1
|
Guichardaz M, Bottini S, Balmas E, Bertero A. Overcoming the Silencing of Doxycycline-Inducible Promoters in hiPSC-derived Cardiomyocytes. OPEN RESEARCH EUROPE 2024; 4:266. [PMID: 39926351 PMCID: PMC11803382 DOI: 10.12688/openreseurope.19024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/11/2025]
Abstract
Background Human induced pluripotent stem cells (hiPSCs) are pivotal for studying human development, modeling diseases, and advancing regenerative medicine. Effective control of transgene expression is crucial to achieve temporal and quantitative precision in all of these contexts. The doxycycline (dox)-inducible OPTi-OX system, which integrates the Tet-On 3G transactivator and dox-responsive transgene at the hROSA26 and AAVS1 genomic safe harbors (GSHs), respectively, offers a promising solution. Yet, transgene silencing, particularly in hiPSC-derived cardiomyocytes (hiPSC-CMs), limits its utility. Methods To address this, we evaluated strategies to enhance dox-inducible transgene expression. We compared two promoters, TRE3VG and T11, for activity and stability, and investigated the addition of a Ubiquitous Chromatin Opening Element (UCOE) to reduce silencing. We also tested relocating the transgene cassette to the CLYBL GSH, and employed sodium butyrate (SB), a histone deacetylase inhibitor, to restore promoter activity. Transgene expression was assessed via flow cytometry and real-time quantitative PCR. Results TRE3VG exhibited higher activity than T11, but both were prone to silencing. UCOE did not enhance promoter activity in hiPSCs, but modestly reduced silencing in hiPSC-CMs. Targeting the CLYBL locus improved promoter activity compared to AAVS1 in both hiPSCs and hiPSC-CMs. SB restored activity in silenced inducible promoters within hiPSC-CMs, but compromised hiPSC viability. Unexpectedly, Tet-On 3G was silenced in some clones and could not be reactivated by SB. Conclusions These findings underscore the need for integrating multiple strategies, including careful GSH selection, improved cassette design, epigenetic modulation, and clone screening, to develop robust dox-inducible systems that retain functionality during hiPSC differentiation.
Collapse
Affiliation(s)
- Michelle Guichardaz
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| |
Collapse
|
2
|
Hasegawa Y, Struhl K. Promoter-specific dynamics of TATA-binding protein association with the human genome. Genome Res 2019; 29:1939-1950. [PMID: 31732535 PMCID: PMC6886507 DOI: 10.1101/gr.254466.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Transcription factor binding to target sites in vivo is a dynamic process that involves cycles of association and dissociation, with individual proteins differing in their binding dynamics. The dynamics at individual sites on a genomic scale have been investigated in yeast cells, but comparable experiments have not been done in multicellular eukaryotes. Here, we describe a tamoxifen-inducible, time-course ChIP-seq approach to measure transcription factor binding dynamics at target sites throughout the human genome. As observed in yeast cells, the TATA-binding protein (TBP) typically displays rapid turnover at RNA polymerase (Pol) II-transcribed promoters, slow turnover at Pol III promoters, and very slow turnover at the Pol I promoter. Turnover rates vary widely among Pol II promoters in a manner that does not correlate with the level of TBP occupancy. Human Pol II promoters with slow TBP dissociation preferentially contain a TATA consensus motif, support high transcriptional activity of downstream genes, and are linked with specific activators and chromatin remodelers. These properties of human promoters with slow TBP turnover differ from those of yeast promoters with slow turnover. These observations suggest that TBP binding dynamics differentially affect promoter function and gene expression, possibly at the level of transcriptional reinitiation/bursting.
Collapse
Affiliation(s)
- Yuko Hasegawa
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription. Mol Cell Biol 2014; 34:2929-43. [PMID: 24865972 DOI: 10.1128/mcb.01685-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription.
