1
|
Shamsi MB, Firoz AS, Imam SN, Alzaman N, Samman MA. Epigenetics of human diseases and scope in future therapeutics. J Taibah Univ Med Sci 2017; 12:205-211. [PMID: 31435241 PMCID: PMC6695077 DOI: 10.1016/j.jtumed.2017.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Epigenetics is the study of nucleotide modifications that are heritable and act as regulatory mechanisms without changing the nucleotide sequence of the genome. Exogenous cues such as environment, lifestyle, nutrition, stress, and psychological factors affect epigenetic mechanisms. This mechanism is in concordance with the genetic information that plays an important role during prenatal and postnatal life of an individual. Recent epigenetic studies have revealed the potential of epigenetics in elucidating the mechanisms of different diseases. In this review, we discuss basic epigenetic mechanisms and their roles in health and disease. In addition, reported aberrations in epigenetic regulation for some common human diseases are described. Finally, we address some epigenetic approaches that have shown potential for targeted treatment of diseases.
Collapse
Affiliation(s)
- Monis B Shamsi
- Center for Genetics & Inherited Diseases, Taibah University, Almadinah Almunawwarah, KSA
| | - Abdul S Firoz
- Center for Genetics & Inherited Diseases, Taibah University, Almadinah Almunawwarah, KSA
| | - Syed N Imam
- Department of Anatomy, College of Medicine, Taibah University, Almadinah Almunawwarah, KSA
| | - Naweed Alzaman
- Department of Internal Medicine, College of Medicine, Taibah University, Almadinah Almunawwarah, KSA
| | - Muhammad A Samman
- Center for Genetics & Inherited Diseases, Taibah University, Almadinah Almunawwarah, KSA
| |
Collapse
|
2
|
Genetic and Epigenetic Alterations in Bladder Cancer. Int Neurourol J 2016; 20:S84-94. [PMID: 27915480 PMCID: PMC5169086 DOI: 10.5213/inj.1632752.376] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is one of the most common cancers worldwide, with a high rate of recurrence and poor outcomes as a result of relapse. Bladder cancer patients require lifelong invasive monitoring and treatment, making bladder cancer one of the most expensive malignancies. Lines of evidence increasingly point to distinct genetic and epigenetic alteration patterns in bladder cancer, even between the different stages and grades of disease. In addition, genetic and epigenetic alterations have been demonstrated to play important roles during bladder tumorigenesis. This review will focus on bladder cancer-associated genomic and epigenomic alterations, which are common in bladder cancer and provide potential diagnostic markers and therapeutic targets for bladder cancer treatment.
Collapse
|
3
|
Maffioletti SM, Gerli MFM, Ragazzi M, Dastidar S, Benedetti S, Loperfido M, VandenDriessche T, Chuah MK, Tedesco FS. Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells. Nat Protoc 2015; 10:941-58. [PMID: 26042384 DOI: 10.1038/nprot.2015.057] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant human tissue; therefore, an unlimited availability of myogenic cells has applications in regenerative medicine and drug development. Here we detail a protocol to derive myogenic cells from human embryonic stem (ES) and induced pluripotent stem (iPS) cells, and we also provide evidence for its extension to human iPS cells cultured without feeder cells. The procedure, which does not require the generation of embryoid bodies or prospective cell isolation, entails four stages with different culture densities, media and surface coating. Pluripotent stem cells are disaggregated to single cells and then differentiated into expandable cells resembling human mesoangioblasts. Subsequently, transient Myod1 induction efficiently drives myogenic differentiation into multinucleated myotubes. Cells derived from patients with muscular dystrophy and differentiated using this protocol have been genetically corrected, and they were proven to have therapeutic potential in dystrophic mice. Thus, this platform has been demonstrated to be amenable to gene and cell therapy, and it could be extended to muscle tissue engineering and disease modeling.
Collapse
Affiliation(s)
- Sara M Maffioletti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mattia F M Gerli
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Sumitava Dastidar
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Sara Benedetti
- 1] Department of Cell and Developmental Biology, University College London, London, UK. [2] Present address: Institute of Child Health, University College London, London, UK
| | - Mariana Loperfido
- 1] Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium. [2] Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Thierry VandenDriessche
- 1] Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium. [2] Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Marinee K Chuah
- 1] Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium. [2] Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
4
|
Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol 2014; 2:49. [PMID: 25364756 PMCID: PMC4207041 DOI: 10.3389/fcell.2014.00049] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022] Open
Abstract
Epigenetics has the potential to explain various biological phenomena that have heretofore defied complete explication. This review describes the various types of endogenous human developmental milestones such as birth, puberty, and menopause, as well as the diverse exogenous environmental factors that influence human health, in a chronological epigenetic context. We describe the entire course of human life from periconception to death and chronologically note all of the potential internal timepoints and external factors that influence the human epigenome. Ultimately, the environment presents these various factors to the individual that influence the epigenome, and the unique epigenetic and genetic profile of each individual also modulates the specific response to these factors. During the course of human life, we are exposed to an environment that abounds with a potent and dynamic milieu capable of triggering chemical changes that activate or silence genes. There is constant interaction between the external and internal environments that is required for normal development and health maintenance as well as for influencing disease load and resistance. For example, exposure to pharmaceutical and toxic chemicals, diet, stress, exercise, and other environmental factors are capable of eliciting positive or negative epigenetic modifications with lasting effects on development, metabolism and health. These can impact the body so profoundly as to permanently alter the epigenetic profile of an individual. We also present a comprehensive new hypothesis of how these diverse environmental factors cause both direct and indirect epigenetic changes and how this knowledge can ultimately be used to improve personalized medicine.
