1
|
Dozier C, Montigny A, Viladrich M, Culerrier R, Combier JP, Besson A, Plaza S. Small ORFs as New Regulators of Pri-miRNAs and miRNAs Expression in Human and Drosophila. Int J Mol Sci 2022; 23:5764. [PMID: 35628573 PMCID: PMC9144653 DOI: 10.3390/ijms23105764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs, resulting from the cleavage of long primary transcripts (pri-miRNAs) in the nucleus by the Microprocessor complex generating precursors (pre-miRNAs) that are then exported to the cytoplasm and processed into mature miRNAs. Some miRNAs are hosted in pri-miRNAs annotated as long non-coding RNAs (lncRNAs) and defined as MIRHGs (for miRNA Host Genes). However, several lnc pri-miRNAs contain translatable small open reading frames (smORFs). If smORFs present within lncRNAs can encode functional small peptides, they can also constitute cis-regulatory elements involved in lncRNA decay. Here, we investigated the possible involvement of smORFs in the regulation of lnc pri-miRNAs in Human and Drosophila, focusing on pri-miRNAs previously shown to contain translatable smORFs. We show that smORFs regulate the expression levels of human pri-miR-155 and pri-miR-497, and Drosophila pri-miR-8 and pri-miR-14, and also affect the expression and activity of their associated miRNAs. This smORF-dependent regulation is independent of the nucleotidic and amino acidic sequences of the smORFs and is sensitive to the ribosome-stalling drug cycloheximide, suggesting the involvement of translational events. This study identifies smORFs as new cis-acting elements involved in the regulation of pri-miRNAs and miRNAs expression, in both Human and Drosophila melanogaster.
Collapse
Affiliation(s)
- Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Audrey Montigny
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Mireia Viladrich
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Raphael Culerrier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| |
Collapse
|
2
|
Lejeune F. Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Rep 2018; 50:175-185. [PMID: 28115040 PMCID: PMC5437961 DOI: 10.5483/bmbrep.2017.50.4.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism ensuring the fast decay of mRNAs harboring a premature termination codon (PTC). As a quality control mechanism, NMD distinguishes PTCs from normal termination codons in order to degrade PTC-carrying mRNAs only. For this, NMD is connected to various other cell processes which regulate or activate it under specific cell conditions or in response to mutations, mis-regulations, stresses, or particular cell programs. These cell processes and their connections with NMD are the focus of this review, which aims both to illustrate the complexity of the NMD mechanism and its regulation and to highlight the cellular consequences of NMD inhibition.
Collapse
Affiliation(s)
- Fabrice Lejeune
- University Lille, UMR8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies; CNRS, UMR 8161, 3Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
3
|
Neelamraju Y, Gonzalez-Perez A, Bhat-Nakshatri P, Nakshatri H, Janga SC. Mutational landscape of RNA-binding proteins in human cancers. RNA Biol 2017; 15:115-129. [PMID: 29023197 PMCID: PMC5786023 DOI: 10.1080/15476286.2017.1391436] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA Binding Proteins (RBPs) are a class of post-transcriptional regulatory molecules which are increasingly documented to be dysfunctional in cancer genomes. However, our current understanding of these alterations is limited. Here, we delineate the mutational landscape of ∼1300 RBPs in ∼6000 cancer genomes. Our analysis revealed that RBPs have an average of ∼3 mutations per Mb across 26 cancer types. We identified 281 RBPs to be enriched for mutations (GEMs) in at least one cancer type. GEM RBPs were found to undergo frequent frameshift and inframe deletions as well as missense, nonsense and silent mutations when compared to those that are not enriched for mutations. Functional analysis of these RBPs revealed the enrichment of pathways associated with apoptosis, splicing and translation. Using the OncodriveFM framework, we also identified more than 200 candidate driver RBPs that were found to accumulate functionally impactful mutations in at least one cancer. Expression levels of 15% of these driver RBPs exhibited significant difference, when transcriptome groups with and without deleterious mutations were compared. Functional interaction network of the driver RBPs revealed the enrichment of spliceosomal machinery, suggesting a plausible mechanism for tumorogenesis while network analysis of the protein interactions between RBPs unambiguously revealed the higher degree, betweenness and closeness centrality for driver RBPs compared to non-drivers. Analysis to reveal cancer-specific Ribonucleoprotein (RNP) mutational hotspots showed extensive rewiring even among common drivers between cancer types. Knockdown experiments on pan-cancer drivers such as SF3B1 and PRPF8 in breast cancer cell lines, revealed cancer subtype specific functions like selective stem cell features, indicating a plausible means for RBPs to mediate cancer-specific phenotypes. Hence, this study would form a foundation to uncover the contribution of the mutational spectrum of RBPs in dysregulating the post-transcriptional regulatory networks in different cancer types.
Collapse
Affiliation(s)
- Yaseswini Neelamraju
- a Department of Bio Health Informatics, School of Informatics and Computing , Indiana University Purdue University , Indianapolis , Indiana , USA
| | - Abel Gonzalez-Perez
- b Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences , Universitat Pompeu Fabra , Barcelona , Spain
| | - Poornima Bhat-Nakshatri
- c Department of Surgery , Indiana University School of Medicine , Indianapolis , Indiana , USA
| | - Harikrishna Nakshatri
- c Department of Surgery , Indiana University School of Medicine , Indianapolis , Indiana , USA.,d Department of Biochemistry & Molecular Biology , Indiana University School of Medicine , Indianapolis , Indiana , USA.,e VA Roudebush Medical Center , Indianapolis , Indiana , USA
| | - Sarath Chandra Janga
- a Department of Bio Health Informatics, School of Informatics and Computing , Indiana University Purdue University , Indianapolis , Indiana , USA.,f Centre for Computational Biology and Bioinformatics , Indiana University School of Medicine , 5021 Health Information and Translational Sciences (HITS), Indianapolis , Indiana , USA.,g Department of Medical and Molecular Genetics , Indiana University School of Medicine , Medical Research and Library Building, Indianapolis , Indiana , USA
| |
Collapse
|
4
|
Nickless A, Bailis JM, You Z. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell Biosci 2017; 7:26. [PMID: 28533900 PMCID: PMC5437625 DOI: 10.1186/s13578-017-0153-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/12/2017] [Indexed: 11/25/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) was originally discovered as a cellular surveillance pathway that safeguards the quality of mRNA transcripts in eukaryotic cells. In its canonical function, NMD prevents translation of mutant mRNAs harboring premature termination codons (PTCs) by targeting them for degradation. However, recent studies have shown that NMD has a much broader role in gene expression by regulating the stability of many normal transcripts. In this review, we discuss the function of NMD in normal physiological processes, its dynamic regulation by developmental and environmental cues, and its association with human disease.
Collapse
Affiliation(s)
- Andrew Nickless
- Department of Cell Biology & Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Julie M Bailis
- Department of Oncology Research, Amgen, South San Francisco, CA 94080 USA
| | - Zhongsheng You
- Department of Cell Biology & Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| |
Collapse
|
5
|
Heon E, Kim G, Qin S, Garrison JE, Tavares E, Vincent A, Nuangchamnong N, Scott CA, Slusarski DC, Sheffield VC. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Hum Mol Genet 2016; 25:2283-2294. [PMID: 27008867 DOI: 10.1093/hmg/ddw096] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer's vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration.
