1
|
Maturation and shuttling of the yeast telomerase RNP: assembling something new using recycled parts. Curr Genet 2021; 68:3-14. [PMID: 34476547 PMCID: PMC8801399 DOI: 10.1007/s00294-021-01210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
As the limiting component of the budding yeast telomerase, the Tlc1 RNA must undergo multiple consecutive modifications and rigorous quality checks throughout its lifecycle. These steps will ensure that only correctly processed and matured molecules are assembled into telomerase complexes that subsequently act at telomeres. The complex pathway of Tlc1 RNA maturation, involving 5'- and 3'-end processing, stabilisation and assembly with the protein subunits, requires at least one nucleo-cytoplasmic passage. Furthermore, it appears that the pathway is tightly coordinated with the association of various and changing proteins, including the export factor Xpo1, the Mex67/Mtr2 complex, the Kap122 importin, the Sm7 ring and possibly the CBC and TREX-1 complexes. Although many of these maturation processes also affect other RNA species, the Tlc1 RNA exploits them in a new combination and, therefore, ultimately follows its own and unique pathway. In this review, we highlight recent new insights in maturation and subcellular shuttling of the budding yeast telomerase RNA and discuss how these events may be fine-tuned by the biochemical characteristics of the varying processing and transport factors as well as the final telomerase components. Finally, we indicate outstanding questions that we feel are important to be addressed for a complete understanding of the telomerase RNA lifecycle and that could have implications for the human telomerase as well.
Collapse
|
2
|
Norppa AJ, Frilander MJ. The integrity of the U12 snRNA 3' stem-loop is necessary for its overall stability. Nucleic Acids Res 2021; 49:2835-2847. [PMID: 33577674 PMCID: PMC7968993 DOI: 10.1093/nar/gkab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Disruption of minor spliceosome functions underlies several genetic diseases with mutations in the minor spliceosome-specific small nuclear RNAs (snRNAs) and proteins. Here, we define the molecular outcome of the U12 snRNA mutation (84C>U) resulting in an early-onset form of cerebellar ataxia. To understand the molecular consequences of the U12 snRNA mutation, we created cell lines harboring the 84C>T mutation in the U12 snRNA gene (RNU12). We show that the 84C>U mutation leads to accelerated decay of the snRNA, resulting in significantly reduced steady-state U12 snRNA levels. Additionally, the mutation leads to accumulation of 3′-truncated forms of U12 snRNA, which have undergone the cytoplasmic steps of snRNP biogenesis. Our data suggests that the 84C>U-mutant snRNA is targeted for decay following reimport into the nucleus, and that the U12 snRNA fragments are decay intermediates that result from the stalling of a 3′-to-5′ exonuclease. Finally, we show that several other single-nucleotide variants in the 3′ stem-loop of U12 snRNA that are segregating in the human population are also highly destabilizing. This suggests that the 3′ stem-loop is important for the overall stability of the U12 snRNA and that additional disease-causing mutations are likely to exist in this region.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
3
|
Gruss OJ, Meduri R, Schilling M, Fischer U. UsnRNP biogenesis: mechanisms and regulation. Chromosoma 2017; 126:577-593. [PMID: 28766049 DOI: 10.1007/s00412-017-0637-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
Abstract
Macromolecular complexes composed of proteins or proteins and nucleic acids rather than individual macromolecules mediate many cellular activities. Maintenance of these activities is essential for cell viability and requires the coordinated production of the individual complex components as well as their faithful incorporation into functional entities. Failure of complex assembly may have fatal consequences and can cause severe diseases. While many macromolecular complexes can form spontaneously in vitro, they often require aid from assembly factors including assembly chaperones in the crowded cellular environment. The assembly of RNA protein complexes implicated in the maturation of pre-mRNAs (termed UsnRNPs) has proven to be a paradigm to understand the action of assembly factors and chaperones. UsnRNPs are assembled by factors united in protein arginine methyltransferase 5 (PRMT5)- and survival motor neuron (SMN)-complexes, which act sequentially in the UsnRNP production line. While the PRMT5-complex pre-arranges specific sets of proteins into stable intermediates, the SMN complex displaces assembly factors from these intermediates and unites them with UsnRNA to form the assembled RNP. Despite advanced mechanistic understanding of UsnRNP assembly, our knowledge of regulatory features of this essential and ubiquitous cellular function remains remarkably incomplete. One may argue that the process operates as a default biosynthesis pathway and does not require sophisticated regulatory cues. Simple theoretical considerations and a number of experimental data, however, indicate that regulation of UsnRNP assembly most likely happens at multiple levels. This review will not only summarize how individual components of this assembly line act mechanistically but also why, how, and when the UsnRNP workflow might be regulated by means of posttranslational modification in response to cellular signaling cues.
Collapse
Affiliation(s)
- Oliver J Gruss
- Department of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany.
| | - Rajyalakshmi Meduri
- Department of Biochemistry, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany
| | - Maximilian Schilling
- Department of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Utz Fischer
- Department of Biochemistry, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
4
|
Raimer AC, Gray KM, Matera AG. SMN - A chaperone for nuclear RNP social occasions? RNA Biol 2017; 14:701-711. [PMID: 27648855 PMCID: PMC5519234 DOI: 10.1080/15476286.2016.1236168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
Survival Motor Neuron (SMN) protein localizes to both the nucleus and the cytoplasm. Cytoplasmic SMN is diffusely localized in large oligomeric complexes with core member proteins, called Gemins. Biochemical and cell biological studies have demonstrated that the SMN complex is required for the cytoplasmic assembly and nuclear transport of Sm-class ribonucleoproteins (RNPs). Nuclear SMN accumulates with spliceosomal small nuclear (sn)RNPs in Cajal bodies, sub-domains involved in multiple facets of snRNP maturation. Thus, the SMN complex forms stable associations with both nuclear and cytoplasmic snRNPs, and plays a critical role in their biogenesis. In this review, we focus on potential functions of the nuclear SMN complex, with particular emphasis on its role within the Cajal body.
Collapse
Affiliation(s)
- Amanda C. Raimer
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelsey M. Gray
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Hutten S, Chachami G, Winter U, Melchior F, Lamond AI. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II. J Cell Sci 2014; 127:1065-78. [PMID: 24413172 PMCID: PMC3937775 DOI: 10.1242/jcs.141788] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cajal bodies are nuclear structures that are involved in biogenesis of snRNPs and snoRNPs, maintenance of telomeres and processing of histone mRNA. Recently, the SUMO isopeptidase USPL1 was identified as a component of Cajal bodies that is essential for cellular growth and Cajal body integrity. However, a cellular function for USPL1 is so far unknown. Here, we use RNAi-mediated knockdown in human cells in combination with biochemical and fluorescence microscopy approaches to investigate the function of USPL1 and its link to Cajal bodies. We demonstrate that levels of snRNAs transcribed by RNA polymerase (RNAP) II are reduced upon knockdown of USPL1 and that downstream processes such as snRNP assembly and pre-mRNA splicing are compromised. Importantly, we find that USPL1 associates directly with U snRNA loci and that it interacts and colocalises with components of the Little Elongation Complex, which is involved in RNAPII-mediated snRNA transcription. Thus, our data indicate that USPL1 plays a key role in RNAPII-mediated snRNA transcription.
Collapse
Affiliation(s)
- Saskia Hutten
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | | | |
Collapse
|
6
|
Coy S, Volanakis A, Shah S, Vasiljeva L. The Sm complex is required for the processing of non-coding RNAs by the exosome. PLoS One 2013; 8:e65606. [PMID: 23755256 PMCID: PMC3675052 DOI: 10.1371/journal.pone.0065606] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/27/2013] [Indexed: 12/25/2022] Open
Abstract
A key question in the field of RNA regulation is how some exosome substrates, such as spliceosomal snRNAs and telomerase RNA, evade degradation and are processed into stable, functional RNA molecules. Typical feature of these non-coding RNAs is presence of the Sm complex at the 3′end of the mature RNA molecule. Here, we report that in Saccharomyces cerevisiae presence of intact Sm binding site is required for the exosome-mediated processing of telomerase RNA from a polyadenylated precursor into its mature form and is essential for its function in elongating telomeres. Additionally, we demonstrate that the same pathway is involved in the maturation of snRNAs. Furthermore, the insertion of an Sm binding site into an unstable RNA that is normally completely destroyed by the exosome, leads to its partial stabilization. We also show that telomerase RNA accumulates in Schizosaccharomyces pombe exosome mutants, suggesting a conserved role for the exosome in processing and degradation of telomerase RNA. In summary, our data provide important mechanistic insight into the regulation of exosome dependent RNA processing as well as telomerase RNA biogenesis.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sneha Shah
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Jeang KT. Multi-Faceted Post-Transcriptional Functions of HIV-1 Rev. BIOLOGY 2012; 1:165-74. [PMID: 24832222 PMCID: PMC4009778 DOI: 10.3390/biology1020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation of HIV-1 gene expression is largely governed by the activities of the viral Rev protein. In this minireview, the multiple post-transcriptional activities of Rev in the export of partially spliced and unspliced HIV-1 RNAs from the nucleus to the cytoplasm, in the translation of HIV-1 transcripts, and in the packaging of viral genomic RNAs are reviewed in brief.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes. Nature 2012; 484:260-4. [PMID: 22446625 PMCID: PMC3326189 DOI: 10.1038/nature10924] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/07/2012] [Indexed: 12/03/2022]
Abstract
In most eukaryotes, the progressive loss of chromosome-terminal DNA sequences is counteracted by the enzyme telomerase, a reverse transcriptase that uses part of an RNA subunit as template to synthesize telomeric repeats. Many cancer cells express high telomerase activity and mutations in telomerase subunits are associated with degenerative syndromes including dyskeratosis congenita and aplastic anaemia. The therapeutic value of altering telomerase activity thus provides ample impetus to study the biogenesis and regulation of this enzyme in human cells and model systems. We have previously identified a precursor of the fission yeast telomerase RNA subunit (TER1)1 and have demonstrated that the mature 3′ end is generated by the spliceosome in a single cleavage reaction akin to the first step of splicing2. Directly upstream and partially overlapping with the spliceosomal cleavage site is a putative Sm protein binding site. Sm and Like-Sm (LSm) proteins belong to an ancient family of RNA binding proteins represented in all three domains of life3. Members of this family form ring complexes on specific sets of target RNAs and play critical roles in their biogenesis, function and turnover. We now demonstrate that the canonical Sm ring and the Lsm2-8 complex sequentially associate with fission yeast TER1. The Sm ring binds to the TER1 precursor, stimulates spliceosomal cleavage and promotes the hypermethylation of the 5′ cap by Tgs1. Sm proteins are then replaced by the Lsm2-8 complex, which promotes the association with the catalytic subunit and protects the mature 3′ end of TER1 from exonucleolytic degradation. Our findings define the sequence of events that occur during telomerase biogenesis and characterize roles for Sm and Lsm complexes as well as for the methylase Tgs1.
