1
|
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
2
|
Abstract
T-cell development from stem cells has provided a highly accessible and detailed view of the regulatory processes that can go into the choice of a cell fate in a postembryonic, stem cell-based system. But it has been a view from the outside. The problems in understanding the regulatory basis for this lineage choice begin with the fact that too many transcription factors are needed to provide crucial input: without any one of them, T-cell development fails. Furthermore, almost all the factors known to provide crucial functions during the climax of T-lineage commitment itself are also vital for earlier functions that establish the pool of multilineage precursors that would normally feed into the T-cell specification process. When the regulatory genes that encode them are mutated, the confounding effects on earlier stages make it difficult to dissect T-cell specification genetically. Yet both the positive and the negative regulatory events involved in the choice of a T-cell fate are actually a mosaic of distinct functions. New evidence has emerged recently that finally provides a way to separate the major components that fit together to drive this process. Here, we review insights into T-cell specification and commitment that emerge from a combination of molecular, cellular, and systems biology approaches. The results reveal the regulatory structure underlying this lineage decision.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
3
|
Klein Wolterink RGJ, García-Ojeda ME, Vosshenrich CAJ, Hendriks RW, Di Santo JP. The intrathymic crossroads of T and NK cell differentiation. Immunol Rev 2010; 238:126-37. [DOI: 10.1111/j.1600-065x.2010.00960.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Norris HH, Martin AJ, Lybarger LP, Andersen H, Chervenak DC, Chervenak R. TCRbeta enhancer activation in early and late lymphoid progenitors. Cell Immunol 2007; 247:59-71. [PMID: 17961527 DOI: 10.1016/j.cellimm.2007.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 04/02/2007] [Accepted: 04/26/2007] [Indexed: 12/17/2022]
Abstract
An earlier report from our laboratory indicates that the activation of the T cell receptor (TCR) beta enhancer (Ebeta) is not always an indicator of T lineage potential in bone marrow-resident pre-lymphocytes. In order to more precisely investigate the consequences of Ebeta activation in lymphopoiesis, a genetic reporter animal, in which the expression of green fluorescent protein (GFP) is controlled by Ebeta, was used to examine two well-defined lymphopotent populations. Adoptive transfer experiments suggest that primitive lymphoid precursor populations (specifically, hematopoietic stem cells) consist of two discrete-populations discernible by Ebeta-GFP activation, although the two populations display no overt differences in lineage potential. In contrast, subsets of more differentiated pre-lymphocytes (specifically, common lymphoid progenitors), while also discernible by Ebeta-GFP activation, display different capacities for reconstituting lymphoid compartments. Interestingly, late lymphoid progenitors containing inactive Ebeta elements generated both T and B cells in vivo, in accord with the original description of this population; however, progenitors containing active Ebeta elements displayed an unexpected bias toward the B lineage. Our findings suggest that Ebeta activation is an indicator of B lineage specification in late, but not early lymphoid precursors.
Collapse
Affiliation(s)
- Hillary H Norris
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
5
|
Gilmour J, Cousins DJ, Richards DF, Sattar Z, Lee TH, Lavender P. Regulation of GM-CSF expression by the transcription factor c-Maf. J Allergy Clin Immunol 2007; 120:56-63. [PMID: 17507085 DOI: 10.1016/j.jaci.2007.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 03/02/2007] [Accepted: 03/14/2007] [Indexed: 11/21/2022]
Abstract
BACKGROUND Inflammation is a key feature of asthma and allergic disease. The proinflammatory cytokines IL-4, IL-5, and IL-13 are clustered on chromosome 5q with GM-CSF in close proximity, and each of these cytokines has been implicated in the pathogenesis of inflammatory disease. Although the expression of IL-4, IL-5, and IL-13 is coordinately regulated, the T(H)2-associated transcription factor c-Maf is thought to be involved only in the regulation of IL-4, the cytokine thought to be the main driver of T(H)2 differentiation. OBJECTIVE We sought to determine whether c-Maf influenced the expression of proinflammatory cytokines other than IL-4 in the Jurkat human T-cell line. METHODS RT-PCR, ELISA, and promoter-driven CAT assays were used to determine the effect of c-Maf overexpression on cytokine genes. A biotinylated oligo pulldown assay was used to demonstrate recruitment of c-Maf to the GM-CSF promoter. RESULTS We found that in addition to induction of IL-4, c-Maf could upregulate GM-CSF expression at both mRNA and protein levels, and that c-Maf could strongly activate the promoters of GM-CSF and IL-4 but not IL-5. Recruitment of c-Maf to the -33 to -97 bp region of the GM-CSF promoter was demonstrated. CONCLUSION We propose a novel role for c-Maf in the transcriptional regulation of GM-CSF in human T cells. CLINICAL IMPLICATIONS These data suggest that c-Maf may be a therapeutic target affecting both IL-4 and GM-CSF.
