1
|
Adamia S, Kriangkum J, Belch AR, Pilarski LM. Aberrant posttranscriptional processing of hyaluronan synthase 1 in malignant transformation and tumor progression. Adv Cancer Res 2015; 123:67-94. [PMID: 25081526 DOI: 10.1016/b978-0-12-800092-2.00003-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is becoming increasingly apparent that splicing defects play a key role in cancer, and that alterations in genomic splicing elements promote aberrant splicing. Alternative splicing increases the diversity of the human transcriptome and increases the numbers of functional gene products. However, dysregulation that leads to aberrant pre-mRNA splicing can contribute to cancer. Hyaluronan (HA), known to be an important component of cancer progression, is synthesized by hyaluronan synthases (HASs). In cancer cells, hyaluronan synthase 1 (HAS1) pre-mRNA is abnormally spliced to generate a family of aberrant splice variants (HAS1Vs) that synthesize extracellular and intracellular HA. HAS1Vs are clinically relevant, being found almost exclusively in malignant cells. Expression of aberrant HAS1Vs predicts poor survival in multiple myeloma. In this review, we summarize the unusual properties of HAS1Vs and their relationship to cancer. HAS1Vs form heterogeneous multimers with normally spliced HAS1 as well as with each other and with HAS3. Aberrant variants of HAS1 synthesize HA. Extracellular HA synthesized by HAS1Vs is likely to promote malignant spread. We speculate that synthesis of intracellular HA plays a fundamental and early role in oncogenesis by promoting genetic instability and the emergence of viable cancer variants that lead to aggressive disease.
Collapse
Affiliation(s)
- Sophia Adamia
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
| | - Jitra Kriangkum
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Andrew R Belch
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Linda M Pilarski
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Meng X, Qi X, Guo H, Cai M, Li C, Zhu J, Chen F, Guo H, Li J, Zhao Y, Liu P, Jia X, Yu J, Zhang C, Sun W, Yu Y, Jin Y, Bai J, Wang M, Rosales J, Lee KY, Fu S. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet 2014; 52:135-44. [PMID: 25537274 PMCID: PMC4316941 DOI: 10.1136/jmedgenet-2014-102703] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Gene amplification is a frequent manifestation of genomic instability that plays a role in tumour progression and development of drug resistance. It is manifested cytogenetically as extrachromosomal double minutes (DMs) or intrachromosomal homogeneously staining regions (HSRs). To better understand the molecular mechanism by which HSRs and DMs are formed and how they relate to the development of methotrexate (MTX) resistance, we used two model systems of MTX-resistant HT-29 colon cancer cell lines harbouring amplified DHFR primarily in (i) HSRs and (ii) DMs. Results In DM-containing cells, we found increased expression of non-homologous end joining (NHEJ) proteins. Depletion or inhibition of DNA-PKcs, a key NHEJ protein, caused decreased DHFR amplification, disappearance of DMs, increased formation of micronuclei or nuclear buds, which correlated with the elimination of DHFR, and increased sensitivity to MTX. These findings indicate for the first time that NHEJ plays a specific role in DM formation, and that increased MTX sensitivity of DM-containing cells depleted of DNA-PKcs results from DHFR elimination. Conversely, in HSR-containing cells, we found no significant change in the expression of NHEJ proteins. Depletion of DNA-PKcs had no effect on DHFR amplification and resulted in only a modest increase in sensitivity to MTX. Interestingly, both DM-containing and HSR-containing cells exhibited decreased proliferation upon DNA-PKcs depletion. Conclusions We demonstrate a novel specific role for NHEJ in the formation of DMs, but not HSRs, in MTX-resistant cells, and that NHEJ may be targeted for the treatment of MTX-resistant colon cancer.
Collapse
Affiliation(s)
- Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiuying Qi
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huanhuan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunxiang Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Zhu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jie Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yuzhen Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jingcui Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunyu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jesusa Rosales
- Departments of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ki-Young Lee
- Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| |
Collapse
|
3
|
How a replication origin and matrix attachment region accelerate gene amplification under replication stress in mammalian cells. PLoS One 2014; 9:e103439. [PMID: 25061979 PMCID: PMC4111587 DOI: 10.1371/journal.pone.0103439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
The gene amplification plays a critical role in the malignant transformation of mammalian cells. The most widespread method for amplifying a target gene in cell culture is the use of methotrexate (Mtx) treatment to amplify dihydrofolate reductase (Dhfr). Whereas, we found that a plasmid bearing both a mammalian origin of replication (initiation region; IR) and a matrix attachment region (MAR) was spontaneously amplified in mammalian cells. In this study, we attempted to uncover the underlying mechanism by which the IR/MAR sequence might accelerate Mtx induced Dhfr amplification. The plasmid containing the IR/MAR was extrachromosomally amplified, and then integrated at multiple chromosomal locations within individual cells, increasing the likelihood that the plasmid might be inserted into a chromosomal environment that permits high expression and further amplification. Efficient amplification of this plasmid alleviated the genotoxicity of Mtx. Clone-based cytogenetic and sequence analysis revealed that the plasmid was amplified in a chromosomal context by breakage-fusion-bridge cycles operating either at the plasmid repeat or at the flanking fragile site activated by Mtx. This mechanism explains how a circular molecule bearing IR/MAR sequences of chromosomal origin might be amplified under replication stress, and also provides insight into gene amplification in human cancer.
Collapse
|
4
|
Gibaud A, Vogt N, Brison O, Debatisse M, Malfoy B. Characterization at nucleotide resolution of the homogeneously staining region sites of insertion in two cancer cell lines. Nucleic Acids Res 2013; 41:8210-9. [PMID: 23821669 PMCID: PMC3783161 DOI: 10.1093/nar/gkt566] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms of formation of intrachromosomal amplifications in tumours are still poorly understood. By using quantitative polymerase chain reaction, DNA sequencing, chromosome walking, in situ hybridization on metaphase chromosomes and whole-genome analysis, we studied two cancer cell lines containing an MYC oncogene amplification with acquired copies ectopically inserted in rearranged chromosomes 17. These intrachromosomal amplifications result from the integration of extrachromosomal DNA molecules. Replication stress could explain the formation of the double-strand breaks involved in their insertion and in the rearrangements of the targeted chromosomes. The sequences of the junctions indicate that homologous recombination was not involved in their formation and support a non-homologous end-joining process. The replication stress-inducible common fragile sites present in the amplicons may have driven the intrachromosomal amplifications. Mechanisms associating break-fusion-bridge cycles and/or chromosome fragmentation may have led to the formation of the uncovered complex structures. To our knowledge, this is the first characterization of an intrachromosomal amplification site at nucleotide resolution.
Collapse
Affiliation(s)
- Anne Gibaud
- Institut Curie, Centre de Recherche, CNRS, UMR3244 and UPMC, 26 Rue d'Ulm, F-75248 Paris, France
| | | | | | | | | |
Collapse
|
5
|
Mencalha A, Rodrigues E, Abdelhay E, Fernandez T. Accurate monitoring of promoter gene methylation with high-resolution melting polymerase chain reaction using the ABCB1 gene as a model. GENETICS AND MOLECULAR RESEARCH 2013; 12:714-22. [DOI: 10.4238/2013.march.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Yan B, Ouyang R, Huang C, Liu F, Neill D, Li C, Dewhirst M. Heat induces gene amplification in cancer cells. Biochem Biophys Res Commun 2012; 427:473-7. [PMID: 22975353 DOI: 10.1016/j.bbrc.2012.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. MATERIALS AND METHODS (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44°C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. RESULTS (1) Heat exposure at 42 or 44°C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44°C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. CONCLUSION This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.