Collapse
|
9
|
Chemical approaches for structure and function of RNA in postgenomic era. J Nucleic Acids 2012; 2012:369058. [PMID: 22347623 PMCID: PMC3278928 DOI: 10.1155/2012/369058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 01/11/2023] Open
Abstract
In the study of cellular RNA chemistry, a major thrust of research focused upon sequence determinations for decades. Structures of snRNAs (4.5S RNA I (Alu), U1, U2, U3, U4, U5, and U6) were determined at Baylor College of Medicine, Houston, Tex, in an earlier time of pregenomic era. They show novel modifications including base methylation, sugar methylation, 5′-cap structures (types 0–III) and sequence heterogeneity. This work offered an exciting problem of posttranscriptional modification and underwent numerous significant advances through technological revolutions during pregenomic, genomic, and postgenomic eras. Presently, snRNA research is making progresses involved in enzymology of snRNA modifications, molecular evolution, mechanism of spliceosome assembly, chemical mechanism of intron removal, high-order structure of snRNA in spliceosome, and pathology of splicing. These works are destined to reach final pathway of work “Function and Structure of Spliceosome” in addition to exciting new exploitation of other noncoding RNAs in all aspects of regulatory functions.
Collapse
|
10
|
Abstract
The post-transcriptional export of spliced and unspliced HIV-1 (human immunodeficiency virus type 1) RNAs from the nucleus to the cytoplasm is a complex process. Part of the complexity arises from the fact that eukaryotic cells normally retain unspliced RNAs in the nucleus preventing their exit into the cytoplasm. HIV-1 has evolved a protein, Rev, that participates in the export of unspliced / partially spliced viral RNAs from the nucleus. It has been documented that several cellular factors cooperate in trans with Rev, and certain cis-RNA motifs / features are important for transcripts to be recognized by Rev and its co-factors. Here, the post-transcriptional activities of Rev are discussed in the context of a recent finding that an RNA cap methyltransferase contributes to the expression of unspliced / partially spliced HIV-1 transcripts.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
11
|
The pre-mRNA splicing machinery of trypanosomes: complex or simplified? EUKARYOTIC CELL 2010; 9:1159-70. [PMID: 20581293 DOI: 10.1128/ec.00113-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Trypanosomatids are early-diverged, protistan parasites of which Trypanosoma brucei, Trypanosoma cruzi, and several species of Leishmania cause severe, often lethal diseases in humans. To better combat these parasites, their molecular biology has been a research focus for more than 3 decades, and the discovery of spliced leader (SL) trans splicing in T. brucei established a key difference between parasites and hosts. In SL trans splicing, the capped 5'-terminal region of the small nuclear SL RNA is fused onto the 5' end of each mRNA. This process, in conjunction with polyadenylation, generates individual mRNAs from polycistronic precursors and creates functional mRNA by providing the cap structure. The reaction is a two-step transesterification process analogous to intron removal by cis splicing which, in trypanosomatids, is confined to very few pre-mRNAs. Both types of pre-mRNA splicing are carried out by the spliceosome, consisting of five U-rich small nuclear RNAs (U snRNAs) and, in humans, up to approximately 170 different proteins. While trypanosomatids possess a full set of spliceosomal U snRNAs, only a few splicing factors were identified by standard genome annotation because trypanosomatid amino acid sequences are among the most divergent in the eukaryotic kingdom. This review focuses on recent progress made in the characterization of the splicing factor repertoire in T. brucei, achieved by tandem affinity purification of splicing complexes, by systematic analysis of proteins containing RNA recognition motifs, and by mining the genome database. In addition, recent findings about functional differences between trypanosome and human pre-mRNA splicing factors are discussed.
Collapse
|
12
|
Monecke T, Dickmanns A, Ficner R. Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1. Nucleic Acids Res 2009; 37:3865-77. [PMID: 19386620 PMCID: PMC2709555 DOI: 10.1093/nar/gkp249] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The 5′-cap of spliceosomal small nuclear RNAs, some small nucleolar RNAs and of telomerase RNA was found to be hypermethylated in vivo. The Trimethylguanosine Synthase 1 (TGS1) mediates this conversion of the 7-methylguanosine-cap to the 2,2,7-trimethylguanosine (m3G)-cap during maturation of the RNPs. For mammalian UsnRNAs the generated m2,2,7G-cap is one part of a bipartite import signal mediating the transport of the UsnRNP-core complex into the nucleus. In order to understand the structural organization of human TGS1 as well as substrate binding and recognition we solved the crystal structure of the active TGS1 methyltransferase domain containing both, the minimal substrate m7GTP and the reaction product S-adenosyl-l-homocysteine (AdoHcy). The methyltransferase of human TGS1 harbors the canonical class 1 methyltransferase fold as well as an unique N-terminal, α-helical domain of 40 amino acids, which is essential for m7G-cap binding and catalysis. The crystal structure of the substrate bound methyltransferase domain as well as mutagenesis studies provide insight into the catalytic mechanism of TGS1.
Collapse
Affiliation(s)
- Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | |
Collapse
|
13
|
Moreno PMD, Wenska M, Lundin KE, Wrange O, Strömberg R, Smith CIE. A synthetic snRNA m3G-CAP enhances nuclear delivery of exogenous proteins and nucleic acids. Nucleic Acids Res 2009; 37:1925-35. [PMID: 19208638 PMCID: PMC2665231 DOI: 10.1093/nar/gkp048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Accessing the nucleus through the surrounding membrane poses one of the major obstacles for therapeutic molecules large enough to be excluded due to nuclear pore size limits. In some therapeutic applications the large size of some nucleic acids, like plasmid DNA, hampers their access to the nuclear compartment. However, also for small oligonucleotides, achieving higher nuclear concentrations could be of great benefit. We report on the synthesis and possible applications of a natural RNA 5′-end nuclear localization signal composed of a 2,2,7-trimethylguanosine cap (m3G-CAP). The cap is found in the small nuclear RNAs that are constitutive part of the small nuclear ribonucleoprotein complexes involved in nuclear splicing. We demonstrate the use of the m3G signal as an adaptor that can be attached to different oligonucleotides, thereby conferring nuclear targeting capabilities with capacity to transport large-size cargo molecules. The synthetic capping of oligos interfering with splicing may have immediate clinical applications.
Collapse
Affiliation(s)
- Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
14
|
Simoes-Barbosa A, Louly C, Franco OL, Rubio MA, Alfonzo JD, Johnson PJ. The divergent eukaryote Trichomonas vaginalis has an m7G cap methyltransferase capable of a single N2 methylation. Nucleic Acids Res 2008; 36:6848-58. [PMID: 18957443 PMCID: PMC2588526 DOI: 10.1093/nar/gkn706] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic RNAs typically contain 5' cap structures that have been primarily studied in yeast and metazoa. The only known RNA cap structure in unicellular protists is the unusual Cap4 on Trypanosoma brucei mRNAs. We have found that T. vaginalis mRNAs are protected by a 5' cap structure, however, contrary to that typical for eukaryotes, T. vaginalis spliceosomal snRNAs lack a cap and may contain 5' monophophates. The distinctive 2,2,7-trimethylguanosine (TMG) cap structure usually found on snRNAs and snoRNAs is produced by hypermethylation of an m(7)G cap catalyzed by the enzyme trimethylguanosine synthase (Tgs). Here, we biochemically characterize the single T. vaginalis Tgs (TvTgs) encoded in its genome and demonstrate that TvTgs exhibits substrate specificity and amino acid requirements typical of an RNA cap-specific, m(7)G-dependent N2 methyltransferase. However, recombinant TvTgs is capable of catalysing only a single round of N2 methylation forming a 2,7-dimethylguanosine cap (DMG) as observed previously for Giardia lamblia. In contrast, recombinant Entamoeba histolytica and Trypanosoma brucei Tgs are capable of catalysing the formation of a TMG cap. These data suggest the presence of RNAs with a distinctive 5' DMG cap in Trichomonas and Giardia lineages that are absent in other protist lineages.
