1
|
van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 2019; 54:443-465. [PMID: 31744343 DOI: 10.1080/10409238.2019.1691497] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) is an essential component of the spliceosome, the cellular machine responsible for removing introns from precursor mRNAs (pre-mRNAs) in all eukaryotes. U2 is an extraordinarily dynamic splicing factor and the most frequently mutated in cancers. Cryo-electron microscopy (cryo-EM) has transformed our structural and functional understanding of the role of U2 in splicing. In this review, we synthesize these and other data with respect to a view of U2 as an assembly of interconnected functional modules. These modules are organized by the U2 small nuclear RNA (snRNA) for roles in spliceosome assembly, intron substrate recognition, and protein scaffolding. We describe new discoveries regarding the structure of U2 components and how the snRNP undergoes numerous conformational and compositional changes during splicing. We specifically highlight large scale movements of U2 modules as the spliceosome creates and rearranges its active site. U2 serves as a compelling example for how cellular machines can exploit the modular organization and structural plasticity of an RNP.
Collapse
Affiliation(s)
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Liu YC, Cheng SC. Functional roles of DExD/H-box RNA helicases in Pre-mRNA splicing. J Biomed Sci 2015; 22:54. [PMID: 26173448 PMCID: PMC4503299 DOI: 10.1186/s12929-015-0161-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/29/2015] [Indexed: 01/30/2023] Open
Abstract
Splicing of precursor mRNA takes place via two consecutive steps of transesterification catalyzed by a large ribonucleoprotein complex called the spliceosome. The spliceosome is assembled through ordered binding to the pre-mRNA of five small nuclear RNAs and numerous protein factors, and is disassembled after completion of the reaction to recycle all components. Throughout the splicing cycle, the spliceosome changes its structure, rearranging RNA-RNA, RNA-protein and protein-protein interactions, for positioning and repositioning of splice sites. DExD/H-box RNA helicases play important roles in mediating structural changes of the spliceosome by unwinding of RNA duplexes or disrupting RNA-protein interactions. DExD/H-box proteins are also implicated in the fidelity control of the splicing process at various steps. This review summarizes the functional roles of DExD/H-box proteins in pre-mRNA splicing according to studies conducted mostly in yeast and will discuss the concept of the complicated splicing reaction based on recent findings.
Collapse
Affiliation(s)
- Yen-Chi Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| |
Collapse
|
3
|
Liang WW, Cheng SC. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev 2015; 29:81-93. [PMID: 25561497 PMCID: PMC4281567 DOI: 10.1101/gad.253708.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The DEAD-box RNA helicase Prp5 is required for the formation of the prespliceosome through an ATP-dependent function to remodel U2 snRNPs and an ATP-independent function of unknown mechanism. Liang and Cheng show that Prp5 binds to the spliceosome in association with U2 by interacting with the branchpoint-interacting stem–loop and is released upon base-pairing of U2 with the branch site to allow the recruitment of the tri-snRNP. The DEAD-box RNA helicase Prp5 is required for the formation of the prespliceosome through an ATP-dependent function to remodel U2 small nuclear ribonucleoprotein particles (snRNPs) and an ATP-independent function of unknown mechanism. Prp5 has also been implicated in proofreading the branch site sequence, but the molecular mechanism has not been well characterized. Using actin precursor mRNA (pre-mRNA) carrying branch site mutations, we identified a Prp5-containing prespliceosome with Prp5 directly bound to U2 small nuclear RNA (snRNA). Prp5 is in contact with U2 in regions on and near the branchpoint-interacting stem–loop (BSL), suggesting that Prp5 may function in stabilizing the BSL. Regardless of its ATPase activity, Prp5 mutants that suppress branch site mutations associate with the spliceosome less tightly and allow more tri-snRNP binding for the reaction to proceed. Our results suggest a novel mechanism for how Prp5 functions in prespliceosome formation and proofreading of the branch site sequence. Prp5 binds to the spliceosome in association with U2 by interacting with the BSL and is released upon the base-pairing of U2 with the branch site to allow the recruitment of the tri-snRNP. Mutations impairing U2–branch site base-pairing retard Prp5 release and impede tri-snRNP association. Prp5 mutations that destabilize the Prp5–U2 interaction suppress branch site mutations by allowing progression of the pathway.