Collapse
|
4
|
Loew R, Heinz N, Hampf M, Bujard H, Gossen M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol 2010; 10:81. [PMID: 21106052 PMCID: PMC3002914 DOI: 10.1186/1472-6750-10-81] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/24/2010] [Indexed: 11/10/2022] Open
Abstract
Background The performance of the tetracycline controlled transcriptional activation system (Tet system) depends critically on the choice of minimal promoters. They are indispensable to warrant low expression levels with the system turned "off". On the other hand, they must support high level of gene expression in the "on"-state. Results In this study, we systematically modified the widely used Cytomegalovirus (CMV) minimal promoter to further minimize background expression, resulting in an improved dynamic expression range. Using both plasmid-based and retroviral gene delivery, our analysis revealed that especially background expression levels could be significantly reduced when compared to previously established "standard" promoter designs. Our results also demonstrate the possibility to fine-tune expression levels in non-clonal cell populations. They also imply differences regarding the requirements for tight regulation and high level induction between transient and stable gene transfer systems. Conclusions Until now, our understanding of mammalian transcriptional regulation including promoter architecture is limited. Nevertheless, the partly empirical modification of cis-elements as shown in this study can lead to the specific improvement of the performance of minimal promoters. The novel composite Ptet promoters introduced here will further expand the utility of the Tet system.
Collapse
|
5
|
Montiel Molina HM, Millán-Pacheco C, Pastor N, del Rio G. Computer-based screening of functional conformers of proteins. PLoS Comput Biol 2008; 4:e1000009. [PMID: 18463705 PMCID: PMC2265533 DOI: 10.1371/journal.pcbi.1000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/24/2008] [Indexed: 12/23/2022] Open
Abstract
A long-standing goal in biology is to establish the link between function, structure, and dynamics of proteins. Considering that protein function at the molecular level is understood by the ability of proteins to bind to other molecules, the limited structural data of proteins in association with other bio-molecules represents a major hurdle to understanding protein function at the structural level. Recent reports show that protein function can be linked to protein structure and dynamics through network centrality analysis, suggesting that the structures of proteins bound to natural ligands may be inferred computationally. In the present work, a new method is described to discriminate protein conformations relevant to the specific recognition of a ligand. The method relies on a scoring system that matches critical residues with central residues in different structures of a given protein. Central residues are the most traversed residues with the same frequency in networks derived from protein structures. We tested our method in a set of 24 different proteins and more than 260,000 structures of these in the absence of a ligand or bound to it. To illustrate the usefulness of our method in the study of the structure/dynamics/function relationship of proteins, we analyzed mutants of the yeast TATA-binding protein with impaired DNA binding. Our results indicate that critical residues for an interaction are preferentially found as central residues of protein structures in complex with a ligand. Thus, our scoring system effectively distinguishes protein conformations relevant to the function of interest. Proteins participate in most of the doings of the cells through a variety of interactions. There is an intimate relationship between the function of a protein and its three-dimensional structure, but understanding this relationship remains an unsolved problem, in part due to the limited information on protein structures bound to other biological molecules. On the other hand, thousands of protein structures in the unbound or free form, are made public every year and these differ from those of the bound structures. How to predict the protein structure in the bound form may assist researchers in understanding the structure/function relationship. Here we report that protein structures bound to other molecules tend to present, as central amino acids, those that are critical for binding other molecules. This feature allowed us to identify the protein structures known to be involved in protein interactions from a screening of thousands of structures derived from the free form.
Collapse
Affiliation(s)
- Héctor Marlosti Montiel Molina
- Departamento de Bioquímica, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - César Millán-Pacheco
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Morelos, Mexico
| | - Nina Pastor
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Morelos, Mexico
| | - Gabriel del Rio
- Departamento de Bioquímica, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
6
|
Kasahara K, Ki S, Aoyama K, Takahashi H, Kokubo T. Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II. Nucleic Acids Res 2008; 36:1343-57. [PMID: 18187511 PMCID: PMC2275077 DOI: 10.1093/nar/gkm1068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Saccharomyces cerevisiae HMO1, a high mobility group B (HMGB) protein, associates with the rRNA locus and with the promoters of many ribosomal protein genes (RPGs). Here, the Sos recruitment system was used to show that HMO1 interacts with TBP and the N-terminal domain (TAND) of TAF1, which are integral components of TFIID. Biochemical studies revealed that HMO1 copurifies with TFIID and directly interacts with TBP but not with TAND. Deletion of HMO1 (Δhmo1) causes a severe cold-sensitive growth defect and decreases transcription of some TAND-dependent genes. Δhmo1 also affects TFIID occupancy at some RPG promoters in a promoter-specific manner. Interestingly, over-expression of HMO1 delays colony formation of taf1 mutants lacking TAND (taf1ΔTAND), but not of the wild-type strain, indicating a functional link between HMO1 and TAND. Furthermore, Δhmo1 exhibits synthetic growth defects in some spt15 (TBP) and toa1 (TFIIA) mutants while it rescues growth defects of some sua7 (TFIIB) mutants. Importantly, Δhmo1 causes an upstream shift in transcriptional start sites of RPS5, RPS16A, RPL23B, RPL27B and RPL32, but not of RPS31, RPL10, TEF2 and ADH1, indicating that HMO1 may participate in start site selection of a subset of class II genes presumably via its interaction with TFIID.
