of APAP. In addition, an in vivo experiment was carried out on Sprague Dawley rats treated intraperitoneally for 8 days with emulsions of the vitamins or their combination prior to injecting them with APAP. RESULTS In vitro results showed that vitamins C and B and the combination preparation significantly increased the percentage of hepatocyte mitochondrial activity, both with and without the addition of APAP (P<0.01). The mitochondrial activity in the isolated cultured hepatocytes was further enhanced with APAP addition. In vivo, the vitamins and their combination effectively reduced APAP-induced serum liver enzymes levels, namely ALT, AST, and ALP, and also attenuated oxidative stress and lipids peroxidation confirmed by the results of glutathione, superoxide dismutase, and maloondialdehyde. CONCLUSION Pretreatment with vitamins C, E, B12, or their combination was found to be beneficial in preventing in vivo hepatic oxidative stress induced by APAP overdose. Vitamin C on its own showed superior protection against APAP-induced liver injury in rats compared to the other vitamins. The proliferation of APAP-intoxicated liver cells in vitro was highest when protected with the vitamins' combination.
Collapse
Affiliation(s)
- Farah M Abdulkhaleq
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan,
| | - Tawfiq M Alhussainy
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan,
| | - Mujtaba M Badr
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan,
| | - Asad A Abu Khalil
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan,
| | - Omar Gammoh
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan,
| | - Nidal A Qinna
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan,
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan,
| |
Collapse
|
5
|
Zhu R, Hou Y, Sun Y, Li T, Fan J, Chen G, Wei J. Pectin Penta-Oligogalacturonide Suppresses Intestinal Bile Acids Absorption and Downregulates the FXR-FGF15 Axis in High-Cholesterol Fed Mice. Lipids 2017; 52:489-498. [PMID: 28474246 DOI: 10.1007/s11745-017-4258-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Haw pectin penta-oligogalacturonide (HPPS), purified from the hydrolysates of haw pectin, has important role in decreasing hepatic cholesterol accumulation and promoting bile acids (BA) excretion in the feces of mice fed a high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on BA reabsorption in ileum and biosynthesis in liver of mice. Results showed that HPPS increased fecal BA output by approximately 110%, but decreased ileal BA and the total BA pool size by approximately 47 and 36%, respectively, compared to HCD. Studies of molecular mechanism revealed that HPPS significantly decreased the mRNA and protein levels of farnesoid X receptor (FXR) in the small intestine of mice and inactivated the fibroblast growth factor 15 (FXR-FGF15) axis, which increased the mRNA and protein levels of CYP7A1 by approximately 204 and 104%, respectively, compared to HCD. Interestingly, the mRNA and protein levels of apical sodium-dependent bile acid transporter (ASBT) in the small intestine were approximately 128 and 73% higher in HPPS-fed mice than those in HCD-fed mice, respectively. However, no significant difference was detected for ASBT expression between HCD group and BA sequestrant cholestyramine group. These findings indicate that HPPS can suppress intestinal BA reabsorption and promoting hepatic BA biosynthesis. We speculated that HPPS could be ASBT competitive inhibitor rather than BA sequestrant in inhibiting BA reabsorption in ileum and improving cholesterol metabolism.
Collapse
Affiliation(s)
- Rugang Zhu
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang, 110036, China.
| | - Yuting Hou
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang, 110036, China
| | - Yandi Sun
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang, 110036, China
| | - Tuoping Li
- College of Food Science, Shenyang Agriculture University, Shenyang, 110032, China
| | - Jungang Fan
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang, 110032, China
| | - Gang Chen
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang, 110032, China
| | - Junxiu Wei
- Electrical Engineering and Automation, College of Light Industry, Liaoning University, Shenyang, 110032, China
| |
Collapse
|
6
|
Jariwala N, Rajasekaran D, Mendoza RG, Shen XN, Siddiq A, Akiel MA, Robertson CL, Subler MA, Windle JJ, Fisher PB, Sanyal AJ, Sarkar D. Oncogenic Role of SND1 in Development and Progression of Hepatocellular Carcinoma. Cancer Res 2017; 77:3306-3316. [PMID: 28428278 DOI: 10.1158/0008-5472.can-17-0298] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
SND1, a subunit of the miRNA regulatory complex RISC, has been implicated as an oncogene in hepatocellular carcinoma (HCC). In this study, we show that hepatocyte-specific SND1 transgenic mice (Alb/SND1 mice) develop spontaneous HCC with partial penetrance and exhibit more highly aggressive HCC induced by chemical carcinogenesis. Livers from Alb/SND1 mice exhibited a relative increase in inflammatory markers and spheroid-generating tumor-initiating cells (TIC). Mechanistic investigations defined roles for Akt and NF-κB signaling pathways in promoting TIC formation in Alb/SND1 mice. In human xenograft models of subcutaneous or orthotopic HCC, administration of the selective SND1 inhibitor 3', 5'-deoxythymidine bisphosphate (pdTp), inhibited tumor formation without effects on body weight or liver function. Our work establishes an oncogenic role for SND1 in promoting TIC formation and highlights pdTp as a highly selective SND1 inhibitor as a candidate therapeutic lead to treat advanced HCC. Cancer Res; 77(12); 3306-16. ©2017 AACR.