Collapse
Affiliation(s)
- Wen-Wei Liang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
4
|
Coelho Ribeiro MDL, Espinosa J, Islam S, Martinez O, Thanki JJ, Mazariegos S, Nguyen T, Larina M, Xue B, Uversky VN. Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome. PeerJ 2013; 1:e2. [PMID: 23638354 PMCID: PMC3628832 DOI: 10.7717/peerj.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/01/2012] [Indexed: 12/29/2022] Open
Abstract
Recent studies revealed that a significant fraction of any given proteome is presented by proteins that do not have unique 3D structures as a whole or in significant parts. These intrinsically disordered proteins possess dramatic structural and functional variability, being especially enriched in signaling and regulatory functions since their lack of fixed structure defines their ability to be involved in interaction with several proteins and allows them to be re-used in multiple pathways. Among recognized disorder-based protein functions are interactions with nucleic acids and multi-target binding; i.e., the functions ascribed to many spliceosomal proteins. Therefore, the spliceosome, a multimegadalton ribonucleoprotein machine catalyzing the excision of introns from eukaryotic pre-mRNAs, represents an attractive target for the focused analysis of the abundance and functionality of intrinsic disorder in its proteinaceous components. In yeast cells, spliceosome consists of five small nuclear RNAs (U1, U2, U4, U5, and U6) and a range of associated proteins. Some of these proteins constitute cores of the corresponding snRNA-protein complexes known as small nuclear ribonucleoproteins (snRNPs). Other spliceosomal proteins have various auxiliary functions. To gain better understanding of the functional roles of intrinsic disorder, we have studied the prevalence of intrinsically disordered proteins in the yeast spliceosome using a wide array of bioinformatics methods. Our study revealed that similar to the proteins associated with human spliceosomes (Korneta & Bujnicki, 2012), proteins found in the yeast spliceosome are enriched in intrinsic disorder.
Collapse
Affiliation(s)
- Maria de Lourdes Coelho Ribeiro
- Cancer Imaging Metabolism, H. Lee Moffitt Cancer Center & Research Institute , United States ; Department of Molecular Medicine, University of South Florida , Tampa, Florida , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Structure and assembly of the SF3a splicing factor complex of U2 snRNP. EMBO J 2012; 31:1579-90. [PMID: 22314233 DOI: 10.1038/emboj.2012.7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/03/2012] [Indexed: 11/08/2022] Open
Abstract
SF3a is an evolutionarily conserved heterotrimeric complex essential for pre-mRNA splicing. It functions in spliceosome assembly within the mature U2 snRNP (small nuclear ribonucleoprotein particle), and its displacement from the spliceosome initiates the first step of the splicing reaction. We have identified a core domain of the yeast SF3a complex required for complex assembly and determined its crystal structure. The structure shows a bifurcated assembly of three subunits, Prp9, Prp11 and Prp21, with Prp9 interacting with Prp21 via a bidentate-binding mode, and Prp21 wrapping around Prp11. Structure-guided biochemical analysis also shows that Prp9 harbours a major binding site for stem-loop IIa of U2 snRNA. These findings provide mechanistic insights into the assembly of U2 snRNP.
Collapse
|
6
|
Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol 2008; 28:3686-99. [PMID: 18378690 DOI: 10.1128/mcb.01115-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.
Collapse
|
7
|
Hilliker AK, Mefford MA, Staley JP. U2 toggles iteratively between the stem IIa and stem IIc conformations to promote pre-mRNA splicing. Genes Dev 2007; 21:821-34. [PMID: 17403782 PMCID: PMC1838533 DOI: 10.1101/gad.1536107] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To ligate exons in pre-messenger RNA (pre-mRNA) splicing, the spliceosome must reposition the substrate after cleaving the 5' splice site. Because spliceosomal small nuclear RNAs (snRNAs) bind the substrate, snRNA structures may rearrange to reposition the substrate. However, such rearrangements have remained undefined. Although U2 stem IIc inhibits binding of U2 snRNP to pre-mRNA during assembly, we found that weakening U2 stem IIc suppressed a mutation in prp16, a DExD/H box ATPase that promotes splicing after 5' splice site cleavage. The prp16 mutation was also suppressed by mutations flanking stem IIc, suggesting that Prp16p facilitates a switch from stem IIc to the mutually exclusive U2 stem IIa, which activates binding of U2 to pre-mRNA during assembly. Providing evidence that stem IIa switches back to stem IIc before exon ligation, disrupting stem IIa suppressed 3' splice site mutations, and disrupting stem IIc impaired exon ligation. Disrupting stem IIc also exacerbated the 5' splice site cleavage defects of certain substrate mutations, suggesting a parallel role for stem IIc at both catalytic stages. We propose that U2, much like the ribosome, toggles between two conformations--a closed stem IIc conformation that promotes catalysis and an open stem IIa conformation that promotes substrate binding and release.
Collapse
Affiliation(s)
- Angela K. Hilliker
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Melissa A. Mefford
- Committee on Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan P. Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
- Corresponding author.E-MAIL ; FAX (773) 834-9064
| |
Collapse
|
8
|
Perriman RJ, Ares M. Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing. Genes Dev 2007; 21:811-20. [PMID: 17403781 PMCID: PMC1838532 DOI: 10.1101/gad.1524307] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nuclear pre-messenger RNA (pre-mRNA) splicing requires multiple spliceosomal small nuclear RNA (snRNA) and pre-mRNA rearrangements. Here we reveal a new snRNA conformational switch in which successive roles for two competing U2 helices, stem IIa and stem IIc, promote distinct splicing steps. When stem IIa is stabilized by loss of stem IIc, rapid ATP-independent and Cus2p-insensitive prespliceosome formation occurs. In contrast, hyperstabilized stem IIc improves the first splicing step on aberrant branchpoint pre-mRNAs and rescues temperature-sensitive U6-U57C, a U6 mutation that also suppresses first-step splicing defects of branchpoint mutations. A second, later role for stem IIa is revealed by its suppression of a cold-sensitive allele of the second-step splicing factor PRP16. Our data expose a spliceosomal progression cycle of U2 stem IIa formation, disruption by stem IIc, and then reformation of stem IIa before the second catalytic step. We propose that the competing stem IIa and stem IIc helices are key spliceosomal RNA elements that optimize juxtaposition of the proper reactive sites during splicing.