Collapse
Affiliation(s)
- Bin Yan
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
The role of fragile sites in sporadic papillary thyroid carcinoma. J Thyroid Res 2012; 2012:927683. [PMID: 22762011 PMCID: PMC3384961 DOI: 10.1155/2012/927683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/18/2012] [Indexed: 12/15/2022] Open
Abstract
The incidence of thyroid cancer is increasing, especially papillary thyroid carcinoma (PTC), making it currently the fastest-growing cancer among women. Reasons for this increase remain unclear, but several risk factors including radiation exposure and improved detection techniques have been suggested. Recently, the induction of chromosomal fragile site breakage was found to result in the formation of RET/PTC1 rearrangements, a common cause of PTC. Chromosomal fragile sites are regions of the genome with a high susceptibility to forming DNA breaks and are often associated with cancer. Exposure to a variety of external agents can induce fragile site breakage, which may account for some of the observed increase in PTC. This paper discusses the role of fragile site breakage in PTC development, external fragile site-inducing agents that may be potential risk factors for PTC, and how these factors are especially targeting women.
Collapse
|
8
|
Kitada K, Aida S, Aikawa S. Coamplification of multiple regions of chromosome 2, including MYCN, in a single patchwork amplicon in cancer cell lines. Cytogenet Genome Res 2011; 136:30-7. [PMID: 22123490 DOI: 10.1159/000334349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2011] [Indexed: 11/19/2022] Open
Abstract
Coamplification of multiple segments of chromosome 2, including an MYCN-bearing segment, was examined in 2 cancer cell lines, NCI-H69 (lung cancer) and IMR-32 (neuroblastoma). High-resolution array-CGH analysis revealed 13 and 6 highly amplified segments located at different sites in chromosome 2 in NCI-H69 and IMR-32, respectively. FISH analysis demonstrated that these segments were co-localized in double minutes in NCI-H69 and in homogeneously staining regions in IMR-32. Connectivity of the segments was determined by a PCR assay using designed primer sets. It was found that all the segments were connected to each other irrespective of their order and orientation against the genome sequence, and a single chain-like cluster was configured in both cell lines. Such patchwork structures of the amplicons suggest the possibility that massive genomic rearrangements, explained by the single catastrophic event model, are involved in the formation of the amplicons, enabling the coamplification of different chromosomal regions including the MYCN locus. The model comprises massive fragmentation of chromosomes and random rejoining of the fragments.
Collapse
Affiliation(s)
- K Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., Kamakura, Japan.
| | | | | |
Collapse
|
9
|
Pelliccia F, Bosco N, Rocchi A. Breakages at common fragile sites set boundaries of amplified regions in two leukemia cell lines K562 - Molecular characterization of FRA2H and localization of a new CFS FRA2S. Cancer Lett 2010; 299:37-44. [PMID: 20851513 DOI: 10.1016/j.canlet.2010.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/04/2010] [Accepted: 08/09/2010] [Indexed: 11/18/2022]
Abstract
Genome amplification is often observed in human tumors. The breakage-fusion-bridge (BFB) cycle is the mechanism that often underlies duplicated regions. Some research has indicated common fragile sites (CFS) as possible sites of chromosome breakages at the origin of BFB cycles. Here we searched two human genome regions known as amplification hot spots for any DNA copy number amplifications by analyzing 21 cancer cell lines to investigate the relationship between genomic fragility and amplification. We identified a duplicated region on a chromosomes der(2) present in the karyotype of two analysed leukemia cell lines K562. The two duplicated regions are organized into large palindromes, which suggests that one BFB cycle has occurred. Our findings show that the three breakpoints are localized in the sequence of three CFSs: FRA2H (2q32.1-q32.2), which here has been characterized molecularly; FRA2S (2q22.3-q23.3), a newly localized aphidicolin inducible CFS; and FRA2G (2q24.3-q31).
Collapse
Affiliation(s)
- Franca Pelliccia
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy.
| | | | | |
Collapse
|
10
|
Sawyer JR, Tian E, Thomas E, Koller M, Stangeby C, Sammartino G, Goosen L, Swanson C, Binz RL, Barlogie B, Shaughnessy J. Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12 approximately 23 amplicon. Br J Haematol 2009; 147:484-94. [PMID: 19744130 DOI: 10.1111/j.1365-2141.2009.07869.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene amplification is defined as a copy number (CN) increase in a restricted region of a chromosome arm, and is a mechanism for acquired drug resistance and oncogene activation. In multiple myeloma (MM), high CNs of genes in a 1q12 approximately 23 amplicon have been associated with disease progression and poor prognosis. To investigate the mechanisms for gene amplification in this region in MM, we performed a comprehensive metaphase analysis combining G-banding, fluorescence in situ hybridization, and spectral karyotyping in 67 patients with gain of 1q. In six patients (9%), evidence for at least one breakage-fusion-bridge (BFB) cycle was found. In three patients (4%), extended ladders of 1q12 approximately 23 amplicons were identified. Several key structures that are predicted intermediates in BFB cycles were observed, including: equal-spaced organization of amplicons, inverted repeat organization of amplicons along the same chromosome arm, and deletion of sequences distal to the amplified region. The 1q12 pericentromeric heterochromatin region served as both a recurrent breakpoint as well as a fusion point for sister chromatids, and ultimately bracketed both the proximal and distal boundaries of the amplicon. Our findings provide evidence for a novel BFB mechanism involving 1q12 pericentromeric breakage in the amplification of a large number of genes within a 1q12 approximately 23 amplicon.
Collapse
Affiliation(s)
- Jeffrey R Sawyer
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
12
|
Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev Genet 2009. [PMID: 19597530 DOI: 10.1038/nrg2593.mechanisms] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
13
|
Kuo MT. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2009; 11:99-133. [PMID: 18699730 PMCID: PMC2577715 DOI: 10.1089/ars.2008.2095] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/18/2008] [Accepted: 06/21/2008] [Indexed: 02/07/2023]
Abstract
The development of multidrug resistance to cancer chemotherapy is a major obstacle to the effective treatment of human malignancies. It has been established that membrane proteins, notably multidrug resistance (MDR), multidrug resistance protein (MRP), and breast cancer resistance protein (BCRP) of the ATP binding cassette (ABC) transporter family encoding efflux pumps, play important roles in the development of multidrug resistance. Overexpression of these transporters has been observed frequently in many types of human malignancies and correlated with poor responses to chemotherapeutic agents. Evidence has accumulated showing that redox signals are activated in response to drug treatments that affect the expression and activity of these transporters by multiple mechanisms, including (a) conformational changes in the transporters, (b) regulation of the biosynthesis cofactors required for the transporter's function, (c) regulation of the expression of transporters at transcriptional, posttranscriptional, and epigenetic levels, and (d) amplification of the copy number of genes encoding these transporters. This review describes various specific factors and their relevant signaling pathways that are involved in the regulation. Finally, the roles of redox signaling in the maintenance and evolution of cancer stem cells and their implications in the development of intrinsic and acquired multidrug resistance in cancer chemotherapy are discussed.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Molecular Pathology (Unit 951), The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
14
|
Ragland RL, Glynn MW, Arlt MF, Glover TW. Stably transfected common fragile site sequences exhibit instability at ectopic sites. Genes Chromosomes Cancer 2008; 47:860-72. [PMID: 18615677 DOI: 10.1002/gcc.20591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Common fragile sites (CFSs) are loci that are especially prone to forming gaps and breaks on metaphase chromosomes under conditions of replication stress. Although much has been learned about the cellular responses to gaps and breaks at CFSs, less is known about what makes these sites inherently unstable. CFS sequences are highly conserved in mammalian evolution and contain a number of sequence motifs that are hypothesized to contribute to their instability. To examine the role of CFS sequences in chromosome breakage, we stably transfected two BACs containing FRA3B sequences and two nonCFS control BACs containing similar sequence content into HCT116 cells and isolated cell clones with BACs integrated at ectopic sites. Integrated BACs were present at just a few to several hundred contiguous copies. Cell clones containing integrated FRA3B BACs showed a significant, three to sevenfold increase in aphidicolin-induced gaps and breaks at the integration site as compared to control BACs. Furthermore, many FRA3B integration sites displayed additional chromosome rearrangements associated with CFS instability. Clones were examined for replication timing and it was found that the integrated FRA3B sequences were not dependent on late replication for their fragility. This is the first direct evidence in human cells that introduction of CFS sequences into ectopic nonfragile loci is sufficient to recapitulate the instability found at CFSs. These data support the hypothesis that sequences at CFSs are inherently unstable, and are a major factor in the formation of replication stress induced gaps and breaks at CFSs.