Collapse
Affiliation(s)
- Koji Kasahara
- Division of Molecular and Cellular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, 230-0045, Japan
| | | | | | | | | |
Collapse
|
7
|
Larschan E, Winston F. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol Cell Biol 2005; 25:114-23. [PMID: 15601835 PMCID: PMC538787 DOI: 10.1128/mcb.25.1.114-123.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase) complex functions as a coactivator during Gal4-activated transcription. A functional interaction between the SAGA component Spt3 and TATA-binding protein (TBP) is important for TBP binding at Gal4-activated promoters. To better understand the role of SAGA and other factors in Gal4-activated transcription, we selected for suppressors that bypass the requirement for SAGA. We obtained eight complementation groups and identified the genes corresponding to three of the groups as NHP10, HDA1, and SRB9. In contrast to the srb9 suppressor mutation that we identified, an srb9Delta mutation causes a strong defect in Gal4-activated transcription. Our studies have focused on this requirement for Srb9. Srb9 is part of the Srb8-Srb11 complex, associated with the Mediator coactivator. Srb8-Srb11 contains the Srb10 kinase, whose activity is important for GAL1 transcription. Our data suggest that Srb8-Srb11, including Srb10 kinase activity, is directly involved in Gal4 activation. By chromatin immunoprecipitation studies, Srb9 is present at the GAL1 promoter upon induction and facilitates the recruitment or stable association of TBP. Furthermore, the association of Srb9 with the GAL1 upstream activation sequence requires SAGA and specifically Spt3. Finally, Srb9 association also requires TBP. These results suggest that Srb8-Srb11 associates with the GAL1 promoter subsequent to SAGA binding, and that the binding of TBP and Srb8-Srb11 is interdependent.
Collapse
Affiliation(s)
- Erica Larschan
- Department of Genetics, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
8
|
Eriksson P, Biswas D, Yu Y, Stewart JM, Stillman DJ. TATA-binding protein mutants that are lethal in the absence of the Nhp6 high-mobility-group protein. Mol Cell Biol 2004; 24:6419-29. [PMID: 15226442 PMCID: PMC434259 DOI: 10.1128/mcb.24.14.6419-6429.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Nhp6 protein is related to the high-mobility-group B family of architectural DNA-binding proteins that bind DNA nonspecifically but bend DNA sharply. Nhp6 is involved in transcriptional activation by both RNA polymerase II (Pol II) and Pol III. Our previous genetic studies have implicated Nhp6 in facilitating TATA-binding protein (TBP) binding to some Pol II promoters in vivo, and we have used a novel genetic screen to isolate 32 new mutations in TBP that are viable in wild-type cells but lethal in the absence of Nhp6. The TBP mutations that are lethal in the absence of Nhp6 cluster in three regions: on the upper surface of TBP that may have a regulatory role, near residues that contact Spt3, or near residues known to contact either TFIIA or Brf1 (in TFIIIB). The latter set of mutations suggests that Nhp6 becomes essential when a TBP mutant compromises its ability to interact with either TFIIA or Brf1. Importantly, the synthetic lethality for some of the TBP mutations is suppressed by a multicopy plasmid with SNR6 or by an spt3 mutation. It has been previously shown that nhp6ab mutants are defective in expressing SNR6, a Pol III-transcribed gene encoding the U6 splicing RNA. Chromatin immunoprecipitation experiments show that TBP binding to SNR6 is reduced in an nhp6ab mutant. Nhp6 interacts with Spt16/Pob3, the yeast equivalent of the FACT elongation complex, consistent with nhp6ab cells being extremely sensitive to 6-azauracil (6-AU). However, this 6-AU sensitivity can be suppressed by multicopy SNR6 or BRF1. Additionally, strains with SNR6 promoter mutations are sensitive to 6-AU, suggesting that decreased SNR6 RNA levels contribute to 6-AU sensitivity. These results challenge the widely held belief that 6-AU sensitivity results from a defect in transcriptional elongation.