Collapse
Affiliation(s)
- Jane Gilmour
- Medical Research Council and Asthma UK Center in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Successful V(D)J recombination at the T-cell receptor beta (Tcrb) locus is critical for early thymocyte development. The locus is subject to a host of regulatory mechanisms that impart a strict developmental order to Tcrb recombination events and that insure that Tcrb recombination occurs in an allelically excluded fashion. Progress has been made in the understanding of the cis-acting control of Tcrb locus chromatin structure and the extent to which such accessibility control can account for the developmental regulation of Tcrb recombination. However, recent studies in our laboratory and elsewhere have made it abundantly clear that accessibility control is only part of the story, and multiple additional mechanisms impact both the developmental activation and inactivation of locus recombination events. Here we evaluate our current understanding of developmental regulation at the Tcrb locus. We highlight the many unresolved issues and we discuss how recent concepts emerging from studies of other antigen receptor loci may (or may not) help to resolve these issues.
Collapse
Affiliation(s)
- Annette M Jackson
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
7
|
Abstract
Transcriptional regulation of T-cell development involves successive interactions between complexes of transcriptional regulators and their binding sites within the regulatory regions of each gene. The regulatory modules that control expression of T-lineage genes frequently include binding sites for a core set of regulators that set the T-cell-specific background for signal-dependent control, including GATA-3, Notch/CSL, c-myb, TCF-1, Ikaros, HEB/E2A, Ets, and Runx factors. Additional regulators in early thymocytes include PU.1, Id-2, SCL, Spi-B, Erg, Gfi-1, and Gli. Many of these factors are involved in simultaneous regulation of non-T-lineage genes, T-lineage genes, and genes involved in cell cycle control, apoptosis, or survival. Potential and known interactions between early thymic transcription factors such as GATA-3, SCL, PU.1, Erg, and Spi-B are explored. Regulatory modules involved in the expression of several critical T-lineage genes are described, and models are presented for shifting occupancy of the DNA-binding sites in the regulatory modules of pre-Talpha, T-cell receptor beta (TCRbeta), recombinase activating genes 1 and 2 (Rag-1/2), and CD4 during T-cell development. Finally, evidence is presented that c-kit, Erg, Hes-1, and HEBAlt are expressed differently in Rag-2(-/-) thymocytes versus normal early thymocytes, which provide insight into potential regulatory interactions that occur during normal T-cell development.
Collapse
Affiliation(s)
- Michele K Anderson
- Sunnybrook and Women's College Health Sciences Center, Division of Molecular and Cell Biology, University of Toronto, Department of Immunology, Toronto, ON, Canada.
| |
Collapse
|
8
|
Pai SY, Truitt ML, Ting CN, Leiden JM, Glimcher LH, Ho IC. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 2004; 19:863-75. [PMID: 14670303 DOI: 10.1016/s1074-7613(03)00328-5] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transcription factor GATA-3 is expressed at every stage of thymic development, but its role in thymocyte differentiation is unknown. The fact that RAG chimeric animals lacking GATA-3 cannot generate early thymocytes from common lymphoid progenitors has thus far precluded investigation of the function of GATA-3 in the thymus. To address this, we generated mice deficient in GATA-3 at early and late stages of thymic differentiation. Our studies revealed that GATA-3 is involved in beta selection and is indispensable for single-positive CD4 thymocyte development. Thus, our data demonstrate that the coordinated and regulated expression of GATA-3 at each stage of thymic development is critical for the generation of mature T cells.