Collapse
Affiliation(s)
- Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, M5G 1X8 Canada Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, M5G 1X8 Canada Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - Gunhee Kim
- Department of Pediatrics, Division of Medical Genetics, Wynn Institute for Vision Research, Carver College of Medicine
| | - Sophie Qin
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - Janelle E Garrison
- Department of Pediatrics, Division of Medical Genetics, Wynn Institute for Vision Research, Carver College of Medicine
| | - Erika Tavares
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, M5G 1X8 Canada Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, M5G 1X8 Canada
| | | | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics, Wynn Institute for Vision Research, Carver College of Medicine
| |
Collapse
|
6
|
Xu G, Jiang X, Jaffrey SR. A mental retardation-linked nonsense mutation in cereblon is rescued by proteasome inhibition. J Biol Chem 2013; 288:29573-85. [PMID: 23983124 DOI: 10.1074/jbc.m113.472092] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A nonsense mutation in cereblon (CRBN) causes autosomal recessive nonsyndromic mental retardation. Cereblon is a substrate receptor for the Cullin-RING E3 ligase complex and couples the ubiquitin ligase to specific ubiquitination targets. The CRBN nonsense mutation (R419X) results in a protein lacking 24 amino acids at its C terminus. Although this mutation has been linked to mild mental retardation, the mechanism by which the mutation affects CRBN function is unknown. Here, we used biochemical and mass spectrometric approaches to explore the function of this mutant. We show that the protein retains its ability to assemble into a Cullin-RING E3 ligase complex and catalyzes the ubiquitination of CRBN-target proteins. However, we find that this mutant exhibits markedly increased levels of autoubiquitination and is more readily degraded by the proteasome than the wild type protein. We also show that the level of the mutant protein can be restored by a treatment of cells with a clinically utilized proteasome inhibitor, suggesting that this agent may be useful for the treatment of mental retardation associated with the CRBN R419X mutation. These data demonstrate that enhanced autoubiquitination and degradation account for the defect in CRBN activity that leads to mental retardation.
Collapse
Affiliation(s)
- Guoqiang Xu
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Translational Research for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215123, China and
| | | | | |
Collapse
|
7
|
Hwang J, Sato H, Tang Y, Matsuda D, Maquat LE. UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Mol Cell 2010; 39:396-409. [PMID: 20691628 DOI: 10.1016/j.molcel.2010.07.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/26/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance mechanism that in mammals generally occurs upon recognition of a premature termination codon (PTC) during a pioneer round of translation. This round involves newly synthesized mRNA that is bound at its 5' end by the cap-binding protein (CBP) heterodimer CBP80-CBP20. Here we show that precluding the binding of the NMD factor UPF1 to CBP80 inhibits NMD at two steps: the association of SMG1 and UPF1 with the two eukaryotic release factors (eRFs) during SURF complex formation at a PTC, and the subsequent association of SMG1 and UPF1 with an exon-junction complex. We also demonstrate that UPF1 binds PTC-containing mRNA more efficiently than the corresponding PTC-free mRNA in a way that is promoted by the UPF1-CBP80 interaction. A unifying model proposes a choreographed series of protein-protein interactions occurring on an NMD target.
Collapse
Affiliation(s)
- Jungwook Hwang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
8
|
Gong C, Kim YK, Woeller CF, Tang Y, Maquat LE. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev 2008; 23:54-66. [PMID: 19095803 DOI: 10.1101/gad.1717309] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UPF1 functions in both Staufen 1 (STAU1)-mediated mRNA decay (SMD) and nonsense-mediated mRNA decay (NMD), which we show here are competitive pathways. STAU1- and UPF2-binding sites within UPF1 overlap so that STAU1 and UPF2 binding to UPF1 appear to be mutually exclusive. Furthermore, down-regulating the cellular abundance of STAU1, which inhibits SMD, increases the efficiency of NMD, whereas down-regulating the cellular abundance of UPF2, which inhibits NMD, increases the efficiency of SMD. Competition under physiological conditions is exemplified during the differentiation of C2C12 myoblasts to myotubes: The efficiency of SMD increases and the efficiency of NMD decreases, consistent with our finding that more STAU1 but less UPF2 bind UPF1 in myotubes compared with myoblasts. Moreover, an increase in the cellular level of UPF3X during myogenesis results in an increase in the efficiency of an alternative NMD pathway that, unlike classical NMD, is largely insensitive to UPF2 down-regulation. We discuss the remarkable balance between SMD and the two types of NMD in view of data indicating that PAX3 mRNA is an SMD target whose decay promotes myogenesis whereas myogenin mRNA is a classical NMD target encoding a protein required for myogenesis.
Collapse
Affiliation(s)
- Chenguang Gong
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
9
|
Woeller CF, Gaspari M, Isken O, Maquat LE. NMD resulting from encephalomyocarditis virus IRES-directed translation initiation seems to be restricted to CBP80/20-bound mRNA. EMBO Rep 2008; 9:446-51. [PMID: 18369367 DOI: 10.1038/embor.2008.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 11/10/2022] Open
Abstract
Nonsense-mediated messenger RNA decay (NMD) generally degrades mRNAs that prematurely terminate translation as a means of quality control. NMD in mammalian cells targets newly spliced mRNA that is bound by the cap-binding protein heterodimer CBP80/20 and one or more post-splicing exon junction complexes during a pioneer round of translation. NMD targets mRNA that initiates translation using the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES), therefore NMD might target not only CBP80/20-bound mRNA but also its remodelled product, eIF4E-bound mRNA. Here, we provide evidence that NMD triggered by translation initiation at the EMCV IRES, similar to NMD triggered by translation initiation at an mRNA cap, targets CBP80/20-bound mRNA but does not detectably target eIF4E-bound mRNA. We show that EMCV IRES-initiated translation undergoes a CBP80/20-associated pioneer round of translation that results in CBP80/20-dependent and Upf factor-dependent NMD when translation terminates prematurely.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
10
|
Durand S, Cougot N, Mahuteau-Betzer F, Nguyen CH, Grierson DS, Bertrand E, Tazi J, Lejeune F. Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. ACTA ACUST UNITED AC 2007; 178:1145-60. [PMID: 17893241 PMCID: PMC2064650 DOI: 10.1083/jcb.200611086] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In mammals, nonsense-mediated mRNA decay (NMD) is a quality-control mechanism that degrades mRNA harboring a premature termination codon to prevent the synthesis of truncated proteins. To gain insight into the NMD mechanism, we identified NMD inhibitor 1 (NMDI 1) as a small molecule inhibitor of the NMD pathway. We characterized the mode of action of this compound and demonstrated that it acts upstream of hUPF1. NMDI 1 induced the loss of interactions between hSMG5 and hUPF1 and the stabilization of hyperphosphorylated isoforms of hUPF1. Incubation of cells with NMDI 1 allowed us to demonstrate that NMD factors and mRNAs subject to NMD transit through processing bodies (P-bodies), as is the case in yeast. The results suggest a model in which mRNA and NMD factors are sequentially recruited to P-bodies.