Collapse
Affiliation(s)
- Riya R Kanherkar
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Naina Bhatia-Dey
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Antonei B Csoka
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| |
Collapse
|
5
|
Dey J, Dubuc AM, Pedro KD, Thirstrup D, Mecham B, Northcott PA, Wu X, Shih D, Tapscott SJ, LeBlanc M, Taylor MD, Olson JM. MyoD is a tumor suppressor gene in medulloblastoma. Cancer Res 2013; 73:6828-37. [PMID: 24092238 DOI: 10.1158/0008-5472.can-13-0730-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
While medulloblastoma, a pediatric tumor of the cerebellum, is characterized by aberrations in developmental pathways, the majority of genetic determinants remain unknown. An unbiased Sleeping Beauty transposon screen revealed MyoD as a putative medulloblastoma tumor suppressor. This was unexpected, as MyoD is a muscle differentiation factor and not previously known to be expressed in cerebellum or medulloblastoma. In response to deletion of one allele of MyoD, two other Sonic hedgehog-driven mouse medulloblastoma models showed accelerated tumor formation and death, confirming MyoD as a tumor suppressor in these models. In normal cerebellum, MyoD was expressed in the proliferating granule neuron progenitors that are thought to be precursors to medulloblastoma. Similar to some other tumor suppressors that are induced in cancer, MyoD was expressed in proliferating medulloblastoma cells in three mouse models and in human medulloblastoma cases. This suggests that although expression of MyoD in a proliferating tumor is insufficient to prevent tumor progression, its expression in the cerebellum hinders medulloblastoma genesis.
Collapse
Affiliation(s)
- Joyoti Dey
- Authors' Affiliations: Molecular and Cellular Biology Program, University of Washington; Clinical Research Division, Human Biology Division, and Public Health Sciences Division, Fred Hutchinson Cancer Research Center; Presage Biosciences; Sage Bionetworks; Seattle Children's Hospital, Seattle, Washington; Arthur and Sonia Labatt Brain Tumor Research Center and Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
McGowan PO, Suderman M, Sasaki A, Huang TCT, Hallett M, Meaney MJ, Szyf M. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 2011; 6:e14739. [PMID: 21386994 PMCID: PMC3046141 DOI: 10.1371/journal.pone.0014739] [Citation(s) in RCA: 378] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 02/02/2011] [Indexed: 01/02/2023] Open
Abstract
Background Maternal care is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. In the rat, these effects are reversed by cross-fostering, demonstrating that they are defined by epigenetic rather than genetic processes. However, epigenetic changes at a single gene promoter are unlikely to account for the range of outcomes and the persistent change in expression of hundreds of additional genes in adult rats in response to differences in maternal care. Methodology/Principal Findings We examine here using high-density oligonucleotide array the state of DNA methylation, histone acetylation and gene expression in a 7 million base pair region of chromosome 18 containing the NR3C1 gene in the hippocampus of adult rats. Natural variations in maternal care are associated with coordinate epigenetic changes spanning over a hundred kilobase pairs. The adult offspring of high compared to low maternal care mothers show epigenetic changes in promoters, exons, and gene ends associated with higher transcriptional activity across many genes within the locus examined. Other genes in this region remain unchanged, indicating a clustered yet specific and patterned response. Interestingly, the chromosomal region containing the protocadherin-α, -β, and -γ (Pcdh) gene families implicated in synaptogenesis show the highest differential response to maternal care. Conclusions/Significance The results suggest for the first time that the epigenetic response to maternal care is coordinated in clusters across broad genomic areas. The data indicate that the epigenetic response to maternal care involves not only single candidate gene promoters but includes transcriptional and intragenic sequences, as well as those residing distantly from transcription start sites. These epigenetic and transcriptional profiles constitute the first tiling microarray data set exploring the relationship between epigenetic modifications and RNA expression in both protein coding and non-coding regions across a chromosomal locus in the mammalian brain.