Collapse
Affiliation(s)
- Rhonda J Perriman
- Center for Molecular Biology of RNA Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
9
|
Dybkov O, Will CL, Deckert J, Behzadnia N, Hartmuth K, Lührmann R. U2 snRNA-protein contacts in purified human 17S U2 snRNPs and in spliceosomal A and B complexes. Mol Cell Biol 2006; 26:2803-16. [PMID: 16537922 PMCID: PMC1430325 DOI: 10.1128/mcb.26.7.2803-2816.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 17S U2 snRNP plays an essential role in branch point selection and catalysis during pre-mRNA splicing. Much remains to be learned about the molecular architecture of the U2 snRNP, including which proteins contact the functionally important 5' end of the U2 snRNA. Here, RNA-protein interactions within immunoaffinity-purified human 17S U2 snRNPs were analyzed by lead(II)-induced RNA cleavage and UV cross-linking. Contacts between the U2 snRNA and SF3a60, SF3b49, SF3b14a/p14 and SmG and SmB were detected. SF3b49 appears to make multiple contacts, interacting with the 5' end of U2 and nucleotides in loops I and IIb. SF3a60 also contacted different regions of the U2 snRNA, including the base of stem-loop I and a bulge in stem-loop III. Consistent with it contacting the pre-mRNA branch point adenosine, SF3b14a/p14 interacted with the U2 snRNA near the region that base pairs with the branch point sequence. A comparison of U2 cross-linking patterns obtained with 17S U2 snRNP versus purified spliceosomal A and B complexes revealed that RNA-protein interactions with stem-loop I and the branch site-interacting region of U2 are dynamic. These studies provide important insights into the molecular architecture of 17S U2 snRNPs and reveal U2 snRNP remodeling events during spliceosome assembly.
Collapse
Affiliation(s)
- Olexandr Dybkov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Worthey EA, Schnaufer A, Mian IS, Stuart K, Salavati R. Comparative analysis of editosome proteins in trypanosomatids. Nucleic Acids Res 2004; 31:6392-408. [PMID: 14602897 PMCID: PMC275564 DOI: 10.1093/nar/gkg870] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Detailed comparisons of 16 editosome proteins from Trypanosoma brucei, Trypanosoma cruzi and Leishmania major identified protein motifs associated with catalysis and protein or nucleic acid interactions that suggest their functions in RNA editing. Five related proteins with RNase III-like motifs also contain a U1-like zinc finger and either dsRBM or Pumilio motifs. These proteins may provide the endoribonuclease function in editing. Two other related proteins, at least one of which is associated with U-specific 3' exonuclease activity, contain two putative nuclease motifs. Thus, editosomes contain a plethora of nucleases or proteins presumably derived from nucleases. Five additional related proteins, three of which have zinc fingers, each contain a motif associated with an OB fold; the TUTases have C-terminal folds reminiscent of RNA binding motifs, thus indicating the presence of numerous nucleic acid and/or protein binding domains, as do the two RNA ligases and a RNA helicase, which provide for additional catalytic steps in editing. These data indicate that trypanosomatid RNA editing is orchestrated by a variety of domains for catalysis, molecular interaction and structure. These domains are generally conserved within other protein families, but some are found in novel combinations in the editosome proteins.
Collapse
|
11
|
Xu YZ, Newnham CM, Kameoka S, Huang T, Konarska MM, Query CC. Prp5 bridges U1 and U2 snRNPs and enables stable U2 snRNP association with intron RNA. EMBO J 2004; 23:376-85. [PMID: 14713954 PMCID: PMC1271757 DOI: 10.1038/sj.emboj.7600050] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 11/28/2003] [Indexed: 11/08/2022] Open
Abstract
Communication between U1 and U2 snRNPs is critical during pre-spliceosome assembly; yet, direct connections have not been observed. To investigate this assembly step, we focused on Prp5, an RNA-dependent ATPase of the DExD/H family. We identified homologs of Saccharomyces cerevisiae Prp5 in humans (hPrp5) and Schizosaccharomyces pombe (SpPrp5), and investigated their interactions and function. Depletion and reconstitution of SpPrp5 from extracts demonstrate that ATP binding and hydrolysis by Prp5 are required for pre-spliceosome complex A formation. hPrp5 and SpPrp5 are each physically associated with both U1 and U2 snRNPs; Prp5 contains distinct U1- and U2-interacting domains that are required for pre-spliceosome assembly; and, we observe a Prp5-associated U1/U2 complex in S. pombe. Together, these data are consistent with Prp5 being a bridge between U1 and U2 snRNPs at the time of pre-spliceosome formation.