Collapse
Affiliation(s)
- Sébastien Durand
- Centre National de la Recherche Scientifique, Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier F-34293, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hosoda N, Lejeune F, Maquat LE. Evidence that poly(A) binding protein C1 binds nuclear pre-mRNA poly(A) tails. Mol Cell Biol 2006; 26:3085-97. [PMID: 16581783 PMCID: PMC1446973 DOI: 10.1128/mcb.26.8.3085-3097.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, poly(A) binding protein C1 (PABP C1) has well-known roles in mRNA translation and decay in the cytoplasm. However, PABPC1 also shuttles in and out of the nucleus, and its nuclear function is unknown. Here, we show that PABPC1, like the major nuclear poly(A) binding protein PABPN1, associates with nuclear pre-mRNAs that are polyadenylated and intron containing. PABPC1 does not bind nonpolyadenylated histone mRNA, indicating that the interaction of PABPC1 with pre-mRNA requires a poly(A) tail. Consistent with this conclusion, UV cross-linking results obtained using intact cells reveal that PABPC1 binds directly to pre-mRNA poly(A) tails in vivo. We also show that PABPC1 immunopurifies with poly(A) polymerase, suggesting that PABPC1 is acquired by polyadenylated transcripts during poly(A) tail synthesis. Our findings demonstrate that PABPC1 associates with polyadenylated transcripts earlier in mammalian mRNA biogenesis than previously thought and offer insights into the mechanism by which PABPC1 is recruited to newly synthesized poly(A). Our results are discussed in the context of pre-mRNA processing and stability and mRNA trafficking and the pioneer round of translation.
Collapse
Affiliation(s)
- Nao Hosoda
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, Rochester, NY 14642
| | | | | |
Collapse
|
12
|
Baek D, Green P. Sequence conservation, relative isoform frequencies, and nonsense-mediated decay in evolutionarily conserved alternative splicing. Proc Natl Acad Sci U S A 2005; 102:12813-8. [PMID: 16123126 PMCID: PMC1192826 DOI: 10.1073/pnas.0506139102] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of expressed sequence tag data sets have revealed large numbers of splicing variants for human genes, but it remains challenging to distinguish functionally important variants from aberrant splicing, clarify the nature of the alternative functions, and understand the signals that regulate splicing choices. To help address these issues, we have constructed and analyzed a large data set of 1,478 exon-skipping alternative splicing (AS) variants evolutionarily conserved in human and mouse. In about one-fifth of cases, one isoform appears subject to nonsense-mediated mRNA decay (NMD), supporting the idea that a major role of AS is to regulate gene expression; one-quarter of these NMD-inducing cases involve a conserved exon whose apparent sole purpose is to mediate destruction of the message when included. We explore sequence conservation likely related to splicing regulation, using in part a measure of the overall amount of conserved information in a sequence, and find that the increased conservation that has been observed within AS exons primarily affects synonymous sites, suggesting that regulatory signals significantly constrain synonymous substitution rates. We show that a lower frequency of the inclusion isoform relative to the exclusion isoform tends to be associated with weaker splice site signals, smaller exon size, and higher intronic sequence conservation, and provide evidence that all of these factors are under selection to control relative isoform frequencies. Some conserved instances of AS appear to represent aberrant splicing events that by chance have occurred in both species, and we develop a nonparametric likelihood approach to identify these.
Collapse
Affiliation(s)
- Daehyun Baek
- Department of Bioengineering, University of Washington, Box 357730, Seattle, WA 98195, USA.
| | | |
Collapse
|
13
|
Paillusson A, Hirschi N, Vallan C, Azzalin CM, Mühlemann O. A GFP-based reporter system to monitor nonsense-mediated mRNA decay. Nucleic Acids Res 2005; 33:e54. [PMID: 15800205 PMCID: PMC1072805 DOI: 10.1093/nar/gni052] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 10/27/2004] [Accepted: 03/01/2005] [Indexed: 12/02/2022] Open
Abstract
Aberrant mRNAs whose open reading frame (ORF) is truncated by the presence of a premature translation-termination codon (PTC) are recognized and degraded in eukaryotic cells by a process called nonsense-mediated mRNA decay (NMD). Here, we report the development of a reporter system that allows monitoring of NMD in mammalian cells by measuring the fluorescence of green fluorescent protein (GFP). The NMD reporter gene consists of a T-cell receptor-beta minigene construct, in which the GFP-ORF was inserted such that the stop codon of GFP is recognized as PTC. The reporter mRNA is therefore subjected to NMD, resulting in a low steady-state mRNA level, an accordingly low protein level and hence a very low green fluorescence in normal, NMD-competent cells that express this reporter gene. We show that the inactivation of NMD by RNAi-mediated knockdown of the essential NMD factor hUpf1 or hSmg6 increases the NMD reporter mRNA level, resulting in a proportional increase of the green fluorescence that can be detected by flow cytometry, spectrofluorometry and fluorescence microscopy. With these properties, our GFP-based NMD reporter system could be used for large-scale screenings to identify NMD-inhibiting drugs or NMD-deficient mutant cells.
Collapse
Affiliation(s)
- Alexandra Paillusson
- Institute of Cell Biology, University of BernCH-3012 Bern, Switzerland
- Institute of Pathology, University of BernCH-3012 Bern, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC)Epalinges sur Lausanne, Switzerland
| | - Nadine Hirschi
- Institute of Cell Biology, University of BernCH-3012 Bern, Switzerland
- Institute of Pathology, University of BernCH-3012 Bern, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC)Epalinges sur Lausanne, Switzerland
| | - Claudio Vallan
- Institute of Pathology, University of BernCH-3012 Bern, Switzerland
| | - Claus M. Azzalin
- Swiss Institute for Experimental Cancer Research (ISREC)Epalinges sur Lausanne, Switzerland
| | - Oliver Mühlemann
- To whom correspondence should be addressed. Tel: +41 31 631 4627; Fax: +41 31 631 4616;
| |
Collapse
|
14
|
Pie J, Casals N, Puisac B, Hegardt FG. Molecular basis of 3-hydroxy-3-methylglutaric aciduria. J Physiol Biochem 2004; 59:311-21. [PMID: 15164951 DOI: 10.1007/bf03179889] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Hydroxy-3-methylglutaric aciduria is a human autosomal recessive metabolic disorder that usually appears within the first year of life. The causes of this aciduria are lethal mutations in the gene encoding for 3-hydroxy-3-methylglutaryl coenzyme A lyase (HL). HL is a mitochondrial matrix enzyme that catalyzes the last step of ketogenesis and leucine catabolism. This gene has been mapped to chromosome 1 at locus 1pter-p33 and its genomic organisation comprises 9 exons whose sizes vary between 64-678 bp. The human cDNA sequence was reported in 1993 with the first genetic study of two Acadian-French Canadian siblings. To date, 24 mutations in 36 patients have been described; most of them are single-base substitutions causing amino acid replacements and a variety of splicing defects. In the population studied two mutations appear predominant: g.122GA (8 patients and 15 alleles) frequent in Saudi Arabia, and g.109GT (6 patients and 12 alleles), prevalent in Spain. At least seven mutations are clustered in the second half of exon 2 affecting aminoacids E37, R41 and D42 and conforming a possible hot spot. The genotype-phenotype correlation is difficult to establish since the probands received different treatments, and the onset of an acute episode frequently depends on external factors such as fasting or acute illness.
