1
|
Waldman T. The Inaugural Use of Gene Editing for the Study of Tumor Suppressor Pathways in Human Cells-p21WAF1/CIP1. Cancer Res 2017; 76:4598-601. [PMID: 27528579 DOI: 10.1158/0008-5472.can-16-1972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Todd Waldman
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC.
| |
Collapse
|
2
|
Saito S, Kurosawa A, Adachi N. Mechanistic basis for increased human gene targeting by promoterless vectors-roles of homology arms and Rad54 paralogs. FEBS J 2017. [DOI: 10.1111/febs.14137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shinta Saito
- Graduate School of Nanobioscience; Yokohama City University; Japan
| | - Aya Kurosawa
- Graduate School of Nanobioscience; Yokohama City University; Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience; Yokohama City University; Japan
- Advanced Medical Research Center; Yokohama City University; Japan
| |
Collapse
|
3
|
Saito S, Adachi N. Advances in the Development of Gene-Targeting Vectors to Increase the Efficiency of Genetic Modification. Biol Pharm Bull 2016; 39:25-32. [DOI: 10.1248/bpb.b15-00701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinta Saito
- Graduate School of Nanobioscience, Yokohama City University
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University
- Advanced Medical Research Center, Yokohama City University
| |
Collapse
|
4
|
Karnan S, Ota A, Konishi Y, Wahiduzzaman M, Hosokawa Y, Konishi H. Improved methods of AAV-mediated gene targeting for human cell lines using ribosome-skipping 2A peptide. Nucleic Acids Res 2015; 44:e54. [PMID: 26657635 PMCID: PMC4824082 DOI: 10.1093/nar/gkv1338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
The adeno-associated virus (AAV)-based targeting vector has been one of the tools commonly used for genome modification in human cell lines. It allows for relatively efficient gene targeting associated with 1–4-log higher ratios of homologous-to-random integration of targeting vectors (H/R ratios) than plasmid-based targeting vectors, without actively introducing DNA double-strand breaks. In this study, we sought to improve the efficiency of AAV-mediated gene targeting by introducing a 2A-based promoter-trap system into targeting constructs. We generated three distinct AAV-based targeting vectors carrying 2A for promoter trapping, each targeting a GFP-based reporter module incorporated into the genome, PIGA exon 6 or PIGA intron 5. The absolute gene targeting efficiencies and H/R ratios attained using these vectors were assessed in multiple human cell lines and compared with those attained using targeting vectors carrying internal ribosome entry site (IRES) for promoter trapping. We found that the use of 2A for promoter trapping increased absolute gene targeting efficiencies by 3.4–28-fold and H/R ratios by 2–5-fold compared to values obtained with IRES. In CRISPR-Cas9-assisted gene targeting using plasmid-based targeting vectors, the use of 2A did not enhance the H/R ratios but did upregulate the absolute gene targeting efficiencies compared to the use of IRES.
Collapse
Affiliation(s)
- Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yuko Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
5
|
Yin M, Jiang W, Fang Z, Kong P, Xing F, Li Y, Chen X, Li S. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer. Sci Rep 2015; 5:16023. [PMID: 26522387 PMCID: PMC4629196 DOI: 10.1038/srep16023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/08/2015] [Indexed: 11/09/2022] Open
Abstract
The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT. Gene trap strategies were employed to enhance the gene targeting rates. The male and female gene knockout fibroblast cell lines were derived by different strategies. When male HPRT knockout cells were used for SCNT, no live rabbits were obtained. However, when female HPRT+/− cells were used for SCNT, live, healthy rabbits were generated. The cloned HPRT+/− rabbits were fertile at maturity. We demonstrate a new technique to produce gene-targeted rabbits. This approach may also be used in the genetic manipulation of different genes or in other species.
Collapse
Affiliation(s)
- Mingru Yin
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Weihua Jiang
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Zhenfu Fang
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Pengcheng Kong
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Fengying Xing
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Shangang Li
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| |
Collapse
|
6
|
Saito S, Ura K, Kodama M, Adachi N. Construction and applications of exon-trapping gene-targeting vectors with a novel strategy for negative selection. BMC Res Notes 2015; 8:278. [PMID: 26123730 PMCID: PMC4486125 DOI: 10.1186/s13104-015-1241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 06/17/2015] [Indexed: 12/11/2022] Open
Abstract
Background Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. Results By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Conclusions Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1241-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shinta Saito
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.
| | - Kiyoe Ura
- Graduate School of Science, Chiba University, Chiba, 263-8522, Japan.
| | - Miho Kodama
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan. .,Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan.
| |
Collapse
|
7
|
Solé A, Villalobos X, Ciudad CJ, Noé V. Repair of single-point mutations by polypurine reverse Hoogsteen hairpins. Hum Gene Ther Methods 2014; 25:288-302. [PMID: 25222154 DOI: 10.1089/hgtb.2014.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polypurine reverse Hoogsteen hairpins (PPRHs) are formed by two intramolecularly bound antiparallel homopurine domains linked by a five-thymidine loop. One of the homopurine strands binds with antiparallel orientation by Watson-Crick bonds to the polypyrimidine target sequence, forming a triplex. We had previously reported the ability of PPRHs to effectively bind dsDNA displacing the fourth strand away from the newly formed triplex. The main goal of this work was to explore the possibility of repairing a point mutation in mammalian cells using PPRHs as tools. These repair-PPRHs contain different combinations of extended sequences of DNA with the corrected nucleotide to repair the point mutation. As a model we used the dihydrofolate reductase gene. On the one hand, we demonstrate in vitro that PPRHs bind specifically to their polypyrimidine target sequence, opening the two strands of the dsDNA, and allowing the binding of a given repair oligonucleotide to the displaced strand of the DNA. Subsequently, we show at a cellular level (Chinese ovary hamster cells) that repair-PPRHs are able to correct a single-point mutation in a dihydrofolate reductase minigene bearing a nonsense mutation, both in an extrachromosomal location and when the mutated plasmid was stably transfected into the cells. Finally, this methodology was successfully applied to repair a single-point mutation at the endogenous locus, using the DA5 cell line with a deleted nucleotide in exon six of the dhfr gene.