Collapse
Affiliation(s)
- Sung-Yun Pai
- Department of Pediatric Hematology-Oncology, Dana-Farber Cancer Institute and Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
9
|
Taghon T, De Smedt M, Stolz F, Cnockaert M, Plum J, Leclercq G. Enforced expression of GATA-3 severely reduces human thymic cellularity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4468-75. [PMID: 11591773 DOI: 10.4049/jimmunol.167.8.4468] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following bone marrow transplantation, patients often suffer from immune incompetence by reduced or late T cell development. Moreover, adult bone marrow stem cells have a lower capacity to generate T cells compared with fetal liver- and umbilical cord blood-derived progenitors. Therefore, enhancing thymic-dependent T cell generation might hold great therapeutic potential. GATA-3 is a transcription factor that is essential in T cell development. In this study we examined the therapeutic potential of GATA-3 to enhance T cell generation by overexpressing GATA-3 in T cell progenitors followed by fetal thymic organ culture (FTOC). We observed that early during FTOC, there was an enhanced differentiation toward the double positive stage of T cell development. From day 10 of FTOC, however, overexpression of GATA-3 induced a severe reduction in thymic cellularity, which probably correlates with the absence of a functional TCR-beta chain. We further show that the frequency of apoptosis was increased in GATA-3-transduced thymocytes. Despite the absence of a functional TCR-beta chain, GATA-3 transduced progenitors were able to differentiate into CD8beta(+) double positive thymocytes. This study shows that a strictly regulated expression of GATA-3 is essential for normal T cell development and this puts severe restrictions on the potential therapeutic use of continuously overexpressed GATA-3.
Collapse
Affiliation(s)
- T Taghon
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
10
|
Barreda DR, Belosevic M. Transcriptional regulation of hemopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:763-789. [PMID: 11602195 DOI: 10.1016/s0145-305x(01)00035-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of blood cell formation, or hemopoiesis, is central to the replenishment of mature effector cells of innate and acquired immune responses. These cells fulfil specific roles in the host defense against invading pathogens, and in the maintenance of homeostasis. The development of hemopoietic cells is under stringent control from extracellular and intracellular stimuli that result in the activation of specific downstream signaling cascades. Ultimately, all signal transduction pathways converge at the level of gene expression where positive and negative modulators of transcription interact to delineate the pattern of gene expression and the overall cellular hemopoietic response. Transcription factors, therefore, represent a nodal point of hemopoietic control through the integration of the various signaling pathways and subsequent modulation of the transcriptional machinery. Transcription factors can act both positively and negatively to regulate the expression of a wide range of hemopoiesis-relevant genes including growth factors and their receptors, other transcription factors, as well as various molecules important for the function of developing cells. The expression of these genes is dependent on the complex interactions between transcription factors, co-regulatory molecules, and specific binding sequences on the DNA. Recent advances in various vertebrate and invertebrate systems emphasize the importance of transcription factors for hemopoiesis control and the evolutionary conservation of several of such mechanisms. In this review we outline some of the key issues frequently identified in studies of the transcriptional regulation of hemopoietic gene expression. In teleosts, we expect that the characterization of several of these transcription factors and their regulatory mechanisms will complement recent advances in a number of fish systems where identification of cytokine and other hemopoiesis-relevant factors are currently under investigation.
Collapse
Affiliation(s)
- D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
11
|
Staal FJ, Weerkamp F, Langerak AW, Hendriks RW, Clevers HC. Transcriptional Control of T Lymphocyte Differentiation. Stem Cells 2001; 19:165-79. [PMID: 11359942 DOI: 10.1634/stemcells.19-3-165] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Initiation of gene transcription by transcription factors (TFs) is an important regulatory step in many developmental processes. The differentiation of T cell progenitors in the thymus is tightly controlled by signaling molecules, ultimately activating nuclear TFs that regulate the expression of T lineage-specific genes. During the last 2 years, significant progress has been made in our understanding of the signaling routes and TFs operating during the earliest stages of thymic differentiation at the CD4(-)CD8(-) double negative stage. Here we will review the TF families that play an important role in differentiation of thymocytes, particularly focusing on recent new information with respect to the Tcf, bHLH, GATA, and CBF/HES TF families.