Collapse
Affiliation(s)
- Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Maaged A Akiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia. .,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Centuori SM, Gomes CJ, Trujillo J, Borg J, Brownlee J, Putnam CW, Martinez JD. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:663-70. [PMID: 27086143 DOI: 10.1016/j.bbalip.2016.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 01/10/2023]
Abstract
Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects.
Collapse
Affiliation(s)
- Sara M Centuori
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Cecil J Gomes
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, United States
| | - Jesse Trujillo
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, United States
| | - Jamie Borg
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Joshua Brownlee
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Jesse D Martinez
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States; Cell & Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
8
|
Ding L, Pang S, Sun Y, Tian Y, Yu L, Dang N. Coordinated Actions of FXR and LXR in Metabolism: From Pathogenesis to Pharmacological Targets for Type 2 Diabetes. Int J Endocrinol 2014; 2014:751859. [PMID: 24872814 PMCID: PMC4020365 DOI: 10.1155/2014/751859] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is the most prevalent metabolic disease, and many people are suffering from its complications driven by hyperglycaemia and dyslipidaemia. Nuclear receptors (NRs) are ligand-inducible transcription factors that mediate changes to metabolic pathways within the body. As metabolic regulators, the farnesoid X receptor (FXR) and the liver X receptor (LXR) play key roles in the pathogenesis of T2D, which remains to be clarified in detail. Here we review the recent progress concerning the physiological and pathophysiological roles of FXRs and LXRs in the regulation of bile acid, lipid and glucose metabolism and the implications in T2D, taking into account that these two nuclear receptors are potential pharmaceutical targets for the treatment of T2D and its complications.
Collapse
Affiliation(s)
- Lin Ding
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Shuguang Pang
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
- *Shuguang Pang:
| | - Yongmei Sun
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Yuling Tian
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Li Yu
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Ningning Dang
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|
9
|
Powell AA, Akare S, Qi W, Herzer P, Jean-Louis S, Feldman RA, Martinez JD. Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity. BMC Cancer 2006; 6:219. [PMID: 16948850 PMCID: PMC1574338 DOI: 10.1186/1471-2407-6-219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 09/01/2006] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. METHODS To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. RESULTS We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. CONCLUSION We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype.
Collapse
Affiliation(s)
- Ashley A Powell
- Cancer Biology Interdisciplinary Program, University of Arizona, Arizona Cancer Center, Tucson, AZ, 85724, USA
- Department of Surgery, Stanford University, MSLS P229, 1201 Welch Road, Stanford, CA 94305, USA
| | - Sandeep Akare
- Department of Cell Biology and Anatomy, University of Arizona, Arizona Cancer Center, Tucson, AZ, 85724, USA
- Department of Pathobiology, College of Veterinary Medicine University of Illinois Urbana Champagne, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Wenqing Qi
- Department of Cell Biology and Anatomy, University of Arizona, Arizona Cancer Center, Tucson, AZ, 85724, USA
- Department of Medicine, University of Arizona, Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Pascal Herzer
- Applied Biosciences Program, University of Arizona, Tucson, AZ 85724, USA
- The Scripps Research Institute, Office of Technology Development, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Samira Jean-Louis
- Cancer Biology Interdisciplinary Program, University of Arizona, Arizona Cancer Center, Tucson, AZ, 85724, USA
- Department of Nutritional Sciences, University of Arizona, Tucson AZ 85724, USA
| | - Rebecca A Feldman