Collapse
Affiliation(s)
- Yong-Zhen Xu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Catherine M Newnham
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sei Kameoka
- The Rockefeller University, New York, NY, USA
| | - Tao Huang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461-1975, USA. Tel.: +1 718 430 4174; Fax: +1 718 430 8574; E-mail:
| |
Collapse
|
12
|
Perriman R, Barta I, Voeltz GK, Abelson J, Ares M. ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA. Proc Natl Acad Sci U S A 2003; 100:13857-62. [PMID: 14610285 PMCID: PMC283511 DOI: 10.1073/pnas.2036312100] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stable addition of U2 small nuclear ribonucleoprotein (snRNP) to form the prespliceosome is the first ATP-dependent step in splicing, and it requires the DEXD/H box ATPase Prp5p. However, prespliceosome formation occurs without ATP in extracts lacking the U2 snRNP protein Cus2p. Here we show that Prp5p is required for the ATP-independent prespliceosome assembly that occurs in the absence of Cus2p. Addition of recombinant Cus2p can restore the ATP dependence of prespliceosome assembly, but only if it is added before Prp5p. Prp5p with an altered ATP-binding domain (Prp5-GNTp) can support growth in vivo, but only in a cus2 deletion strain, mirroring the in vitro results. Other Prp5 ATP-binding domain substitutions are lethal, even in the cus2 deletion strain, but can be suppressed by U2 small nuclear RNA mutations that hyperstabilize U2 stem IIa. We infer that the presence of Cus2p and stem IIa-destabilized forms of U2 small nuclear RNA places high demands on the ATP-driven function of Prp5p. Because Prp5p is not dispensable in vitro even in the absence of ATP, we propose that the core Prp5p function in bringing U2 to the branchpoint is not directly ATP-dependent. The positive role of Cus2p in rescuing mutant U2 can be reconciled with its antagonistic effect on Prp5 function in a model whereby Cus2p first helps Prp5p to activate the U2 snRNP for prespliceosome formation but then is displaced by Prp5p before or during the stabilization of U2 at the branchpoint.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Base Sequence
- Binding Sites
- DEAD-box RNA Helicases
- Genes, Fungal
- Models, Biological
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Protein Structure, Tertiary
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Splicing
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Spliceosomes/metabolism
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Rhonda Perriman
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
13
|
Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M, Lührmann R. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J 2002; 21:4978-88. [PMID: 12234937 PMCID: PMC126279 DOI: 10.1093/emboj/cdf480] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mass spectrometry was used to identify novel proteins associated with the human 17S U2 snRNP and one of its stable subunits, SF3b. Several additional proteins were identified, demonstrating that 17S U2 snRNPs are significantly more complex than previously thought. Two of the newly identified proteins, namely the DEAD-box proteins SF3b125 and hPrp5 (a homologue of Saccharomyces cerevisiae Prp5p) were characterized further. Immunodepletion experiments with HeLa nuclear extract indicated that hPrp5p plays an important role in pre-mRNA splicing, acting during or prior to prespliceosome assembly. The SF3b-associated protein SF3b125 dissociates at the time of 17S U2 formation, raising the interesting possibility that it might facilitate the assembly of the 17S U2 snRNP. Finally, immunofluorescence/FISH studies revealed a differential subnuclear distribution of U2 snRNA, hPrp5p and SF3b125, which were enriched in Cajal bodies, versus SF3b155 and SF3a120, which were not; a model for 17S U2 snRNP assembly based on these findings is presented. Taken together, these studies provide new insight into the composition of the 17S U2 snRNP and the potential function of several of its proteins.