Collapse
Affiliation(s)
- Anna Solé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , E08028 Barcelona, Spain
| | | | | | | |
Collapse
|
8
|
Wang S, Zhang K, Ding F, Zhao R, Li S, Li R, Xu L, Song C, Dai Y, Li N. A novel promoterless gene targeting vector to efficiently disrupt PRNP gene in cattle. J Biotechnol 2012. [PMID: 23201560 DOI: 10.1016/j.jbiotec.2012.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The PRNP gene encodes a cellular protein named prion, whose misfolded form has been implicated in a number of neuropathic diseases in mammals such as the Bovine Spongiform Encephalopathy (BSE) in cattle. BSE has brought devastating impact on the world economy and human health. Recently, several groups have performed the gene targeting strategy to disrupt the PRNP gene in bovine fibroblast cells and produce BSE-resistant cattle by somatic cell nuclear transfer (SCNT). However, the enrichment efficiency of the gene targeting vector was low. Here, we constructed a novel promoterless gene targeting vector to sequentially disrupt the PRNP gene in bovine fibroblast cells and generate gene targeted cattle by SCNT. The enrichment efficiency of the novel vector was 100% and 60%, respectively. After nuclear transfer, no significant difference was found in the rate of cleavage and blastocyst formation between the knockout and wild type cloned embryos. One PRNP⁺/⁻ calf was born with no obvious abnormal development by now. Fusion RT-PCR and real-time PCR showed one allele of the PRNP gene was functionally disrupted, and the mRNA expression reduced dramatically in the PRNP⁺/⁻ cattle. The reconstituted PRNP⁻/⁻ embryos showed double alleles disruption, and no difference in the rate of cleavage and blastocyst formation.
Collapse
Affiliation(s)
- Shaohua Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Boverhof DR, Chamberlain MP, Elcombe CR, Gonzalez FJ, Heflich RH, Hernández LG, Jacobs AC, Jacobson-Kram D, Luijten M, Maggi A, Manjanatha MG, Benthem JV, Gollapudi BB. Transgenic animal models in toxicology: historical perspectives and future outlook. Toxicol Sci 2011; 121:207-33. [PMID: 21447610 DOI: 10.1093/toxsci/kfr075] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transgenic animal models are powerful tools for developing a more detailed understanding on the roles of specific genes in biological pathways and systems. Applications of these models have been made within the field of toxicology, most notably for the screening of mutagenic and carcinogenic potential and for the characterization of toxic mechanisms of action. It has long been a goal of research toxicologists to use the data from these models to refine hazard identification and characterization to better inform human health risk assessments. This review provides an overview on the applications of transgenic animal models in the assessment of mutagenicity and carcinogenicity, their use as reporter systems, and as tools for understanding the roles of xenobiotic-metabolizing enzymes and biological receptors in the etiology of chemical toxicity. Perspectives are also shared on the future outlook for these models in toxicology and risk assessment and how transgenic technologies are likely to be an integral tool for toxicity testing in the 21st century.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Delacôte F, Perez C, Guyot V, Mikonio C, Potrel P, Cabaniols JP, Delenda C, Pâques F, Duchateau P. Identification of genes regulating gene targeting by a high-throughput screening approach. J Nucleic Acids 2011; 2011:947212. [PMID: 21716659 PMCID: PMC3118287 DOI: 10.4061/2011/947212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/23/2011] [Indexed: 12/29/2022] Open
Abstract
Homologous gene targeting (HGT) is a precise but inefficient process for genome engineering. Several methods for increasing its efficiency have been developed, including the use of rare cutting endonucleases. However, there is still room for improvement, as even nuclease-induced HGT may vary in efficiency as a function of the nuclease, target site, and cell type considered. We have developed a high-throughput screening assay for the identification of factors stimulating meganuclease-induced HGT. We used this assay to explore a collection of siRNAs targeting 19,121 human genes. At the end of secondary screening, we had identified 64 genes for which knockdown affected nuclease-induced HGT. Two of the strongest candidates were characterized further. We showed that siRNAs directed against the ATF7IP gene, encoding a protein involved in chromatin remodeling, stimulated HGT by a factor of three to eight, at various loci and in different cell types. This method thus led to the identification of a number of genes, the manipulation of which might increase rates of targeted recombination.
Collapse
Affiliation(s)
- Fabien Delacôte
- Cellectis SA, 102 Avenue Gaston Roussel, 93340 Romainville Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Laible G, Alonso-González L. Gene targeting from laboratory to livestock: current status and emerging concepts. Biotechnol J 2009; 4:1278-92. [PMID: 19606430 DOI: 10.1002/biot.200900006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of methods for cell-mediated transgenesis, based on somatic cell nuclear transfer, provides a tremendous opportunity to shape the genetic make-up of livestock animals in a much more directed approach than traditional animal breeding and selection schemes. Progress in the site-directed modulation of livestock genomes is currently limited by the low efficiencies of gene targeting imposed by the low frequency of homologous recombination and limited proliferative capacity of primary somatic cells that are used to produce transgenic animals. Here we review the current state of the art in the field, discuss the crucial aspects of the methodology and provide an overview of emerging approaches to increase the efficiency of gene targeting in somatic cells.
Collapse
Affiliation(s)
- Götz Laible
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand.
| | | |
Collapse
|
13
|
Yamane-Ohnuki N, Satoh M. Production of therapeutic antibodies with controlled fucosylation. MAbs 2009; 1:230-6. [PMID: 20065644 DOI: 10.4161/mabs.1.3.8328] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The clinical success of therapeutic antibodies is demonstrated by the number of antibody therapeutics that have been brought to market and the increasing number of therapeutic antibodies in development. Recombinant antibodies are molecular-targeted therapeutic agents and represent a major new class of drugs. However, it is still very important to optimize and maximize the clinical efficacy of therapeutic antibodies, in part to help lower the cost of therapeutic antibodies by potentially reducing the dose or the duration of treatment. Clinical trials using therapeutic antibodies fully lacking core fucose residue in the Fc oligosaccharides are currently underway, and their remarkable physiological activities in humans in vivo have attracted attention as next-generation therapeutic antibody approaches with improved efficacy. Thus, an industrially applicable antibody production process that provides consistent yields of fully non-fucosylated antibody therapeutics with fixed quality has become a key goal in the successful development of next-generation therapeutic agents. In this article, we review the current technologies for production of therapeutic antibodies with control of fucosylation of the Fc N-glycans.
Collapse
Affiliation(s)
- Naoko Yamane-Ohnuki
- Antibody Research Laboratories, Research Division, Kyowa Hakko Kirin Co., Ltd., Machida-shi, Tokyo, Japan
| | | |
Collapse
|
14
|
Construction of targeting vector for expressing human GDNF in cattle mammary gland. Appl Biochem Biotechnol 2009; 159:718-27. [PMID: 19194670 DOI: 10.1007/s12010-009-8545-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a type of neurotrophic factor with significant potential in treatment of Parkinson's disease. Combining gene targeting of animal somatic cells with nuclear transfer technique has provided a powerful method to produce transgenic animal mammary gland bioreactor. The aim of this study was to construct a gene-targeting vector for the human gdnf gene knockin at the bovine beta-casein gene locus so that human GDNF protein can be produced in the mammary gland of the gene-targeted bovine. The constructed vector contains the 2.2 kb 5' homologous arm and the 5.7 kb 3' homologous arm. The human gdnf cDNA was located at the downstream of the 5' homologous arm. The neo gene placed between the 5' and 3' homologous arms as positive selection marker gene. The HSV-tk gene and DsRed2 gene were located outside the homologous recombinant area as negative selection marker genes, respectively. The recombinant plasmids were identified by restriction fragment analysis and partial DNA sequencing. The results show that the structure of the final constructed vector accords with the designed plasmid map. In order to analyze the bioactivity of the vector, the plasmid DNA was transfected into human mammary tumor cell line Bcap-37 by lipofectamine. Reverse transcription polymerase chain reaction and Western-blotting analysis showed that the transfected cells produced human GDNF mRNA and protein. The results show that the constructed targeting vector pNRTCNbG has bioactivity to efficiently express GDNF in mammary gland cells. At the same time, it is first time to confirm that human mammary tumor cell line Bcap-37 is valid for bioactivity analysis of mammary gland specific expression vector.