Collapse
Affiliation(s)
- Patrick O. McGowan
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Centre for the Neurobiology of Stress, University of Toronto, Scarborough, Toronto, Ontario, Canada
- * E-mail: (PM) (PM); (MS) (MS)
| | - Matthew Suderman
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Aya Sasaki
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Centre for the Neurobiology of Stress, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Tony C. T. Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Michael J. Meaney
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
- Experience-Based Brain and Biological Development Program of the Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Moshe Szyf
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Experience-Based Brain and Biological Development Program of the Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- * E-mail: (PM) (PM); (MS) (MS)
| |
Collapse
|
7
|
Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, Sugano K, Kawashima K, Laird PW, Jones PA, Liang G. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res 2010; 70:8169-78. [PMID: 20841482 DOI: 10.1158/0008-5472.can-10-1335] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Urothelial cancer (UC) develops along two different genetic pathways, resulting in noninvasive or invasive tumors. However, it is unknown whether there are also different epigenetic pathways in UC. UC is also characterized by a high rate of recurrence, and the presence of a field defect has been postulated. In this study, we compared the DNA methylation patterns between noninvasive and invasive UC and the DNA methylation patterns between normal-appearing urothelium from bladders with cancer and urothelium from cancer-free bladders. We used the Illumina GoldenGate methylation assay at 1,370 loci in 49 noninvasive urothelial tumors, 38 invasive tumors with matched normal-appearing urothelium, and urothelium from 12 age-matched UC-free patients. We found distinct patterns of hypomethylation in the noninvasive tumors and widespread hypermethylation in the invasive tumors, confirming that the two pathways differ epigenetically in addition to genetically. We also found that 12% of the loci were hypermethylated in apparently normal urothelium from bladders with cancer, indicating an epigenetic field defect. X-chromosome inactivation analysis indicated that this field defect did not result in clonal expansion but occurred independently across the urothelium of bladders with cancer. The hypomethylation present in noninvasive tumors may counterintuitively provide a biological explanation for the failure of these tumors to become invasive. In addition, an epithelium-wide epigenetic defect in bladders with cancer might contribute to a loss of epithelial integrity and create a permissible environment for tumors to arise.
Collapse
Affiliation(s)
- Erika M Wolff
- Department of Urology, USC Epigenome Center, and Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
De Bustos C, Ramos E, Young JM, Tran RK, Menzel U, Langford CF, Eichler EE, Hsu L, Henikoff S, Dumanski JP, Trask BJ. Tissue-specific variation in DNA methylation levels along human chromosome 1. Epigenetics Chromatin 2009; 2:7. [PMID: 19505295 PMCID: PMC2706828 DOI: 10.1186/1756-8935-2-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 06/08/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Most methods to scan the genome in different tissues for differentially methylated sites have focused on the methylation of CpGs in CpG islands, which are concentrations of CpGs often associated with gene promoters. RESULTS Here, we use a methylation profiling strategy that is predominantly responsive to methylation differences outside of CpG islands. The method compares the yield from two samples of size-selected fragments generated by a methylation-sensitive restriction enzyme. We then profile nine different normal tissues from two human donors relative to spleen using a custom array of genomic clones covering the euchromatic portion of human chromosome 1 and representing 8% of the human genome. We observe gross regional differences in methylation states across chromosome 1 between tissues from the same individual, with the most striking differences detected in the comparison of cerebellum and spleen. Profiles of the same tissue from different donors are strikingly similar, as are the profiles of different lobes of the brain. Comparing our results with published gene expression levels, we find that clones exhibiting extreme ratios reflecting low relative methylation are statistically enriched for genes with high expression ratios, and vice versa, in most pairs of tissues examined. CONCLUSION The varied patterns of methylation differences detected between tissues by our methylation profiling method reinforce the potential functional significance of regional differences in methylation levels outside of CpG islands.
Collapse
Affiliation(s)
- Cecilia De Bustos
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Current address: United Nations World Food Programme, Lima, Peru
| | - Edward Ramos
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington, USA.,Current address: National Institutes of Health, Bethesda Maryland, USA
| | - Janet M Young
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robert K Tran
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Current address: Genome Center, University of California at Davis, Davis, California, USA
| | - Uwe Menzel
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Cordelia F Langford
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steve Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Jan P Dumanski
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Barbara J Trask
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Anglim PP, Alonzo TA, Laird-Offringa IA. DNA methylation-based biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer 2008; 7:81. [PMID: 18947422 PMCID: PMC2585582 DOI: 10.1186/1476-4598-7-81] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/23/2008] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the number one cancer killer in the United States. This disease is clinically divided into two sub-types, small cell lung cancer, (10–15% of lung cancer cases), and non-small cell lung cancer (NSCLC; 85–90% of cases). Early detection of NSCLC, which is the more common and less aggressive of the two sub-types, has the highest potential for saving lives. As yet, no routine screening method that enables early detection exists, and this is a key factor in the high mortality rate of this disease. Imaging and cytology-based screening strategies have been employed for early detection, and while some are sensitive, none have been demonstrated to reduce lung cancer mortality. However, mortality might be reduced by developing specific molecular markers that can complement imaging techniques. DNA methylation has emerged as a highly promising biomarker and is being actively studied in multiple cancers. The analysis of DNA methylation-based biomarkers is rapidly advancing, and a large number of potential biomarkers have been identified. Here we present a detailed review of the literature, focusing on DNA methylation-based markers developed using primary NSCLC tissue. Viable markers for clinical diagnosis must be detectable in 'remote media' such as blood, sputum, bronchoalveolar lavage, or even exhaled breath condensate. We discuss progress on their detection in such media and the sensitivity and specificity of the molecular marker panels identified to date. Lastly, we look to future advancements that will be made possible with the interrogation of the epigenome.