Collapse
Affiliation(s)
- Ryan L Ragland
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | | | |
Collapse
|
15
|
Kitada K, Yamasaki T. The complicated copy number alterations in chromosome 7 of a lung cancer cell line is explained by a model based on repeated breakage-fusion-bridge cycles. ACTA ACUST UNITED AC 2008; 185:11-9. [PMID: 18656688 DOI: 10.1016/j.cancergencyto.2008.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/31/2008] [Accepted: 04/07/2008] [Indexed: 10/21/2022]
Abstract
The drug-resistant lung cancer cell line PTX250, which has been previously established by exposure to an anti-cancer drug paclitaxel, has an increased copy number in the MDR1/ABCB1 locus region. In addition, the flanking regions also exhibit aberrant copy numbers, making the copy number profile of chromosome 7 complicated. In this study, we tested whether the breakage-fusion-bridge (BFB) cycle model can explain such copy number alterations. An analysis using fluorescence in situ hybridization (FISH) with a painting probe demonstrated that the aberrant chromosome, designated chromosome 7(amp), was derived from an intact chromosome 7. Using high-density comparative genomic hybridization arrays, we examined the copy number profile in detail and divided chromosome 7(amp) into seven segments. Based on copy numbers of each segment, which were determined using interphase- and metaphase-FISH analysis, we constructed a formation model for the complicated copy number alteration. Six-time BFB cycles and the cycle-termination by healing of broken ends were presupposed in the model. Locations and orientations of the segments observed in chromosome 7(amp) agreed well with those predicted from the model. Telomere addition was also cytogenetically confirmed. In all, it could be concluded that the complicated copy number alteration found in chromosome 7(amp) is generated from the intact chromosome 7 by the repeated BFB cycles.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200-Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | | |
Collapse
|
16
|
Kitada K, Yamasaki T. The MDR1/ABCB1 regional amplification in large inverted repeats with asymmetric sequences and microhomologies at the junction sites. ACTA ACUST UNITED AC 2007; 178:120-7. [PMID: 17954267 DOI: 10.1016/j.cancergencyto.2007.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/18/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
A multidrug-resistant lung cancer cell line PTX250, established by treatment with the anti-cancer drug paclitaxel, has been demonstrated to have an increased copy number in the 7q21.12 region including the MDR1/ABCB1 gene. The amplicon is 2.7 megabases in size, and the copy number increase is 11-fold compared with the parental cell line. Here, we examined the amplicon structure and determined nucleotide sequences at both junctions of the amplicon. Fluorescence in situ hybridization analysis using an MDR1 probe demonstrated a cluster of fluorescent signals at the chromosomal end, suggesting an intra-chromosomal amplification. DNA fragments of both junctions were cloned and sequenced. The distal junction was a head-to-head fusion with a 4-base pair (bp) overlap separated by an asymmetric sequence of 1,265 bp, and the proximal junction was a tail-to-tail fusion with a 2-bp overlap intervened by an asymmetric sequence of 2,203 bp. These results suggest that the amplicon has a large palindromic structure with an asymmetric sequence and has been amplified through the breakage-fusion-bridge cycle. Specific sequences, which might be related to the occurrence of double-strand-breakages, were found at or near the junctions of the amplicon -- an inverted repeat in the distal junction and a highly AT-rich region near the proximal junction.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co Ltd, 200-Kajiwara, Kamakura, Kanagawa, Japan.
| | | |
Collapse
|
17
|
Abstract
Chromosomal fragile sites are specific loci that preferentially exhibit gaps and breaks on metaphase chromosomes following partial inhibition of DNA synthesis. Their discovery has led to novel findings spanning a number of areas of genetics. Rare fragile sites are seen in a small proportion of individuals and are inherited in a Mendelian manner. Some, such as FRAXA in the FMR1 gene, are associated with human genetic disorders, and their study led to the identification of nucleotide-repeat expansion as a frequent mutational mechanism in humans. In contrast, common fragile sites are present in all individuals and represent the largest class of fragile sites. Long considered an intriguing component of chromosome structure, common fragile sites have taken on novel significance as regions of the genome that are particularly sensitive to replication stress and that are frequently rearranged in tumor cells. In recent years, much progress has been made toward understanding the genomic features of common fragile sites and the cellular processes that monitor and influence their stability. Their study has merged with that of cell cycle checkpoints and DNA repair, and common fragile sites have provided insight into understanding the consequences of replication stress on DNA damage and genome instability in cancer cells.
Collapse
Affiliation(s)
- Sandra G Durkin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA.
| | | |
Collapse
|
18
|
Lattenmayer C, Loeschel M, Steinfellner W, Trummer E, Mueller D, Schriebl K, Vorauer-Uhl K, Katinger H, Kunert R. Identification of transgene integration loci of different highly expressing recombinant CHO cell lines by FISH. Cytotechnology 2006; 51:171-82. [PMID: 19002887 DOI: 10.1007/s10616-006-9029-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/04/2006] [Indexed: 11/26/2022] Open
Abstract
Recombinant CHO cell lines have integrated the expression vectors in various parts of the genome leading to different levels of gene amplification, productivity and stability of protein expression. Identification of insertion sites where gene amplification is possible and the transcription rate is high may lead to systems of site-directed integration and will significantly reduce the process for the generation of stably and highly expressing recombinant cell lines. We have investigated a broad range of recombinant cell lines by FISH analysis and Giemsa-Trypsin banding and analysed their integration loci with regard to the extent of methotrexate pressure, transfection methods, promoters and protein productivities. To summarise, we found that the majority of our high producing recombinant CHO cell lines had integrated the expression construct on a larger chromosome of the genome. Furthermore, except from two cell lines, the exogene was integrated at a single site. The dhfr selection marker was co-localised to the target gene.
Collapse
Affiliation(s)
- Christine Lattenmayer
- Austrian Center of Biopharmaceutical Technology, Muthgasse 18, 1190, Vienna, Austria,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Arlt MF, Durkin SG, Ragland RL, Glover TW. Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst) 2006; 5:1126-35. [PMID: 16807141 DOI: 10.1016/j.dnarep.2006.05.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Common fragile sites are large chromosomal regions that preferentially exhibit gaps or breaks after DNA synthesis is partially perturbed. Fragile site instability in cultured cells is well documented and includes gaps and breaks on metaphase chromosomes, translocation and deletions breakpoints, and sister chromosome exchanges. In recent years, much has been learned about the genomic structure at fragile sites and the cellular mechanisms that monitor their stability. The study of fragile sites has merged with that of cell cycle checkpoints and DNA repair, with multiple proteins from these pathways implicated in fragile site stability, including ATR, BRCA1, CHK1, and RAD51. Since their discovery, fragile sites have been implicated in constitutional and cancer chromosome rearrangements in vivo and recent studies suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early tumorigenesis. Here we review the relationship of fragile sites to chromosome rearrangements, particularly in tumor cells, and discuss the mechanisms that may be involved.
Collapse
Affiliation(s)
- Martin F Arlt
- Department of Human, Genetics University of Michigan, 4909 Buhl Box 0618, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
20
|
Albertson DG. Gene amplification in cancer. Trends Genet 2006; 22:447-55. [PMID: 16787682 DOI: 10.1016/j.tig.2006.06.007] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/26/2006] [Accepted: 06/08/2006] [Indexed: 02/07/2023]
Abstract
Gene amplification is a copy number increase of a restricted region of a chromosome arm. It is prevalent in some tumors and is associated with overexpression of the amplified gene(s). Amplified DNA can be organized as extrachromosomal elements, as repeated units at a single locus or scattered throughout the genome. Common chromosomal fragile sites, defects in DNA replication or telomere dysfunction might promote amplification. Some regions of amplification are complex, yet elements of the pattern are reproduced in different tumor types. A genetic basis for amplification is suggested by its relative frequency in some tumor subtypes, and its occurrence in "early" preneoplastic lesions. Clinically, amplification has prognostic and diagnostic usefulness, and is a mechanism of acquired drug resistance.