Collapse
Affiliation(s)
- Peter Eriksson
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
9
|
Nedialkov YA, Triezenberg SJ. Quantitative assessment of in vitro interactions implicates TATA-binding protein as a target of the VP16C transcriptional activation region. Arch Biochem Biophys 2004; 425:77-86. [PMID: 15081896 DOI: 10.1016/j.abb.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Revised: 03/02/2004] [Indexed: 11/18/2022]
Abstract
Models of mechanisms of transcriptional activation in eukaryotes frequently invoke direct interactions of transcriptional activation domains with target proteins including general transcription factors or coactivators such as chromatin modifying complexes. The potent transcriptional activation domain (AD) of the VP16 protein of herpes simplex virus has previously been shown to interact with several general transcription factors including the TATA-binding protein (TBP), TBP-associated factor 9 (TAF9), TFIIA, and TFIIB. In surface plasmon resonance assays, a module of the VP16 AD designated VP16C (residues 452-490) bound to TBP with an affinity notably stronger than to TAF9, TFIIA or TFIIB. Moreover, the interaction of VP16C with TBP correlated well with transcriptional activity for a panel of VP16C substitution variants. These results support models in which the interactions of ADs with TBP play an important role in transcriptional activation.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
10
|
Kou H, Irvin JD, Huisinga KL, Mitra M, Pugh BF. Structural and functional analysis of mutations along the crystallographic dimer interface of the yeast TATA binding protein. Mol Cell Biol 2003; 23:3186-201. [PMID: 12697819 PMCID: PMC153203 DOI: 10.1128/mcb.23.9.3186-3201.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The TATA binding protein (TBP) is a central component of the eukaryotic transcription machinery and is subjected to both positive and negative regulation. As is evident from structural and functional studies, TBP's concave DNA binding surface is inhibited by a number of potential mechanisms, including homodimerization and binding to the TAND domain of the TFIID subunit TAF1 (yTAF(II)145/130). Here we further characterized these interactions by creating mutations at 24 amino acids within the Saccharomyces cerevisiae TBP crystallographic dimer interface. These mutants are impaired for dimerization, TAF1 TAND binding, and TATA binding to an extent that is consistent with the crystal or nuclear magnetic resonance structure of these or related interactions. In vivo, these mutants displayed a variety of phenotypes, the severity of which correlated with relative dimer instability in vitro. The phenotypes included a low steady-state level of the mutant TBP, transcriptional derepression, dominant slow growth (partial toxicity), and synthetic toxicity in combination with a deletion of the TAF1 TAND domain. These phenotypes cannot be accounted for by defective interactions with other known TBP inhibitors and likely reflect defects in TBP dimerization.
Collapse
Affiliation(s)
- Haiping Kou
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16803, USA
| | | | | | | | | |
Collapse
|
11
|
Ohdate H, Lim CR, Kokubo T, Matsubara K, Kimata Y, Kohno K. Impairment of the DNA binding activity of the TATA-binding protein renders the transcriptional function of Rvb2p/Tih2p, the yeast RuvB-like protein, essential for cell growth. J Biol Chem 2003; 278:14647-56. [PMID: 12576485 DOI: 10.1074/jbc.m213220200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In Saccharomyces cerevisiae, two highly conserved proteins, Rvb1p/Tih1p and Rvb2p/Tih2p, have been demonstrated to be major components of the chromatin-remodeling INO80 complex. The mammalian orthologues of these two proteins have been shown to physically associate with the TATA-binding protein (TBP) in vitro but not clearly in vivo. Here we show that yeast proteins interact with TBP under both conditions. To assess the functional importance of these interactions, we examined the effect of mutating both TIH2/RVB2 and SPT15, which encodes TBP, on yeast cell growth. Intriguingly, only those spt15 mutations that affected the ability of TBP to bind to the TATA box caused synthetic growth defects in a tih2-ts160 background. This suggests that Tih2p might be important in recruiting TBP to the promoter. A DNA microarray technique was used to identify genes differentially expressed in the tih2-ts160 strain grown at the restrictive temperature. Only 34 genes were significantly and reproducibly affected; some up-regulated and others down-regulated. We compared the transcription of several of these Tih2p target genes in both wild type and various mutant backgrounds. We found that the transcription of some genes depends on functions possessed by both Tih2p and TBP and that these functions are substantially impaired in the spt15/tih2-ts160 double mutants that confer synthetic growth defects.