Collapse
Affiliation(s)
| | | | | | - Marc Gentzel
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, D-37077 Göttingen and
EMBL, Bioanalytical Research Group, D-69117 Heidelberg, Germany Corresponding author e-mail:
| | - Matthias Wilm
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, D-37077 Göttingen and
EMBL, Bioanalytical Research Group, D-69117 Heidelberg, Germany Corresponding author e-mail:
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, D-37077 Göttingen and
EMBL, Bioanalytical Research Group, D-69117 Heidelberg, Germany Corresponding author e-mail:
| |
Collapse
|
14
|
Nesic D, Krämer A. Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation. Mol Cell Biol 2001; 21:6406-17. [PMID: 11533230 PMCID: PMC99788 DOI: 10.1128/mcb.21.19.6406-6417.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The active 17S U2 small nuclear ribonucleoprotein particle (snRNP), which binds to the intron branch site during the formation of the prespliceosome, is assembled in vitro by sequential interactions of the essential splicing factors SF3b and SF3a with the 12S U2 snRNP. We have analyzed the function of individual subunits of human SF3a (SF3a60, SF3a66, and SF3a120) by testing recombinant proteins, expressed in insect cells, in various in vitro assays. The recombinant subunits readily form the SF3a heterotrimer, where SF3a60 and SF3a66 interact with SF3a120, but not with each other. All SF3a subunits are essential for the formation of the mature 17S U2 snRNP and the prespliceosome. Single subunits engage in interactions with the 15S U2 snRNP (consisting of the 12S U2 snRNP and SF3b), and SF3a60 appears to play a major role in recruiting SF3a120 into the U2 particle. Analysis of functional domains in SF3a60 and SF3a66 identified interaction sites for SF3a120 in their N-terminal portions. C(2)H(2)-type zinc finger domains mediate the integration of SF3a60 and SF3a66 into the U2 snRNP, and we propose a model in which protein-protein interactions between the zinc finger domains and the Sm proteins, common to all spliceosomal snRNPs, contribute to the assembly of the 17S U2 snRNP. Finally, we demonstrate that all domains required for interactions within the SF3a heterotrimer and the formation of the 17S U2 snRNP are also necessary to assemble the prespliceosome.
Collapse
Affiliation(s)
- D Nesic
- Département de Biologie Cellulaire, Université de Genève, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
15
|
Ast G, Pavelitz T, Weiner AM. Sequences upstream of the branch site are required to form helix II between U2 and U6 snRNA in a trans-splicing reaction. Nucleic Acids Res 2001; 29:1741-9. [PMID: 11292847 PMCID: PMC31302 DOI: 10.1093/nar/29.8.1741] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Revised: 02/08/2001] [Accepted: 02/08/2001] [Indexed: 11/13/2022] Open
Abstract
Three different base paired stems form between U2 and U6 snRNA over the course of the mRNA splicing reaction (helices I, II and III). One possible function of U2/U6 helix II is to facilitate subsequent U2/U6 helix I and III interactions, which participate directly in catalysis. Using an in vitro trans-splicing assay, we investigated the function of sequences located just upstream from the branch site (BS). We find that these upstream sequences are essential for stable binding of U2 to the branch region, and for U2/U6 helix II formation, but not for initial U2/BS pairing. We also show that non-functional upstream sequences cause U2 snRNA stem-loop IIa to be exposed to dimethylsulfate modification, perhaps reflecting a U2 snRNA conformational change and/or loss of SF3b proteins. Our data suggest that initial binding of U2 snRNP to the BS region must be stabilized by an interaction with upstream sequences before U2/U6 helix II can form or U2 stem-loop IIa can participate in spliceosome assembly.
Collapse
Affiliation(s)
- G Ast
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | | | |
Collapse
|
16
|
Zhang M, Green MR. Identification and characterization of yUAP/Sub2p, a yeast homolog of the essential human pre-mRNA splicing factor hUAP56. Genes Dev 2001; 15:30-5. [PMID: 11156602 PMCID: PMC312605 DOI: 10.1101/gad.851701] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human 56-kD U2AF(65)-associated protein (hUAP56), a member of the DExD/H box protein family of RNA-dependent ATPases, is required for the stable binding of U2 snRNP to the pre-mRNA branchpoint. Here we identify a highly conserved Saccharomyces cerevisiae homolog of hUAP56, yUAP/Sub2p. yUAP/Sub2p can be functionally substituted for by hUAP56 and, like its human counterpart, is an essential pre-mRNA splicing factor. yUAP/Sub2p is required for formation of the commitment complex, the precursor for U2 snRNP addition. In conjunction with previous studies, we conclude that at least two DExD/H box proteins, Prp5p and yUAP/Sub2p, mediate the U2 snRNP-branchpoint interaction.
Collapse
Affiliation(s)
- M Zhang
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
17
|
Pauling MH, McPheeters DS, Ares M. Functional Cus1p is found with Hsh155p in a multiprotein splicing factor associated with U2 snRNA. Mol Cell Biol 2000; 20:2176-85. [PMID: 10688664 PMCID: PMC110834 DOI: 10.1128/mcb.20.6.2176-2185.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To explore the dynamics of snRNP structure and function, we have studied Cus1p, identified as a suppressor of U2 snRNA mutations in budding yeast. Cus1p is homologous to human SAP145, a protein present in the 17S form of the human U2 snRNP. Here, we define the Cus1p amino acids required for function in yeast. The segment of Cus1p required for binding to Hsh49p, a homolog of human SAP49, is contained within an essential region of Cus1p. Antibodies against Cus1p coimmunoprecipitate U2 snRNA, as well as Hsh155p, a protein homologous to human SAP155. Biochemical fractionation of splicing extracts and reconstitution of heat-inactivated splicing extracts from strains carrying a temperature-sensitive allele of CUS1 indicate that Cus1p and Hsh155p reside in a functional, high-salt-stable complex that is salt-dissociable from U2 snRNA. We propose that Cus1p, Hsh49p, and Hsh155p exist in a stable protein complex which can exchange with a core U2 snRNP and which is necessary for U2 snRNP function in prespliceosome assembly. The Cus1p complex shares functional as well as structural similarities with human SF3b.