Collapse
Affiliation(s)
- F J Staal
- Department of Immunology, Erasmus University Rotterdam, Rotterdam, Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Fang MA, Glackin CA, Sadhu A, McDougall S. Transcriptional regulation of alpha 2(I) collagen gene expression by fibroblast growth factor-2 in MC3T3-E1 osteoblast-like cells. J Cell Biochem 2001. [DOI: 10.1002/1097-4644(20010315)80:4<550::aid-jcb1009>3.0.co;2-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Carvajal IM, Sen R. Functional analysis of the murine TCR beta-chain gene enhancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6332-9. [PMID: 10843687 DOI: 10.4049/jimmunol.164.12.6332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR beta-chain gene enhancer activates transcription and V(D)J recombination in immature thymocytes. In this paper we present a systematic analysis of the elements that contribute to the activity of the murine TCR beta enhancer in mature and immature T cell lines. We identified a region containing the beta E4, beta E5, and beta E6 motifs as the essential core of the TCR beta enhancer in pro-T cells. In mature cells, the core enhancer had low activity and required, in addition, either 5' or 3' flanking sequences whose functions may be partially overlapping. Mutation of any of the six protein binding sites located within the beta E4-beta E6 elements essentially abolished enhancer activity, indicating that this core enhancer contained no redundant elements. The beta E4 and beta E6 elements contain binding sites for ETS-domain proteins and the core binding factor. The beta E5 element bound two proteins that could be resolved chromatographically and that were both essential for enhancer activity.
Collapse
Affiliation(s)
- I M Carvajal
- Rosenstiel Research Center and Department of Biology, Brandeis University, Waltham, MA 02254, USA
| | | |
Collapse
|
14
|
Abstract
The development and function of T lymphocytes are regulated tightly by signal transduction pathways that include specific cell-surface receptors, intracellular signaling molecules, and nuclear transcription factors. Since 1988, several families of functionally important T cell transcription factors have been identified. These include the Ikaros, LKLF, and GATA3 zinc-finger proteins; the Ets, CREB/ATF, and NF-kappa B/Rel/NFAT transcription factors; the Stat proteins; and HMG box transcription factors such as LEF1, TCF1, and Sox4. In this review, we summarize our current understanding of the transcriptional regulation of T cell development and function with particular emphasis on the results of recent gene targeting and transgenic experiments. In addition to increasing our understanding of the molecular pathways that regulate T cell development and function, these results have suggested novel targets for genetic and pharmacological manipulation of T cell immunity.
Collapse
Affiliation(s)
- C T Kuo
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
15
|
Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997; 272:21597-603. [PMID: 9261181 DOI: 10.1074/jbc.272.34.21597] [Citation(s) in RCA: 511] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-5 (IL-5), which is produced by CD4(+) T helper 2 (Th2) cells, but not by Th1 cells, plays a key role in the development of eosinophilia in asthma. Despite increasing evidence that the outcome of many diseases is determined by the ratio of the two subsets of CD4(+) T helper cells, Th1 and Th2, the molecular basis for Th1- and Th2-specific gene expression remains to be elucidated. We previously established a critical role for the transcription factor GATA-3 in IL-5 promoter activation in EL-4 cells, which express both Th1- and Th2-type cytokines. Our studies reported here demonstrate that GATA-3 is critical for expression of the IL-5 gene in bona fide Th2 cells. Whereas mutations in the GATA-3 site abolished antigen- or cAMP-stimulated IL-5 promoter activation in Th2 cells, ectopic expression of GATA-3 in Th1 cells or in a non-lymphoid, non-IL-5-producing cell line activated the IL-5 promoter. During the differentiation of naive CD4(+) T cells isolated from T cell receptor transgenic mice, GATA-3 gene expression was up-regulated in developing Th2 cells, but was down-regulated in Th1 cells, and antigen- or cAMP-activated Th2 cells (but not Th1 cells) expressed the GATA-3 protein. Thus, GATA-3 may play an important role in the balance between Th1 and Th2 subsets in immune responses. Inhibition of GATA-3 activity has therapeutic potential in the treatment of asthma and other hypereosinophilic diseases.