- Cancer Biology Interdisciplinary Program, University of Arizona, Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Jesse D Martinez
- Department of Cell Biology and Anatomy, University of Arizona, Arizona Cancer Center, Tucson, AZ, 85724, USA
| |
Collapse
|
10
|
del Castillo-Olivares A, Gil G. Role of FXR and FTF in bile acid-mediated suppression of cholesterol 7alpha-hydroxylase transcription. Nucleic Acids Res 2000; 28:3587-93. [PMID: 10982880 PMCID: PMC110735 DOI: 10.1093/nar/28.18.3587] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bile acid biosynthesis is subjected to feedback regulation whereby bile acids down-regulate their own synthesis. The major point of this regulation is at the level of cholesterol 7alpha-hydroxylase (7alpha-hydroxylase), which controls bile acid output from the classic pathway. This regulation is at the level of transcription of the gene. Two bile acid response elements have been localized within the 5'-flanking region of the rat gene and these elements overlap three nuclear receptor binding sites for hepatocyte nuclear factor (HNF-4), liver X receptor (LXR) and alpha(1)-fetoprotein transcription factor (FTF). Recently it has been shown that bile acids are physiological ligands for the farnesyl X receptor (FXR), which suggested that FXR could function by binding to one of the three nuclear receptor sites to mediate regulation of 7alpha-hydroxylase transcription by bile acids. In this study we show that FXR is indeed a crucial factor for bile acid-mediated regulation, but that it functions without binding to DNA. Furthermore, we also demonstrate that neither the LXR nor the HNF-4 sites are involved in bile acid-mediated regulation of 7alpha-hydroxylase transcription. Most importantly, we show that the FTF site is essential for regulation of 7alpha-hydroxylase by bile acids, similar to what we have recently demonstrated for another gene of the bile acid biosynthetic pathway, the sterol 12alpha-hydroxylase gene. These studies demonstrate the crucial role of FTF in the expression and regulation of a critical gene in the bile acid biosynthetic pathways.
Collapse
Affiliation(s)
- A del Castillo-Olivares
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, PO Box 980614, Richmond, VA 23298-0614, USA
| | | |
Collapse
|
11
|
De Fabiani E, Crestani M, Marrapodi M, Pinelli A, Golfieri V, Galli G. Identification and characterization of cis-acting elements conferring insulin responsiveness on hamster cholesterol 7alpha-hydroxylase gene promoter. Biochem J 2000; 347 Pt 1:147-54. [PMID: 10727413 PMCID: PMC1220942 DOI: 10.1042/0264-6021:3470147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bile acid biosynthesis occurs primarily through a pathway initiated by the 7alpha-hydroxylation of cholesterol, catalysed by cholesterol 7alpha-hydroxylase (encoded by CYP7A1). Insulin down-regulates CYP7A1 transcription. The aim of our study was to characterize the sequences of hamster CYP7A1 promoter, mediating the response to insulin. We therefore performed transient transfection assays with CYP7A1 promoter/luciferase chimaeras mutated at putative response elements and studied protein-DNA interactions by means of gel electrophoresis mobility-shift assay. Here we show that two sequences confer insulin responsiveness on hamster CYP7A1 promoter: a canonical insulin response sequence TGTTTTG overlapping a binding site for hepatocyte nuclear factor 3 (HNF-3) (at nt -235 to -224) and a binding site for HNF-4 at nt -203 to -191. In particular we show that the hamster CYP7A1 insulin response sequence is part of a complex unit involved in specific interactions with multiple transcription factors such as members of the HNF-3 family; this region does not bind very strongly to HNF-3 and as a consequence partly contributes to the transactivation of the gene. Another sequence located at nt -138 to -128 binds to HNF-3 and is involved in the tissue-specific regulation of hamster CYP7A1. The sequence at nt -203 to -191 is not only essential for insulin effect but also has a major role in the liver-specific expression of CYP7A1; it is the target of HNF-4. Therefore the binding sites for liver-enriched factors, present in the hamster CYP7A1 proximal promoter in close vicinity and conserved between species, constitute a regulatory unit important for basal hepatic expression and tissue restriction of the action of hormones such as insulin.