Collapse
|
15
|
Barr AR, Zyss D, Gergely F. Knock-in and knock-out: the use of reverse genetics in somatic cells to dissect mitotic pathways. Methods Mol Biol 2009; 545:1-19. [PMID: 19475379 DOI: 10.1007/978-1-60327-993-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reverse genetic methods, such as homologous gene targeting, have greatly contributed to our understanding of molecular pathways in mitosis, especially in yeast. The chicken B-lymphocyte line, DT40, represents a unique example among vertebrate somatic cells where homologous gene targeting occurs at very high frequency. DT40 cells therefore provide a useful and accessible somatic genetic system for wide-ranging biochemical and cell biological assays. In this chapter, we describe the main principles of homologous gene targeting, the concept of targeting construct design and the detailed experimental protocol of how to achieve successful knockouts. We also mention methods for conditional disruption of essential genes and conclude with specific procedures for the study of mitosis in DT40 cells.
Collapse
Affiliation(s)
- Alexis R Barr
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
16
|
Berdougo E, Terret ME, Jallepalli PV. Functional dissection of mitotic regulators through gene targeting in human somatic cells. Methods Mol Biol 2009; 545:21-37. [PMID: 19475380 DOI: 10.1007/978-1-60327-993-2_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
With the human genome fully sequenced (1, 2), biologists continue to face the challenging task of evaluating the function of each of the approximately 25,000 genes contained within it. Gene targeting in human cells provides a powerful and unique experimental tool in this regard (3-8). Although somewhat more involved than RNAi or pharmacological approaches, somatic cell gene targeting is a precise technique that avoids both incomplete knockdown and off-target effects, but is still much quicker than analogous manipulations in the mouse. Moreover, immortal knockout cell lines provide excellent platforms for both complementation analysis and biochemical purification of multiprotein complexes in native form. Here we present a detailed gene-targeting protocol that was recently applied to the mitotic regulator Polo-like kinase 1 (Plk1) (9).
Collapse
Affiliation(s)
- Eli Berdougo
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
17
|
Hogan C, Simons S, Zhang H, Burdick D. Living with Irresolute Cell Lines in an Automated World. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.jala.2008.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An automated cell-culture platform becomes the nucleus of an organization performing cell-based research. However, every cell-based project placed on the system brings unique challenges. With each cell line comes millions of years of evolutionary encumbrance and a genetic inclination driving unique phenotypic peculiarities. In vivo, diverse eukaryotic cells rely on their “mammalian host” for survival. An automated system must perform in vitro, the myriad actions needed to sustain multiple cell lines as well, hence becoming an “automated host.” Cells invariably, will endeavor to do as they please. Molding these cells into the operational bounds of a man-made system requires insight into the relationship between cell and machine. Citing our own experiences, we will describe herein the use of the SelecT automated cell-culture platform (The Automation Partnership, Hertfordshire, England) in our discovery and preclinical profiling programs at Novartis. Achieving the balance between cells and the automated environment, and accommodating variable cell dynamics are discussed.
Collapse
Affiliation(s)
| | - Sarah Simons
- Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Haiyan Zhang
- Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Debra Burdick
- Novartis Institutes for Biomedical Research, Cambridge, MA
| |
Collapse
|
18
|
Abstract
Chinese hamster ovary (CHO) cells are the most common host cells and are widely used in the manufacture of approved recombinant therapeutics. They represent a major new class of universal hosts in biopharmaceutical production. However, there remains room for improvement to create more ideal host cells that can add greater value to therapeutic recombinant proteins at reduced production cost. A promising approach to this goal is biallelic gene knockout in CHO cells, as it is the most reliable and effective means to permanent phenotypic change, owing to the complete removal of gene function. In this chapter, we describe a biallelic gene knockout process in CHO cells, as exemplified by the successful targeted disruption of both FUT8 alleles encoding alpha-1,6-fucosyltransferase gene in CHO/DG44 cells. Wild-type alleles are sequentially disrupted by homologous recombination using two targeting vectors to generate homozygous disruptants, and the drug-resistance gene cassettes remaining on the alleles are removed by a Cre/loxP recombination system so as not to leave the extraphenotype except for the functional loss of the gene of interest.
Collapse
|
19
|
Waldman T, Lee C, Nishanian TG, Kim JS. Human somatic cell gene targeting. ACTA ACUST UNITED AC 2008; Chapter 9:Unit 9.15. [PMID: 18265333 DOI: 10.1002/0471142727.mb0915s62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human somatic cell gene targeting provides a powerful tool to scientists studying gene function in cultured human cells. This technology allows scientists to knock out genes in human somatic cells in a fashion analogous to the creation of knockout mice. Human somatic cell gene targeting brings the power of genetics to the study of human genes in human cells by making it possible to compare cells or individuals that are genetically identical except for a single, well-defined mutation in an endogenous gene. These modified cells can be studied both in vitro and in vivo. This unit presents protocols for human somatic cell gene targeting.
Collapse
Affiliation(s)
- Todd Waldman
- Georgetown University School of Medicine, Washington, D.C, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
|
22
|
Marques MM, Thomson AJ, McCreath KJ, McWhir J. Conventional gene targeting protocols lead to loss of targeted cells when applied to a silent gene locus in primary fibroblasts. J Biotechnol 2006; 125:185-93. [PMID: 16621085 DOI: 10.1016/j.jbiotec.2006.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/03/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Gene targeting in livestock fibroblasts has proven difficult to achieve, particularly if the target gene is silent. We first tested whether efficient gene targeting at the transcriptionally active ovine alpha1(I) procollagen (COL1A1) locus required the use of a promoter trap vector. We compared gene targeting frequencies at the ovine COL1A1 locus using both a promoter trap and a non-promoter trap selection strategy. We demonstrated that targeted cells could be isolated regardless of whether an enrichment step (promoter trap) was used. Next, we used our optimised protocol to target a non-expressed gene, ovine beta-casein. We obtained clones that were scored positive by PCR for the targeting event, but were negative after cell expansion and Southern analysis. We propose that targeted cells were initially generated but that they were at a selective growth disadvantage during culture. We suggest modifications to the conventional targeting protocol that would prevent such loss of targeted cells.