Collapse
Affiliation(s)
- J Pie
- Department of Pharmacology and Physiology, School of Medicine, University of Zaragoza, Spain
| | | | | | | |
Collapse
|
15
|
Bühler M, Paillusson A, Mühlemann O. Efficient downregulation of immunoglobulin mu mRNA with premature translation-termination codons requires the 5'-half of the VDJ exon. Nucleic Acids Res 2004; 32:3304-15. [PMID: 15210863 PMCID: PMC443527 DOI: 10.1093/nar/gkh651] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Premature translation-termination codons (PTCs) elicit rapid degradation of the mRNA by a process called nonsense-mediated mRNA decay (NMD). NMD appears to be significantly more efficient for mRNAs of genes belonging to the immunoglobulin superfamily, which frequently acquire PTCs during VDJ rearrangment, than for mRNAs of other genes. To identify determinants for efficient NMD, we developed a minigene system derived from a mouse immunoglobulin micro gene (Ig-micro) and measured the effect of PTCs at different positions on the mRNA level. This revealed that PTCs located downstream of the V-D junction in the VDJ exon of Ig-micro minigenes and of endogenous Ig-micro genes elicit very strong mRNA downregulation, whereas NMD efficiency decreases gradually further upstream in the V segment where a PTC was inserted. Interestingly, two PTCs are in positions where they usually do not trigger NMD (<50 nt from the 3'-most 5' splice site) still resulted in reduced mRNA levels. Using a set of hybrid constructs comprised of Ig-micro and an inefficient substrate for NMD, we identified a 177 nt long element in the V segment that is necessary for efficient downregulation of PTC-containing hybrid transcripts. Moreover, deletion of this NMD-promoting element from the Ig-micro minigene results in loss of strong NMD.
Collapse
Affiliation(s)
- Marc Bühler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
16
|
Chiu SY, Lejeune F, Ranganathan AC, Maquat LE. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev 2004; 18:745-54. [PMID: 15059963 PMCID: PMC387415 DOI: 10.1101/gad.1170204] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The bulk of cellular proteins derive from the translation of eukaryotic translation initiation factor (eIF)4E-bound mRNA. However, recent studies of nonsense-mediated mRNA decay (NMD) indicate that cap-binding protein (CBP)80-bound mRNA, which is a precursor to eIF4E-bound mRNA, can also be translated during a pioneer round of translation. Here, we report that the pioneer round, which can be assessed by measuring NMD, is not inhibited by 4E-BP1, which is known to inhibit steady-state translation by competing with eIF4G for binding to eIF4E. Therefore, at least in this way, the pioneer round of translation is distinct from steady-state translation. eIF4GI, poly(A)-binding protein (PABP)1, eIF3, eIF4AI, and eIF2alpha coimmunopurify with both CBP80 and eIF4E, which suggests that each factor functions in both modes of translation. Consistent with roles for PABP1 and eIF2alpha in the pioneer round of translation, PABP-interacting protein 2, which is known to destabilize PABP1 binding to poly(A) and inhibit steady-state translation, as well as inactive eIF2alpha, which is also known to inhibit steady-state translation, also inhibit NMD. Polysome profiles indicate that CBP80-bound mRNAs are translated less efficiently than their eIF4E-bound counterparts.
Collapse
Affiliation(s)
- Shang-Yi Chiu
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Most vertebrate mRNAs with premature termination codons (PTCs) are specifically recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD) while still associated with the nucleus. However, it is still a matter of debate whether PTCs can be identified by intranuclear scanning or only by ribosomes on the cytoplasmic side of the nuclear envelope. Here we show that inhibition of mRNA export by two independent approaches does not affect the downregulation of PTC-containing T-cell receptor beta transcripts in the nuclear fraction of mammalian cells, providing strong evidence for intranuclear NMD. Our results are fully consistent with recently reported evidence for nuclear translation and suggest that an important biological role for nuclear ribosomes is the early elimination of nonsense mRNA during a pioneer round of translation.
Collapse
Affiliation(s)
- Marc Bühler
- Institute of Cell Biology, University of Bern, Baltzerstrasse-4, Switzerland
| | | | | |
Collapse
|
18
|
Lejeune F, Ishigaki Y, Li X, Maquat LE. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J 2002; 21:3536-45. [PMID: 12093754 PMCID: PMC126094 DOI: 10.1093/emboj/cdf345] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Newly spliced mRNAs in mammalian cells are characterized by a complex of proteins at exon-exon junctions. This complex recruits Upf3 and Upf2, which function in nonsense-mediated mRNA decay (NMD). Both Upf proteins are detected on mRNA bound by the major nuclear cap-binding proteins CBP80/CBP20 but not mRNA bound by the major cytoplasmic cap-binding protein eIF4E. These and other data indicate that NMD targets CBP80-bound mRNA during a 'pioneer' round of translation, but whether nuclear eIF4E also binds nascent but dead-end transcripts is unclear. Here we provide evidence that nuclear CBP80 but not nuclear eIF4E is readily detected in association with intron-containing RNA and the C-terminal domain of RNA polymerase II. Consistent with this evidence, we demonstrate that RNPS1, Y14, SRm160, REF/Aly, TAP, Upf3X and Upf2 are detected in the nuclear fraction on CBP80-bound but not eIF4E-bound mRNA. Each of these proteins is also detected on CBP80-bound mRNA in the cytoplasmic fraction, indicating a presence on mRNA after export. The dynamics of mRNP composition before and after mRNA export are discussed.
Collapse
Affiliation(s)
| | - Yasuhito Ishigaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
Present address: Laboratory of Molecular Human Genetics, Department of Pharmaceutical Science, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan Corresponding author e-mail:
| | | | - Lynne E. Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
Present address: Laboratory of Molecular Human Genetics, Department of Pharmaceutical Science, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan Corresponding author e-mail:
| |
Collapse
|
19
|
Abstract
Nonsense-mediated mRNA decay (NMD), the loss of mRNAs carrying premature stop codons, is a process by which cells recognize and degrade nonsense mRNAs to prevent possibly toxic effects of truncated peptides. Most mammalian nonsense mRNAs are degraded while associated with the nucleus, but a few are degraded in the cytoplasm; at either site, there is a requirement for translation and for an intron downstream of the early stop codon. We have examined the NMD of a mutant HEXA message in lymphoblasts derived from a Tay-Sachs disease patient homozygous for the common frameshift mutation 1278ins4. The mutant mRNA was nearly undetectable in these cells and increased to approximately 40% of normal in the presence of the translation inhibitor cycloheximide. The stabilized transcript was found in the cytoplasm in association with polysomes. Within 5 h of cycloheximide removal, the polysome-associated nonsense message was completely degraded, while the normal message was stable. The increased lability of the polysome-associated mutant HEXA mRNA shows that NMD of this endogenous mRNA occurred in the cytoplasm. Transfection of Chinese hamster ovary cells showed that expression of an intronless HEXA minigene harboring the frameshift mutation or a closely located nonsense codon resulted in half the normal mRNA level. Inclusion of multiple downstream introns decreased the abundance further, to about 20% of normal. Thus, in contrast to other systems, introns are not absolutely required for NMD of HEXA mRNA, although they enhance the low-HEXA-mRNA phenotype.