Collapse
Affiliation(s)
- Hidezumi Ohdate
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Fischbeck JA, Kraemer SM, Stargell LA. SPN1, a conserved gene identified by suppression of a postrecruitment-defective yeast TATA-binding protein mutant. Genetics 2002; 162:1605-16. [PMID: 12524336 PMCID: PMC1462358 DOI: 10.1093/genetics/162.4.1605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about TATA-binding protein (TBP) functions after recruitment to the TATA element, although several TBP mutants display postrecruitment defects. Here we describe a genetic screen for suppressors of a postrecruitment-defective TBP allele. Suppression was achieved by a single point mutation in a previously uncharacterized Saccharomyces cerevisiae gene, SPN1 (suppresses postrecruitment functions gene number 1). SPN1 is an essential yeast gene that is highly conserved throughout evolution. The suppressing mutation in SPN1 substitutes an asparagine for an invariant lysine at position 192 (spn1(K192N)). The spn1(K192N) strain is able to suppress additional alleles of TBP that possess postrecruitment defects, but not a TBP allele that is postrecruitment competent. In addition, Spn1p does not stably associate with TFIID in vivo. Cells containing the spn1(K192N) allele exhibit a temperature-sensitive phenotype and some defects in activated transcription, whereas constitutive transcription appears relatively robust in the mutant background. Consistent with an important role in postrecruitment functions, transcription from the CYC1 promoter, which has been shown to be regulated by postrecruitment mechanisms, is enhanced in spn1(K192N) cells. Moreover, we find that SPN1 is a member of the SPT gene family, further supporting a functional requirement for the SPN1 gene product in transcriptional processes.
Collapse
Affiliation(s)
- Julie A Fischbeck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
13
|
Spencer JV, Arndt KM. A TATA binding protein mutant with increased affinity for DNA directs transcription from a reversed TATA sequence in vivo. Mol Cell Biol 2002; 22:8744-55. [PMID: 12446791 PMCID: PMC139874 DOI: 10.1128/mcb.22.24.8744-8755.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.
Collapse
Affiliation(s)
- J Vaughn Spencer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
14
|
Mencía M, Moqtaderi Z, Geisberg JV, Kuras L, Struhl K. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol Cell 2002; 9:823-33. [PMID: 11983173 DOI: 10.1016/s1097-2765(02)00490-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In yeast, TFIID strongly associates with nearly all ribosomal protein (RP) promoters, but a TAF-independent form of TBP preferentially associates with other active promoters. RP promoters are regulated in response to growth stimuli, in most cases by a Rap1-containing activator. This Rap1-dependent activator is necessary and sufficient for TFIID recruitment, whereas other activators do not efficiently recruit TFIID. TAFs are recruited to RP promoters even when TBP and other general transcription factors are not associated, suggesting that TFIID recruitment involves a direct activator-TAF interaction. Most RP promoters lack canonical TATA elements, and they are preferentially activated by the Rap1-containing activator. These results demonstrate activator-specific recruitment of TFIID in vivo, and they suggest that TFIID recruitment is important for coordinate expression of RP genes.