Collapse
Affiliation(s)
- Paul P Anglim
- Departments of Surgery and of Biochemistry and Molecular Biology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-9176, USA.
| | | | | |
Collapse
|
10
|
Ibanez de Caceres I, Battagli C, Esteller M, Herman JG, Dulaimi E, Edelson MI, Bergman C, Ehya H, Eisenberg BL, Cairns P. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res 2004; 64:6476-81. [PMID: 15374957 DOI: 10.1158/0008-5472.can-04-1529] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because existing surgical and management methods can consistently cure only early-stage ovarian cancer, novel strategies for early detection are required. Silencing of tumor suppressor genes such as p16INK4a, VHL, and hMLH1 have established promoter hypermethylation as a common mechanism for tumor suppressor inactivation in human cancer and as a promising target for molecular detection in bodily fluids. Using sensitive methylation-specific PCR, we screened matched tumor, preoperative serum or plasma, and peritoneal fluid (washes or ascites) DNA obtained from 50 patients with ovarian or primary peritoneal tumors for hypermethylation status of the normally unmethylated BRCA1 and RAS association domain family protein 1A tumor suppressor genes. Hypermethylation of one or both genes was found in 34 tumor DNA (68%). Additional examination of one or more of the adenomatous polyposis coli, p14ARF, p16INK4a, or death associated protein-kinase tumor suppressor genes revealed hypermethylation in each of the remaining 16 tumor DNA, which extended diagnostic coverage to 100%. Hypermethylation was observed in all histologic cell types, grades, and stages of ovarian tumor examined. An identical pattern of gene hypermethylation was found in the matched serum DNA from 41 of 50 patients (82% sensitivity), including 13 of 17 cases of stage I disease. Hypermethylation was detected in 28 of 30 peritoneal fluid DNA from stage IC-IV patients, including 3 cases with negative or atypical cytology. In contrast, no hypermethylation was observed in nonneoplastic tissue, peritoneal fluid, or serum from 40 control women (100% specificity). We conclude that promoter hypermethylation is a common and relatively early event in ovarian tumorigenesis that can be detected in the serum DNA from patients with ovary-confined (stage IA or B) tumors and in cytologically negative peritoneal fluid. Analysis of tumor-specific hypermethylation in serum DNA may enhance early detection of ovarian cancer.
Collapse
|
11
|
Widschwendter A, Müller HM, Fiegl H, Ivarsson L, Wiedemair A, Müller-Holzner E, Goebel G, Marth C, Widschwendter M. DNA methylation in serum and tumors of cervical cancer patients. Clin Cancer Res 2004; 10:565-71. [PMID: 14760078 DOI: 10.1158/1078-0432.ccr-0825-03] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Promoter hypermethylation has been recognized to play an important role in carcinogenesis. Numerous studies have demonstrated tumor-specific alterations, such as aberrant promoter hypermethylation, in DNA recovered from plasma or serum of patients with various malignancies. The aim of this study was to investigate the methylation status of various genes in cervical cancer patients and their association with clinicopathological characteristics and outcome of the disease. EXPERIMENTAL DESIGN The methylation status of CALCA, hTERT, MYOD1, PGR (progesterone receptor), and TIMP3 was investigated in serum samples from 93 cervical cancer patients and 19 corresponding tissue samples using the MethyLight technique. RESULTS Aberrant promoter hypermethylation was detected in any of these genes in 87% (81 of 93) of the serum samples studied. Methylation of MYOD1 was detected more frequently in advanced stage. All of the genes found to be methylated in serum samples were also methylated in the corresponding tissue sample, except in one patient. Patients with unmethylated MYOD1 serum DNA had significantly better disease-free (P = 0.04) and overall survival (P = 0.02) in comparison with patients with methylated MYOD1. CONCLUSIONS To the best of our knowledge, this is, thus far, the largest study investigating aberrant promoter hypermethylation in serum samples from cancer patients and the first study investigating methylation patterns in sera of cervical cancer patients. Our results suggest that serological detection of MYOD1 promoter hypermethylation may be of potential use as a prognostic marker for discriminating cervical cancer patients at high risk for lymph node metastasis or relapse. Additional studies, including a panel of additional genes, are necessary to elucidate the role of aberrant methylation in serum as a tool for surveillance of cervical cancer.