Collapse
Affiliation(s)
- K S Rajavel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095-1737, USA
| | | |
Collapse
|
20
|
Abstract
Proteins are responsible for most cellular and extra-cellular functions. If altered, proteins can loose their normal activity and/or gain new properties. Either way the consequences may be deleterious for the cell and lead to disease at the organism level. Not surprisingly, eukaryotes have evolved mechanisms to recognize abnormal messenger RNAs and prevent them from producing faulty proteins. Protein-encoding genes are transcribed in the nucleus by RNA polymerase II as precursor RNAs that undergo extensive processing before being translocated to the cytoplasm for translation by the ribosomes. This spatial and temporal separation between RNA and protein synthesis offers an immense opportunity for control and regulation. Here we review recent studies that are beginning to unravel how the coupling between transcription, processing and transport of mRNAs contributes to control the quality of gene expression in the nucleus.
Collapse
Affiliation(s)
- N Custódio
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | |
Collapse
|
21
|
Sun X, Moriarty PM, Maquat LE. Nonsense-mediated decay of glutathione peroxidase 1 mRNA in the cytoplasm depends on intron position. EMBO J 2000; 19:4734-44. [PMID: 10970865 PMCID: PMC302051 DOI: 10.1093/emboj/19.17.4734] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
mRNA for glutathione peroxidase 1 (GPx1) is subject to cytoplasmic nonsense-mediated decay (NMD) when the UGA selenocysteine (Sec) codon is recognized as nonsense. Here, we demonstrate by moving the sole intron of the GPx1 gene that either the Sec codon or a TAA codon in its place elicits NMD when located >/=59 bp but not </=43 bp upstream of the intron. Therefore, the exon-exon junction of GPx1 mRNA positions the boundary between nonsense codons that do and do not elicit NMD, as has been shown for the 3'-most junctions of mRNAs subject to nucleus-associated NMD. We also demonstrate by using a regulatable promoter to drive GPx1 gene expression that cytoplasmic NMD is characteristic of steady-state mRNA, in contrast to nucleus-associated NMD. These findings clarify the mechanistic relationship between cytoplasmic and nucleus-associated NMD and offer the first demonstration that nuclear introns can influence cytoplasmic NMD. Finally, by analyzing hybrid GPx1 genes, we disprove the idea that the cellular site of NMD is determined by the efficiency of translation initiation.
Collapse
Affiliation(s)
- X Sun
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
22
|
Sargent CA, Kidd A, Moore S, Dean J, Besley GT, Affara NA. Five cases of isolated glycerol kinase deficiency, including two families: failure to find genotype:phenotype correlation. J Med Genet 2000; 37:434-41. [PMID: 10851254 PMCID: PMC1734616 DOI: 10.1136/jmg.37.6.434] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Little is understood of the genotype/phenotype correlations in X linked glycerol kinase deficiency (GKD) where most cases are caused by extensive deletions of Xp21, which often include genes flanking the GK locus. Few cases of isolated GKD have been investigated where the phenotype is not influenced by neighbouring genes. In this paper, we present the mutation data from four confirmed and one suspected case of non-deletion, isolated, X linked GKD and therefore extend the base of patients that can allow an assessment of genotype/phenotype correlations for this disease. The mutations found were two terminations leading to premature truncation of the GK polypeptide chain, one insertion, and an amino acid substitution. Phenotypic variation was observed in two families, where there was more than one affected subject carrying the same mutation, confirming previous studies that suggest there is no correlation between disease severity and genotype. Furthermore, the nature of the mutation in different families does not appear to influence the spectrum of phenotypic variation. In addition, one coding polymorphism in exon 3 has been found. The characterisation of the gene structure has been completed and shows that instead of 19 there are 21 exons.
Collapse
Affiliation(s)
- C A Sargent
- Human Molecular Genetics Group, University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | |
Collapse
|
23
|
Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengüt S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA, Concannon P. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 1999; 64:1617-31. [PMID: 10330348 PMCID: PMC1377904 DOI: 10.1086/302418] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations.
Collapse
Affiliation(s)
- S N Teraoka
- Program in Molecular Genetics, Virginia Mason Research Center, and Department of Immunology, University of Washington School of Medicine, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Buzina A, Shulman MJ. Infrequent translation of a nonsense codon is sufficient to decrease mRNA level. Mol Biol Cell 1999; 10:515-24. [PMID: 10069800 PMCID: PMC25184 DOI: 10.1091/mbc.10.3.515] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In many organisms nonsense mutations decrease the level of mRNA. In the case of mammalian cells, it is still controversial whether translation is required for this nonsense-mediated RNA decrease (NMD). Although previous analyzes have shown that conditions that impede translation termination at nonsense codons also prevent NMD, the residual level of termination was unknown in these experiments. Moreover, the conditions used to impede termination might also have interfered with NMD in other ways. Because of these uncertainties, we have tested the effects of limiting translation of a nonsense codon in a different way, using two mutations in the immunoglobulin mu heavy chain gene. For this purpose we exploited an exceptional nonsense mutation at codon 3, which efficiently terminates translation but nonetheless maintains a high level of mu mRNA. We have shown 1) that translation of Ter462 in the double mutant occurs at only approximately 4% the normal frequency, and 2) that Ter462 in cis with Ter3 can induce NMD. That is, translation of Ter462 at this low (4%) frequency is sufficient to induce NMD.
Collapse
Affiliation(s)
- A Buzina
- Departments of Immunology and Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
25
|
Gersappe A, Pintel DJ. A premature termination codon interferes with the nuclear function of an exon splicing enhancer in an open reading frame-dependent manner. Mol Cell Biol 1999; 19:1640-50. [PMID: 10022852 PMCID: PMC83958 DOI: 10.1128/mcb.19.3.1640] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Premature translation termination codon (PTC)-mediated effects on nuclear RNA processing have been shown to be associated with a number of human genetic diseases; however, how these PTCs mediate such effects in the nucleus is unclear. A PTC at nucleotide (nt) 2018 that lies adjacent to the 5' element of a bipartite exon splicing enhancer within the NS2-specific exon of minute virus of mice P4 promoter-generated pre-mRNA caused a decrease in the accumulated levels of P4-generated R2 mRNA relative to P4-generated R1 mRNA, although the total accumulated levels of P4 product remained the same. This effect was seen in nuclear RNA and was independent of RNA stability. The 5' and 3' elements of the bipartite NS2-specific exon enhancer are redundant in function, and when the 2018 PTC was combined with a deletion of the 3' enhancer element, the exon was skipped in the majority of the viral P4-generated product. Such exon skipping in response to a PTC, but not a missense mutation at nt 2018, could be suppressed by frame shift mutations in either exon of NS2 which reopened the NS2 open reading frame, as well as by improvement of the upstream intron 3' splice site. These results suggest that a PTC can interfere with the function of an exon splicing enhancer in an open reading frame-dependent manner and that the PTC is recognized in the nucleus.