Collapse
Affiliation(s)
- Donna G Albertson
- Cancer Research Institute and Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
21
|
Narayanan V, Mieczkowski PA, Kim HM, Petes TD, Lobachev KS. The Pattern of Gene Amplification Is Determined by the Chromosomal Location of Hairpin-Capped Breaks. Cell 2006; 125:1283-96. [PMID: 16814715 DOI: 10.1016/j.cell.2006.04.042] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/11/2006] [Accepted: 04/26/2006] [Indexed: 11/18/2022]
Abstract
DNA palindromes often colocalize in cancer cells with chromosomal regions that are predisposed to gene amplification. The molecular mechanisms by which palindromes can cause gene amplification are largely unknown. Using yeast as a model system, we found that hairpin-capped double-strand breaks (DSBs) occurring at the location of human Alu-quasipalindromes lead to the formation of intrachromosomal amplicons with large inverted repeats (equivalent to homogeneously staining regions in mammalian chromosomes) or extrachromosomal palindromic molecules (equivalent to double minutes [DM] in mammalian cells). We demonstrate that the specific outcomes of gene amplification depend on the applied selection, the nature of the break, and the chromosomal location of the amplified gene relative to the site of the hairpin-capped DSB. The rules for the palindrome-dependent pathway of gene amplification defined in yeast may operate during the formation of amplicons in human tumors.
Collapse
Affiliation(s)
- Vidhya Narayanan
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
22
|
Wei Y, Lin-Lee YC, Yang X, Dai W, Zhao S, Rassool FV, Elgart GW, Feun L, Savaraj N, Kuo MT. Molecular cloning of Chinese hamster 1q31 chromosomal fragile site DNA that is important to mdr1 gene amplification reveals a novel gene whose expression is associated with spermatocyte and adipocyte differentiation. Gene 2006; 372:44-52. [PMID: 16545529 DOI: 10.1016/j.gene.2005.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/14/2005] [Accepted: 12/16/2005] [Indexed: 11/20/2022]
Abstract
DNA amplification plays important roles in the development of drug resistance and tumor progression. One mechanism of DNA amplification involves the breakage-fusion-bridge (BFB) cycle. We previously reported that in Chinese hamster ovary (CHO) cell line, breakage at fragile site 1q31 was associated with mdr1 gene amplification through the BFB mechanism. To elucidate the molecular basis of BFB-mediated DNA amplification, we cloned 1q31 fragile site DNA from a Chinese hamster cell line containing an integrated neomycin-resistance marker. Sequence analyses revealed many characteristics similar to those in other common fragile sites. Moreover, this fragile site contains an evolutionarily conserved novel gene, designated fragile site-associated (FSA) gene. FSA encodes a approximately 16-kb mRNA, from which an unusually large open reading frame (orf) of 5005 amino acids can be deduced. The C-terminal portion of FSA shares a striking sequence similarity to that of Caenorhabditi elegans lipid depleted-3 (lpd-3) gene whose function has been demonstrated to involve in lipid storage. We also demonstrated that expression of FSA is associated with the developmental programs of spermatogenesis and adipogenesis. Our results suggest that the Chinese hamster 1q31 fragile site has many important functions including regulation of mdr1 amplification and differentiation of adipocytes and spermatocytes.
Collapse
Affiliation(s)
- Yingjie Wei
- Department of Molecular Pathology, Unit 89, The University of Texas M. D. Anderson Cancer Center, 7435 Fannin Street, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kuo MT, Wei Y, Yang X, Tatebe S, Liu J, Troncoso P, Sahin A, Ro JY, Hamilton SR, Savaraj N. Association of fragile site-associated (FSA) gene expression with epithelial differentiation and tumor development. Biochem Biophys Res Commun 2006; 340:887-93. [PMID: 16386706 DOI: 10.1016/j.bbrc.2005.12.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 12/13/2005] [Indexed: 11/30/2022]
Abstract
A novel gene designated as fragile site-associated (FSA) gene was recently identified by positional cloning from the CHO 1q31 fragile site which plays an important role in regulating amplification of multidrug resistance (mdr1) gene in multidrug-resistant cells. FSA produces a message of approximately 16 kb which encodes an open-reading frame of 5005 amino acids. FSA shares sequence similarity with that in Caenorhabditis elegans lpd-3, a lipid storage gene. Using immunohistochemical staining and RNA in situ hybridization we report here that expression of FSA is associated with developmental programs of spermatogenesis and mammary gland in mice. Real-time RT-PCR results also support the upregulation of FSA expression in mammary gland development. Expression of FSA in many tissues including colon, skin, ovary, prostate, and bladder is mainly in the postmitotic, well-differentiated compartments. Moreover, levels of FSA expression are downregulated in tumors of these tissue origins. These results suggest that FSA also plays important roles in regulating mammalian epithelial growth and differentiation and tumor development.
Collapse
Affiliation(s)
- M Tien Kuo
- Department of Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Street, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gatza ML, Chandhasin C, Ducu RI, Marriott SJ. Impact of transforming viruses on cellular mutagenesis, genome stability, and cellular transformation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:304-325. [PMID: 15645440 DOI: 10.1002/em.20088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It is estimated that 15% of all cancers are etiologically linked to viral infection. Specific cancers including adult T-cell leukemia, hepatocellular carcinoma, and uterine cervical cancer are associated with infection by human T-cell leukemia virus type I, hepatitis B virus, and high-risk human papilloma virus, respectively. In these cancers, genomic instability, a hallmark of multistep cancers, has been explicitly linked to the expression of oncoproteins encoded by these viruses. This review discusses mechanisms utilized by these viral oncoproteins, Tax, HBx, and E6/E7, to mediate genomic instability and cellular transformation.
Collapse
Affiliation(s)
- Michael L Gatza
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
25
|
Debatisse M, Malfoy B. Gene amplification mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:343-361. [PMID: 18727507 DOI: 10.1007/1-4020-3764-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Michelle Debatisse
- UMR 7147, Institut Curie, CNRS, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
26
|
Casper AM, Durkin SG, Arlt MF, Glover TW. Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet 2004; 75:654-60. [PMID: 15309689 PMCID: PMC1182052 DOI: 10.1086/422701] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 05/10/2004] [Indexed: 11/03/2022] Open
Abstract
Seckel syndrome (SCKL) is a rare, genetically heterogeneous disorder, with dysmorphic facial appearance, growth retardation, microcephaly, mental retardation, variable chromosomal instability, and hematological disorders. To date, three loci have been linked to this syndrome, and recently, the gene encoding ataxia-telangiectasia and Rad3-related protein (ATR) was identified as the gene mutated at the SCKL1 locus. The ATR mutation affects splicing efficiency, resulting in low levels of ATR in affected individuals. Elsewhere, we reported increased instability at common chromosomal fragile sites in cells lacking the replication checkpoint gene ATR. Here, we tested whether cells from patients carrying the SCKL1 mutation would show increased chromosome breakage following replication stress. We found that, compared with controls, there is greater chromosomal instability, particularly at fragile sites, in SCKL1-affected patient cells after treatment with aphidicolin, an inhibitor of DNA polymerase alpha and other polymerases. The difference in chromosomal instability between control and patient cells increases at higher levels of aphidicolin treatment, suggesting that the low level of ATR present in these patients is not sufficient to respond appropriately to replication stress. This is the first human genetic syndrome associated with increased chromosome instability at fragile sites following replication stress, and these findings may be related to the phenotypic findings in patients with SCKL1.
Collapse
Affiliation(s)
- Anne M Casper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Breast tumors display a wide variety of genomic alterations. This review focuses on DNA copy number variations in these tumors as measured by the recently developed microarray-based form of comparative genomic hybridization. The capabilities of this new technology are reviewed. Initial applications of array CGH to the analysis of breast cancer, and the mechanisms by which the particular types of copy number changes might arise are discussed.