Collapse
Affiliation(s)
- Mario Mencía
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
15
|
Virbasius CM, Holstege FC, Young RA, Green MR. Promoter-specific activation defects by a novel yeast TBP mutant compromised for TFIIB interaction. Curr Biol 2001; 11:1794-8. [PMID: 11719223 DOI: 10.1016/s0960-9822(01)00566-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TFIIB is an RNA polymerase II general transcription factor (GTF) that has also been implicated in the mechanism of action of certain promoter-specific activators (see, for examples, [1-11]). TFIIB enters the preinitiation complex (PIC) primarily through contact with the TATA box binding protein (TBP), an interaction mediated by three TBP residues [12-14]. To study the role of TFIIB in transcription activation in vivo, we randomly mutagenized these three residues in yeast TBP and screened for promoter-specific activation mutants. One mutant bearing a single conservative substitution, TBP-E186D, is the focus of this study. As expected, TBP-E186D binds normally to the TATA box but fails to support the entry of TFIIB into the PIC. Cells expressing TBP-E186D are viable but have a severe slow-growth phenotype. Whole-genome expression analysis indicates that transcription of 17% of yeast genes are compromised by this mutation. Chimeric promoter analysis indicates that the region of the gene that confers sensitivity to the TBP-E186D mutation is the UAS (upstream activating sequence), which contains the activator binding sites. Most interestingly, other TBP mutants that interfere with different interactions (TFIIB, TFIIA, or the TATA box) and a TFIIB mutant defective for interaction with TBP all manifest distinct and selective promoter-specific activation defects. Our results implicate the entry of TFIIB into the PIC as a critical step in the activation of certain promoters and reveal diverse mechanisms of transcription activation.
Collapse
Affiliation(s)
- C M Virbasius
- Howard Hughes Medical Institute, Programs in Gene Function and Expression, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
16
|
Lee M, Struhl K. Multiple functions of the nonconserved N-terminal domain of yeast TATA-binding protein. Genetics 2001; 158:87-93. [PMID: 11333220 PMCID: PMC1461640 DOI: 10.1093/genetics/158.1.87] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The TATA-binding protein (TBP) is composed of a highly conserved core domain sufficient for TATA-element binding and preinitiation complex formation as well as a highly divergent N-terminal region that is dispensable for yeast cell viability. In vitro, removal of the N-terminal region domain enhances TBP-TATA association and TBP dimerization. Here, we examine the effects of truncation of the N-terminal region in the context of yeast TBP mutants with specific defects in DNA binding and in interactions with various proteins. For a subset of mutations that disrupt DNA binding and the response to transcriptional activators, removal of the N-terminal domain rescues their transcriptional defects. By contrast, deletion of the N-terminal region is lethal in combination with mutations on a limited surface of TBP. Although this surface is important for interactions with TFIIA and Brf1, TBP interactions with these two factors do not appear to be responsible for this dependence on the N-terminal region. Our results suggest that the N-terminal region of TBP has at least two distinct functions in vivo. It inhibits the interaction of TBP with TATA elements, and it acts positively in combination with a specific region of the TBP core domain that presumably interacts with another protein(s).
Collapse
Affiliation(s)
- M Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
Kobayashi A, Miyake T, Ohyama Y, Kawaichi M, Kokubo T. Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae. J Biol Chem 2001; 276:395-405. [PMID: 11035037 DOI: 10.1074/jbc.m008208200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID, which is composed of the TATA box-binding protein (TBP) and a set of TBP-associated factors (TAFs), is crucial for both basal and regulated transcription by RNA polymerase II. The N-terminal small segment of yeast TAF145 (yTAF145) binds to TBP and thereby inhibits TBP function. To understand the physiological role of this inhibitory domain, which is designated as TAND (TAF N-terminal domain), we screened mutations, synthetically lethal with the TAF145 gene lacking TAND (taf145 Delta TAND), in Saccharomyces cerevisiae by exploiting a red/white colony-sectoring assay. Our screen yielded several recessive nsl (Delta TAND synthetic lethal) mutations, two of which, nsl1-1 and nsl1-2, define the same complementation group. The NSL1 gene was found to be identical to the SPT15 gene encoding TBP. Interestingly, both temperature-sensitive nsl1/spt15 alleles, which harbor the single amino acid substitutions, S118L and P65S, respectively, were defective in transcriptional activation in vivo. Several other previously characterized activation-deficient spt15 alleles also displayed synthetic lethal interactions with taf145 Delta TAND, indicating that TAND and TBP carry an overlapping but as yet unidentified function that is specifically required for transcriptional regulation.