Collapse
Affiliation(s)
- A Gersappe
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | |
Collapse
|
26
|
Lew JE, Enomoto S, Berman J. Telomere length regulation and telomeric chromatin require the nonsense-mediated mRNA decay pathway. Mol Cell Biol 1998; 18:6121-30. [PMID: 9742129 PMCID: PMC109198 DOI: 10.1128/mcb.18.10.6121] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rap1p localization factor 4 (RLF4) is a Saccharomyces cerevisiae gene that was identified in a screen for mutants that affect telomere function and alter the localization of the telomere binding protein Rap1p. In rlf4 mutants, telomeric silencing is reduced and telomere DNA tracts are shorter, indicating that RLF4 is required for both the establishment and/or maintenance of telomeric chromatin and for the control of telomere length. In this paper, we demonstrate that RLF4 is allelic to NMD2/UPF2, a gene required for the nonsense-mediated mRNA decay (NMD) pathway (Y. Cui, K. W. Hagan, S. Zhang, and S. W. Peltz, Mol. Cell. Biol. 9:423-436, 1995, and F. He and A. Jacobson, Genes Dev. 9:437-454, 1995). The NMD pathway, which requires Nmd2p/Rlf4p together with two other proteins, (Upf1p and Upf3p), targets nonsense messages for degradation in the cytoplasm by the exoribonuclease Xrn1p. Deletion of UPF1 and UPF3 caused telomere-associated defects like those caused by rlf4 mutations, implying that the NMD pathway, rather than an NMD-independent function of Nmd2p/Rlf4p, is required for telomere functions. In addition, telomere length regulation required Xrn1p but not Rat1p, a nuclear exoribonuclease with functional similarity to Xrn1p (A. W. Johnson, Mol. Cell. Biol. 17:6122-6130, 1997). In contrast, telomere-associated defects were not observed in pan2, pan3, or pan2 pan3 strains, which are defective in the intrinsic deadenylation-dependent decay of normal (as opposed to nonsense) mRNAs. Thus, loss of the NMD pathway specifically causes defects at telomeres, demonstrating a physiological requirement for the NMD pathway in normal cell functions. We propose a model in which the NMD pathway regulates the levels of specific mRNAs that are important for telomere functions.
Collapse
Affiliation(s)
- J E Lew
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
27
|
Zhang J, Sun X, Qian Y, LaDuca JP, Maquat LE. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol Cell Biol 1998; 18:5272-83. [PMID: 9710612 PMCID: PMC109113 DOI: 10.1128/mcb.18.9.5272] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1997] [Accepted: 06/01/1998] [Indexed: 11/20/2022] Open
Abstract
Mammalian cells have established mechanisms to reduce the abundance of mRNAs that harbor a nonsense codon and prematurely terminate translation. In the case of the human triosephosphate isomerase (TPI gene), nonsense codons located less than 50 to 55 bp upstream of intron 6, the 3'-most intron, fail to mediate mRNA decay. With the aim of understanding the feature(s) of TPI intron 6 that confer function in positioning the boundary between nonsense codons that do and do not mediate decay, the effects of deleting or duplicating introns have been assessed. The results demonstrate that TPI intron 6 functions to position the boundary because it is the 3'-most intron. Since decay takes place after pre-mRNA splicing, it is conceivable that removal of the 3'-most intron from pre-mRNA "marks" the 3'-most exon-exon junction of product mRNA so that only nonsense codons located more than 50 to 55 nucleotides upstream of the "mark" mediate mRNA decay. Decay may be elicited by the failure of translating ribosomes to translate sufficiently close to the mark or, more likely, the scanning or looping out of some component(s) of the translation termination complex to the mark. In support of scanning, a nonsense codon does not elicit decay if some of the introns that normally reside downstream of the nonsense codon are deleted so the nonsense codon is located (i) too far away from a downstream intron, suggesting that all exon-exon junctions may be marked, and (ii) too far away from a downstream failsafe sequence that appears to function on behalf of intron 6, i.e., when intron 6 fails to leave a mark. Notably, the proposed scanning complex may have a greater unwinding capability than the complex that scans for a translation initiation codon since a hairpin structure strong enough to block translation initiation when inserted into the 5' untranslated region does not block nonsense-mediated decay when inserted into exon 6 between a nonsense codon residing in exon 6 and intron 6.
Collapse
Affiliation(s)
- J Zhang
- Department of Cancer Genetics, Roswell Park Cancer Institute, New York State Department of Health, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
28
|
Sun X, Perlick HA, Dietz HC, Maquat LE. A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay of nonsense-containing mRNAs in mammalian cells. Proc Natl Acad Sci U S A 1998; 95:10009-14. [PMID: 9707591 PMCID: PMC21452 DOI: 10.1073/pnas.95.17.10009] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All eukaryotic cells analyzed have developed mechanisms to eliminate the production of mRNAs that prematurely terminate translation. The mechanisms are thought to exist to protect cells from the deleterious effects of in-frame nonsense codons that are generated by routine inefficiencies and inaccuracies in RNA metabolism such as pre-mRNA splicing. Depending on the particular mRNA and how it is produced, nonsense codons can mediate a reduction in mRNA abundance either (i) before its release from an association with nuclei into the cytoplasm, presumably but not certainly while the mRNA is being exported to the cytoplasm and translated by cytoplasmic ribosomes, or (ii) in the cytoplasm. Here, we provide evidence for a factor that functions to eliminate the production of nonsense-containing RNAs in mammalian cells. The factor, variously referred to as Rent1 (regulator of nonsense transcripts) or HUPF1 (human Upf1 protein), was identified by isolating cDNA for a human homologue to Saccharomyces cerevisiae Upf1p, which is a group I RNA helicase that functions in the nonsense-mediated decay of mRNA in yeast. Using monkey COS cells and human HeLa cells, we demonstrate that expression of human Upf1 protein harboring an arginine-to-cysteine mutation at residue 844 within the RNA helicase domain acts in a dominant-negative fashion to abrogate the decay of nonsense-containing mRNA that takes place (i) in association with nuclei or (ii) in the cytoplasm. These findings provide evidence that nonsense-mediated mRNA decay is related mechanistically in yeast and in mammalian cells, regardless of the cellular site of decay.
Collapse
Affiliation(s)
- X Sun
- Roswell Park Cancer Institute, Department of Genetics, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
29
|
Thermann R, Neu-Yilik G, Deters A, Frede U, Wehr K, Hagemeier C, Hentze MW, Kulozik AE. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J 1998; 17:3484-94. [PMID: 9628884 PMCID: PMC1170685 DOI: 10.1093/emboj/17.12.3484] [Citation(s) in RCA: 341] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Premature translation termination codons resulting from nonsense or frameshift mutations are common causes of genetic disorders. Complications arising from the synthesis of C-terminally truncated polypeptides can be avoided by 'nonsense-mediated decay' of the mutant mRNAs. Premature termination codons in the beta-globin mRNA cause the common recessive form of beta-thalassemia when the affected mRNA is degraded, but the more severe dominant form when the mRNA escapes nonsense-mediated decay. We demonstrate that cells distinguish a premature termination codon within the beta-globin mRNA from the physiological translation termination codon by a two-step specification mechanism. According to the binary specification model proposed here, the positions of splice junctions are first tagged during splicing in the nucleus, defining a stop codon operationally as a premature termination codon by the presence of a 3' splicing tag. In the second step, cytoplasmic translation is required to validate the 3' splicing tag for decay of the mRNA. This model explains nonsense-mediated decay on the basis of conventional molecular mechanisms and allows us to propose a common principle for nonsense-mediated decay from yeast to man.