Collapse
Affiliation(s)
- Donna G Albertson
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA.
| |
Collapse
|
28
|
Honma M, Izumi M, Sakuraba M, Tadokoro S, Sakamoto H, Wang W, Yatagai F, Hayashi M. Deletion, rearrangement, and gene conversion; genetic consequences of chromosomal double-strand breaks in human cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:288-298. [PMID: 14673874 DOI: 10.1002/em.10201] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chromosomal double-strand breaks (DSBs) in mammalian cells are usually repaired through either of two pathways: end-joining (EJ) or homologous recombination (HR). To clarify the relative contribution of each pathway and the ensuing genetic changes, we developed a system to trace the fate of DSBs that occur in an endogenous single-copy human gene. Lymphoblastoid cell lines TSCE5 and TSCER2 are heterozygous (+/-) or compound heterozygous (-/-), respectively, for the thymidine kinase gene (TK), and we introduced an I-SceI endonuclease site into the gene. EJ for a DSB at the I-SceI site results in TK-deficient mutants in TSCE5 cells, while HR between the alleles produces TK-proficient revertants in TSCER2 cells. We found that almost all DSBs were repaired by EJ and that HR rarely contributes to the repair in this system. EJ contributed to the repair of DSBs 270 times more frequently than HR. Molecular analysis of the TK gene showed that EJ mainly causes small deletions limited to the TK gene. Seventy percent of the small deletion mutants analyzed showed 100- to 4,000-bp deletions with a 0- to 6-bp homology at the joint. Another 30%, however, were accompanied by complicated DNA rearrangements, presumably the result of sister-chromatid fusion. HR, on the other hand, always resulted in non-crossing-over gene conversion without any loss of genetic information. Thus, although HR is important to the maintenance of genomic stability in DNA containing DSBs, almost all chromosomal DSBs in human cells are repaired by EJ.
Collapse
Affiliation(s)
- Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lemoine FJ, Marriott SJ. Genomic instability driven by the human T-cell leukemia virus type I (HTLV-I) oncoprotein, Tax. Oncogene 2002; 21:7230-4. [PMID: 12370813 DOI: 10.1038/sj.onc.1205898] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Revised: 07/11/2002] [Accepted: 08/06/2002] [Indexed: 11/08/2022]
Abstract
The importance of maintaining genomic stability is evidenced by the fact that transformed cells often contain a variety of chromosomal abnormalities such as euploidy, translocations, and inversions. Gene amplification is a well-characterized hallmark of genomic instability thought to result from recombination events following the formation of double-strand, chromosomal breaks. Therefore, gene amplification frequency serves as an indicator of genomic stability. The PALA assay is designed to measure directly the frequency with which a specific gene, CAD, is amplified within a cell's genome. We have used the PALA assay to analyse the effects of the human T-cell leukemia virus type I (HTLV-I) oncoprotein, Tax, on genomic amplification. We demonstrate that Tax-expressing cells are five-times more likely to undergo gene amplification than control cells. Additionally, we show that Tax alters the ability of cells to undergo the typical PALA-mediated G(1) phase cell cycle arrest, thereby allowing cells to replicate DNA in the absence of appropriate nucleotide pools. This effect is likely the mechanism by which Tax induces gene amplification. These data suggest that HTLV-I Tax alters the genomic stability of cells, an effect that may play an important role in Tax-mediated, HTLV-I associated cellular transformation.
Collapse
Affiliation(s)
- Francene J Lemoine
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, TX 77030, USA
| | | |
Collapse
|
30
|
Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J, Gao Y, Morton CC, Alt FW. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 2002; 109:811-21. [PMID: 12110179 DOI: 10.1016/s0092-8674(02)00770-5] [Citation(s) in RCA: 331] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Amplification of large genomic regions associated with complex translocations (complicons) is a basis for tumor progression and drug resistance. We show that pro-B lymphomas in mice deficient for both p53 and nonhomologous end-joining (NHEJ) contain complicons that coamplify c-myc (chromosome 15) and IgH (chromosome 12) sequences. While all carry a translocated (12;15) chromosome, coamplified sequences are located within a separate complicon that often involves a third chromosome. Complicon formation is initiated by recombination of RAG1/2-catalyzed IgH locus double-strand breaks with sequences downstream of c-myc, generating a dicentric (15;12) chromosome as an amplification intermediate. This recombination event employs a microhomology-based end-joining repair pathway, as opposed to classic NHEJ or homologous recombination. These findings suggest a general model for oncogenic complicon formation.
Collapse
Affiliation(s)
- Chengming Zhu
- Howard Hughes Medical Institute, The Children's Hospital and The Center for Blood Research, Boston MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mondello C, Guasconi V, Giulotto E, Nuzzo F. Gamma-ray and hydrogen peroxide induction of gene amplification in hamster cells deficient in DNA double strand break repair. DNA Repair (Amst) 2002; 1:483-93. [PMID: 12509235 DOI: 10.1016/s1568-7864(02)00035-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate the role of DNA double strand breaks (DSBs) and of their repair in gene amplification, we analyzed this process in the V3 Chinese hamster cell line and in the parental line AA8, after exposure to gamma-rays and to hydrogen peroxide (H2O2). V3 is defective in DSB repair because of a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) gene, a gene involved in the non-homologous end-joining pathway. As a measure of gene amplification we used the frequency of colonies resistant to N-(phosphonacetyl)-L-aspartate (PALA), since in rodent cells PALA resistance is mainly achieved through the amplification of the CAD (carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase) gene. After treatment with different doses of gamma-rays and of H2O2, we found a dose related increase in the frequency of gene amplification and of chromosome aberrations. When the same doses of damaging agents were used, these increments were higher in V3 than in AA8. These results indicate that DSBs that are not efficiently repaired can be responsible for the induction of gene amplification. H2O2 stimulates gene amplification as well as gamma-rays, however, at similar levels of amplification induction, chromosome damage was about 50% lower. This suggests that gene amplification can be induced by H2O2 through pathways alternative to a direct DNA damage. Stimulation of gene amplification by H2O2, which is one of the products of the aerobic metabolism, supports the hypothesis that cellular metabolic products themselves can be a source of genome instability.
Collapse
Affiliation(s)
- Chiara Mondello
- Istitituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| | | | | | | |
Collapse
|
32
|
Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI, Trakhtenbrot L, Kerem B. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 2002; 1:89-97. [PMID: 12086891 DOI: 10.1016/s1535-6108(02)00017-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oncogene amplification is an important process in human tumorigenesis, but its underlying mechanism is currently unknown. Cytogenetic analysis indicates that amplification of drug-selected genes in rodent cells is driven by recurrent breaks within chromosomal common fragile sites (CFSs), via the breakage-fusion-bridge (BFB) mechanism. Here we show that BFB cycles drive the intrachromosomal amplification of the MET oncogene in a human gastric carcinoma. Our molecular evidence includes a "ladder-like" structure and inverted repeat organization of the MET amplicons. Furthermore, we show that the breakpoints, setting the centromeric amplicon boundaries, are within the CFS FRA7G region. Upon replication stress, this region showed perturbed chromatin organization, predisposing it to breakage. Thus, in vivo induction of CFSs can play an important role in human oncogenesis.
Collapse
Affiliation(s)
- Asaf Hellman
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Svetlova EY, Razin SV, Debatisse M. Mammalian recombination hot spot in a DNA loop anchorage region: a model for the study of common fragile sites. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 36:170-8. [PMID: 11455582 DOI: 10.1002/jcb.1081] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We analyzed the replication pattern and the topological organization of a 200 kb long Chinese hamster polygenic locus, which spans the boundary of two isochores. One of them is G + C rich while the second one is highly A + T rich. Previous analysis of mutants amplified for this locus had identified, within the A + T rich isochore, a mitotic recombination hotspot and a replication origin separated by some 7 kb. The recombination hotspot exhibits structural features repeatedly observed at common fragile sites, including a typical enrichment in peaks of enhanced DNA helix flexibility. By studying the replication pattern of the same locus in the non-amplified CHO cells, we confirm here the localization of the replication origin and show that the mitotic recombination hotspot does not correspond to a replicon junction. This finding makes questionable current hypotheses correlating replication termination regions with recombination prone sequences. Using topoisomerase II-mediated DNA cleavage at matrix attachment sites, we identified a 40 kb-long DNA anchorage region extending all along a transcription unit nested within the A + T rich isochore. Both the recombination hotspot and the replication origin lie within this topoisomerase II sensitive region, which suggests that features essential for initiation of recombination and initiation of DNA replication cluster within DNA anchorage regions. Features common to this region and to common fragile sites are discussed. J. Cell. Biochem. Suppl. 36: 170-178, 2001.