Collapse
Affiliation(s)
- Andreas Widschwendter
- Department of Obstetrics and Gynecology, Innsbruck University Hospital, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kang GH, Lee HJ, Hwang KS, Lee S, Kim JH, Kim JS. Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1551-6. [PMID: 14507661 DOI: 10.1016/s0002-9440(10)63511-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aberrant hypermethylation of promoter CpG islands is an important mechanism for the inactivation of tumor suppressor genes. CpG island hypermethylation occurs in relation to tumorigenesis or aging. Gastric cancer is one of the tumors with a high level of aberrant CpG island methylation. However, the data on the methylation status of normal gastric mucosa has been very limited. The present study attempted to compare the methylation status of nonneoplastic gastric mucosa, using clinicopathological parameters, including age, gender, Helicobacter pylori (H. pylori), acute and chronic inflammation, and intestinal metaplasia. Two hundred sixty-eight nonneoplastic gastric mucosa samples were studied for the methylation status of 11 genes (COX-2, DAP-kinase, E-cadherin, GSTP1, MGMT, hMLH1, p14, p16, THBS1, TIMP3, and RASSF1A), using methylation-specific PCR. CpG island hypermethylation was found in 53.7, 41, 37.7, 23.1, 18.7, 10.9, 10, 4.1, 3.4, 1.7, 0.4% for DAP-kinase, E-cadherin, THBS1, TIMP3, p14, MGMT, p16, COX-2, GSTP1, hMLH1 and RASSF1A, respectively. Five genes (DAP-kinase, E-cadherin, p14, THBS1, and TIMP-3) showed a general progressive increase in the methylation frequency as a function of aging, whereas the other genes (COX-2, GSTP1, MGMT, hMLH1, p16, and RASSF1A) were rarely methylated. Male patients showed higher numbers of methylated genes than females (3.2 vs. 2.1, respectively, P = 0.002). Gastritis samples with marked intestinal metaplasia, showed higher numbers of genes methylated than those without (3.7 vs. 2.6, respectively, P = 0.021). Gastritis samples with marked infiltration of mononuclear cells displayed higher numbers of genes methylated than those with mild or moderate infiltration of mononuclear cells (3.4 vs. 2.5 or 2.5, respectively, P < 0.05). Our results demonstrated that many genes are methylated in the stomach as a function of age, and suggested that male gender, intestinal metaplasia, and chronic inflammation are closely associated with increased methylation in nonneoplastic gastric mucosa samples.
Collapse
Affiliation(s)
- Gyeong Hoon Kang
- Department of Pathology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
13
|
Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 2002; 22:480-91. [PMID: 11756544 PMCID: PMC139739 DOI: 10.1128/mcb.22.2.480-491.2002] [Citation(s) in RCA: 404] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2001] [Revised: 08/22/2001] [Accepted: 10/05/2001] [Indexed: 12/11/2022] Open
Abstract
We used mouse embryonic stem (ES) cells with systematic gene knockouts for DNA methyltransferases to delineate the roles of DNA methyltransferase 1 (Dnmt1) and Dnmt3a and -3b in maintaining methylation patterns in the mouse genome. Dnmt1 alone was able to maintain methylation of most CpG-poor regions analyzed. In contrast, both Dnmt1 and Dnmt3a and/or Dnmt3b were required for methylation of a select class of sequences which included abundant murine LINE-1 promoters. We used a novel hemimethylation assay to show that even in wild-type cells these sequences contain high levels of hemimethylated DNA, suggestive of poor maintenance methylation. We showed that Dnmt3a and/or -3b could restore methylation of these sequences to pretreatment levels following transient exposure of cells to 5-aza-CdR, whereas Dnmt1 by itself could not. We conclude that ongoing de novo methylation by Dnmt3a and/or Dnmt3b compensates for inefficient maintenance methylation by Dnmt1 of these endogenous repetitive sequences. Our results reveal a previously unrecognized degree of cooperativity among mammalian DNA methyltransferases in ES cells.
Collapse
Affiliation(s)
- Gangning Liang
- USC/Norris Comprehensive Cancer Center, Department of Urology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90089-9181, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fang JY, Mikovits JA, Bagni R, Petrow-Sadowski CL, Ruscetti FW. Infection of lymphoid cells by integration-defective human immunodeficiency virus type 1 increases de novo methylation. J Virol 2001; 75:9753-61. [PMID: 11559808 PMCID: PMC114547 DOI: 10.1128/jvi.75.20.9753-9761.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA methylation, by regulating the transcription of genes, is a major modifier of the eukaryotic genome. DNA methyltransferases (DNMTs) are responsible for both maintenance and de novo methylation. We have reported that human immunodeficiency virus type 1 (HIV-1) infection increases DNMT1 expression and de novo methylation of genes such as the gamma interferon gene in CD4(+) cells. Here, we examined the mechanism(s) by which HIV-1 infection increases the cellular capacity to methylate genes. While the RNAs and proteins of all three DNMTs (1, 3a, and 3b) were detected in Hut 78 lymphoid cells, only the expression of DNMT1 was significantly increased 3 to 5 days postinfection. This increase was observed with either wild-type HIV-1 or an integrase (IN) mutant, which renders HIV replication defective, due to the inability of the provirus to integrate into the host genome. Unintegrated viral DNA is a common feature of many retroviral infections and is thought to play a role in pathogenesis. These results indicate another mechanism by which unintegrated viral DNA affects the host. In addition to the increase in overall genomic methylation, hypermethylation and reduced expression of the p16(INK4A) gene, one of the most commonly altered genes in human cancer, were seen in cells infected with both wild-type and IN-defective HIV-1. Thus, infection of lymphoid cells with integration-defective HIV-1 can increase the methylation of CpG islands in the promoters of genes such as the p16(INK4A) gene, silencing their expression.