Collapse
Affiliation(s)
- E De Fabiani
- Institute of Pharmacological Sciences, School of Pharmacy, University of Milan, Via Balzaretti 9, I-20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Agellon LB, Cheema SK. The 3'-untranslated region of the mouse cholesterol 7alpha-hydroxylase mRNA contains elements responsive to post-transcriptional regulation by bile acids. Biochem J 1997; 328 ( Pt 2):393-9. [PMID: 9371693 PMCID: PMC1218933 DOI: 10.1042/bj3280393] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the importance of the 3'-untranslated region (UTR) of the mouse cholesterol 7alpha-hydroxylase (cyp7) mRNA in post-transcriptional regulation of expression of the cyp7 gene, chimaeric genes encoding mRNA containing the structural sequence of chloramphenicol acetyltransferase (CAT) linked to either the 3'-UTR of the mouse cyp7 mRNA or the SV40 early gene mRNA were constructed. The human cytomegalovirus (CMV) promoter was used to drive the expression of all the chimaeric genes. Thus the transgenes had identical sequences in the promoter, the regions encoding the 5'-UTR and translated sequence but differed in the region encoding the 3'-UTR of their respective mRNA species. The transgene containing the entire cyp7 3'-UTR (designated CMV.CAT.CYP7) gave rise to CAT activity in transfected hepatoma cells that was one-quarter of that obtained in cells transfected with the transgene containing the SV40 3'-UTR (designated CMV.CAT.SV40). The 3'-UTR of the cyp7 mRNA contains sequences resembling AU-rich elements (AREs). Deleting eight of nine putative AREs from the CYP7 3'-UTR sequence increased the CAT activity to a level greater than that observed for CMV.CAT. SV40, whereas deletion of the intron region had no effect. These results show that the AREs of the 3'-UTR of the cyp7 mRNA decrease transgene expression. Bile acids are known to repress the expression of the cyp7 gene. To test whether the 3'-UTR of the cyp7 mRNA has a role in this process, the expression of the chimaeric genes was evaluated in hepatoma cells competent for bile acid uptake. Conjugated bile acids, but not unconjugated bile acids, further decreased the expression of the CMV.CAT.CYP7 transgene. The same bile acids had no effect on the expression of the CMV.CAT.SV40 transgene. Deletion of the intron from the cyp7 sequence did not alter the CAT activity compared with the parental plasmid, and also did not alter the sensitivity of the transgene to the conjugated bile acids. Deletion of the AREs from the cyp7 3'-UTR, which increased the expression of the transgene, did not abolish the sensitivity of the transgene to repression by conjugated bile acids. Thus the 3'-UTR of the mouse cyp7 mRNA also contains elements that facilitate the further repression of transgene expression in the presence of conjugated bile acids. The results indicate that the 3'-UTR of the mouse cyp7 mRNA contains information specifying regulation at the post-transcriptional level.
Collapse
Affiliation(s)
- L B Agellon
- Department of Biochemistry, and the Lipid and Lipoprotein Research Group, University of Alberta, 328 Heritage Medical Research Centre, Edmonton, Alberta T6G 2S2, Canada
| | | |
Collapse
|
13
|
Moore GL, Drevon CA, Machleder D, Trawick JD, McClelland A, Roy S, Lyons R, Jambou R, Davis RA. Expression of human cholesterol 7alpha-hydroxylase in atherosclerosis-susceptible mice via adenovirus infection. Biochem J 1997; 324 ( Pt 3):863-7. [PMID: 9235879 PMCID: PMC1218519 DOI: 10.1042/bj3240863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adenovirus is a vector for the delivery of genes mainly to the liver. Short-term (approximately 3 days) studies using adenovirus transfection have provided valuable insights into how genes can complement normal and pathological phenotypes. When atherosclerosis-susceptible C57BL/6 mice were infected with an adenovirus vector containing the human 7alpha-hydroxylate cDNA (AV17h1) and fed on a chow diet, human 7alpha-hydroxylase mRNA and enzyme activity doubled compared with that in mice infected with an adenovirus vector (AV1Null) alone. In AV17h1-infected mice fed on a high fat cholic acid (HFCA) diet, mRNA expression and activity of both the endogenous and adenovirus (human) 7alpha-hydroxylase were repressed. AV17h1-infected mice fed on a HFCA diet and killed at mid-light had increased 7alpha-hydroxylase activity and mRNA compared with mice killed at mid-dark. Since expression of AV17h1 is driven by a constitutive Rous sarcoma virus promoter, the repression of human 7alpha-hydroxylase by the HFCA diet was unexpected. In spite of this post-transcriptional repression by the HFCA diet, AV17h1-infected mice expressed the human 7alpha-hydroxylase mRNA, causing its enzyme activity to be 3-fold greater than in AV1Null-infected mice. In AV17h1-infected mice, the 7alpha-hydroxylase enzyme activity varied as a linear function of human mRNA abundance. In conclusion, the accumulation of apolipoprotein B-containing lipoproteins in plasma of C57BL/6 mice fed on the HFCA diet was not reduced by longer-term (2 weeks) 7alpha-hydroxylase expression, probably because of its diminished expression caused by the diet and hepatic inflammation from the adenovirus infection. These results may suggest that adenovirus is effective in promoting longer-term (2 weeks) expression of 7alpha-hydroxylase.