Collapse
Affiliation(s)
- M H Pauling
- Department of Biology, Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
18
|
Krämer A, Grüter P, Gröning K, Kastner B. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J Cell Biol 1999; 145:1355-68. [PMID: 10385517 PMCID: PMC2133165 DOI: 10.1083/jcb.145.7.1355] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 17S U2 small nuclear ribonucleoprotein particle (snRNP) represents the active form of U2 snRNP that binds to the pre-mRNA during spliceosome assembly. This particle forms by sequential interactions of splicing factors SF3b and SF3a with the 12S U2 snRNP. We have purified SF3b and the 15S U2 snRNP, an intermediate in the assembly pathway, from HeLa cell nuclear extracts and show that SF3b consists of four subunits of 49, 130, 145, and 155 kD. Biochemical analysis indicates that both SF3b and the 12S U2 snRNP are required for the incorporation of SF3a into the 17S U2 snRNP. Nuclease protection studies demonstrate interactions of SF3b with the 5' half of U2 small nuclear RNA, whereas SF3a associates with the 3' portion of the U2 snRNP and possibly also interacts with SF3b. Electron microscopy of the 15S U2 snRNP shows that it consists of two domains in which the characteristic features of isolated SF3b and the 12S U2 snRNP are conserved. Comparison to the two-domain structure of the 17S U2 snRNP corroborates the biochemical results in that binding of SF3a contributes to an increase in size of the 12S U2 domain and possibly induces a structural change in the SF3b domain.
Collapse
Affiliation(s)
- A Krämer
- Département de Biologie Cellulaire, Université de Genève, CH-1211 Genève 4, Switzerland.
| | | | | | | |
Collapse
|
19
|
Massenet S, Motorin Y, Lafontaine DL, Hurt EC, Grosjean H, Branlant C. Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol Cell Biol 1999; 19:2142-54. [PMID: 10022901 PMCID: PMC84007 DOI: 10.1128/mcb.19.3.2142] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pseudouridine (Psi) residues were localized in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (UsnRNAs) by using the chemical mapping method. In contrast to vertebrate UsnRNAs, S. cerevisiae UsnRNAs contain only a few Psi residues, which are located in segments involved in intermolecular RNA-RNA or RNA-protein interactions. At these positions, UsnRNAs are universally modified. When yeast mutants disrupted for one of the several pseudouridine synthase genes (PUS1, PUS2, PUS3, and PUS4) or depleted in rRNA-pseudouridine synthase Cbf5p were tested for UsnRNA Psi content, only the loss of the Pus1p activity was found to affect Psi formation in spliceosomal UsnRNAs. Indeed, Psi44 formation in U2 snRNA was abolished. By using purified Pus1p enzyme and in vitro-produced U2 snRNA, Pus1p is shown here to catalyze Psi44 formation in the S. cerevisiae U2 snRNA. Thus, Pus1p is the first UsnRNA pseudouridine synthase characterized so far which exhibits a dual substrate specificity, acting on both tRNAs and U2 snRNA. As depletion of rRNA-pseudouridine synthase Cbf5p had no effect on UsnRNA Psi content, formation of Psi residues in S. cerevisiae UsnRNAs is not dependent on the Cbf5p-snoRNA guided mechanism.
Collapse
Affiliation(s)
- S Massenet
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR7567 CNRS-UHP, Faculté des Sciences, 54506 Vandoeuvre-les-Nancy Cédex, France
| | | | | | | | | | | |
Collapse
|
20
|
Liu ZR, Sargueil B, Smith CW. Detection of a novel ATP-dependent cross-linked protein at the 5' splice site-U1 small nuclear RNA duplex by methylene blue-mediated photo-cross-linking. Mol Cell Biol 1998; 18:6910-20. [PMID: 9819379 PMCID: PMC109274 DOI: 10.1128/mcb.18.12.6910] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of spliceosomes involves a number of sequential steps in which small nuclear ribonucleoprotein particles (snRNPs) and some non-snRNP proteins recognize the splice site sequences and undergo various conformational rearrangements. A number of important intermolecular RNA-RNA duplexes are formed transiently during the process of splice site recognition. Various steps in the assembly pathway are dependent upon ATP hydrolysis, either for protein phosphorylation or for the activity of helicases, which may modulate the RNA structures. Major efforts have been made to identify proteins that interact with specific regions of the pre-mRNA during the stages of spliceosome assembly and catalysis by site-specific UV cross-linking. However, UV cross-linking is often inefficient for the detection of proteins that interact with base-paired RNA. Here we have used the complementary approach of methylene blue-mediated photo-cross-linking to detect specifically proteins that interact with the duplexes formed between pre-mRNA and small nuclear RNA (snRNA). We have detected a novel cross-link between a 65-kDa protein (p65) and the 5' splice site. A range of data suggest that p65 cross-links to the transient duplex formed by U1 snRNA and the 5' splice site. Moreover, although p65 cross-linking requires only a 5' splice site within the pre-mRNA, it also requires ATP hydrolysis, suggesting that its detection reflects a very early ATP-dependent event during splicing.