Collapse
Affiliation(s)
- J Y Fang
- Basic Research Laboratory, CCR, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
15
|
Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H, Marks JR, Lambers AR, Futreal PA, Stampfer MR, Sukumar S. High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci U S A 2000; 97:6049-54. [PMID: 10811911 PMCID: PMC18556 DOI: 10.1073/pnas.100566997] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of 14-3-3 final sigma (final sigma) is induced in response to DNA damage, and causes cells to arrest in G(2). By SAGE (serial analysis of gene expression) analysis, we identified final sigma as a gene whose expression is 7-fold lower in breast carcinoma cells than in normal breast epithelium. We verified this finding by Northern blot analysis. Remarkably, final sigma mRNA was undetectable in 45 of 48 primary breast carcinomas. Genetic alterations at final sigma such as loss of heterozygosity were rare (1/20 informative cases), and no mutations were detected (0/34). On the other hand, hypermethylation of CpG islands in the final sigma gene was detected in 91% (75/82) of breast tumors and was associated with lack of gene expression. Hypermethylation of final sigma is functionally important, because treatment of final sigma-non-expressing breast cancer cell lines with the drug 5-aza-2'-deoxycytidine resulted in demethylation of the gene and synthesis of final sigma mRNA. Breast cancer cells lacking final sigma expression showed increased number of chromosomal breaks and gaps when exposed to gamma-irradiation. Therefore, it is possible that loss of final sigma expression contributes to malignant transformation by impairing the G(2) cell cycle checkpoint function, thus allowing an accumulation of genetic defects. Hypermethylation and loss of final sigma expression are the most consistent molecular alterations in breast cancer identified so far.
Collapse
Affiliation(s)
- A T Ferguson
- Johns Hopkins Oncology Center, 410 BBCRB, 1650 Orleans Street, Baltimore, MD 21231-1000, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Contente S, Kenyon K, Sriraman P, Subramanyan S, Friedman RM. Epigenetic inhibition of lysyl oxidase transcription after transformation by ras oncogene. Mol Cell Biochem 1999; 194:79-91. [PMID: 10391127 DOI: 10.1023/a:1006913122261] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase is an extracellular enzyme involved in connective tissue maturation that also acts as a phenotypic suppressor of the ras oncogene. To understand how this suppressor is controlled, gene transcription was studied and the promoter was characterized. Nuclear runoff transcription assays indicated that the markedly reduced amounts of lysyl oxidase message detected after ras transformation resulted from inhibition of lysyl oxidase transcription. Interferon-mediated phenotypic reversion of ras transformed cells, in which the ras oncogene continued to be expressed, was accompanied by the restoration of lysyl oxidase transcription. Reporter gene assay of a transfected mouse lysyl oxidase promoter indicated that it was active in the transformed background, despite the silencing of the endogenous lysyl oxidase promoter. The detection of comparable amounts of mRNA for transcription factors IRF-1 and IRF-2 in normal and ras-transformed cell lines suggests that the differential transcription of lysyl oxidase was not due to regulation of IRFs. Lysyl oxidase promoter activity was localized to a 126 bp region that includes two consensus TATA boxes with associated confirmed cap signals. Analysis of a human lysyl oxidase promoter sequence indicated similar promoter elements and extensive sequence identity with the mouse promoter. The binding of transcription factor AP2 to sites predicted in the control region was confirmed by DNase footprinting. Lysyl oxidase transcription was stimulated by dexamethasone treatment of cells, but this effect could not be assigned within the approximately 3 kb region tested in reporter gene constructs. The promoter activity of the lysyl oxidase reporter gene construct was completely abolished by in vitro DNA methylation, suggesting that the transcriptional suppression after transformation by the ras oncogene may involve DNA methylation.