Collapse
Affiliation(s)
- Margarita M Marques
- Instituto de Desarrollo Ganadero, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | |
Collapse
|
23
|
Endo M, Osakabe K, Ichikawa H, Toki S. Molecular Characterization of True and Ectopic Gene Targeting Events at the Acetolactate Synthase Gene in Arabidopsis. ACTA ACUST UNITED AC 2006; 47:372-9. [PMID: 16418231 DOI: 10.1093/pcp/pcj003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Precise modification of plant genomes via gene targeting (GT) is important for the study of gene function in vivo. A reliable GT system using the protoporphyrinogen oxidase (PPO) gene in Arabidopsis was reported 4 years ago; however, there are no subsequent successful reports of GT in Arabidopsis. A previous study showed ectopic gene targeting (EGT) of the endogenous gene in two-thirds of GT plants, which was an obstacle to efficient true gene targeting (TGT). The endogenous acetolactate synthase (ALS) gene is involved in the biosynthesis of branched chain amino acids in plants and is the site of action of several herbicides. To confirm the generality of the GT system in Arabidopsis, and to characterize the EGT event in plants in detail, we converted ALS from a herbicide (imazapyr)-susceptible to a -resistant form by GT. We obtained two imazapyr-resistant plants following GT. One of the targeting events was TGT while the other was EGT. After detailed Southern blotting, PCR and nucleotide sequence analysis of the EGT plant, we determined the genomic position and structure of the ectopically targeted site. Based on our findings, we discuss the possible mechanisms of EGT in plants.
Collapse
Affiliation(s)
- Masaki Endo
- Department of Plant Biotechnology, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
24
|
Clark AJ, Burl S, Denning C. Genetic modification of sheep by nuclear transfer with gene-targeted somatic cells. Methods Mol Biol 2006; 348:199-212. [PMID: 16988381 DOI: 10.1007/978-1-59745-154-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For many years the lack of germline competent embryonic stem cell lines in livestock meant that the targeted modification of endogenous genes was not possible in these species. The demonstration that livestock could be cloned by nuclear transfer from cultured somatic cells has now provided an alternative route to accomplish gene targeting. This chapter describes protocols for culturing primary sheep fibroblasts, introducing and selecting targeted modifications into them and then using these modified cells in nuclear transfer experiments.
Collapse
|
25
|
Sorrell DA, Kolb AF. Targeted modification of mammalian genomes. Biotechnol Adv 2005; 23:431-69. [PMID: 15925473 DOI: 10.1016/j.biotechadv.2005.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 12/22/2022]
Abstract
The stable and site-specific modification of mammalian genomes has a variety of applications in biomedicine and biotechnology. Here we outline two alternative approaches that can be employed to achieve this goal: homologous recombination (HR) or site-specific recombination. Homologous recombination relies on sequence similarity (or rather identity) of a piece of DNA that is introduced into a host cell and the host genome. In most cell types, the frequency of homologous recombination is markedly lower than the frequency of random integration. Especially in somatic cells, homologous recombination is an extremely rare event. However, recent strategies involving the introduction of DNA double-strand breaks, triplex forming oligonucleotides or adeno-associated virus can increase the frequency of homologous recombination. Site-specific recombination makes use of enzymes (recombinases, transposases, integrases), which catalyse DNA strand exchange between DNA molecules that have only limited sequence homology. The recognition sites of site-specific recombinases (e.g. Cre, Flp or PhiC31 integrase) are usually 30-50 bp. In contrast, retroviral integrases only require a specific dinucleotide sequence to insert the viral cDNA into the host genome. Depending on the individual enzyme, there are either innumerable or very few potential target sites for a particular integrase/recombinase in a mammalian genome. A number of strategies have been utilised successfully to alter the site-specificity of recombinases. Therefore, site-specific recombinases provide an attractive tool for the targeted modification of mammalian genomes.
Collapse
Affiliation(s)
- David A Sorrell
- Molecular Recognition Group, Hannah Research Institute, Ayr, KA6 5HL, UK
| | | |
Collapse
|
26
|
Irvine DV, Shaw ML, Choo KHA, Saffery R. Engineering chromosomes for delivery of therapeutic genes. Trends Biotechnol 2005; 23:575-83. [PMID: 16242803 DOI: 10.1016/j.tibtech.2005.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/03/2005] [Accepted: 10/06/2005] [Indexed: 02/02/2023]
Abstract
The ability to create fully functional human chromosome vectors represents a potentially exciting gene-delivery system for the correction of human genetic disorders with several advantages over viral delivery systems. However, for the full potential of chromosome-based gene-delivery vectors to be realized, several key obstacles must be overcome. Methods must be developed to insert therapeutic genes reliably and efficiently and to enable the stable transfer of the resulting chromosomal vectors to different therapeutic cell types. Research to achieve these outcomes continues to encounter major challenges; however recent developments have reiterated the potential of chromosome-based vectors for therapeutic gene delivery. Here we review the different strategies under development and discuss the advantages and problems associated with each.
Collapse
Affiliation(s)
- Danielle V Irvine
- Chromosome Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Department of Paediatrics, University of Melbourne, Flemington Road, Parkville 3052, Australia
| | | | | | | |
Collapse
|
27
|
Topaloglu O, Hurley PJ, Yildirim O, Civin CI, Bunz F. Improved methods for the generation of human gene knockout and knockin cell lines. Nucleic Acids Res 2005; 33:e158. [PMID: 16214806 PMCID: PMC1255732 DOI: 10.1093/nar/gni160] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/26/2005] [Accepted: 09/26/2005] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated the utility of recombinant adeno-associated viral (rAAV) vectors in the generation of human knockout cell lines. The efficiency with which such cell lines can be generated using rAAV, in comparison with more extensively described plasmid-based approaches, has not been directly tested. In this report, we demonstrate that targeting constructs delivered by rAAV vectors were nearly 25-fold more efficient than transfected plasmids that target the same exon. In addition, we describe a novel vector configuration which we term the synthetic exon promoter trap (SEPT). This targeting element further improved the efficiency of knockout generation and uniquely facilitated the generation of knockin alterations. An rAAV-based SEPT targeting construct was used to transfer a mutant CTNNB1 allele, encoding an oncogenic form of beta-catenin, from one cell line to another. This versatile method was thus shown to facilitate the efficient integration of small, defined sequence alterations into the chromosomes of cultured human cells.