Collapse
Affiliation(s)
- Z R Liu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
21
|
Yan D, Perriman R, Igel H, Howe KJ, Neville M, Ares M. CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif. Mol Cell Biol 1998; 18:5000-9. [PMID: 9710584 PMCID: PMC109085 DOI: 10.1128/mcb.18.9.5000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A screen for suppressors of a U2 snRNA mutation identified CUS2, an atypical member of the RNA recognition motif (RRM) family of RNA binding proteins. CUS2 protein is associated with U2 RNA in splicing extracts and interacts with PRP11, a subunit of the conserved splicing factor SF3a. Absence of CUS2 renders certain U2 RNA folding mutants lethal, arguing that a normal activity of CUS2 is to help refold U2 into a structure favorable for its binding to SF3b and SF3a prior to spliceosome assembly. Both CUS2 function in vivo and the in vitro RNA binding activity of CUS2 are disrupted by mutation of the first RRM, suggesting that rescue of misfolded U2 involves the direct binding of CUS2. Human Tat-SF1, reported to stimulate Tat-specific, transactivating region-dependent human immunodeficiency virus transcription in vitro, is structurally similar to CUS2. Anti-Tat-SF1 antibodies coimmunoprecipitate SF3a66 (SAP62), the human homolog of PRP11, suggesting that Tat-SF1 has a parallel function in splicing in human cells.
Collapse
Affiliation(s)
- D Yan
- Center for the Molecular Biology of RNA, Biology Department, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abou Elela S, Ares M. Depletion of yeast RNase III blocks correct U2 3' end formation and results in polyadenylated but functional U2 snRNA. EMBO J 1998; 17:3738-46. [PMID: 9649443 PMCID: PMC1170709 DOI: 10.1093/emboj/17.13.3738] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Yeast U2 snRNA is transcribed by RNA polymerase II to generate a single non-polyadenylated transcript. A temperature-sensitive yeast strain carrying a disruption in RNT1, the gene encoding a homolog of RNase III, produces 3'-extended U2 that is polyadenylated. The U2 3'-flanking region contains a putative stem-loop that is recognized and cleaved at two sites by recombinant GST-Rnt1 protein in vitro. Removal of sequences comprising the stem-loop structure blocks cleavage in vitro and mimics the effects of Rnt1 depletion in vivo. Strains carrying a U2 gene lacking the Rnt1 cleavage site produce only polyadenylated U2 snRNA, and yet are not impaired in growth or splicing. The results suggest that eukaryotic RNase III may be a general factor in snRNA processing, and demonstrate that polyadenylation is not incompatible with snRNA function in yeast.
Collapse
Affiliation(s)
- S Abou Elela
- Center for the Molecular Biology of RNA, Biology Department, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
23
|
Meyer V, Oliver B, Pauli D. Multiple developmental requirements of noisette, the Drosophila homolog of the U2 snRNP-associated polypeptide SP3a60. Mol Cell Biol 1998; 18:1835-43. [PMID: 9528755 PMCID: PMC121413 DOI: 10.1128/mcb.18.4.1835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
We report the cloning of the noisette gene (noi), which encodes the Drosophila melanogaster ortholog of a U2 snRNP-associated splicing factor, SF3a60 (SAP61) in humans and PRP9p in Saccharomyces cerevisiae. Antibodies raised against human SF3a60 recognized NOI in flies, showing a nuclear localization in all the stages examined, including the embryo, the dividing cells of imaginal discs, and the larval polyploid nuclei. NOI is expressed in somatic and germinal cells of both male and female gonads. By mobilization of P transposons, we have generated a large number of noi mutations. Complete loss of function resulted in lethality at the end of embryogenesis, without obvious morphological defects. Hypomorphic alleles revealed multiple roles of noi for the survival and differentiation of male germ cells, the differentiation of female germ cells, and the development of several adult structures.
Collapse
Affiliation(s)
- V Meyer
- Department of Zoology and Animal Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
24
|
Rain JC, Legrain P. In vivo commitment to splicing in yeast involves the nucleotide upstream from the branch site conserved sequence and the Mud2 protein. EMBO J 1997; 16:1759-71. [PMID: 9130720 PMCID: PMC1169779 DOI: 10.1093/emboj/16.7.1759] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pre-mRNA splicing is a stepwise nuclear process involving intron recognition and the assembly of the spliceosome followed by intron excision. We previously developed a pre-mRNA export assay that allows the discrimination between early steps of spliceosome formation and splicing per se. Here we present evidence that these two assays detect different biochemical defects for point mutations. Mutations at the 5' splice site lead to pre-mRNA export, whereas 3' splice site mutations do not. A genetic screen applied to mutants in the branch site region shows that all positions in the conserved TACTAAC sequence are important for intron recognition. An exhaustive analysis of pre-mRNA export and splicing defects of these mutants shows that the in vivo recognition of the branch site region does not involve the base pairing of U2 snRNA with the pre-mRNA. In addition, the nucleotide preceding the conserved TACTAAC sequence contributes to the recognition process. We show that a T residue at this position allows for optimal intron recognition and that in natural introns, this nucleotide is also used preferentially. Moreover, the Mud2 protein is involved in the recognition of this nucleotide, thus establishing a role for this factor in the in vivo splicing pathway.