Collapse
Affiliation(s)
- R Thermann
- Department of Pediatrics, Charité-Virchow Medical Center, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shovlin CL, Hughes JM, Scott J, Seidman CE, Seidman JG. Characterization of endoglin and identification of novel mutations in hereditary hemorrhagic telangiectasia. Am J Hum Genet 1997; 61:68-79. [PMID: 9245986 PMCID: PMC1715873 DOI: 10.1086/513906] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To identify mutations that cause hereditary hemorrhagic telangiectasia (HHT, or Rendu-Osler-Weber syndrome), clinical evaluations and genetic studies were performed on 32 families. Linkage studies in four of eight families indicated an endoglin (ENG) gene mutation. ENG sequences of affected members of the four linked families and probands from the 24 small families were screened for mutations, by Southern blot analyses and by cycle sequencing of PCR-amplified DNA. Seven novel mutations were identified in eight families. Two mutations (a termination codon in exon 4 and a large genomic deletion extending 3' of intron 8) did not produce a stable ENG transcript in lymphocytes. Five other mutations (two donor splice-site mutations and three deletions) produce altered mRNAs that are predicted to encode markedly truncated ENG proteins. Mutations in other families are predicted to lie in ENG-regulatory regions or in one of the additional genes that may cause HHT. These data suggest that the molecular mechanism by which ENG mutations cause HHT is haploinsufficiency. Furthermore, because the clinical manifestation of disease in these eight families was similar, we hypothesize that phenotypic variation of HHT is not related to a particular ENG mutation.
Collapse
Affiliation(s)
- C L Shovlin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Pié J, Casals N, Casale CH, Buesa C, Mascaró C, Barceló A, Rolland MO, Zabot T, Haro D, Eyskens F, Divry P, Hegardt FG. A nonsense mutation in the 3-hydroxy-3-methylglutaryl-CoA lyase gene produces exon skipping in two patients of different origin with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. Biochem J 1997; 323 ( Pt 2):329-35. [PMID: 9163320 PMCID: PMC1218323 DOI: 10.1042/bj3230329] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel nonsense mutation associated with the skipping of constitutive exon 2 of the 3-hydroxy-3-methylglutaryl-CoA lyase gene was found in two patients, from Portugal and Morocco, with 3-hydroxy-3-methylglutaric acidemia. By reverse transcriptase PCR and single-strand conformational polymorphism a G-T transversion was located, at nucleotide 109, of the 3-hydroxy-3-methylglutaryl-CoA lyase cDNA, within exon 2. Two mRNAs were produced as a result of this nonsense mutation: one of the expected size that contains the premature stop codon UAA, and the other with a deletion of 84 bp corresponding to the whole of exon 2. This deletion produced the loss of the last seven amino acids of the leader peptide and the first 21 amino acids of the mature protein. The nonsense mutation was found in a purine-rich GGAAG sequence, which is equal to, or similar to, others reported to be exonic splicing enhancers (ESE). We suggest that the nonsense mutation may affect a possible ESE on exon 2, which would hinder the splice site selection and facilitate an aberrant splice with the skipping of this exon. Determination by quantitative PCR shows that the ratio of mRNA with the nonsense mutation to the mRNA with the deletion is approx. 3:1.
Collapse
Affiliation(s)
- J Pié
- Unit of Biochemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kessler O, Chasin LA. Effects of nonsense mutations on nuclear and cytoplasmic adenine phosphoribosyltransferase RNA. Mol Cell Biol 1996; 16:4426-35. [PMID: 8754843 PMCID: PMC231441 DOI: 10.1128/mcb.16.8.4426] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have analyzed Chinese hamster ovary (CHO) cell mutants bearing nonsense codons in four of the five exons of the adenine phosphoribosyltransferase (aprt) gene and have found a pattern of mRNA reduction similar to that seen in systems studied previously: a decrease in steady-state mRNA levels of 5- to 10-fold for mutations in exons 1, 2, and 4 but little effect for mutations in the 3'-most exon (exon 5). Nuclear aprt mRNA levels showed a similar decrease. Nonsense-containing aprt mRNA decayed at the same rate as wild-type mRNA in these cell lines after inhibition of transcription with actinomycin D. Nonsense-containing aprt mRNA is associated with polysomes, ruling out a model in which stable residual mRNA escapes degradation by avoiding translation initiation. A tetracycline-responsive form of the aprt gene was used to compare the stability of nonsense-containing and wild-type aprt mRNAs without globally inhibiting transcription. In contrast to measurements made in the presence of actinomycin D, after inhibition of aprt transcription with tetracycline, a nonsense-mediated destabilization of aprt mRNA was indeed demonstrable. The increased rate of decay of cytoplasmic aprt mRNA seen here could account for the nonsense-mediated reduction in steady-state levels of aprt mRNA. However, the low levels of nonsense-bearing aprt mRNA in the nucleus suggest a sensibility of mRNA to translation or translatability before it exits that compartment. Quantitation of the steady-state levels of transcripts containing introns revealed no accumulation of partially spliced aprt RNA and hence no indication of nonsense-mediated aberrancies in splicing. Our results are consistent with a model in which translation facilitates the export of mRNA through a nuclear pore. However, the mechanism of this intriguing nucleocytoplasmic communication remains to be determined.
Collapse
Affiliation(s)
- O Kessler
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
33
|
Skuse GR, Cappione AJ, Sowden M, Metheny LJ, Smith HC. The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 1996; 24:478-85. [PMID: 8602361 PMCID: PMC145654 DOI: 10.1093/nar/24.3.478] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A functional mooring sequence, known to be required for apolipoprotein B (apoB) mRNA editing, exists in the mRNA encoding the neurofibromatosis type I (NF1) tumor suppressor. Editing of NF1 mRNA modifies cytidine in an arginine codon (CGA) at nucleotide 2914 to a uridine (UGA), creating an in frame translation stop codon. NF1 editing occurs in normal tissue but was several-fold higher in tumors. In vitro editing and transfection assays demonstrated that apoB and NF1 RNA editing will take place in both neural tumor and hepatoma cells. Unlike apoB, NF1 editing did not demonstrate dependence on rate-limiting quantities of APOBEC-1 (the apoB editing catalytic subunit) suggesting that different trans-acting factors may be involved in the two editing processes.
Collapse
Affiliation(s)
- G R Skuse
- Department of Medicine, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | |
Collapse
|
34
|
Jenkins PB, Abou-Alfa GK, Dhermy D, Bursaux E, Féo C, Scarpa AL, Lux SE, Garbarz M, Forget BG, Gallagher PG. A nonsense mutation in the erythrocyte band 3 gene associated with decreased mRNA accumulation in a kindred with dominant hereditary spherocytosis. J Clin Invest 1996; 97:373-80. [PMID: 8567957 PMCID: PMC507027 DOI: 10.1172/jci118425] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We studied a French kindred with typical hereditary spherocytosis (HS). Studies of erythrocytes and erythrocyte membranes from HS individuals revealed abnormal erythrocyte membrane mechanical stability as well as 15-20% deficiency of band 3, the anion transporter. Anion transport studies of red cells from two affected individuals revealed decreased sulfate flux. Nucleotide sequence of cDNA encoding the distal third of the cytoplasmic domain and the entire transmembrane domain of band 3 obtained by RT-PCR of reticulocyte RNA of an affected family member was normal. Sequence analysis of genomic DNA from an HS individual identified a nonsense mutation of the band 3 gene, Q330X, near the end of the band 3 cytoplasmic domain. This mutation was present in genomic DNA of all HS family members and absent in DNA of unaffected family members. Using an RT-PCR-based assay, a marked quantitative decrease in accumulation of the mutant band 3 RNA was detected. Thus the codon 330 nonsense mutation is responsible for the decreased accumulation of mutant band 3 RNA and the deficiency of band 3 protein in this kindred. These results have important implications for the role of band 3 defects in the membrane pathobiology of HS as well as for the techniques used in detection of HS mutations.