Collapse
Affiliation(s)
- E Y Svetlova
- URA CNRS 1960, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cédex 15, France
| | | | | |
Collapse
|
34
|
Honma M, Momose M, Tanabe H, Sakamoto H, Yu Y, Little JB, Sofuni T, Hayashi M. Requirement of wild-type p53 protein for maintenance of chromosomal integrity. Mol Carcinog 2000; 28:203-14. [PMID: 10972990 DOI: 10.1002/1098-2744(200008)28:4<203::aid-mc3>3.0.co;2-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromosomal double-strand breaks (DSBs) occurring in mammalian cells can initiate genomic instability, and their misrepairs result in chromosomal deletion, amplification, and translocation, common findings in human tumors. The tumor-suppressor protein p53 is involved in maintaining genomic stability. In this study, we demonstrate that the deficiency of wild-type p53 protein may allow unrepaired DSBs to initiate chromosomal instability. The human lymphoblastoid cell line TK6-E6 was established by transfection with human papilloma virus 16 (HPV16) E6 cDNA into parental TK6 cells via a retroviral vector. Abrogation of p53 function by E6 resulted in an increase in the spontaneous mutation frequencies at the heterozygous thymidine kinase (TK) locus but not at the hemizygous hypoxanthine phosphoribosyl transferase (HPRT) locus. Almost all TK-deficient mutants from TK6-E6 cells exhibited loss of heterozygosity (LOH) with the hemizygous TK allele. LOH analysis with microsatellite loci spanning the long arm of chromosome 17, which harbors the TK locus, showed that LOH extended over half of 17q toward the terminal end. Cytogenetic analysis of LOH mutants by chromosome painting indicated a mosaic of chromosomal aberrations involving chromosome 17, in which partial chromosome deletions, amplifications, and multiple translocations appeared heterogeneously in a single mutant. We speculate that spontaneous DSBs trigger the breakage-fusion bridge cycle leading to such multiple chromosome aberrations. In contrast, no chromosomal alterations were observed in TK-deficient mutants from TK6-20C cells expressing wild-type p53. In wild-type p53 cells, spontaneous DSBs appear to be promptly repaired through recombination between homologous chromosomes. These results support a model in which p53 protein contributes to the maintenance of genomic integrity through recombinational repair.
Collapse
Affiliation(s)
- M Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL–transformed hematopoietic cell lines. Blood 2000. [DOI: 10.1182/blood.v95.11.3498.011k27_3498_3505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tyrosine kinase activity of the Bcr/Abl oncogene is required for transformation of hematopoietic cells. The tyrosine kinase inhibitor STI571 (formerly called CGP57148B, Novartis Pharmaceuticals) inhibits BCR/ABL, TEL/ABL, and v-ABL kinase activity and inhibits growth and viability of cells transformed by any of these ABL oncogenes. Here we report the generation of 2 BCR/ABL–positive cell lines that have developed partial resistance to STI571. BCR/ABL–transformed Ba/F3 hematopoietic cells and Philadelphia-positive human K562 cells were cultured in gradually increasing concentrations of STI571 over a period of several months to generate resistant lines. Resistant Ba/F3.p210 cells were found to have an increase in Bcr/Abl messenger RNA, amplification of the Bcr/Abl transgene, and a greater than tenfold increase in the level of BCR/ABL protein. In contrast to Ba/F3.p210 cells, drug-resistant K562 cells did not undergo detectable amplification of the BCR/ABL gene, although they displayed a 2-fold to 3-fold increase in p210BCR/ABL protein. The addition of STI571 to both resistant Ba/F3.p210 and K562 cells resulted in a rapid reduction of tyrosine phosphorylation of cellular proteins, similar to that observed for nonresistant cells. However, the inhibition of kinase activity was transient and partial and was not accompanied by apoptosis. The results suggest that resistance to STI571 may be multifactorial. Increased expression of the target protein BCR/ABL was observed in both lines, and resulted from oncogene amplification in one line. However, altered drug metabolism, transport, or other related mechanisms may also contribute to drug resistance.
Collapse
|
36
|
Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL–transformed hematopoietic cell lines. Blood 2000. [DOI: 10.1182/blood.v95.11.3498] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The tyrosine kinase activity of the Bcr/Abl oncogene is required for transformation of hematopoietic cells. The tyrosine kinase inhibitor STI571 (formerly called CGP57148B, Novartis Pharmaceuticals) inhibits BCR/ABL, TEL/ABL, and v-ABL kinase activity and inhibits growth and viability of cells transformed by any of these ABL oncogenes. Here we report the generation of 2 BCR/ABL–positive cell lines that have developed partial resistance to STI571. BCR/ABL–transformed Ba/F3 hematopoietic cells and Philadelphia-positive human K562 cells were cultured in gradually increasing concentrations of STI571 over a period of several months to generate resistant lines. Resistant Ba/F3.p210 cells were found to have an increase in Bcr/Abl messenger RNA, amplification of the Bcr/Abl transgene, and a greater than tenfold increase in the level of BCR/ABL protein. In contrast to Ba/F3.p210 cells, drug-resistant K562 cells did not undergo detectable amplification of the BCR/ABL gene, although they displayed a 2-fold to 3-fold increase in p210BCR/ABL protein. The addition of STI571 to both resistant Ba/F3.p210 and K562 cells resulted in a rapid reduction of tyrosine phosphorylation of cellular proteins, similar to that observed for nonresistant cells. However, the inhibition of kinase activity was transient and partial and was not accompanied by apoptosis. The results suggest that resistance to STI571 may be multifactorial. Increased expression of the target protein BCR/ABL was observed in both lines, and resulted from oncogene amplification in one line. However, altered drug metabolism, transport, or other related mechanisms may also contribute to drug resistance.
Collapse
|
37
|
Kim SJ, Lee GM. Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19990920)64:6<741::aid-bit14>3.0.co;2-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Debatisse M, Coquelle A, Toledo F, Buttin G. Gene amplification mechanisms: the role of fragile sites. Recent Results Cancer Res 1999; 154:216-26. [PMID: 10027002 DOI: 10.1007/978-3-642-46870-4_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We studied the early stages of gene amplification in a Chinese hamster cell line and identified two distinct amplification mechanisms, both relying on an unequal segregation of gene copies at mitosis. In some cases, a sequence containing the selected gene is looped out, generating an acentric circular molecule, and amplification proceeds through unequal segregation of such extrachromosomal elements in successive cell cycles. In other cases, the accumulation of intrachromosomally amplified copies is driven by cycles of chromatid breakage, followed by fusion of sister chromatids devoid of a telomere, which leads to bridge formation and further break in mitosis (BFB cycles). We showed that some clastogenic drugs specifically trigger the intrachromosomal amplification pathway and strictly correlated this induction of BFB cycles to the ability of these drugs to activate fragile sites. In three model systems, we also established, that the location of centromeric and telomeric fragile sites relative to the selected genes determines the size and sequence content of the early amplicons.