Collapse
Affiliation(s)
- Augusto Simoes-Barbosa
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | |
Collapse
|
15
|
Patel SB, Bellini M. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Res 2008; 36:6482-93. [PMID: 18854356 PMCID: PMC2582628 DOI: 10.1093/nar/gkn658] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The U1, U2, U4, U5 and U6 small nuclear ribonucleoprotein particles (snRNPs) are essential elements of the spliceosome, the enzyme that catalyzes the excision of introns and the ligation of exons to form a mature mRNA. Since their discovery over a quarter century ago, the structure, assembly and function of spliceosomal snRNPs have been extensively studied. Accordingly, the functions of splicing snRNPs and the role of various nuclear organelles, such as Cajal bodies (CBs), in their nuclear maturation phase have already been excellently reviewed elsewhere. The aim of this review is, then, to briefly outline the structure of snRNPs and to synthesize new and exciting developments in the snRNP biogenesis pathways.
Collapse
Affiliation(s)
- Snehal Bhikhu Patel
- Biochemistry and College of Medicine and Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
16
|
Jia D, Cai L, He H, Skogerbø G, Li T, Aftab MN, Chen R. Systematic identification of non-coding RNA 2,2,7-trimethylguanosine cap structures in Caenorhabditis elegans. BMC Mol Biol 2007; 8:86. [PMID: 17903271 PMCID: PMC2200864 DOI: 10.1186/1471-2199-8-86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Accepted: 09/29/2007] [Indexed: 12/04/2022] Open
Abstract
Background The 2,2,7-trimethylguanosine (TMG) cap structure is an important functional characteristic of ncRNAs with critical cellular roles, such as some snRNAs. Here we used immunoprecipitation with both K121 and R1131 anti-TMG antibodies to systematically identify the TMG cap structures for all presently characterized ncRNAs in C. elegans. Results The two anti-TMG antibodies precipitated a similar group of the C. elegans ncRNAs. All snRNAs known to have a TMG cap structure were found in the precipitate, indicating that our identification system was efficient. Other ncRNA families related to splicing, such as SL RNAs and Sm Y RNAs, were also found in the precipitate, as were 7 C/D box snoRNAs. Further analysis showed that the SL RNAs and the Sm Y RNAs shared a very similar Sm binding site element (AAU4–5GGA), which sequence composition differed somewhat from those of other U snRNAs. There were also 16 ncRNAs without an Sm binding site element in the precipitate, suggesting that for these ncRNAs, TMG formation may occur independently of Sm proteins. Conclusion Our results showed that most ncRNAs predicted to be transcribed by RNA polymerase II had a TMG cap, while those predicted to be transcribed by RNA plymerase III or located in introns did not have a TMG cap structure. Compared to ncRNAs without a TMG cap, TMG-capped ncRNAs tended to have higher expression levels. Five functionally non-annotated ncRNAs also have a TMG cap structure, which might be helpful for identifying the cellular roles of these ncRNAs.
Collapse
Affiliation(s)
- Dong Jia
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Lun Cai
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100080, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Housheng He
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Geir Skogerbø
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiantian Li
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Muhammad Nauman Aftab
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Runsheng Chen
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Ruan JP, Ullu E, Tschudi C. Characterization of the Trypanosoma brucei cap hypermethylase Tgs1. Mol Biochem Parasitol 2007; 155:66-9. [PMID: 17610965 PMCID: PMC2075351 DOI: 10.1016/j.molbiopara.2007.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/04/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Many U-snRNAs contain a hypermodified 2,2,7-trimethylguanosine (TMG) cap structure, which is formed by post-transcriptional methylation of an m(7)G cap. At present, little is known about the maturation of U-snRNAs in trypanosomes. The current evidence is consistent with the primary transcript containing an m(7)G moiety, but it is not clear whether the conversion of m(7)G to TMG takes place in the cytoplasm or in the nucleus. To address this issue, we characterized the Trypanosoma brucei homologue of the trimethylguanosine synthase (TbTgs1), a 28kDa protein, which is mainly composed of the conserved catalytic domain and lacks a large N-terminal domain present in higher eukaryotes. A GFP fusion with TbTgs1 revealed that this protein localizes throughout the nucleoplasm, as well as in one or two dots outside the nucleolus and RNAi-mediated downregulation of TbTgs1 suggests that this protein is responsible for hypermethylation of the m(7)G cap of both snRNAs and snoRNAs.
Collapse
Affiliation(s)
- Jia-peng Ruan
- Department of Epidemiology and Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | | | | |
Collapse
|
18
|
Hausmann S, Ramirez A, Schneider S, Schwer B, Shuman S. Biochemical and genetic analysis of RNA cap guanine-N2 methyltransferases from Giardia lamblia and Schizosaccharomyces pombe. Nucleic Acids Res 2007; 35:1411-20. [PMID: 17284461 PMCID: PMC1865056 DOI: 10.1093/nar/gkl1150] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNA cap guanine-N2 methyltransferases such as Schizosaccharomyces pombe Tgs1 and Giardia lamblia Tgs2 catalyze methylation of the exocyclic N2 amine of 7-methylguanosine. Here we performed a mutational analysis of Giardia Tgs2, entailing an alanine scan of 17 residues within the minimal active domain. Alanine substitutions at Phe18, Thr40, Asp76, Asn103 and Asp140 reduced methyltransferase specific activity to <3% of wild-type Tgs2, thereby defining these residues as essential. Alanines at Pro142, Tyr148 and Pro185 reduced activity to 7–12% of wild-type. Structure–activity relationships at Phe18, Thr40, Asp76, Asn103, Asp140 and Tyr148, and at three other essential residues defined previously (Asp68, Glu91 and Trp143) were gleaned by testing the effects of 18 conservative substitutions. Our results engender a provisional map of the Tgs2 active site, which we discuss in light of crystal structures of related methyltransferases. A genetic analysis of S. pombe Tgs1 showed that it is nonessential. An S. pombe tgs1Δ strain grows normally, notwithstanding the absence of 2,2,7-trimethylguanosine caps on its U1, U2, U4 and U5 snRNAs. However, we find that S. pombe requires cap guanine-N7 methylation catalyzed by the enzyme Pcm1. Deletion of the pcm1+ gene was lethal, as were missense mutations in the Pcm1 active site. Thus, whereas m7G caps are essential in both S. pombe and S. cerevisiae, m2,2,7G caps are not.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA and Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Alejandro Ramirez
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA and Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Susanne Schneider
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA and Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Beate Schwer
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA and Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA and Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
- *To whom correspondence should be addressed.
| |
Collapse
|
19
|
Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, Bordonné R, Lührmann R. Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell 2006; 17:3221-31. [PMID: 16687569 PMCID: PMC1483051 DOI: 10.1091/mbc.e06-03-0247] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.
Collapse
Affiliation(s)
- Ira Lemm
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Cyrille Girard
- Institut de Génétique Moléculaire, UMR5535 CNRS, Montpellier, France; and
| | - Andreas N. Kuhn
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Nicholas J. Watkins
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Marc Schneider
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Rémy Bordonné
- Institut de Génétique Moléculaire, UMR5535 CNRS, Montpellier, France; and
| | - Reinhard Lührmann
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
20
|
Golembe TJ, Yong J, Dreyfuss G. Specific sequence features, recognized by the SMN complex, identify snRNAs and determine their fate as snRNPs. Mol Cell Biol 2006; 25:10989-1004. [PMID: 16314521 PMCID: PMC1316962 DOI: 10.1128/mcb.25.24.10989-11004.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The survival of motor neurons (SMN) complex is essential for the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) as it binds to and delivers Sm proteins for assembly of Sm cores on the abundant small nuclear RNAs (snRNAs). Using the conserved snRNAs encoded by the lymphotropic Herpesvirus saimiri (HVS), we determined the specific sequence and structural features of RNAs for binding to the SMN complex and for Sm core assembly. We show that the minimal SMN complex-binding domain in snRNAs, except U1, is comprised of an Sm site (AUUUUUG) and an adjacent 3' stem-loop. The adenosine and the first and third uridines of the Sm site are particularly critical for binding of the SMN complex, which directly contacts the backbone phosphates of these uridines. The specific sequence of the adjacent stem (7 to 12 base pairs)-loop (4 to 17 nucleotides) is not important for SMN complex binding, but it must be located within a short distance of the 3' end of the RNA for an Sm core to assemble. Importantly, these defining characteristics are discerned by the SMN complex and not by the Sm proteins, which can bind to and assemble on an Sm site sequence alone. These findings demonstrate that the SMN complex is the identifier, as well as assembler, of the abundant class of snRNAs in cells because it is able to recognize an snRNP code that they contain.
Collapse
Affiliation(s)
- Tracey J Golembe
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | |
Collapse
|
21
|
Wan L, Battle DJ, Yong J, Gubitz AK, Kolb SJ, Wang J, Dreyfuss G. The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol 2005; 25:5543-51. [PMID: 15964810 PMCID: PMC1156985 DOI: 10.1128/mcb.25.13.5543-5551.2005] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Reduction of the survival of motor neurons (SMN) protein levels causes the motor neuron degenerative disease spinal muscular atrophy, the severity of which correlates with the extent of reduction in SMN. SMN, together with Gemins 2 to 7, forms a complex that functions in the assembly of small nuclear ribonucleoprotein particles (snRNPs). Complete depletion of the SMN complex from cell extracts abolishes snRNP assembly, the formation of heptameric Sm cores on snRNAs. However, what effect, if any, reduction of SMN protein levels, as occurs in spinal muscular atrophy patients, has on the capacity of cells to produce snRNPs is not known. To address this, we developed a sensitive and quantitative assay for snRNP assembly, the formation of high-salt- and heparin-resistant stable Sm cores, that is strictly dependent on the SMN complex. We show that the extent of Sm core assembly is directly proportional to the amount of SMN protein in cell extracts. Consistent with this, pulse-labeling experiments demonstrate a significant reduction in the rate of snRNP biogenesis in low-SMN cells. Furthermore, extracts of cells from spinal muscular atrophy patients have a lower capacity for snRNP assembly that corresponds directly to the reduced amount of SMN. Thus, SMN determines the capacity for snRNP biogenesis, and our findings provide evidence for a measurable deficiency in a biochemical activity in cells from patients with spinal muscular atrophy.