Collapse
Affiliation(s)
- G L Moore
- Department of Biology, San Diego University, San Diego, CA 92182-0057, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Khanuja B, Cheah YC, Hunt M, Nishina PM, Wang DQ, Chen HW, Billheimer JT, Carey MC, Paigen B. Lith1, a major gene affecting cholesterol gallstone formation among inbred strains of mice. Proc Natl Acad Sci U S A 1995; 92:7729-33. [PMID: 7644485 PMCID: PMC41219 DOI: 10.1073/pnas.92.17.7729] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The prevalence of cholesterol gallstones differs among inbred strains of mice fed a diet containing 15% (wt/wt) dairy fat, 1% (wt/wt) cholesterol, and 0.5% (wt/wt) cholic acid. Strains C57L, SWR, and A were notable for a high prevalence of cholelithiasis; strains C57BL/6, C3H, and SJL had an intermediate prevalence; and strains SM, AKR, and DBA/2 exhibited no cholelithiasis after consuming the diet for 18 weeks. Genetic analysis of the difference in gallstone prevalence rates between strains AKR and C57L was carried out by using the AKXL recombinant inbred strain set and (AKR x C57L)F1 x AKR backcross mice. Susceptibility to gallstone formation was found to be a dominant trait determined by at least two genes. A major gene, named Lith1, mapped to mouse chromosome 2. When examined after 6 weeks on the lithogenic diet, the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (EC 1.1.1.88) was downregulated as expected in the gallstone-resistant strains, AKR and SJL, but this enzyme failed to downregulate in C57L and SWR, the gallstone-susceptible strains. This suggests that regulation of the rate-limiting enzyme in cholesterol biosynthesis may be pivotal in determining the occurrence and severity of cholesterol hypersecretion and hence lithogenicity of gallbladder bile. These studies indicate that genetic factors are critical in determining gallstone formation and that the genetic resources of the mouse model may permit these factors to be identified.
Collapse
Affiliation(s)
- B Khanuja
- Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Spady DK, Cuthbert JA, Willard MN, Meidell RS. Adenovirus-mediated transfer of a gene encoding cholesterol 7 alpha-hydroxylase into hamsters increases hepatic enzyme activity and reduces plasma total and low density lipoprotein cholesterol. J Clin Invest 1995; 96:700-9. [PMID: 7635963 PMCID: PMC185253 DOI: 10.1172/jci118113] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Clinical interventions that accelerate conversion of cholesterol to bile acids reduce circulating low density lipoprotein (LDL) cholesterol concentrations. The initial and rate-limiting step in the bile acid biosynthetic pathway is catalyzed by hepatic cholesterol 7 alpha-hydroxylase. To examine the effects of transient primary overexpression of this enzyme on sterol metabolism and lipoprotein transport, we constructed a recombinant adenovirus in which a cDNA encoding rat 7 alpha-hydroxylase is expressed from the human cytomegalovirus immediate-early promoter (AdCMV7 alpha). Syrian hamsters administered AdCMV7 alpha intravenously accumulated transgene-specific mRNA in the liver and demonstrated a dose-dependent increase in hepatic microsomal 7 alpha-hydroxylase activity. The increased conversion of cholesterol to bile acids resulted in a compensatory increase in hepatic cholesterol synthesis. In addition, overexpression of 7 alpha-hydroxylase reduced the rate of LDL cholesterol entry into the plasma space and, in animals maintained on a Western-type diet, restored hepatic LDL receptor expression. As a consequence, plasma LDL concentrations fell by approximately 60% in animals maintained on control diet and by approximately 75% in animals consuming a Western-type diet. Plasma high density lipoprotein cholesterol levels were reduced to a lesser degree. These results demonstrate that transient upregulation of bile acid synthesis by direct transfer of a 7 alpha-hydroxylase gene favorably alters circulating lipoprotein profiles and suggest one potential molecular target for genetic strategies aimed at reducing cardiovascular risk.
Collapse
Affiliation(s)
- D K Spady
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|