Collapse
Affiliation(s)
- Ozlem Topaloglu
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
- Department of Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
| | - Paula J. Hurley
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
- Department of Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
| | - Ozlem Yildirim
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
- Department of Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
| | - Curt I. Civin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
- Department of Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of MedicineBaltimore, MD 21231, USA
| | - Fred Bunz
- To whom correspondence should be addressed. Tel: +1 410 502 7941; Fax: +1 410 502 2821;
| |
Collapse
|
28
|
Liu X, Liu M, Hua S, Lu W, Xue Z, Liang D, Cai F, Pan Q, Long Z, Wu L, Dai H, Xia K, Xia J. Expression of reconstructive hFVIII in the hrDNA by using hrDNA targeting vector. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/bf03182670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Sautter K, Enenkel B. Selection of high-producing CHO cells using NPT selection marker with reduced enzyme activity. Biotechnol Bioeng 2005; 89:530-8. [PMID: 15669091 DOI: 10.1002/bit.20374] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We developed an expression system that aimed to increase the proportion of high producers in a transfected cell population in order to reduce the effort in clone screening. The principle is based on the impairment of the selection marker. Twelve single-point mutations in more or less conserved domains of the resistance marker gene neomycin-phosphotransferase (NPT) resulted in different degrees of reduced enzyme activity, depending on the amino acid conservation and the kind of amino acid exchange. In all transfected, mutant-NPT bearing CHO-DG44 cell pools surviving the selection with G418, the ratio of high-producing cells to total cell number was higher than in pools selected with wildtype-NPT. Furthermore, these pools showed, in comparison to wildtype-NPT selected pools, not only higher NPT-RNA levels but also increased specific productivities and higher titers of a coexpressed biopharmaceutically relevant product. Elevated productivity could be ascribed to higher gene copy numbers, integration into chromatin regions with higher transcriptional activity, or a combination of both effects. Thus, the use of NPT-mutants as selection markers is suitable for the enrichment of high producers in a transfected CHO-DG44 cell population, since cell survival is achieved only if the enzymatic impairment of the cointegrated resistance marker is compensated by a higher expression level.
Collapse
Affiliation(s)
- Kerstin Sautter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, D-88397 Biberach/Riss, Germany
| | | |
Collapse
|
30
|
Feederle R, Delecluse HJ, Rouault JP, Schepers A, Hammerschmidt W. Efficient somatic gene targeting in the lymphoid human cell line DG75. Gene 2004; 343:91-7. [PMID: 15563834 DOI: 10.1016/j.gene.2004.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 08/09/2004] [Indexed: 11/21/2022]
Abstract
Among the different approaches used to define the function of a protein of interest, alteration and/or deletion of its encoding gene is the most direct strategy. Homologous recombination between the chromosomal gene locus and an appropriately designed targeting vector results in an alteration or knockout of the gene of interest. Homologous recombination is easily performed in yeast or in murine embryonic stem cells, but is cumbersome in more differentiated and diploid somatic cell lines. Here we describe an efficient method for targeting both alleles of a complex human gene locus in DG75 cells, a cell line of lymphoid origin. The experimental approach included a conditional knockout strategy with three genotypic markers, which greatly facilitated the generation and phenotypic identification of targeted recombinant cells. The vector was designed such that it could be reused for two consecutive rounds of recombination to target both alleles. The human DG75 cell line appears similar to the chicken DT40 pre B-cell line, which supports efficient homologous recombination. Therefore, the DG75 cell line is a favorable addition to the limited number of cell lines amenable to gene targeting and should prove useful for studying gene function through targeted gene alteration or deletion in human somatic cells.
Collapse
Affiliation(s)
- Regina Feederle
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Marchioninistr. 25, Munich D-81377, Germany
| | | | | | | | | |
Collapse
|
31
|
Norgren RB. Creation of non-human primate neurogenetic disease models by gene targeting and nuclear transfer. Reprod Biol Endocrinol 2004; 2:40. [PMID: 15200671 PMCID: PMC455690 DOI: 10.1186/1477-7827-2-40] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 06/16/2004] [Indexed: 12/02/2022] Open
Abstract
Genetically modified rhesus macaques are necessary because mouse models are not suitable for a number of important neurogenetic disorders; for example, Kallmann's syndrome, Lesch-Nyhan's disease and Ataxia-Telangiectasia. Mouse models may not be suitable because there may be no mouse ortholog of the human gene of interest, as is the case for Kallmann's syndrome, or because mutant mice do not exhibit the same phenotype observed in humans, as is the the case for Lesch-Nyhan's disease and Ataxia-Telangiectasia. Non-human primate models of neurogenetic diseases are expected to more closely resemble human diseases than existing mouse models. Genetically modified rhesus macaques can be created by modifying the genome of a somatic cell and then transferring the nucleus from this cell to an enucleated oocyte. Random integration of a transgene is sufficient to create models of gain-of-function genetic diseases. Stable expression of green fluorescent protein has been achieved in rhesus macaque fibroblasts. However, gene targeting is necessary to create models of loss-of-function genetic diseases. Several technical challenges must be overcome before null mutant non-human primates can be produced. In our experience, fetal fibroblasts frequently become senescent before selection procedures can be completed. We have overcome this problem by transfecting somatic cells with human telomerase reverse transcriptase. This enzyme extends the telomeres, and lifespan, of somatic cells. Long and accurate polymerase chain reaction can be used to obtain sufficient regions of homology of isogenic rhesus genomic DNA for targeting constructs. This should improve gene targeting efficiency. Gene targeting experiments are currently underway. Null mutant rhesus macaques will likely result in breakthrough advances in the understanding of neurogenetic disease and prove invaluable for preclinical trials of new therapies.
Collapse
Affiliation(s)
- Robert B Norgren
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
32
|
Mir B, Piedrahita JA. Nuclear localization signal and cell synchrony enhance gene targeting efficiency in primary fetal fibroblasts. Nucleic Acids Res 2004; 32:e25. [PMID: 14960709 PMCID: PMC373419 DOI: 10.1093/nar/gnh023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of primary somatic cells in nuclear transfer procedure has opened a new opportunity to manipulate domestic animal genomes via homologous recombination. To date, while a few loci have been targeted in somatic cells using similar enrichment strategies as those used in mouse ES cells, there have been problems of low efficiency, mixed targeted and non-targeted cells within a colony and difficulties in cloning the cell after targeting. Utilizing the hypoxanthine guanine phosphoribosyl transferase (HPRT) as a test locus, it was determined that while no targeted colonies were identified using a conventional targeting construct, an average of 1 per million targeted cells were identified when a nuclear localization signal (nls) was added to the construct. When the nls was combined with cell synchronization using a thymidine block, targeting efficiency increased 7-fold. Moreover, the number of random integrants decreased by over 54-fold resulting in a 1:3 targeted to random integration ratio. This method should facilitate the application of homologous recombination to primary somatic cells.
Collapse
Affiliation(s)
- Bashir Mir
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 620 Hutton Street, Raleigh, NC 27606, USA
| | | |
Collapse
|
33
|
Kohli M, Rago C, Lengauer C, Kinzler KW, Vogelstein B. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res 2004; 32:e3. [PMID: 14704360 PMCID: PMC373311 DOI: 10.1093/nar/gnh009] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 11/04/2003] [Accepted: 11/19/2003] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that recombinant adeno-associated viral (rAAV) vectors can be used for specific gene targeting in human somatic cells. We have developed an rAAV vector construction procedure employing fusion PCR and a single cloning step that considerably simplifies the knockout process. We demonstrate its utility by disrupting genes at specific positions within human colon cancer cells as well as within immortalized normal epithelial cells. This technology should be broadly applicable to in vitro studies that require the manipulation of the human genome.