Collapse
MESH Headings
- Animals
- Biotinylation
- Cell Extracts/analysis
- Cell Line
- Cell Line, Transformed
- Cell Transformation, Viral
- Chickens
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cytoplasm/chemistry
- Fibroblasts/cytology
- Fibroblasts/metabolism
- HeLa Cells
- Herpesvirus 4, Human
- Humans
- Kinetics
- Models, Biological
- Motor Neurons/metabolism
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/pathology
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/metabolism
- Phosphorus Radioisotopes
- Protein Binding
- RNA, Small Nuclear/metabolism
- RNA-Binding Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/analysis
- Ribonucleoproteins, Small Nuclear/metabolism
- SMN Complex Proteins
- Sensitivity and Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Lili Wan
- Howard Hughes Medical Institute, Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Strasser A, Dickmanns A, Lührmann R, Ficner R. Structural basis for m3G-cap-mediated nuclear import of spliceosomal UsnRNPs by snurportin1. EMBO J 2005; 24:2235-43. [PMID: 15920472 PMCID: PMC1173142 DOI: 10.1038/sj.emboj.7600701] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 05/09/2005] [Indexed: 11/08/2022] Open
Abstract
In higher eukaryotes the biogenesis of spliceosomal UsnRNPs involves a nucleocytoplasmic shuttling cycle. After the m7G-cap-dependent export of the snRNAs U1, U2, U4 and U5 to the cytoplasm, each of these snRNAs associates with seven Sm proteins. Subsequently, the m7G-cap is hypermethylated to the 2,2,7-trimethylguanosine (m3G)-cap. The import adaptor snurportin1 recognises the m3G-cap and facilitates the nuclear import of the UsnRNPs by binding to importin-beta. Here we report the crystal structure of the m3G-cap-binding domain of snurportin1 with bound m3GpppG at 2.4 A resolution, revealing a structural similarity to the mRNA-guanyly-transferase. Snurportin1 binds both the hypermethylated cap and the first nucleotide of the RNA in a stacked conformation. This binding mode differs significantly from that of the m7G-cap-binding proteins Cap-binding protein 20 (CBP20), eukaryotic initiation factor 4E (eIF4E) and viral protein 39 (VP39). The specificity of the m3G-cap recognition by snurportin1 was evaluated by fluorescence spectroscopy, demonstrating the importance of a highly solvent exposed tryptophan for the discrimination of m7G-capped RNAs. The critical role of this tryptophan and as well of a tryptophan continuing the RNA base stack was confirmed by nuclear import assays and cap-binding activity tests using several snurportin1 mutants.
Collapse
Affiliation(s)
- Anja Strasser
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University Göttingen, Germany
- Abt. Molekular Strukturbiologie, Institut für Mikrobiologie und Genetik, Universität Göttingen, Justus-von Liebig Weg 11, 37077 Göttingen, Germany. Tel.: +49 551 39 14071; Fax: +49 551 39 14082; E-mail:
| |
Collapse
|
23
|
Yong J, Golembe TJ, Battle DJ, Pellizzoni L, Dreyfuss G. snRNAs contain specific SMN-binding domains that are essential for snRNP assembly. Mol Cell Biol 2004; 24:2747-56. [PMID: 15024064 PMCID: PMC371136 DOI: 10.1128/mcb.24.7.2747-2756.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To serve in its function as an assembly machine for spliceosomal small nuclear ribonucleoprotein particles (snRNPs), the survival of motor neurons (SMN) protein complex binds directly to the Sm proteins and the U snRNAs. A specific domain unique to U1 snRNA, stem-loop 1 (SL1), is required for SMN complex binding and U1 snRNP Sm core assembly. Here, we show that each of the major spliceosomal U snRNAs (U2, U4, and U5), as well as the minor splicing pathway U11 snRNA, contains a domain to which the SMN complex binds directly and with remarkable affinity (low nanomolar concentration). The SMN-binding domains of the U snRNAs do not have any significant nucleotide sequence similarity yet they compete for binding to the SMN complex in a manner that suggests the presence of at least two binding sites. Furthermore, the SMN complex-binding domain and the Sm site are both necessary and sufficient for Sm core assembly and their relative positions are critical for snRNP assembly. These findings indicate that the SMN complex stringently scrutinizes RNAs for specific structural features that are not obvious from the sequence of the RNAs but are required for their identification as bona fide snRNAs. It is likely that this surveillance capacity of the SMN complex ensures assembly of Sm cores on the correct RNAs only and prevents illicit, potentially deleterious, assembly of Sm cores on random RNAs.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | | | |
Collapse
|
24
|
Mouaikel J, Bujnicki JM, Tazi J, Bordonné R. Sequence-structure-function relationships of Tgs1, the yeast snRNA/snoRNA cap hypermethylase. Nucleic Acids Res 2003; 31:4899-909. [PMID: 12907733 PMCID: PMC169889 DOI: 10.1093/nar/gkg656] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 06/18/2003] [Accepted: 06/18/2003] [Indexed: 11/12/2022] Open
Abstract
The Saccharomyces cerevisiae Tgs1 methyltransferase (MTase) is responsible for conversion of the m(7)G caps of snRNAs and snoRNAs to a 2,2,7- trimethylguanosine structure. To learn more about the evolutionary origin of Tgs1 and to identify structural features required for its activity, we performed a structure-function study. By using sequence comparison and phylogenetic analysis, we found that Tgs1 shows strongest similarity to Mj0882, a protein related to a family comprised of bacterial rRNA:m(2)G MTases RsmC and RsmD. The structural information of Mj0882 was used to build a homology model of Tgs1p which allowed us to predict the range of the minimal globular MTase domain and the localization of other residues that may be important for enzyme function. To further characterize functional domains of Tgs1, mutants were constructed and tested for their effects on cell viability, subcellular localization and binding to the small nuclear ribonucleoproteins (snRNPs) and small nucleolar RNPs (snoRNPs). We found that the N-terminal domain of the hypermethylase is dispensable for binding to the common snRNPs and snoRNPs proteins but essential for correct nucleolar localization. Site- directed mutagenesis of Tgs1 allowed also the identification of the residues likely to be involved in the formation of the m7G-binding site and the catalytic center.
Collapse
Affiliation(s)
- John Mouaikel
- Institut de Génétique Moléculaire, IFR122 CNRS-UMR5535, 1919 route de Mende, 34000 Montpellier, France
| | | | | | | |
Collapse
|
25
|
Mouaikel J, Narayanan U, Verheggen C, Matera AG, Bertrand E, Tazi J, Bordonné R. Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron. EMBO Rep 2003; 4:616-22. [PMID: 12776181 PMCID: PMC1319203 DOI: 10.1038/sj.embor.embor863] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 04/14/2003] [Accepted: 04/16/2003] [Indexed: 11/09/2022] Open
Abstract
The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) requires the cytoplasmic assembly of the Sm-core complex, followed by the hypermethylation of the small nuclear RNA (snRNA) 5' cap. Both the Sm-core complex and the snRNA trimethylguanosine cap are required for the efficient nuclear import of snRNPs. Here, we show that trimethylguanosine synthase 1 (TGS1), the human homologue of the yeast snRNA cap hypermethylase, interacts directly with the survival of motor neuron (SMN) protein. Both proteins are similarly distributed, localizing in the cytoplasm and in nuclear Cajal bodies. The interaction between TGS1 and SMN is disrupted by a mutation in SMN that mimics the predominant isoform of the protein that is expressed in patients with the neurodegenerative disease, spinal muscular atrophy. These data indicate that, in addition to its function in cytoplasmic Sm-core assembly, the SMN protein also functions in the recruitment of the snRNA cap hypermethylase.
Collapse
Affiliation(s)
- John Mouaikel
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
| | - Usha Narayanan
- Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4955, USA
| | - Céline Verheggen
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
| | - A. Gregory Matera
- Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4955, USA
| | - Edouard Bertrand
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
- Tel: +33 4 67 61 36 47; Fax: +33 4 67 04 02 31;
| |
Collapse
|
26
|
Massenet S, Pellizzoni L, Paushkin S, Mattaj IW, Dreyfuss G. The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway. Mol Cell Biol 2002; 22:6533-41. [PMID: 12192051 PMCID: PMC135628 DOI: 10.1128/mcb.22.18.6533-6541.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The common neurodegenerative disease spinal muscular atrophy is caused by reduced levels of the survival of motor neurons (SMN) protein. SMN associates with several proteins (Gemin2 to Gemin6) to form a large complex which is found both in the cytoplasm and in the nucleus. The SMN complex functions in the assembly and metabolism of several RNPs, including spliceosomal snRNPs. The snRNP core assembly takes place in the cytoplasm from Sm proteins and newly exported snRNAs. Here, we identify three distinct cytoplasmic SMN complexes, each representing a defined intermediate in the snRNP biogenesis pathway. We show that the SMN complex associates with newly exported snRNAs containing the nonphosphorylated form of the snRNA export factor PHAX. The second SMN complex identified contains assembled Sm cores and m(3)G-capped snRNAs. Finally, the SMN complex is associated with a preimport complex containing m(3)G-capped snRNP cores bound to the snRNP nuclear import mediator snurportin1. Thus, the SMN complex is associated with snRNPs during the entire process of their biogenesis in the cytoplasm and may have multiple functions throughout this process.