Collapse
Affiliation(s)
- M Debatisse
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
39
|
Abstract
Chromosomal fragile sites are loci that are especially prone to forming gaps or breaks on metaphase chromosomes when cells are cultured under conditions that inhibit DNA replication or repair. The relationship of "rare" folate sensitive fragile sites with (CCG)n expansion and, in some cases, genetic disease is well established. Although they comprise the vast majority of fragile sites, much less is known at the molecular level about the "common" fragile sites. These fragile sites may be seen on all chromosomes as a constant feature. In addition to forming fragile sites on metaphase chromosomes, they have been shown to display a number of characteristics of unstable and highly recombinogenic DNA in vitro, including chromosome rearrangements, sister chromatid exchanges and, more recently, intrachromosomal gene amplification. Only one such fragile site, FRA3B at 3p14.2, has been extensively investigated at the molecular level. It extends over a broad region of possibly 500 kb, and no trinucleotide or other simple repeat motifs have been identified in the region. FRA3B has recently been shown to lie within the FHIT gene locus. This region and the FHIT gene are unstable in a number of tumors and tumor cell lines. It thus appears that common fragile sites are also associated with unstable regions of DNA in vivo, at least in some tumor cells, and may cause this instability. Current challenges include determining the mechanism of fragile site expression and instability, and both the environmental and genetic factors that influence this process. Candidate factors include those genes involved in DNA repair and cell cycle and common carcinogens such as those in cigarette smoke.
Collapse
Affiliation(s)
- T W Glover
- Department of Pediatrics, University of Michigan, Ann Arbor 48109-0618, USA
| |
Collapse
|
40
|
Abstract
Double minute chromosomes (DMs) are the principal genetic vehicles for amplifying oncogenes in human tumors and drug resistance genes in cultured mouse cells. Mouse EMT-6 cells resistant to methotrexate (MTX) generally contain circular DMs, approximately 1 megabase (Mb) in size, that amplify the dihydrofolate reductase (DHFR) gene. The 1 Mb DMs generally have CpG islands located 500 kb upstream of the DHFR gene. The purpose of this study was to determine the relationship between CpG islands and chromosomal breakpoints giving rise to the DM. We show that EMT-6 cells growing in very low levels of MTX that do not yet contain the 1 Mb DHFR-amplifying DM, develop a NotI/EagI site 500 kb upstream of the DHFR gene. This NotI site is close to, if not identical with, one of the chromosomal breakpoints giving rise to the DM. We show that 500 kb of DM DNA from upstream of the DHFR gene is derived from 500 kb of chromosomal DNA upstream of the chromosomal DHFR gene. The downstream breakpoint maps to a region approximately 200 kb downstream of the DHFR gene near a chromosomal SstII/EagI site. Therefore, approximately 700 kb of DM DNA was derived from the genomic region surrounding the DHFR gene. To confirm the organization of the DM DNA, we isolated DNA probes from the 1 Mb DM. Using pulsed field gel electrophoresis and Southern hybridization, we determined the approximate location of each probe with respect to the CpG island in both the DM and the chromosome. Approximately 300 kb of chimeric DNA from a region unrelated to the DHFR gene was incorporated during DM formation. Implications for the mechanism of DM formation are discussed.
Collapse
Affiliation(s)
- P Foureman
- Department of Neurosurgery, Program in Cell and Molecular Biology, State University of New York Health Science Center, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
41
|
Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M. A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 1998; 2:259-65. [PMID: 9734364 DOI: 10.1016/s1097-2765(00)80137-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome rearrangements including gene amplification are frequent properties of tumor cells, but how they are related to the tumor microenvironment is unknown. Here, we report direct evidence for a causal relationship between hypoxia, induction of fragile sites, and gene amplification. Recently, we showed that breaks at fragile sites initiate intrachromosomal amplification. We demonstrate here that hypoxia is a potent fragile site inducer and that, like fragile sites inducing drugs, it drives fusion of double minutes (DMs) and their targeted reintegration into chromosomal fragile sites, generating homogeneously staining regions (HSRs). This pathway operates efficiently for DMs bearing different sequences, suggesting a model of hypoxia-driven formation of the HSRs containing nonsyntenic sequences frequently observed in solid tumors.
Collapse
Affiliation(s)
- A Coquelle
- Unité de Génétique Somatique, URA CNRS 1960, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
Double-minute chromosomes (DMs) amplify oncogenes in human tumors. The organization of genomic DNA in four independently isolated DMs amplifying the DHFR (dihydrofolate reductase) gene has been compared by mapping locations of CpG islands. When cleaved with methylation-sensitive rare-cutting restriction endonucleases, three hypomethylated GC-rich DNA sequences were frequently found in specific regions in these DMs. One such zone was in the CpG island containing the divergently transcribed promoter separating the DHFR and the Rep-3 genes. The other two sites were approximately 500 kb upstream and 300 kb downstream of the DHFR gene. An approximately 800-kb amplified core genomic region containing the DHFR gene using DM-specific probes has been identified in this study. All the DMs consisted of the core amplified region combined with additional DNA fragments. These additional fragments are different for each DM. Therefore, while the DNAs in each of the DMs are different, they have common hypomethylated regions in similar locations. These results suggest a role for the location of hypomethylated GC-rich sites such as the CpG islands in genesis of DMs.
Collapse
Affiliation(s)
- R Rizwana
- Department of Radiation Oncology, State University of New York Health Science Center, Syracuse 13210, USA
| | | |
Collapse
|
43
|
Kuo MT, Sen S, Hittelman WN, Hsu TC. Chromosomal fragile sites and DNA amplification in drug-resistant cells. Biochem Pharmacol 1998; 56:7-13. [PMID: 9698083 DOI: 10.1016/s0006-2952(98)00040-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been well established that DNA amplification is one of the important mechanisms by which cultured cells acquire resistance to many cytotoxic compounds. Amplification of important genes including those encoding oncoproteins, growth factors, their receptors and cell-cycle regulators has been reported in human neoplasms. Yet, despite intensive research since the first description of DNA amplification in cultured cells about 20 years ago, the mechanisms of DNA amplification remain largely unknown. Many models have been proposed to account for the diverse manifestations of amplified DNA in many different cell sources. It is not the intention of this commentary to review these many different models. Rather, we wil focus on the recent advances in this area of research, made mainly via the fluorescence in situ hybridization technique, that have revealed a fairly common chromosomal manifestation of amplified DNA in the drug-resistant hamster cell lines and have demonstrated the association of chromosomal fragile site breakage with early events in DNA amplification. These new developments underscore the importance of future research toward understanding the molecular bases of chromosomal fragile sites, including mechanisms involved in DNA strand breakage and repair, chromosomal translocations, and deletions, which may, in turn, provide important new insights into genomic plasticity and neoplastic transformation.
Collapse
Affiliation(s)
- M T Kuo
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.
| | | | | | | |
Collapse
|
44
|
Palin AH, Critcher R, Fitzgerald DJ, Anderson JN, Farr CJ. Direct cloning and analysis of DNA sequences from a region of the Chinese hamster genome associated with aphidicolin-sensitive fragility. J Cell Sci 1998; 111 ( Pt 12):1623-34. [PMID: 9601093 DOI: 10.1242/jcs.111.12.1623] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile sites are reproducibly expressed and chemically induced decondensations on mitotic chromosomes observed under cytological conditions. They are classified both on the basis of the frequency with which they occur (rare and common) and in terms of the chemical agent used to induce expression in tissue culture cells. Aphidicolin-sensitive common fragile sites appear to be ubiquitous in humans and other mammals and have been considered as candidates of pathological importance. Recently DNA from FRA3B, the most highly expressed constitutive fragile site in the human genome, has been cloned although as yet the cause of the underlying fragility has not been identified. In this study we describe the isolation, using a direct cloning approach, of DNA from a region of the Chinese hamster genome associated with aphidicolin-inducible fragility. Cells of a human-hamster somatic cell hybrid were transfected with a pSV2HPRT vector while exposed to aphidicolin, an inhibitor of DNA polymerases alpha, delta and epsilon. FISH analysis of stable transfectant clones revealed that the ingoing plasmid DNA had preferentially integrated into fragile site-containing chromosomal bands. Plasmid rescue was used to recover DNA sequences flanking one such integration site in the hamster genome. We demonstrate by FISH analysis of metaphase cells induced with aphidicolin that the rescued DNA is from a region of fragility on Chinese hamster chromosome 2, distal to the DHFR locus. Analysis of the DNA sequences flanking the integration site revealed the overall A+T content of the 3,725 bp region sequenced to be 63.3%, with a highly [A].[T]-rich 156 bp region (86.5%) almost adjacent to the integration site. Computational analyses have identified strong homologies to Saccharomyces cerevisiae autonomous replicating sequences (ARS), polypyrimidine tracts, scaffold attachment site consensus sequences and a 24 bp consensus sequence highly conserved in eukaryotic replication origins, all of which appear to cluster around the [A].[T]-rich sequences. This domain also possesses structural characteristics which are common to both prokaryotic and eukaryotic origins of replications, in particular an unusually straight conformation of low thermal stability flanked either side by highly bent DNA segments. Further isolation and characterisation of DNA sequences from common fragile sites will facilitate studies into the underlying nature of these enigmatic regions of the mammalian genome, leading to a greater understanding of chromatin structure.