Collapse
Affiliation(s)
- Manu Kohli
- The Howard Hughes Medical Institute, The Sidney Kimmel Comprehensive Cancer Center, and The Cellular and Molecular Medicine Program, The Johns Hopkins University Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
34
|
Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M. Establishment ofFUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 2004; 87:614-22. [PMID: 15352059 DOI: 10.1002/bit.20151] [Citation(s) in RCA: 403] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To generate industrially applicable new host cell lines for antibody production with optimizing antibody-dependent cellular cytotoxicity (ADCC) we disrupted both FUT8 alleles in a Chinese hamster ovary (CHO)/DG44 cell line by sequential homologous recombination. FUT8 encodes an alpha-1,6-fucosyltransferase that catalyzes the transfer of fucose from GDP-fucose to N-acetylglucosamine (GlcNAc) in an alpha-1,6 linkage. FUT8(-/-) cell lines have morphology and growth kinetics similar to those of the parent, and produce completely defucosylated recombinant antibodies. FUT8(-/-)-produced chimeric anti-CD20 IgG1 shows the same level of antigen-binding activity and complement-dependent cytotoxicity (CDC) as the FUT8(+/+)-produced, comparable antibody, Rituxan. In contrast, FUT8(-/-)-produced anti-CD20 IgG1 strongly binds to human Fcgamma-receptor IIIa (FcgammaRIIIa) and dramatically enhances ADCC to approximately 100-fold that of Rituxan. Our results demonstrate that FUT8(-/-) cells are ideal host cell lines to stably produce completely defucosylated high-ADCC antibodies with fixed quality and efficacy for therapeutic use.
Collapse
Affiliation(s)
- Naoko Yamane-Ohnuki
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rogatcheva MB, Rund LA, Beever JE, Schook LB. Harvesting the Genomic Promise: Recombineering Sequences for Phenotypes. Anim Biotechnol 2003; 14:103-18. [PMID: 14703070 DOI: 10.1081/abio-120026481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The past decade has witnessed the construction of linkage and physical maps defining quantitative trait loci (QTL) in various domesticated species. Targeted chromosomal regions are being further characterized through the construction of bacterial artificial chromosome (BAC) contigs in order to isolate and characterize genes contributing towards phenotypic variation. Whole-genome BAC contigs are also being constructed that will serve as the tiling path for genomic sequencing. Harvesting this genetic information for biological gain requires either genetic selection or the production of genetically modified animals. This later approach when coupled with nuclear transfer technology (NT) provides "clones" of genetically modified animals. However, to date, the production of genetically modified animals has been limited to either microinjection of small gene constructs into embryos with random insertion or complex gene constructs designed to knock-out targeted gene expression. Neither of these approaches provides for introducing directed genetic manipulation allowing for allelic substitution [knock-in], subsequent analyses of gene expression, and cloning. An alternative approach utilizing genomic sequence information and recombineering to direct gene targeting of specific porcine BACs is presented here.
Collapse
|
36
|
Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003; 278:45382-90. [PMID: 12958312 DOI: 10.1074/jbc.m306708200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CD40 function is initiated by tumor necrosis factor (TNF) receptor-associated factor (TRAF) adapter proteins, which play important roles in signaling by numerous receptors. Characterizing roles of individual TRAFs has been hampered by limitations of available experimental models and the poor viability of most TRAF-deficient mice. Here, B cell lines made deficient in TRAF2 using a novel homologous recombination system reveal new roles for TRAF2. We demonstrate that TRAF2 participates in synergy between CD40 and B cell antigen receptor signals, and in CD40-mediated, TNF-dependent IgM production. We also find that TRAF2 participates in the degradation of TRAF3 associated with CD40 signaling, a role that may limit inhibitory actions of TRAF3. Finally, we show that TRAF2 and TRAF6 have overlapping functions in CD40-mediated NF-kappaB activation and CD80 up-regulation. These findings demonstrate previously unappreciated roles for TRAF2 in signaling by TNF receptor family members, using an approach that facilitates the analysis of genes critical to the viability of whole organisms.
Collapse
Affiliation(s)
- Bruce S Hostager
- Department of Pediatrics, Interdisciplinary Program in Immunology, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
37
|
Wang B, Zhou J. Specific genetic modifications of domestic animals by gene targeting and animal cloning. Reprod Biol Endocrinol 2003; 1:103. [PMID: 14614774 PMCID: PMC305327 DOI: 10.1186/1477-7827-1-103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 11/13/2003] [Indexed: 11/10/2022] Open
Abstract
The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.
Collapse
Affiliation(s)
- Bin Wang
- Nexia Biotechnologies Inc., 1000, Ave. St-Charles, Vaudreuil Dorion, Quebec, Canada, J7V 8P5
| | - Jiangfeng Zhou
- Neumain Inc., 170B, Ronald Drive, Montreal West, Quebec, Canada, H4X 1M8
| |
Collapse
|
38
|
Williams SH, Sahota V, Palmai-Pallag T, Tebbutt SJ, Walker J, Harris A. Evaluation of gene targeting by homologous recombination in ovine somatic cells. Mol Reprod Dev 2003; 66:115-25. [PMID: 12950098 DOI: 10.1002/mrd.10340] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mouse models for some human genetic diseases are limited in their applications since they do not accurately reproduce the phenotype of the human disease. It has been suggested that larger animals, for example sheep, might produce more useful models, as some aspects of sheep physiology and anatomy are more similar to those of humans. The development of methods to clone animals from somatic cells provides a potential novel route to generate such large animal models following gene targeting. Here, we assess targeting of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in ovine somatic cells using homologous recombination (HR) of targeting constructs with extensive (>11 kb) homology. Electroporation of these constructs into ovine fetal and post-natal fibroblasts generated G418-resistant clones, but none analyzed had undergone HR, suggesting that at least for this locus, it is an extremely inefficient process. Karyotyping of targeted ovine fetal fibroblasts showed them to be less chromosomally stable than post-natal fibroblasts, and, moreover, extended culture periods caused them to senesce, adversely affecting their viability for use as nuclear transfer donor cells. These data stress the importance of donor cell choice in somatic cell cloning and suggest that culture time be kept to a minimum prior to nuclear transfer in order to maximize cell viability.
Collapse
Affiliation(s)
- Sarah H Williams
- Paediatric Molecular Genetics, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Hudson DF, Morrison C, Ruchaud S, Earnshaw WC. Reverse genetics of essential genes in tissue-culture cells: 'dead cells talking'. Trends Cell Biol 2002; 12:281-7. [PMID: 12074888 DOI: 10.1016/s0962-8924(02)02281-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the 'post-genomic' era, cDNA and genomic sequences are now available that encode huge numbers of proteins. Assigning functions to these proteins is a daunting task. Cell biologists have traditionally approached this problem by disrupting protein function with dominant-negative or structural mutants. Here, we describe several alternative approaches whereby cells or cell lines lacking particular gene products can be generated from genomic sequences for use in functional studies. These include gene targeting in mouse, human and chicken DT40 cells, and recent advances in double-stranded RNA-mediated interference (RNAi).