Collapse
Affiliation(s)
- Séverine Massenet
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | | | |
Collapse
|
27
|
Verheggen C, Lafontaine DL, Samarsky D, Mouaikel J, Blanchard JM, Bordonné R, Bertrand E. Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO J 2002; 21:2736-45. [PMID: 12032086 PMCID: PMC126019 DOI: 10.1093/emboj/21.11.2736] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nucleolar localization of vertebrate box C/D snoRNA involves transit through Cajal bodies, but the significance of this event is unknown. To define better the function of this compartment, we analyzed here the maturation pathway of mammalian U3. We show that 3'-extended U3 precursors possess a mono-methylated cap, and are not associated with fibrillarin and hNop58. Importantly, these precursors are detected at both their transcription sites and in Cajal bodies. In addition, mature U3, the core box C/D proteins and the human homolog of the methyltransferase responsible for U3 cap tri-methylation, hTgs1, are all present in Cajal bodies. In yeast, U3 follows a similar maturation pathway, and equivalent 3'-extended precursors are enriched in the nucleolus and in the nucleolar body, a nucleolar domain that concentrates Tgs1p under certain growth conditions. Thus, spatial organization of U3 maturation appears to be conserved across evolution, and involves specialized and related nuclear compartments, the nucleolus/nucleolar body in yeast and Cajal bodies in higher eukaryotes. These are likely places for snoRNP assembly, 3' end maturation and cap modification.
Collapse
Affiliation(s)
| | - Denis L.J. Lafontaine
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
FNRS, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi-Gosselies, Belgium and Sequitur, Inc., 14 Tech Circle, Natick, MA 01760, USA Corresponding author e-mail:
| | - Dmitry Samarsky
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
FNRS, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi-Gosselies, Belgium and Sequitur, Inc., 14 Tech Circle, Natick, MA 01760, USA Corresponding author e-mail:
| | | | | | | | - Edouard Bertrand
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
FNRS, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi-Gosselies, Belgium and Sequitur, Inc., 14 Tech Circle, Natick, MA 01760, USA Corresponding author e-mail:
| |
Collapse
|
28
|
Tomasevic N, Peculis BA. Xenopus LSm proteins bind U8 snoRNA via an internal evolutionarily conserved octamer sequence. Mol Cell Biol 2002; 22:4101-12. [PMID: 12024024 PMCID: PMC133881 DOI: 10.1128/mcb.22.12.4101-4112.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
U8 snoRNA plays a unique role in ribosome biogenesis: it is the only snoRNA essential for maturation of the large ribosomal subunit RNAs, 5.8S and 28S. To learn the mechanisms behind the in vivo role of U8 snoRNA, we have purified to near homogeneity and characterized a set of proteins responsible for the formation of a specific U8 RNA-binding complex. This 75-kDa complex is stable in the absence of added RNA and binds U8 with high specificity, requiring the conserved octamer sequence present in all U8 homologues. At least two proteins in this complex can be cross-linked directly to U8 RNA. We have identified the proteins as Xenopus homologues of the LSm (like Sm) proteins, which were previously reported to be involved in cytoplasmic degradation of mRNA and nuclear stabilization of U6 snRNA. We have identified LSm2, -3, -4, -6, -7, and -8 in our purified complex and found that this complex associates with U8 RNA in vivo. This purified complex can bind U6 snRNA in vitro but does not bind U3 or U14 snoRNA in vitro, demonstrating that the LSm complex specifically recognizes U8 RNA.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Cells, Cultured
- Conserved Sequence
- Cross-Linking Reagents/chemistry
- Evolution, Molecular
- Female
- Molecular Sequence Data
- N-Terminal Acetyltransferase C
- Oocytes
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/immunology
- Ribonucleoprotein, U4-U6 Small Nuclear/isolation & purification
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear
- Xenopus/genetics
- Xenopus Proteins/genetics
- Xenopus Proteins/metabolism
Collapse
Affiliation(s)
- Nenad Tomasevic
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1766, USA
| | | |
Collapse
|
29
|
Abstract
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem--loop 1 domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1 loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.
Collapse
Affiliation(s)
| | | | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
Corresponding author e-mail:
| |
Collapse
|
30
|
Huber J, Dickmanns A, Lührmann R. The importin-beta binding domain of snurportin1 is responsible for the Ran- and energy-independent nuclear import of spliceosomal U snRNPs in vitro. J Cell Biol 2002; 156:467-79. [PMID: 11815630 PMCID: PMC2173342 DOI: 10.1083/jcb.200108114] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear localization signal (NLS) of spliceosomal U snRNPs is composed of the U snRNA's 2,2,7-trimethyl-guanosine (m3G)-cap and the Sm core domain. The m3G-cap is specifically bound by snurportin1, which contains an NH2-terminal importin-beta binding (IBB) domain and a COOH-terminal m3G-cap--binding region that bears no structural similarity to known import adaptors like importin-alpha (impalpha). Here, we show that recombinant snurportin1 and importin-beta (impbeta) are not only necessary, but also sufficient for U1 snRNP transport to the nuclei of digitonin-permeabilized HeLa cells. In contrast to impalpha-dependent import, single rounds of U1 snRNP import, mediated by the nuclear import receptor complex snurportin1-impbeta, did not require Ran and energy. The same Ran- and energy-independent import was even observed for U5 snRNP, which has a molecular weight of more than one million. Interestingly, in the presence of impbeta and a snurportin1 mutant containing an impalpha IBB domain (IBBimpalpha), nuclear U1 snRNP import was Ran dependent. Furthermore, beta-galactosidase (betaGal) containing a snurportin1 IBB domain, but not IBBimpalpha-betaGal, was imported into the nucleus in a Ran-independent manner. Our results suggest that the nature of the IBB domain modulates the strength and/or site of interaction of impbeta with nucleoporins of the nuclear pore complex, and thus whether or not Ran is required to dissociate these interactions.
Collapse
Affiliation(s)
- Jochen Huber
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
31
|
Kues T, Dickmanns A, Lührmann R, Peters R, Kubitscheck U. High intranuclear mobility and dynamic clustering of the splicing factor U1 snRNP observed by single particle tracking. Proc Natl Acad Sci U S A 2001; 98:12021-6. [PMID: 11593012 PMCID: PMC59825 DOI: 10.1073/pnas.211250098] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are components of the splicing machinery that removes introns from precursor mRNA. Like other splicing factors, U snRNPs are diffusely distributed throughout the nucleus and, in addition, are concentrated in distinct nuclear substructures referred to as speckles. We have examined the intranuclear distribution and mobility of the splicing factor U1 snRNP on a single-molecule level. Isolated U1 snRNPs were fluorescently labeled and incubated with digitonin-permeabilized 3T3 cells in the presence of Xenopus egg extract. By confocal microscopy, U1 snRNPs were found to be imported into nuclei, yielding a speckled intranuclear distribution. Employing a laser video-microscope optimized for high sensitivity and high speed, single U1 snRNPs were visualized and tracked at a spatial precision of 35 nm and a time resolution of 30 ms. The single-particle data revealed that U1 snRNPs occurred in small clusters that colocalized with speckles. In the clusters, U1 snRNPs resided for a mean decay time of 84 ms before leaving the optical slice in the direction of the optical axis, which corresponded to a mean effective diffusion coefficient of 1 microm(2)/s. An analysis of the trajectories of single U1 snRNPs revealed that at least three kinetic classes of low, medium, and high mobility were present. Moreover, the mean square displacements of these fractions were virtually independent of time, suggesting arrays of binding sites. The results substantiate the view that nuclear speckles are not rigid structures but highly dynamic domains characterized by a rapid turnover of U1 snRNPs and other splicing factors.
Collapse
Affiliation(s)
- T Kues
- Institut für Medizinische Physik und Biophysik, Westfälische Wilhelms-Universität, Robert-Koch-Strasse 31, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
32
|
Urlaub H, Raker VA, Kostka S, Lührmann R. Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J 2001; 20:187-96. [PMID: 11226169 PMCID: PMC140196 DOI: 10.1093/emboj/20.1.187] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2000] [Revised: 11/13/2000] [Accepted: 11/16/2000] [Indexed: 11/14/2022] Open
Abstract
Seven Sm proteins, E, F, G, D1, D2, D3 and B/B', assemble in a stepwise manner onto the single-stranded Sm site element (PuAU(4-6)GPu) of the U1, U2, U4 and U5 spliceosomal snRNAs, resulting in a doughnut-shaped core RNP structure. Here we show by UV cross-linking experiments using an Sm site RNA oligonucleotide (AAUUUUUGA) that several Sm proteins contact the Sm site RNA, with the most efficient cross-links observed for the G and B/B' proteins. Site-specific photo-cross-linking revealed that the G and B/B' proteins contact distinct uridines (in the first and third positions, respectively) in a highly position-specific manner. Amino acids involved in contacting the RNA are located at equivalent regions in both proteins, namely in loop L3 of the Sm1 motif, which has been predicted to jut into the hole of the Sm ring. Our results thus provide the first evidence that, within the core snRNP, multiple Sm protein-Sm site RNA contacts occur on the inner surface of the heptameric Sm protein ring.