Collapse
Affiliation(s)
- S Contente
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | | | | | |
Collapse
|
17
|
Remus R, Kämmer C, Heller H, Schmitz B, Schell G, Doerfler W. Insertion of foreign DNA into an established mammalian genome can alter the methylation of cellular DNA sequences. J Virol 1999; 73:1010-22. [PMID: 9882302 PMCID: PMC103921 DOI: 10.1128/jvi.73.2.1010-1022.1999] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The insertion of adenovirus type 12 (Ad12) DNA into the hamster genome and the transformation of these cells by Ad12 can lead to marked alterations in the levels of DNA methylation in several cellular genes and DNA segments. Since such alterations in DNA methylation patterns are likely to affect the transcription patterns of cellular genes, it is conceivable that these changes have played a role in the generation or the maintenance of the Ad12-transformed phenotype. We have now isolated clonal BHK21 hamster cell lines that carry in their genomes bacteriophage lambda and plasmid pSV2neo DNAs in an integrated state. Most of these cell lines contain one or multiple copies of integrated lambda DNA, which often colocalize with the pSV2neo DNA, usually in a single chromosomal site as determined by the fluorescent in situ hybridization technique. In different cell lines, the loci of foreign DNA insertion are different. The inserted bacteriophage lambda DNA frequently becomes de novo methylated. In some of the thus-generated hamster cell lines, the levels of DNA methylation in the retrotransposon genomes of the endogenous intracisternal A particles (IAP) are increased in comparison to those in the non-lambda-DNA-transgenic BHK21 cell lines. These changes in the methylation patterns of the IAP subclone I (IAPI) segment have been documented by restriction analyses with methylation-sensitive restriction endonucleases followed by Southern transfer hybridization and phosphorimager quantitation. The results of genomic sequencing experiments using the bisulfite protocol yielded additional evidence for alterations in the patterns of DNA methylation in selected segments of the IAPI sequences. In these experiments, the nucleotide sequences in >330 PCR-generated cloned DNA molecules were determined. Upon prolonged cultivation of cell lines with altered cellular methylation patterns, these differences became less apparent, perhaps due to counterselection of the transgenic cells. The possibility existed that the hamster BHK21 cell genomes represent mosaics with respect to DNA methylation in the IAPI segment. Hence, some of the cells with the patterns observed after lambda DNA integration might have existed prior to lambda DNA integration and been selected by chance. A total of 66 individual BHK21 cell clones from the BHK21 cell stock have been recloned up to three times, and the DNAs of these cell populations have been analyzed for differences in IAPI methylation patterns. None have been found. These patterns are identical among the individual BHK21 cell clones and identical to the patterns of the originally used BHK21 cell line. Similar results have been obtained with nine clones isolated from BHK21 cells mock transfected by the Ca2+-phosphate precipitation procedure with DNA omitted from the transfection mixture. In four clonal sublines of nontransgenic control BHK21 cells, genomic sequencing of 335 PCR-generated clones by the bisulfite protocol revealed 5'-CG-3' methylation levels in the IAPI segment that were comparable to those in the uncloned BHK21 cell line. We conclude that the observed changes in the DNA methylation patterns in BHK21 cells with integrated lambda DNA are unlikely to preexist or to be caused by the transfection procedure. Our data support the interpretation that the insertion of foreign DNA into a preexisting mammalian genome can alter the cellular patterns of DNA methylation, perhaps via changes in chromatin structure. The cellular sites affected by and the extent of these changes could depend on the site and size of foreign DNA insertion.
Collapse
Affiliation(s)
- R Remus
- Institute of Genetics, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Patel SA, Graunke DM, Pieper RO. Aberrant silencing of the CpG island-containing human O6-methylguanine DNA methyltransferase gene is associated with the loss of nucleosome-like positioning. Mol Cell Biol 1997; 17:5813-22. [PMID: 9315639 PMCID: PMC232429 DOI: 10.1128/mcb.17.10.5813] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor-associated aberrant silencing of CpG island-containing genes has been correlated with increased cytosine methylation, a "closed" chromatin structure, and exclusion of transcription factor binding in the CpG island/promoter regions of affected genes. Given the lack of understanding of what constitutes a closed chromatin structure in CpG islands, however, it has been difficult to assess the relationship among cytosine methylation, chromatin structure, and inappropriate gene silencing. In this study, nuclease accessibility analysis was used to more clearly define the chromatin structure in the CpG island of the human O6-methylguanine DNA methyltransferase (MGMT) gene. Chromatin structure was then related to in vivo DNA-protein interactions and cytosine methylation status of the MGMT CpG island in human glioma cells varying in MGMT expression. The results of these studies indicated that the "open" chromatin structure associated with the MGMT CpG island in MGMT+ cells consisted of an approximately 250-bp transcription factor-binding, nuclease-accessible, nucleosome-free region of DNA, whose formation was associated with at least four flanking, precisely positioned nucleosome-like structures. In MGMT- cells, this precise nucleosomal array was lost and was replaced by randomly positioned nucleosomes (i.e., the closed chromatin structure), regardless of whether methylation of the CpG island was spread over the entire island or limited to regions outside the transcription factor binding region. These results suggest that CpG islands facilitate the expression of housekeeping genes by facilitating nucleosomal positioning and that the conditions that alter the formation of this array (such as perhaps methylation) may indirectly affect CpG island-containing gene expression.
Collapse
Affiliation(s)
- S A Patel
- Program in Molecular Biology and Division of Hematology/Oncology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
19
|
Lu S, Davies PJ. Regulation of the expression of the tissue transglutaminase gene by DNA methylation. Proc Natl Acad Sci U S A 1997; 94:4692-7. [PMID: 9114053 PMCID: PMC20786 DOI: 10.1073/pnas.94.9.4692] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have investigated the role of DNA methylation in the regulation of the expression of the human tissue transglutaminase gene. Studies on the methylation of the transglutaminase promoter in normal and neoplastic human cells demonstrated that the promoter is methylated in vivo and hypomethylation of the promoter is correlated with constitutive gene expression. Demethylation of the promoter in vivo by treatment of the cells with 5-azacytidine increased transglutaminase expression and hypermethylation of the promoter in vitro suppressed its activity. These studies suggest that alternations in DNA methylation may be one of the mechanisms regulating the tissue-specific expression of the tissue transglutaminase gene.