Collapse
Affiliation(s)
- Damien F Hudson
- Wellcome Trust Centre for Cell Biology, ICMB, Swann Building, University of Edinburgh, UK
| | | | | | | |
Collapse
|
40
|
Abstract
One of the most productive areas of biologic research has been the utilization of model organisms for the systematic study of gene function. Although the experimental manipulation of these model genetic systems has provided important insights into the function of homologous genes in humans, such studies are necessarily limited by the need to extrapolate among divergent species and cell types. Researchers have now begun to apply the technology of gene targeting to human cell lines. Recently, studies of human cell knockouts have yielded important new information about how the cell cycle is regulated and how this regulation can go awry in cancer cells. The targeting of human genes promises to be a powerful tool in the characterization of the molecular pathways relevant to cancer.
Collapse
Affiliation(s)
- Fred Bunz
- Radiobiology Program, Johns Hopkins Oncology Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
41
|
Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J. Gene targeting in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:671-7. [PMID: 11851913 DOI: 10.1046/j.1365-313x.2001.01183.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Precise modification by gene targeting (GT) provides an important tool for studies of gene function in vivo. Although routine with many organisms, only isolated examples of GT events have been reported for flowering plants. These were at low frequencies precluding reliable estimation of targeting efficiency and evaluation of GT mechanisms. Here we present an unambiguous and straightforward system for detection of GT events in Arabidopsis using an endogenous nuclear gene encoding protoporphyrinogen oxidase (PPO), involved in chlorophyll and heme syntheses. Inhibition of PPO by the herbicide Butafenacil results in rapid plant death. However, the combination of two particular mutations renders PPO highly resistant to Butafenacil. We exploited this feature for selection of GT events by introducing the mutations into the PPO gene by homologous recombination. We have estimated the basal GT frequency to be 2.4 x 10(-3). Approximately one-third of events were true GT (TGT) leading to the anticipated modification of the chromosomal PPO copy. The remaining events could be classified as ectopic GT (EGT) arising by modification of vector DNA by the chromosomal template and its random integration into the Arabidopsis genome. Thus the TGT frequency in our experimental setup is 0.72 x 10(-3). In view of the high efficiency of Arabidopsis transformation, GT experiments of a reasonable size followed by a PCR screen for GT events should also allow for modification of non-selectable targets. Moreover, the system presented here should contribute significantly to future improvement of GT technology in plants.
Collapse
Affiliation(s)
- M Hanin
- Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
42
|
Ghiselli G, Eichstetter I, Iozzo RV. A role for the perlecan protein core in the activation of the keratinocyte growth factor receptor. Biochem J 2001; 359:153-63. [PMID: 11563979 PMCID: PMC1222131 DOI: 10.1042/0264-6021:3590153] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perlecan, a widespread heparan sulphate (HS) proteoglycan, is directly involved in the storing of angiogenic growth factors, mostly members of the fibroblast growth factor (FGF) gene family. We have previously shown that antisense targeting of the perlecan gene causes a reduced growth and responsiveness to FGF7 [also known as keratinocyte growth factor (KGF)] in human cancer cells, and that the perlecan protein core interacts specifically with FGF7. In the present paper, we have investigated human colon carcinoma cells in which the perlecan gene was disrupted by targeted homologous recombination. After screening over 1000 clones, we obtained two clones heterozygous for the null mutation with no detectable perlecan, indicating that the other allele was non-functioning. The perlecan-deficient cells grew more slowly, did not respond to FGF7 with or without the addition of heparin, and were less tumorigenic than control cells. Paradoxically, the perlecan-deficient cells displayed increased FGF7 surface binding. However, the perlecan protein core was required for functional activation of the KGF receptor and downstream signalling. Because heparin could not substitute for perlecan, the HS chains are not critical for FGF7-mediated signalling in this cell system. These results provide the first genetic evidence that the perlecan protein core is a molecular entity implicated in FGF7 binding and activation of its receptor.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cell Division/drug effects
- Colonic Neoplasms/metabolism
- DNA, Antisense/pharmacology
- Fibrinolytic Agents/pharmacology
- Fibroblast Growth Factor 1/metabolism
- Fibroblast Growth Factor 7
- Fibroblast Growth Factors/metabolism
- Gene Targeting
- Heparan Sulfate Proteoglycans/physiology
- Heparin/pharmacology
- Humans
- Mice
- Mice, Nude
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Protein Binding
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction
- Transplantation, Heterologous
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- G Ghiselli
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
43
|
Eggleston P, Zhao Y. Gene targeting in mosquito cells: a demonstration of 'knockout' technology in extrachromosomal gene arrays. BMC Genet 2001; 2:11. [PMID: 11513755 PMCID: PMC37536 DOI: 10.1186/1471-2156-2-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Accepted: 07/31/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene targeting would offer a number of advantages over current transposon-based strategies for insect transformation. These include freedom from both position effects associated with quasi-random integration and concerns over transgene instability mediated by endogenous transposases, independence from phylogenetic restrictions on transposon mobility and the ability to generate gene knockouts. RESULTS We describe here our initial investigations of gene targeting in the mosquito. The target site was a hygromycin resistance gene, stably maintained as part of an extrachromosomal array. Using a promoter-trap strategy to enrich for targeted events, a neomycin resistance gene was integrated into the target site. This resulted in knockout of hygromycin resistance concurrent with the expression of high levels of neomycin resistance from the resident promoter. PCR amplification of the targeted site generated a product that was specific to the targeted cell line and consistent with precise integration of the neomycin resistance gene into the 5' end of the hygromycin resistance gene. Sequencing of the PCR product and Southern analysis of cellular DNA subsequently confirmed this molecular structure. CONCLUSIONS These experiments provide the first demonstration of gene targeting in mosquito tissue and show that mosquito cells possess the necessary machinery to bring about precise integration of exogenous sequences through homologous recombination. Further development of these procedures and their extension to chromosomally located targets hold much promise for the exploitation of gene targeting in a wide range of medically and economically important insect species.