Collapse
Affiliation(s)
| | - Veronica A. Raker
- Max-Planck-Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Faßberg 11, D-37077 Göttingen and
Max-Delbrück-Center for Molecular Medicine, Department of Protein Chemistry, Robert-Rössle-Straße 10, D-13125 Berlin, Germany Present address: Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, Milano 20141, Italy Corresponding author e-mail: H.Urlaub and V.A.Raker contributed equally to this work
| | - Susanne Kostka
- Max-Planck-Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Faßberg 11, D-37077 Göttingen and
Max-Delbrück-Center for Molecular Medicine, Department of Protein Chemistry, Robert-Rössle-Straße 10, D-13125 Berlin, Germany Present address: Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, Milano 20141, Italy Corresponding author e-mail: H.Urlaub and V.A.Raker contributed equally to this work
| | - Reinhard Lührmann
- Max-Planck-Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Faßberg 11, D-37077 Göttingen and
Max-Delbrück-Center for Molecular Medicine, Department of Protein Chemistry, Robert-Rössle-Straße 10, D-13125 Berlin, Germany Present address: Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, Milano 20141, Italy Corresponding author e-mail: H.Urlaub and V.A.Raker contributed equally to this work
| |
Collapse
|
33
|
Speckmann WA, Terns RM, Terns MP. The box C/D motif directs snoRNA 5'-cap hypermethylation. Nucleic Acids Res 2000; 28:4467-73. [PMID: 11071934 PMCID: PMC113864 DOI: 10.1093/nar/28.22.4467] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The 5'-cap structure of most spliceosomal small nuclear RNAs (snRNAs) and certain small nucleolar RNAs (snoRNAs) undergoes hypermethylation from a 7-methylguanosine to a 2,2, 7-trimethylguanosine structure. 5'-Cap hypermethylation of snRNAs is dependent upon a conserved sequence element known as the Sm site common to most snRNAs. Here we have performed a mutational analysis of U3 and U14 to determine the cis-acting sequences required for 5'-cap hypermethylation of Box C/D snoRNAs. We have found that both the conserved sequence elements Box C (termed C' in U3) and Box D are necessary for cap hypermethylation. Furthermore, the terminal stem structure that is formed by sequences that flank Box C (C' in U3) and Box D is also required. However, mutation of other conserved sequences has no effect on hypermethylation of the cap. Finally, the analysis of fragments of U3 and U14 RNAs indicates that the Box C/D motif, including Box C (C' in U3), Box D and the terminal stem, is capable of directing cap hypermethylation. Thus, the Box C/D motif, which is important for snoRNA processing, stability, nuclear retention, protein binding, nucleolar localization and function, is also necessary and sufficient for cap hypermethylation of these RNAs.
Collapse
Affiliation(s)
- W A Speckmann
- Department of Biochemistry and Molecular Biology, Life Science Building, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
34
|
Bordonné R. Functional characterization of nuclear localization signals in yeast Sm proteins. Mol Cell Biol 2000; 20:7943-54. [PMID: 11027265 PMCID: PMC86405 DOI: 10.1128/mcb.20.21.7943-7954.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2000] [Accepted: 08/10/2000] [Indexed: 01/20/2023] Open
Abstract
In mammals, nuclear localization of U-snRNP particles requires the snRNA hypermethylated cap structure and the Sm core complex. The nature of the signal located within the Sm core proteins is still unknown, both in humans and yeast. Close examination of the sequences of the yeast SmB, SmD1, and SmD3 carboxyl-terminal domains reveals the presence of basic regions that are reminiscent of nuclear localization signals (NLSs). Fluorescence microscopy studies using green fluorescent protein (GFP)-fusion proteins indicate that both yeast SmB and SmD1 basic amino acid stretches exhibit nuclear localization properties. Accordingly, deletions or mutations in the NLS-like motifs of SmB and SmD1 dramatically reduce nuclear fluorescence of the GFP-Sm mutant fusion alleles. Phenotypic analyses indicate that the NLS-like motifs of SmB and SmD1 are functionally redundant: each NLS-like motif can be deleted without affecting yeast viability whereas a simultaneous deletion of both NLS-like motifs is lethal. Taken together, these findings suggest that, in the doughnut-like structure formed by the Sm core complex, the carboxyl-terminal extensions of Sm proteins may form an evolutionarily conserved basic amino acid-rich protuberance that functions as a nuclear localization determinant.
Collapse
Affiliation(s)
- R Bordonné
- Institut de Génétique Moléculaire, CNRS UMR 5535, 34000 Montpellier, France.
| |
Collapse
|
35
|
Günzl A, Bindereif A, Ullu E, Tschudi C. Determinants for cap trimethylation of the U2 small nuclear RNA are not conserved between Trypanosoma brucei and higher eukaryotic organisms. Nucleic Acids Res 2000; 28:3702-9. [PMID: 11000261 PMCID: PMC110770 DOI: 10.1093/nar/28.19.3702] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In most eukaryotic organisms the U2 small nuclear RNA (snRNA) gene is transcribed by RNA polymerase II to generate a primary transcript with a 5' terminal 7-methylguanosine cap structure. Following nuclear export, the U2 snRNA is assembled into a core ribonucleoprotein particle (RNP). This involves binding a set of proteins that are shared by spliceosomal snRNPs to the highly conserved Sm site. Prior to nuclear import, the snRNA-(guanosine-N:2)-methyltransferase appears to interact with the core RNP and hypermethylates the cap structure to 2,2, 7-trimethylguanosine (m(3)G). In the protist parasite Trypanosoma brucei, U-snRNAs are complexed with a set of common proteins that are analogous to eukaryotic Sm antigens but do not have a highly conserved Sm sequence motif, and most U-snRNAs are synthesised by RNA polymerase III. Here, we examined the determinants for m(3)G cap formation in T.brucei by expressing mutant U2 snRNAs in vivo and assaying trimethylation and RNP assembly by immunoprecipitation. Surprisingly, these studies revealed that the Sm-analogous region is not required either for binding of the common proteins or for cap trimethylation. Furthermore, except for the first 24 nt which are part of the U2 promoter, the U2 coding region could be substituted or deleted without affecting cap trimethylation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cell Line
- Conserved Sequence/genetics
- Guanosine/analogs & derivatives
- Guanosine/genetics
- Guanosine/metabolism
- Methylation
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Precipitin Tests
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Caps/chemistry
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Transfection
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- A Günzl
- Zoologisches Institut der Universität Tübingen, Abteilung Zellbiologie, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
36
|
Díez J, Ishikawa M, Kaido M, Ahlquist P. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc Natl Acad Sci U S A 2000; 97:3913-8. [PMID: 10759565 PMCID: PMC18116 DOI: 10.1073/pnas.080072997] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biochemical studies suggest that positive-strand RNA virus replication involves host as well as viral functions. Brome mosaic virus (BMV) is a member of the alphavirus-like superfamily of animal and plant positive-strand RNA viruses. Yeast expressing the BMV RNA replication proteins 1a and 2a supports BMV RNA replication and mRNA synthesis. Using the ability of BMV to replicate in yeast, we show that efficient BMV RNA replication requires Lsm1p, a yeast protein related to core RNA splicing factors but shown herein to be cytoplasmic. Haploid yeast with an Lsm1p mutation was defective in an early template selection step in BMV RNA replication, involving the helicase-like replication protein 1a and an internal viral RNA element conserved with tRNAs. Lsm1p dependence of this interaction was suppressed by adding 3' poly(A) to the normally unpolyadenylated BMV RNA. Our results show Lsm1p involvement in a specific step of BMV RNA replication and connections between Lsm1p and poly(A) function, possibly through interaction with factors binding mRNA 5' ends.
Collapse
Affiliation(s)
- J Díez
- Institute for Molecular Virology and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
37
|
Bouveret E, Rigaut G, Shevchenko A, Wilm M, Séraphin B. A Sm-like protein complex that participates in mRNA degradation. EMBO J 2000; 19:1661-71. [PMID: 10747033 PMCID: PMC310234 DOI: 10.1093/emboj/19.7.1661] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, seven Sm proteins bind to the U1, U2, U4 and U5 spliceosomal snRNAs while seven Smlike proteins (Lsm2p-Lsm8p) are associated with U6 snRNA. Another yeast Sm-like protein, Lsm1p, does not interact with U6 snRNA. Surprisingly, using the tandem affinity purification (TAP) method, we identified Lsm1p among the subunits associated with Lsm3p. Coprecipitation experiments demonstrated that Lsm1p, together with Lsm2p-Lsm7p, forms a new seven-subunit complex. We purified the two related Sm-like protein complexes and identified the proteins recovered in the purified preparations by mass spectrometry. This confirmed the association of the Lsm2p-Lsm8p complex with U6 snRNA. In contrast, the Lsm1p-Lsm7p complex is associated with Pat1p and Xrn1p exoribonuclease, suggesting a role in mRNA degradation. Deletions of LSM1, 6, 7 and PAT1 genes increased the half-life of reporter mRNAs. Interestingly, accumulating mRNAs were capped, suggesting a block in mRNA decay at the decapping step. These results indicate the involvement of a new conserved Sm-like protein complex and a new factor, Pat1p, in mRNA degradation and suggest a physical connection between decapping and exonuclease trimming.