Collapse
Affiliation(s)
- P B Jenkins
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Frameshift and nonsense mutations within the gene for human triosephosphate isomerase (TPI) that generate a nonsense codon within the first three-fourths of the protein coding region have been found to reduce the abundance of the product mRNA that copurifies with nuclei. The cellular process and location of the nonsense codon-mediated reduction have proven difficult to elucidate for technical reasons. We show here, using electron microscopy to judge the purity of isolated nuclei, that the previously established reduction to 25% of the normal mRNA level is evident for nuclei that are free of detectable cytoplasmic contamination. Therefore, the reduction is likely to be characteristic of bona fide nuclear RNA. Fully spliced nuclear mRNA is identified by Northern (RNA) blot hybridization and a reverse transcription-PCR assay as the species that undergoes decay in experiments that used the human c-fos promoter to elicit a burst and subsequent shutoff of TPI gene transcription upon the addition of serum to serum-deprived cells. Finally, the finding that deletion of a 5' splice site of the TPI gene results predominantly but not exclusively in the removal by splicing (i.e., skipping) of the upstream exon as a part of the flanking introns has been used to demonstrate that decay is specific to those mRNA products that maintain the nonsense codon. This result, together with our previous results that implicate translation by ribosomes and charged tRNAs in the decay mechanism, indicate that nonsense codon recognition takes place after splicing and triggers decay solely in cis. The possibility that decay takes place during the process of mRNA export from the nucleus to the cytoplasm is discussed.
Collapse
|
36
|
Belgrader P, Cheng J, Zhou X, Stephenson LS, Maquat LE. Mammalian nonsense codons can be cis effectors of nuclear mRNA half-life. Mol Cell Biol 1994; 14:8219-28. [PMID: 7969159 PMCID: PMC359361 DOI: 10.1128/mcb.14.12.8219-8228.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Frameshift and nonsense mutations within the gene for human triosephosphate isomerase (TPI) that generate a nonsense codon within the first three-fourths of the protein coding region have been found to reduce the abundance of the product mRNA that copurifies with nuclei. The cellular process and location of the nonsense codon-mediated reduction have proven difficult to elucidate for technical reasons. We show here, using electron microscopy to judge the purity of isolated nuclei, that the previously established reduction to 25% of the normal mRNA level is evident for nuclei that are free of detectable cytoplasmic contamination. Therefore, the reduction is likely to be characteristic of bona fide nuclear RNA. Fully spliced nuclear mRNA is identified by Northern (RNA) blot hybridization and a reverse transcription-PCR assay as the species that undergoes decay in experiments that used the human c-fos promoter to elicit a burst and subsequent shutoff of TPI gene transcription upon the addition of serum to serum-deprived cells. Finally, the finding that deletion of a 5' splice site of the TPI gene results predominantly but not exclusively in the removal by splicing (i.e., skipping) of the upstream exon as a part of the flanking introns has been used to demonstrate that decay is specific to those mRNA products that maintain the nonsense codon. This result, together with our previous results that implicate translation by ribosomes and charged tRNAs in the decay mechanism, indicate that nonsense codon recognition takes place after splicing and triggers decay solely in cis. The possibility that decay takes place during the process of mRNA export from the nucleus to the cytoplasm is discussed.
Collapse
Affiliation(s)
- P Belgrader
- Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | | | | |
Collapse
|
37
|
Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol Cell Biol 1994. [PMID: 8065363 DOI: 10.1128/mcb.14.9.6317] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The translation of human triosephosphate isomerase (TPI) mRNA normally terminates at codon 249 within exon 7, the final exon. Frameshift and nonsense mutations of the type that cause translation to terminate prematurely at or upstream of codon 189 within exon 6 reduce the level of nuclear TPI mRNA to 20 to 30% of normal by a mechanism that is not a function of the distance of the nonsense codon from either the translation initiation or termination codon. In contrast, frameshift and nonsense mutations of another type that cause translation to terminate prematurely at or downstream of codon 208, also within exon 6, have no effect on the level of nuclear TPI mRNA. In this work, quantitations of RNA that derived from TPI alleles in which nonsense codons had been generated between codons 189 and 208 revealed that the boundary between the two types of nonsense codons resides between codons 192 and 195. The analysis of TPI gene insertions and deletions indicated that the positional feature differentiating the two types of nonsense codons is the distance of the nonsense codon upstream of intron 6. For example, the movement of intron 6 to a position downstream of its normal location resulted in a concomitant downstream movement of the boundary between the two types of nonsense codons. The analysis of intron 6 mutations indicated that the intron 6 effect is stipulated by the 88 nucleotides residing between the 5' and 3' splice sites. Since the deletion of intron 6 resulted in only partial abrogation of the nonsense codon-mediated reduction in the level of TPI mRNA, other sequences within TPI pre-mRNA must function in the effect. One of these sequences may be intron 2, since the deletion of intron 2 also resulted in partial abrogation of the effect. In experiments that switched introns 2 and 6, the replacement of intron 6 with intron 2 was of no consequence to the effect of a nonsense codon within either exon 1 or exon 6. In contrast, the replacement of intron 2 with intron 6 was inconsequential to the effect of a nonsense codon in exon 6 but resulted in partial abrogation of a nonsense codon in exon 1.
Collapse
|
38
|
Cheng J, Belgrader P, Zhou X, Maquat LE. Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol Cell Biol 1994; 14:6317-25. [PMID: 8065363 PMCID: PMC359158 DOI: 10.1128/mcb.14.9.6317-6325.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The translation of human triosephosphate isomerase (TPI) mRNA normally terminates at codon 249 within exon 7, the final exon. Frameshift and nonsense mutations of the type that cause translation to terminate prematurely at or upstream of codon 189 within exon 6 reduce the level of nuclear TPI mRNA to 20 to 30% of normal by a mechanism that is not a function of the distance of the nonsense codon from either the translation initiation or termination codon. In contrast, frameshift and nonsense mutations of another type that cause translation to terminate prematurely at or downstream of codon 208, also within exon 6, have no effect on the level of nuclear TPI mRNA. In this work, quantitations of RNA that derived from TPI alleles in which nonsense codons had been generated between codons 189 and 208 revealed that the boundary between the two types of nonsense codons resides between codons 192 and 195. The analysis of TPI gene insertions and deletions indicated that the positional feature differentiating the two types of nonsense codons is the distance of the nonsense codon upstream of intron 6. For example, the movement of intron 6 to a position downstream of its normal location resulted in a concomitant downstream movement of the boundary between the two types of nonsense codons. The analysis of intron 6 mutations indicated that the intron 6 effect is stipulated by the 88 nucleotides residing between the 5' and 3' splice sites. Since the deletion of intron 6 resulted in only partial abrogation of the nonsense codon-mediated reduction in the level of TPI mRNA, other sequences within TPI pre-mRNA must function in the effect. One of these sequences may be intron 2, since the deletion of intron 2 also resulted in partial abrogation of the effect. In experiments that switched introns 2 and 6, the replacement of intron 6 with intron 2 was of no consequence to the effect of a nonsense codon within either exon 1 or exon 6. In contrast, the replacement of intron 2 with intron 6 was inconsequential to the effect of a nonsense codon in exon 6 but resulted in partial abrogation of a nonsense codon in exon 1.
Collapse
Affiliation(s)
- J Cheng
- Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | | |
Collapse
|