Collapse
Affiliation(s)
- S Lu
- Department of Pharmacology, University of Texas Medical School, Houston, TX 77225, USA
| | | |
Collapse
|
20
|
Cheng P, Schmutte C, Cofer KF, Felix JC, Yu MC, Dubeau L. Alterations in DNA methylation are early, but not initial, events in ovarian tumorigenesis. Br J Cancer 1997; 75:396-402. [PMID: 9020485 PMCID: PMC2063379 DOI: 10.1038/bjc.1997.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We compared global levels of DNA methylation as well as methylation of a specific locus (MyoD1) in ovarian cystadenomas, ovarian tumours of low malignant potential (LMP) and ovarian carcinomas to investigate the association between changes in DNA methylation and ovarian tumour development. As we realized that cystadenomas showed different methylation patterns from both LMP tumours and carcinomas, we verified their monoclonal origin as a means of confirming their true neoplastic nature. High-pressure liquid chromatographic (HPLC) analyses showed that global methylation levels in LMP tumours and carcinomas were 21% and 25% lower than in cystadenomas respectively (P = 0.0001 by one-way variance analysis). Changes in the methylation status of the MyoD1 locus were not seen in any of ten cystadenomas analysed but were present in five of ten LMP tumours and in five of ten carcinomas (P = 0.03). These findings suggest that alterations in DNA methylation are absent (or at least not as extensive) in ovarian cystadenomas, but are present in LMP tumours, the phenotypic features of which are intermediate between those of benign and malignant ovarian tumours. The results also emphasize the merit of distinguishing ovarian LMP tumours from cystadenomas, in spite of their similar clinical characteristics.
Collapse
Affiliation(s)
- P Cheng
- Department of Gynecologic Oncology, USC/Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles 90033-0800, USA
| | | | | | | | | | | |
Collapse
|
21
|
Benvenuto G, Carpentieri ML, Salvatore P, Cindolo L, Bruni CB, Chiariotti L. Cell-specific transcriptional regulation and reactivation of galectin-1 gene expression are controlled by DNA methylation of the promoter region. Mol Cell Biol 1996; 16:2736-43. [PMID: 8649381 PMCID: PMC231264 DOI: 10.1128/mcb.16.6.2736] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The galectin-1 gene is developmentally regulated gene whose activity is strongly modulated during cell differentiation and transformation. We have previously shown that galectin-1 promoter constructs are highly active when transiently transfected in cells both expressing and not expressing the endogenous gene and that the basal activity is determined by a small region encompassing the transcription start site (from positions -50 to +50). We have now investigated the role of DNA methylation in galectin-1 gene expression. Southern blot analysis with HpaII and MspI endonucleases and sodium bisulfite analysis of genomic DNA from expressing and nonexpressing cell lines and cell hybrids showed a close correlation between gene activity and demethylation of the 5' region of the galectin-1 gene. We found that the galectin-1 promoter region is fully methylated, at every CpG site on both strands, in nonexpressing differentiated rat liver (FAO) and thyroid (PC C13) cells and unmethylated in the expressing undifferentiated liver (BRL3A) and thyroid transformed (PC myc/raf) cell lines. In addition, reactivation of the silent FAO alleles in FAO-human osteosarcoma (143tk-) hybrid cells is accompanied by a complete demethylation of the promoter region. Finally, when galectin-1 chloramphenicol acetyltransferase (CAT) promoter constructs were methylated in vitro by SssI methylase at every cytosine residue of the CpG doublets and transfected into mouse fibroblasts, the transcription of the CAT reporter gene was strongly inhibited.
Collapse
Affiliation(s)
- G Benvenuto
- Dipartimento di Biologia e Patalogia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli, Federico II, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 1995; 15:2547-57. [PMID: 7537850 PMCID: PMC230485 DOI: 10.1128/mcb.15.5.2547] [Citation(s) in RCA: 291] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A transgenic gpt+ Chinese hamster cell line (G12) was found to be susceptible to carcinogenic nickel-induced inactivation of gpt expression without mutagenesis or deletion of the transgene. Many nickel-induced 6-thioguanine-resistant variants spontaneously reverted to actively express gpt, as indicated by both reversion assays and direct enzyme measurements. Since reversion was enhanced in many of the nickel-induced variant cell lines following 24-h treatment with the demethylating agent 5-azacytidine, the involvement of DNA methylation in silencing gpt expression was suspected. This was confirmed by demonstrations of increased DNA methylation, as well as by evidence indicating condensed chromatin and heterochromatinization of the gpt integration site in 6-thioguanine-resistant cells. Upon reversion to active gpt expression, DNA methylation and condensation are lost. We propose that DNA condensation and methylation result in heterochromatinization of the gpt sequence with subsequent inheritance of the now silenced gene. This mechanism is supported by direct evidence showing that acute nickel treatment of cultured cells, and of isolated nuclei in vitro, can indeed facilitate gpt sequence-specific chromatin condensation. Epigenetic mechanisms have been implicated in the actions of some nonmutagenic carcinogens, and DNA methylation changes are now known to be important in carcinogenesis. This paper further supports the emerging theory that nickel is a human carcinogen that can alter gene expression by enhanced DNA methylation and compaction, rather than by mutagenic mechanisms.
Collapse
Affiliation(s)
- Y W Lee
- Nelson Institute of Environmental Medicine, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|