Collapse
MESH Headings
- Codon, Nonsense/genetics
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Deletion
- Genes, Fungal
- Genes, Reporter
- Macromolecular Substances
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- E Bouveret
- EMBL, Meyerhofstrasse-1, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Raker VA, Hartmuth K, Kastner B, Lührmann R. Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol Cell Biol 1999; 19:6554-65. [PMID: 10490595 PMCID: PMC84625 DOI: 10.1128/mcb.19.10.6554] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The association of Sm proteins with U small nuclear RNA (snRNA) requires the single-stranded Sm site (PuAU(4-6)GPu) but also is influenced by nonconserved flanking RNA structural elements. Here we demonstrate that a nonameric Sm site RNA oligonucleotide sufficed for sequence-specific assembly of a minimal core ribonucleoprotein (RNP), which contained all seven Sm proteins. The minimal core RNP displayed several conserved biochemical features of native U snRNP core particles, including a similar morphology in electron micrographs. This minimal system allowed us to study in detail the RNA requirements for Sm protein-Sm site interactions as well as the kinetics of core RNP assembly. In addition to the uridine bases, the 2' hydroxyl moieties were important for stable RNP formation, indicating that both the sugar backbone and the bases are intimately involved in RNA-protein interactions. Moreover, our data imply that an initial phase of core RNP assembly is mediated by a high affinity of the Sm proteins for the single-stranded uridine tract but that the presence of the conserved adenosine (PuAU.) is essential to commit the RNP particle to thermodynamic stability. Comparison of intact U4 and U5 snRNAs with the Sm site oligonucleotide in core RNP assembly revealed that the regions flanking the Sm site within the U snRNAs facilitate the kinetics of core RNP assembly by increasing the rate of Sm protein association and by decreasing the activation energy.
Collapse
Affiliation(s)
- V A Raker
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
39
|
Salgado-Garrido J, Bragado-Nilsson E, Kandels-Lewis S, Séraphin B. Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J 1999; 18:3451-62. [PMID: 10369684 PMCID: PMC1171424 DOI: 10.1093/emboj/18.12.3451] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A group of seven Sm proteins forms a complex that binds to several RNAs in metazoans. All Sm proteins contain a sequence signature, the Sm domain, also found in two yeast Sm-like proteins associated with the U6 snRNA. We have performed database searches revealing the presence of 16 proteins carrying an Sm domain in the yeast genome. Analysis of this protein family confirmed that seven of its members, encoded by essential genes, are homologues of metazoan Sm proteins. Immunoprecipitation revealed that an evolutionarily related subgroup of seven Sm-like proteins is directly associated with the nuclear U6 and pre-RNase P RNAs. The corresponding genes are essential or required for normal vegetative growth. These proteins appear functionally important to stabilize U6 snRNA. The two last yeast Sm-like proteins were not found associated with RNA, and neither was essential for vegetative growth. To investigate whether U6-associated Sm-like protein function is widespread, we cloned several cDNAs encoding homologous human proteins. Two representative human proteins were shown to associate with U6 snRNA-containing complexes. We also identified archaeal proteins related to Sm and Sm-like proteins. Our results demonstrate that Sm and Sm-like proteins assemble in at least two functionally conserved complexes of deep evolutionary origin.
Collapse
MESH Headings
- Animals
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Autoantigens/chemistry
- Autoantigens/genetics
- Autoantigens/metabolism
- Cell Line
- Cloning, Molecular
- Conserved Sequence/genetics
- Databases, Factual
- Endoribonucleases/genetics
- Evolution, Molecular
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Essential/genetics
- Genome, Fungal
- Humans
- Mice
- Mutation
- Phylogeny
- Precipitin Tests
- Protein Binding
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonuclease P
- Ribonucleoproteins, Small Nuclear
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Amino Acid
- Transfection
- snRNP Core Proteins
Collapse
|
40
|
Paraskeva E, Izaurralde E, Bischoff FR, Huber J, Kutay U, Hartmann E, Lührmann R, Görlich D. CRM1-mediated recycling of snurportin 1 to the cytoplasm. J Cell Biol 1999; 145:255-64. [PMID: 10209022 PMCID: PMC2133107 DOI: 10.1083/jcb.145.2.255] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1998] [Revised: 03/05/1999] [Indexed: 11/22/2022] Open
Abstract
Importin beta is a major mediator of import into the cell nucleus. Importin beta binds cargo molecules either directly or via two types of adapter molecules, importin alpha, for import of proteins with a classical nuclear localization signal (NLS), or snurportin 1, for import of m3G-capped U snRNPs. Both adapters have an NH2-terminal importin beta-binding domain for binding to, and import by, importin beta, and both need to be returned to the cytoplasm after having delivered their cargoes to the nucleus. We have shown previously that CAS mediates export of importin alpha. Here we show that snurportin 1 is exported by CRM1, the receptor for leucine-rich nuclear export signals (NESs). However, the interaction of CRM1 with snurportin 1 differs from that with previously characterized NESs. First, CRM1 binds snurportin 1 50-fold stronger than the Rev protein and 5,000-fold stronger than the minimum Rev activation domain. Second, snurportin 1 interacts with CRM1 not through a short peptide but rather via a large domain that allows regulation of affinity. Strikingly, snurportin 1 has a low affinity for CRM1 when bound to its m3G-capped import substrate, and a high affinity when substrate-free. This mechanism appears crucial for productive import cycles as it can ensure that CRM1 only exports snurportin 1 that has already released its import substrate in the nucleus.
Collapse
Affiliation(s)
- E Paraskeva
- Zentrum für Molekulare Biologie der Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lygerou Z, Christophides G, Séraphin B. A novel genetic screen for snRNP assembly factors in yeast identifies a conserved protein, Sad1p, also required for pre-mRNA splicing. Mol Cell Biol 1999; 19:2008-20. [PMID: 10022888 PMCID: PMC83994 DOI: 10.1128/mcb.19.3.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly pathway of spliceosomal snRNPs in yeast is poorly understood. We devised a screen to identify mutations blocking the assembly of newly synthesized U4 snRNA into a functional snRNP. Fifteen mutant strains failing either to accumulate the newly synthesized U4 snRNA or to assemble a U4/U6 particle were identified and categorized into 13 complementation groups. Thirteen previously identified splicing-defective prp mutants were also assayed for U4 snRNP assembly defects. Mutations in the U4/U6 snRNP components Prp3p, Prp4p, and Prp24p led to disassembly of the U4/U6 snRNP particle and degradation of the U6 snRNA, while prp17-1 and prp19-1 strains accumulated free U4 and U6 snRNA. A detailed analysis of a newly identified mutant, the sad1-1 mutant, is presented. In addition to having the snRNP assembly defect, the sad1-1 mutant is severely impaired in splicing at the restrictive temperature: the RP29 pre-mRNA strongly accumulates and splicing-dependent production of beta-galactosidase from reporter constructs is abolished, while extracts prepared from sad1-1 strains fail to splice pre-mRNA substrates in vitro. The sad1-1 mutant is the only splicing-defective mutant analyzed whose mutation preferentially affects assembly of newly synthesized U4 snRNA into the U4/U6 particle. SAD1 encodes a novel protein of 52 kDa which is essential for cell viability. Sad1p localizes to the nucleus and is not stably associated with any of the U snRNAs. Sad1p contains a putative zinc finger and is phylogenetically highly conserved, with homologues identified in human, Caenorhabditis elegans, Arabidospis, and Drosophila.
Collapse
|
42
|
Gillian-Daniel DL, Gray NK, Aström J, Barkoff A, Wickens M. Modifications of the 5' cap of mRNAs during Xenopus oocyte maturation: independence from changes in poly(A) length and impact on translation. Mol Cell Biol 1998; 18:6152-63. [PMID: 9742132 PMCID: PMC109201 DOI: 10.1128/mcb.18.10.6152] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The translation of specific maternal mRNAs is regulated during early development. For some mRNAs, an increase in translational activity is correlated with cytoplasmic extension of their poly(A) tails; for others, translational inactivation is correlated with removal of their poly(A) tails. Recent results in several systems suggest that events at the 3' end of the mRNA can affect the state of the 5' cap structure, m7G(5')ppp(5')G. We focus here on the potential role of cap modifications on translation during early development and on the question of whether any such modifications are dependent on cytoplasmic poly(A) addition or removal. To do so, we injected synthetic RNAs into Xenopus oocytes and examined their cap structures and translational activities during meiotic maturation. We draw four main conclusions. First, the activity of a cytoplasmic guanine-7-methyltransferase increases during oocyte maturation and stimulates translation of an injected mRNA bearing a nonmethylated GpppG cap. The importance of the cap for translation in oocytes is corroborated by the sensitivity of protein synthesis to cap analogs and by the inefficient translation of mRNAs bearing nonphysiologically capped 5' termini. Second, deadenylation during oocyte maturation does not cause decapping, in contrast to deadenylation-triggered decapping in Saccharomyces cerevisiae. Third, the poly(A) tail and the N-7 methyl group of the cap stimulate translation synergistically during oocyte maturation. Fourth, cap ribose methylation of certain mRNAs is very inefficient and is not required for their translational recruitment by poly(A). These results demonstrate that polyadenylation can cause translational recruitment independent of ribose methylation. We propose that polyadenylation enhances translation through at least two mechanisms that are distinguished by their dependence on ribose modification.
Collapse
Affiliation(s)
- D L Gillian-Daniel
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
43
|
Huber J, Cronshagen U, Kadokura M, Marshallsay C, Wada T, Sekine M, Lührmann R. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 1998; 17:4114-26. [PMID: 9670026 PMCID: PMC1170744 DOI: 10.1093/emboj/17.14.4114] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha.