Collapse
Affiliation(s)
- D H Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
16
|
Shurman L, Laskov R, Bergman Y. Direct and indirect mechanisms of repression participate in suppression of T-cell-specific gene expression in T x L-cell hybrids. Gene Expr 1996; 5:285-300. [PMID: 8836737 PMCID: PMC6138021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/1995] [Accepted: 12/26/1955] [Indexed: 02/02/2023]
Abstract
Expression of tissue-specific genes can be altered upon fusion of mammalian cells of different types. To resolve the genetic basis of this phenomenon and to identify components of the regulatory circuits that are involved, we have established a series of somatic cell hybrids between mouse T cells and L cells. These hybrids have an unusual and interesting phenotype. Unlike many hybrid cells studied, in which the expression of an entire set of tissue-specific genes was coordinately extinguished, in our T x L-cell hybrids only two out of seven T-cell-restricted genes were completely extinguished, whereas the other genes were repressed to various degrees. These hybrids extinguish the production of TCR beta and Thy-1 mRNA, repress the expression of TCR alpha, GATA-3, TCF-1, and LEF-1 genes to different extents, exhibit small changes in the level of CD3-epsilon mRNA, and continue to express the fibroblast-specific fibronectin gene, and the ets-1 gene. In this study we have evaluated for the first time the molecular mechanisms that underlie the repression of TCR alpha and TCR beta chain genes in T x L-cell hybrids. We have shown that multiple repression mechanisms, both direct and indirect, contribute to TCR alpha and TCR beta suppression. Repression of the expression of these genes correlated not only with the downregulation of GATA-3, TCF-1, and LEF-1 transcription factor expression, and with a change in the chromatin structure, but more importantly, with the activation of the silencer activity. Our study provides evidence for the existence of at least two negatively regulating elements, located at the TCR alpha enhancer-containing fragment and at the silencer region, which are active in our hybrid cells. We have shown that there was no correlation between the levels of GATA-3, TCF-1, and LEF-1 expression versus the level of TCR alpha mRNA in the independent hybrids. In contrast, both the silencer activity and the ability of the TCR alpha enhancer to downregulate thymidine kinase (TK) promoter activity were found to be in an inverse correlation with the ability of the different hybrid cells to express TCR alpha mRNA.
Collapse
Affiliation(s)
- L Shurman
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
17
|
Siegel MD, Zhang DH, Ray P, Ray A. Activation of the interleukin-5 promoter by cAMP in murine EL-4 cells requires the GATA-3 and CLE0 elements. J Biol Chem 1995; 270:24548-55. [PMID: 7592673 DOI: 10.1074/jbc.270.41.24548] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interleukin-5 (IL-5) plays a central role in the growth and differentiation of eosinophils and contributes to several disease states including asthma. Accumulating evidence suggests a role for cAMP as an immunomodulator; agents that increase intracellular cAMP levels have been shown to inhibit production of cytokines predominantly produced by T helper (Th) 1 cells such as IL-2 and interferon gamma (IFN-gamma). In contrast, the production of IL-5, predominantly produced by Th2 cells, is actually enhanced by these agents. In this report, we have performed transient transfection experiments with IL-5 promoter-reporter gene constructs, DNase I footprinting assays, and electrophoretic mobility shift assays to investigate the key regulatory regions necessary for activation of the IL-5 promoter by dibutyryl cAMP and phorbol esters in the mouse thymoma line EL-4. Taken together, our data demonstrate the critical importance of two sequences within the IL-5 5'-flanking region for activation by these agents in EL-4 cells: one, a highly conserved 15-base pair element present in genes expressed by Th2 cells, called the conserved lymphokine element 0 (CLE0; located between -53 and -39 in the IL-5 promoter), and the other, two overlapping binding sites for the transcription factor GATA-3 (but not GATA-4) between -70 and -59. Taken together, our data suggest that activation via the unique sequence combination GATA/CLE0 results in selective expression of the IL-5 gene in response to elevated levels of intracellular cAMP.
Collapse
Affiliation(s)
- M D Siegel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
18
|
Smith VM, Lee PP, Szychowski S, Winoto A. GATA-3 dominant negative mutant. Functional redundancy of the T cell receptor alpha and beta enhancers. J Biol Chem 1995; 270:1515-20. [PMID: 7829479 DOI: 10.1074/jbc.270.4.1515] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The GATA family of transcription factors regulates a wide variety of genes, including those involved in differentiation of erythrocytes and T lymphocytes. We report here the creation of a dominant negative mutant of GATA-3, KRR, which effectively blocks wild-type GATA-1, GATA-2, and GATA-3 transactivation when co-expressed in transient assays. KRR was generated by site-directed mutagenesis while investigating a putative activation domain of GATA-3, located between its two zinc fingers. The GATA-3 KRR mutation does not affect expression, nuclear translocation, or the ability to bind to a consensus GATA sequence. KRR can suppress the activity of the minimal T cell receptor (TCR) alpha and beta enhancers by 12- and 3.4-fold, respectively. However, KRR did not have a significant effect on the activity of larger TCR-alpha and -beta enhancer fragments. Thus, functional redundancy in the TCR-alpha and -beta enhancers can compensate for the loss of GATA-3 activity.
Collapse
Affiliation(s)
- V M Smith
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200
| | | | | | | |
Collapse
|