Collapse
Affiliation(s)
- A H Palin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | | | | | | | | |
Collapse
|
45
|
Abstract
The FRA3B at 3p14.2 is the most common of the constitutive aphidicolin-inducible fragile sites. Using independent approaches, four groups of investigators have cloned and characterized this fragile site. The results of these studies have revealed that the FRA3B differs from other heretofore cloned rare fragile sites. First, instability as manifested by chromosome breakage occurs over a large region of DNA, encompassing at least 500 kb. Second, sequence analysis has not revealed trinucleotide repeat motifs, characteristic of the rare fragile sites. In addition to containing the FRA3B, band 3p14 is also likely to contain a tumor suppressor gene, as evidenced by the presence of deletions, rearrangements, and allele loss in a variety of human tumors, including lung, renal, nasopharyngeal, cervical, and breast carcinomas. The recently cloned FHIT gene in 3p14.2 is a promising candidate tumor suppressor gene, since aberrant FHIT transcripts have been found in a significant proportion of cancer-derived cell lines and primary tumors of the digestive and respiratory tracts. Nonetheless, several lines of evidence garnered over the past year have called into question the role of FHIT as a classical tumor suppressor gene, and raised the question of whether its apparent involvement simply reflects its location within an unstable region of the genome. In the following study, we have summarized the evidence in support of FHIT as a tumor suppressor gene as well as evidence against such a role, and the experimental evidence needed to demonstrate that FHIT functions as a tumor suppressor gene in the pathogenesis of human tumors. The paradigm of FHIT emphasizes that confirming the role of a candidate tumor suppressor gene may prove difficult, particularly for those genes that are located in genetically unstable regions.
Collapse
Affiliation(s)
- M M Le Beau
- Section of Hematology/Oncology, University of Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Shimizu N, Itoh N, Utiyama H, Wahl GM. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J Cell Biol 1998; 140:1307-20. [PMID: 9508765 PMCID: PMC2132668 DOI: 10.1083/jcb.140.6.1307] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1997] [Revised: 12/16/1997] [Indexed: 02/06/2023] Open
Abstract
Acentric, autonomously replicating extrachromosomal structures called double-minute chromosomes (DMs) frequently mediate oncogene amplification in human tumors. We show that DMs can be removed from the nucleus by a novel micronucleation mechanism that is initiated by budding of the nuclear membrane during S phase. DMs containing c-myc oncogenes in a colon cancer cell line localized to and replicated at the nuclear periphery. Replication inhibitors increased micronucleation; cell synchronization and bromodeoxyuridine-pulse labeling demonstrated de novo formation of buds and micronuclei during S phase. The frequencies of S-phase nuclear budding and micronucleation were increased dramatically in normal human cells by inactivating p53, suggesting that an S-phase function of p53 minimizes the probability of producing the broken chromosome fragments that induce budding and micronucleation. These data have implications for understanding the behavior of acentric DNA in interphase nuclei and for developing chemotherapeutic strategies based on this new mechanism for DM elimination.
Collapse
Affiliation(s)
- N Shimizu
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 724, Japan
| | | | | | | |
Collapse
|
47
|
Simi S, Simili M, Bonatti S, Campagna M, Abbondandolo A. Fragile sites at the centromere of Chinese hamster chromosomes: a possible mechanism of chromosome loss. Mutat Res 1998; 397:239-46. [PMID: 9541649 DOI: 10.1016/s0027-5107(97)00219-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
On the basis of our previous observations showing that fragile sites (FS) mapped essentially in the centromeric regions of Chinese hamster chromosomes, we consider the possibility that the presence of FS at the centromere might be a source of chromosome loss. In this model a centromeric FS causes a centromeric break giving rise to two chromosome arms which could be lost or maintained with different consequences on the ploidy of daughter cells. To test this hypothesis, Chinese hamster cells have been treated both with N-methyl-N-nitrosourea (MNU), a mutagenic agent which also induces aneuploidy, and vinblastin (VBL), a pure aneugen, used as a control compound, which is supposed not to interact with DNA. The results show that MNU induces the formation of translocated and/or truncated chromosomes, on the contrary VBL is not able to induce chromosome rearrangements. The sites most involved in MNU-induced breaks are the centromeric regions of chromosomes where FS are also present. These breaks cause essentially the loss of one chromosome arm, so that the resulting cells are numerically diploid but presenting partial monosomies. The implications of these results are discussed.
Collapse
Affiliation(s)
- S Simi
- Istituto di Mutagenesi e Differenziamento, C.N.R., Pisa, Italy.
| | | | | | | | | |
Collapse
|
48
|
Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 1997; 89:215-25. [PMID: 9108477 DOI: 10.1016/s0092-8674(00)80201-9] [Citation(s) in RCA: 284] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Drug-selected intrachromosomal gene amplification by breakage-fusion-bridge (BFB) cycles is well documented in mammalian cells, but factors governing this mechanism are not clear. Here, we show that only some clastogenic drugs induce drug resistance through intrachromosomal amplification. We strictly correlate triggering of BFB cycles to induction of fragile site expression. We demonstrate a dual role for fragile sites in intrachromosomal amplification: a site telomeric to the selected gene is involved in initiation, while a centromeric site defines the size and organization of early amplified units. The positions of fragile sites relative to boundaries of amplicons found in human cancers support the hypothesis that fragile sites play a key role in the amplification of at least some oncogenes during tumor progression.
Collapse
Affiliation(s)
- A Coquelle
- Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
49
|
Bertoni L, Attolini C, Faravelli M, Simi S, Giulotto E. Intrachromosomal telomere-like DNA sequences in Chinese hamster. Mamm Genome 1996; 7:853-5. [PMID: 8875896 DOI: 10.1007/s003359900250] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- L Bertoni
- Dipartimento di Genetica e Microbiologia "Adriano Buzzati Traverso," Università di Pavia, Pavia, Italy
| | | | | | | | | |
Collapse
|
50
|
Fermin CD, Degraw S. Colour thresholding in video imaging. J Anat 1995; 186 ( Pt 3):469-81. [PMID: 7559121 PMCID: PMC1167006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The basic aspects of video imaging are reviewed as they relate to measurements of histological and anatomical features, with particular emphasis on the advantages and disadvantages of colour and black-and-white imaging modes. In black-and-white imaging, calculations are based on the manipulation of picture elements (pixels) that contain 0-255 levels of information. Black is represented by the absence of light (0) and white by 255 grades of light. In colour imaging, the pixels contain variation of hues for the primary (red, green and blue) and secondary (magenta, yellow, cyan, pink) colours. Manipulation of pixels with colour information is more computer intense than that for black-and-white pixels, because there are over 16 million possible combinations of colour in a system with a 24-bit resolution. The narrow 128 possible grades of separation in black and white often makes distinction between pixels with overlapping intensities difficult. Such difficulty is greatly reduced by colour thresholding of systems that base the representation of colour on a combination of hue-saturation-intensity (HSI) format.
Collapse
Affiliation(s)
- C D Fermin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| | | |
Collapse
|