Collapse
Affiliation(s)
- J Huber
- Institut für Molekularbiologie und Tumorforschung, Emil-Mannkopff-Strasse 2, D-35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Schwer B, Mao X, Shuman S. Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res 1998; 26:2050-7. [PMID: 9547258 PMCID: PMC147543 DOI: 10.1093/nar/26.9.2050] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Current models of mRNA decay in yeast posit that 3' deadenylation precedes enzymatic removal of the 5' cap, which then exposes the naked end to 5' exonuclease action. Here, we analyzed gene expression in Saccharomyces cerevisiae cells bearing conditional mutations of Ceg1 (capping enzyme), a 52 kDa protein that transfers GMP from GTP to the 5' end of mRNA to form the GpppN cap structure. Shift of ceg1 mutants to restrictive temperature elicited a rapid decline in the rate of protein synthesis, which correlated with a sharp reduction in the steady-state levels of multiple individual mRNAs. ceg1 mutations prevented the accumulation of SSA1 and SSA4 mRNAs that were newly synthesized at the restrictive temperature. Uncapped poly(A)+ SSA4 mRNA accumulated in cells lacking the 5' exoribonuclease Xrn1. These findings provide genetic evidence for the long-held idea that the cap guanylate is critical for mRNA stability. The deadenylation-decapping-degradation pathway appears to be short-circuited when Ceg1 is inactivated.
Collapse
Affiliation(s)
- B Schwer
- Microbiology Department, Cornell University Medical College, New York and Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | |
Collapse
|
45
|
Camasses A, Bragado-Nilsson E, Martin R, Séraphin B, Bordonné R. Interactions within the yeast Sm core complex: from proteins to amino acids. Mol Cell Biol 1998; 18:1956-66. [PMID: 9528767 PMCID: PMC121425 DOI: 10.1128/mcb.18.4.1956] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sm core proteins play an essential role in the formation of small nuclear ribonucleoprotein particles (snRNPs) by binding to small nuclear RNAs and participating in a network of protein interactions. The two-hybrid system was used to identify SmE interacting proteins and to test for interactions between all pairwise combinations of yeast Sm proteins. We observed interactions between SmB and SmD3, SmE and SmF, and SmE and SmG. For these interactions, a direct biochemical assay confirmed the validity of the results obtained in vivo. To map the protein-protein interaction surface of Sm proteins, we generated a library of SmE mutants and investigated their ability to interact with SmF and/or SmG proteins in the two-hybrid system. Several classes of mutants were observed: some mutants are unable to interact with either SmF or SmG proteins, some interact with SmG but not with SmF, while others interact moderately with SmF but not with SmG. Our mutational analysis of yeast SmE protein shows that conserved hydrophobic residues are essential for interactions with SmF and SmG as well as for viability. Surprisingly, we observed that other evolutionarily conserved positions are tolerant to mutations, with substitutions affecting binding to SmF and SmG only mildly and conferring a wild-type growth phenotype.
Collapse
|
46
|
Abstract
Macromolecules that are imported into the nucleus can be divided into classes according to their nuclear import signals. The best characterized class consists of proteins which carry a basic nuclear localization signal (NLS), whose transport requires the importin alpha/beta heterodimer. U snRNP import depends on both the trimethylguanosine cap of the snRNA and a signal formed when the Sm core proteins bind the RNA. Here, factor requirements for U snRNP nuclear import are studied using an in vitro system. Depletion of importin alpha, the importin subunit that binds the NLS, is found to stimulate rather than inhibit U snRNP import. This stimulation is shown to be due to a common requirement for importin beta in both U snRNP and NLS protein import. Saturation of importin beta-mediated transport with the importin beta-binding domain of importin alpha blocks U snRNP import both in vitro and in vivo. Immunodepletion of importin beta inhibits both NLS-mediated and U snRNP import. While the former requires re-addition of both importin alpha and importin beta, re-addition of importin beta alone to immunodepleted extracts was sufficient to restore efficient U snRNP import. Thus importin beta is required for U snRNP import, and it functions in this process without the NLS-specific importin alpha.
Collapse
Affiliation(s)
- I Palacios
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
47
|
Zhong W, Ganem D. Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8). J Virol 1997; 71:1207-12. [PMID: 8995643 PMCID: PMC191174 DOI: 10.1128/jvi.71.2.1207-1212.1997] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Infection with Kaposi's sarcoma-associated herpesvirus (KSHV) (also called human herpesvirus 8) is strongly linked to all forms of Kaposi's sarcoma. We have previously identified two polyadenylated KSHV transcripts that are actively transcribed in Kaposi's sarcoma (KS) tumors and in KSHV-infected B-lymphoma cells. One of these RNAs (termed T1.1 or nut-1 RNA) is a 1.1-kb transcript present in a subpopulation of KS tumor cells. This RNA is localized to the nucleus of infected cells and has no open reading frames longer than 62 codons, suggesting that it may not function as an mRNA in vivo. Here we demonstrate that nut-1 RNA is a lytic-cycle gene product that is found in high-molecular-weight ribonucleoprotein complexes in infected cell nuclei. The transcript lacks the trimethylguanosine (TMG) cap found in many U-like small nuclear RNAs, but a subpopulation of nut-1 RNAs can associate with Sm protein-containing small nuclear ribonucleoproteins, as judged by immunoprecipitation analyses using monoclonal anti-Sm and anti-TMG antibodies. This interaction does not require other viral gene products, and deletion of the sole candidate Sm binding site on nut-1 RNA does not ablate this association. This finding suggests an indirect interaction with Sm-containing structures, and models for such associations are presented.
Collapse
Affiliation(s)
- W Zhong
- Howard Hughes Medical Institute and Department of Microbiology, University of California-San Francisco, 94143-0414, USA
| | | |
Collapse
|
48
|
Hermann H, Fabrizio P, Raker VA, Foulaki K, Hornig H, Brahms H, Lührmann R. snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J 1995; 14:2076-88. [PMID: 7744013 PMCID: PMC398308 DOI: 10.1002/j.1460-2075.1995.tb07199.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6 and U5 share eight proteins B', B, D1, D2, D3, E, F and G which form the structural core of the snRNPs. This class of common proteins plays an essential role in the biogenesis of the snRNPs. In addition, these proteins represent the major targets for the so-called anti-Sm auto-antibodies which are diagnostic for systemic lupus erythematosus (SLE). We have characterized the proteins F and G from HeLa cells by cDNA cloning, and, thus, all human Sm protein sequences are now available for comparison. Similar to the D, B/B' and E proteins, the F and G proteins do not possess any of the known RNA binding motifs, suggesting that other types of RNA-protein interactions occur in the snRNP core. Strikingly, the eight human Sm proteins possess mutual homology in two regions, 32 and 14 amino acids long, that we term Sm motifs 1 and 2. The Sm motifs are evolutionarily highly conserved in all of the putative homologues of the human Sm proteins identified in the data base. These results suggest that the Sm proteins may have arisen from a single common ancestor. Several hypothetical proteins, mainly of plant origin, that clearly contain the conserved Sm motifs but exhibit only comparatively low overall homology to one of the human Sm proteins, were identified in the data base. This suggests that the Sm motifs may also be shared by non-spliceosomal proteins. Further, we provide experimental evidence that the Sm motifs are involved, at least in part, in Sm protein-protein interactions. Specifically, we show by co-immunoprecipitation analyses of in vitro translated B' and D3 that the Sm motifs are essential for complex formation between B' and D3. Our finding that the Sm proteins share conserved sequence motifs may help to explain the frequent occurrence in patient sera of anti-Sm antibodies that cross-react with multiple Sm proteins and may ultimately further our understanding of how the snRNPs act as auto-antigens and immunogens in SLE.
Collapse
Affiliation(s)
- H Hermann
- Institut für Molekularbiologie und Tumorforschung, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Lehmeier T, Raker V, Hermann H, Lührmann R. cDNA cloning of the Sm proteins D2 and D3 from human small nuclear ribonucleoproteins: evidence for a direct D1-D2 interaction. Proc Natl Acad Sci U S A 1994; 91:12317-21. [PMID: 7527560 PMCID: PMC45428 DOI: 10.1073/pnas.91.25.12317] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The major small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6, and U5 share a set of common proteins denoted B/B', D1, D2, D3, E, F, and G which play an important part in the biogenesis of the snRNPs. In addition, there is a link between the common proteins and autoimmunity; the three D proteins, together with B/B', are the major autoantigens for the so-called anti-Sm antibodies often produced by patients suffering from systemic lupus erythematosus. Here we describe the characterization of the human proteins D2 and D3 by cDNA cloning and immunological methods. D2 and D3 are encoded by distinct genes and are 118 and 126 amino acids in length, respectively. Both proteins prepared by in vitro translation exhibit Sm epitopes and can be precipitated by anti-Sm autoantibodies. They react differently with various patient sera, in a manner consistent with the reaction pattern on immunoblots of the D proteins isolated from HeLa cells. D1 and D2 synthesized in vitro form specific complexes, a result that is significant for the assembly pathway of the various core proteins into an snRNP's core ribonucleoprotein structure. The D3 protein is homologous to the human D1 protein, showing an overall amino acid sequence identity of 29%, including two regions with over 60% identity. D2 has less than 15% sequence identity with D1 and D3. A data bank search revealed a striking similarity (with more than 40% sequence identity) between human D3 and a Saccharomyces cerevisiae gene, previously published as the 5' flanking gene of yeast pep3 [Preston, R.A., Manolson, M., Becherer, K., Weidenhammer, E., Kirkpatrick, D., Wright, R. & Jones, E. (1991) Mol. Cell. Biol. 11, 5801-5812], suggesting that this gene encodes the yeast homologue of the human D3 protein.
Collapse
Affiliation(s)
- T Lehmeier
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|