Collapse
Affiliation(s)
- Paul Eggleston
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Yuguang Zhao
- Current address: Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| |
Collapse
|
44
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
45
|
Datta HJ, Chan PP, Vasquez KM, Gupta RC, Glazer PM. Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51. J Biol Chem 2001; 276:18018-23. [PMID: 11278954 DOI: 10.1074/jbc.m011646200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triple helix-forming oligonucleotides (TFOs) can bind to polypurine/polypyrimidine regions in DNA in a sequence-specific manner. Triple helix formation has been shown to stimulate recombination in mammalian cells in both episomal and chromosomal targets containing direct repeat sequences. Bifunctional oligonucleotides consisting of a recombination donor domain tethered to a TFO domain were found to mediate site-specific recombination in an intracellular SV40 vector target. To elucidate the mechanism of triplex-induced recombination, we have examined the ability of intermolecular triplexes to provoke recombination within plasmid substrates in human cell-free extracts. An assay for reversion of a point mutation in the supFG1 gene in the plasmid pSupFG1/G144C was established in which recombination in the extracts was detected upon transformation into indicator bacteria. A bifunctional oligonucleotide containing a 30-nucleotide TFO domain linked to a 40-nucleotide donor domain was found to mediate gene correction in vitro at a frequency of 46 x 10(-)5, at least 20-fold above background and over 4-fold greater than the donor segment alone. Physical linkage of the TFO to the donor was unnecessary, as co-mixture of separate TFO and donor segments also yielded elevated gene correction frequencies. When the recombination and repair proteins HsRad51 and XPA were depleted from the extracts using specific antibodies, the triplex-induced recombination was diminished, but was either partially or completely restored upon supplementation with the purified HsRad51 or XPA proteins, respectively. These results establish that triplex-induced, intermolecular recombination between plasmid targets and short fragments of homologous DNA can be detected in human cell extracts and that this process is dependent on both XPA and HsRad51.
Collapse
Affiliation(s)
- H J Datta
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Until recently genetically modified livestock could only be generated by pronuclear injection. The discovery that animals can be cloned by nuclear transfer from cultured somatic cells means that it will now be possible to achieve gene targeting in these species. We discuss current developments in NT, the prospects and technical challenges for introducing targeted changes into the germline by this route, and the types of application for which this new technology will be used.
Collapse
|
47
|
|
48
|
Luo Z, Macris MA, Faruqi AF, Glazer PM. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proc Natl Acad Sci U S A 2000; 97:9003-8. [PMID: 10900269 PMCID: PMC16811 DOI: 10.1073/pnas.160004997] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To test the ability of triple helix-forming oligonucleotides (TFOs) to promote recombination within chromosomal sites in mammalian cells, a mouse LTK(-) cell line was established carrying two mutant copies of the herpes simplex virus thymidine kinase (TK) gene as direct repeats in a single chromosomal locus. Recombination between these repeats can produce a functional TK gene and occurs at a spontaneous frequency of 4 x 10(-6) under standard culture conditions. When cells were microinjected with TFOs designed to bind to a 30-bp polypurine site situated between the two TK genes, recombination was observed at frequencies in the range of 1%, 2,500-fold above the background. Recombination was induced efficiently by injection of both psoralen-conjugated TFOs (followed by long-wave UVA light; 1. 2%) and unconjugated TFOs alone (1.0%). Control oligomers of scrambled sequence but identical base composition were ineffective, and no TFO-induced recombination was seen in a control LTK(-) cell line carrying an otherwise identical dual TK gene construct lacking the 30-bp polypurine target site. TFOs transfected with cationic lipids also induced recombinants in a highly sequence-specific manner but were less effective, with induced recombination frequencies of 6- to 7-fold over background. Examination of the TFO-induced recombinants by genomic Southern blotting revealed gene conversion events in which both TK genes were retained, but either the upstream (57%) or the downstream gene (43%) was corrected to wild type. These results suggest that, with efficient intracellular delivery, TFOs may be effective tools to promote site-specific recombination and targeted modification of chromosomal loci.
Collapse
Affiliation(s)
- Z Luo
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Microinjection of DNA constructs into pronuclei of zygotes has been the method of choice for the generation of transgenic livestock. However, this procedure is characterized by low efficiency (1-4% transgenic offspring), random integration and variable expression of the transgene as well as a considerable proportion of mosaicism. Furthermore, it is extremely time consuming and costly. As a consequence, commercial application has focused on the production of recombinant proteins in the mammary gland of transgenic animals and xenotransplantation, e.g. the use of porcine organs in human organ transplantation. In addition, transgenic pigs carrying a modified porcine growth hormone (hMt-pGH) construct show significant improvements in economically important traits without adverse side effects of a GH overproduction. Improvements of transgenic technology will likely come from the generation of appropriate cell lines suitable for transfection or even homologous recombination and their subsequent use in nuclear transfer. Additionally, in the mouse a number of sophisticated molecular tools have been developed that allow precise modifications of the genome. These include the application of artificial chromosomes from yeast (YAC) or bacteria (BAC) for position-independent and copy-number-dependent expression of a transgene, the Tet-system (tetracycline inducible) for a tight temporal control of transgene expression, as well as conditional mutagenesis by applying site-specific DNA recombinases (e.g. Cre, FLP). The successful adaptation of these molecular tools to livestock will enable the fulfillment of many of the promises originally thought to be achievable when transgenic livestock were first reported.
Collapse
Affiliation(s)
- H Niemann
- Department of Biotechnology, Institut für Tierzucht und Tierverhalten (FAL), Mariensee, Neustadt, Germany.
| | | |
Collapse
|
50
|
Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 2000; 20:990-1000. [PMID: 10629056 PMCID: PMC85216 DOI: 10.1128/mcb.20.3.990-1000.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to stimulate recombination in a site-specific manner in mammalian cells may provide a useful tool for gene knockout and a valuable strategy for gene therapy. We previously demonstrated that psoralen adducts targeted by triple-helix-forming oligonucleotides (TFOs) could induce recombination between tandem repeats of a supF reporter gene in a simian virus 40 vector in monkey COS cells. Based on work showing that triple helices, even in the absence of associated psoralen adducts, are able to provoke DNA repair and cause mutations, we asked whether intermolecular triplexes could stimulate recombination. Here, we report that triple-helix formation itself is capable of promoting recombination and that this effect is dependent on a functional nucleotide excision repair (NER) pathway. Transfection of COS cells carrying the dual supF vector with a purine-rich TFO, AG30, designed to bind as a third strand to a region between the two mutant supF genes yielded recombinants at a frequency of 0.37%, fivefold above background, whereas a scrambled sequence control oligomer was ineffective. In human cells deficient in the NER factor XPA, the ability of AG30 to induce recombination was eliminated, but it was restored in a corrected subline expressing the XPA cDNA. In comparison, the ability of triplex-directed psoralen cross-links to induce recombination was only partially reduced in XPA-deficient cells, suggesting that NER is not the only pathway that can metabolize targeted psoralen photoadducts into recombinagenic intermediates. Interestingly, the triplex-induced recombination was unaffected in cells deficient in DNA mismatch repair, challenging our previous model of a heteroduplex intermediate and supporting a model based on end joining. This work demonstrates that oligonucleotide-mediated triplex formation can be recombinagenic, providing the basis for a potential strategy to direct genome modification by using high-affinity DNA binding ligands.
Collapse
Affiliation(s)
- A F Faruqi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | |
Collapse
|