Collapse
Affiliation(s)
- J C Rain
- Laboratoire du Métabolisme des ARN, CNRS URA 1149, Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
25
|
Tang J, Abovich N, Rosbash M. Identification and characterization of a yeast gene encoding the U2 small nuclear ribonucleoprotein particle B" protein. Mol Cell Biol 1996; 16:2787-95. [PMID: 8649387 PMCID: PMC231270 DOI: 10.1128/mcb.16.6.2787] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The inessential yeast gene MUD2 encodes a protein factor that contributes to U1 small nuclear ribonucleoprotein particle (snRNP)-pre-mRNA complex (commitment complex) formation. To identify other genes that contribute to this early splicing step, we performed a synthetic lethal screen with a MUD2 deletion strain. The first characterized gene from this screen, MSL1 (MUD synthetic lethal 1), encodes the yeast homolog of the well studied mammalian snRNP protein U2B". The yeast protein (YU2B") is a component of yeast U2 snRNP, and it is related to other members of the UIA-U2B" family, the human U2B" protein, the human U1A protein, and the yeast U1A protein. It binds in vitro to its RNA target, U2 snRNA stem-loop IV, without a protein cofactor, and the target resembles more closely the U1 snRNA binding site of the human U1A protein than it does the U2 snRNA binding site of human U2B". Surprisingly, the YU2B" protein lacks a C-terminal RNA binding domain, which is conserved in all other family members. Possible functional and evolutionary relationships among these proteins are discussed.
Collapse
Affiliation(s)
- J Tang
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|
26
|
Weidenhammer EM, Singh M, Ruiz-Noriega M, Woolford JL. The PRP31 gene encodes a novel protein required for pre-mRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res 1996; 24:1164-70. [PMID: 8604353 PMCID: PMC145753 DOI: 10.1093/nar/24.6.1164] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pre-mRNA splicing factor Prp31p was identified in a screen of temperature-sensitive yeast strains for those exhibiting a splicing defect upon shift to the non- permissive temperature. The wild-type PRP31 gene was cloned and shown to be essential for cell viability. The PRP31 gene is predicted to encode a 60 kDa polypeptide. No similarities with other known splicing factors or motifs indicative of protein-protein or RNA-protein interaction domains are discernible in the predicted amino acid sequence. A PRP31 allele bearing a triple repeat of the hemagglutinin epitope has been generated. The tagged protein is functional in vivo and a single polypeptide species of the predicted size was detected by Western analysis with proteins from yeast cell extracts. Functional Prp31p is required for the processing of pre-mRNA species both in vivo and in vitro, indicating that the protein is directly involved in the splicing pathway.
Collapse
Affiliation(s)
- E M Weidenhammer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | | | | | | |
Collapse
|
27
|
Yan D, Ares M. Invariant U2 RNA sequences bordering the branchpoint recognition region are essential for interaction with yeast SF3a and SF3b subunits. Mol Cell Biol 1996; 16:818-28. [PMID: 8622683 PMCID: PMC231062 DOI: 10.1128/mcb.16.3.818] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
U2 small nuclear RNA (snRNA) contains a sequence (GUAGUA) that pairs with the intron branchpoint during splicing. This sequence is contained within a longer invariant sequence of unknown secondary structure and function that extends between U2 and I and stem IIa. A part of this region has been proposed to pair with U6 in a structure called helix III. We made mutations to test the function of these nucleotides in yeast U2 snRNA. Most single base changes cause no obvious growth defects; however, several single and double mutations are lethal or conditional lethal and cause a block before the first step of splicing. We used U6 compensatory mutations to assess the contribution of helix III and found that if it forms, helix III is dispensable for splicing in Saccharomyces cerevisiae. On the other hand, mutations in known protein components of the splicing apparatus suppress or enhance the phenotypes of mutations within the invariant sequence that connect the branchpoint recognition sequence to stem IIa. Lethal mutations in the region are suppressed by Cus1-54p, a mutant yeast splicing factor homologous to a mammalian SF3b subunit. Synthetic lethal interactions show that this region collaborates with the DEAD-box protein Prp5p and the yeast SF3a subunits Prp9p, Prp11p, and Prp21p. Together, the data show that the highly conserved RNA element downstream of the branchpoint recognition sequence of U2 snRNA in yeast cells functions primarily with the proteins that make up SF3 rather than with U6 snRNA.
Collapse
Affiliation(s)
- D Yan
- Biology Department, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|