Collapse
Affiliation(s)
- A Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
18
|
Stargell LA, Moqtaderi Z, Dorris DR, Ogg RC, Struhl K. TFIIA has activator-dependent and core promoter functions in vivo. J Biol Chem 2000; 275:12374-80. [PMID: 10777519 DOI: 10.1074/jbc.275.17.12374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The physiological role of TFIIA was investigated by analyzing transcription in a yeast strain that contains a TATA-binding protein (TBP) mutant (N2-1) defective for interacting with TFIIA. In cells containing N2-1, transcription from a set of artificial his3 promoters dependent on different activators is generally reduced by a similar extent, indicating that TFIIA function is largely nonselective for activators. In addition, TATA element utilization, a core promoter function, is altered at his3 promoters dependent on weak activators. Genomic expression analysis reveals that 3% of the genes are preferentially affected by a factor of 4 or more. Chimeras of affected promoters indicate that the sensitivity to the TFIIA-TBP interaction can map either to the upstream or core promoter region. Unlike wild-type TBP or TFIIA, the N2-1 derivative does not activate transcription when artificially recruited to the promoter via a heterologous DNA binding domain, indicating that TFIIA is important for transcription even in the absence of an activation domain. Taken together, these results suggest that TFIIA plays an important role in both activator-dependent and core promoter functions in vivo. Further, they suggest that TFIIA function may not be strictly related to the recruitment of TBP to promoters but may also involve a step after TBP recruitment.
Collapse
Affiliation(s)
- L A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
19
|
Geisberg JV, Struhl K. TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo. Mol Cell Biol 2000; 20:1478-88. [PMID: 10669725 PMCID: PMC85312 DOI: 10.1128/mcb.20.5.1478-1488.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Using a genetic screen, we isolated three TATA-binding protein (TBP) mutants that increase transcription from promoters that are repressed by the Cyc8-Tup1 or Sin3-Rpd3 corepressors or that lack an enhancer element, but not from an equivalently weak promoter with a mutated TATA element. Increased transcription is observed when the TBP mutants are expressed at low levels in the presence of wild-type TBP. These TBP mutants are unable to support cell viability, and they are toxic in strains lacking Rpd3 histone deacetylase or when expressed at higher levels. Although these mutants do not detectably bind TATA elements in vitro, genetic and chromatin immunoprecipitation experiments indicate that they act directly at promoters and do not increase transcription by titration of a negative regulatory factor(s). The TBP mutants are mildly defective for associating with promoters responding to moderate or strong activators; in addition, they are severely defective for RNA polymerase (Pol) III but not Pol I transcription. These results suggest that, with respect to Pol II transcription, the TBP mutants specifically increase expression from core promoters. Biochemical analysis indicates that the TBP mutants are unaffected for TFIID complex formation, dimerization, and interactions with either the general negative regulator NC2 or the N-terminal inhibitory domain of TAF130. We speculate that these TBP mutants have an unusual structure that allows them to preferentially access TATA elements in chromatin templates. These TBP mutants define a criterion by which promoters repressed by Cyc8-Tup1 or Sin3-Rpd3 resemble enhancerless, but not TATA-defective, promoters; hence, they support the idea that these corepressors inhibit the function of activator proteins rather than the Pol II machinery.
Collapse
Affiliation(s)
- J V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
20
|
Chou S, Chatterjee S, Lee M, Struhl K. Transcriptional activation in yeast cells lacking transcription factor IIA. Genetics 1999; 153:1573-81. [PMID: 10581267 PMCID: PMC1460864 DOI: 10.1093/genetics/153.4.1573] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.
Collapse
Affiliation(s)
- S Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
21
|
Liu Q, Gabriel SE, Roinick KL, Ward RD, Arndt KM. Analysis of TFIIA function In vivo: evidence for a role in TATA-binding protein recruitment and gene-specific activation. Mol Cell Biol 1999; 19:8673-85. [PMID: 10567590 PMCID: PMC85009 DOI: 10.1128/mcb.19.12.8673] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of transcription can occur by the facilitated recruitment of TFIID to promoters by gene-specific activators. To investigate the role of TFIIA in TFIID recruitment in vivo, we exploited a class of yeast TATA-binding protein (TBP) mutants that is activation and DNA binding defective. We found that co-overexpression of TOA1 and TOA2, the genes that encode yeast TFIIA, overcomes the activation defects caused by the TBP mutants. Using a genetic screen, we isolated a new class of TFIIA mutants and identified three regions on TFIIA that are likely to be involved in TBP recruitment or stabilization of the TBP-TATA complex in vivo. Amino acid replacements in only one of these regions enhance TFIIA-TBP-DNA complex formation in vitro, suggesting that the other regions are involved in regulatory interactions. To determine the relative importance of TFIIA in the regulation of different genes, we constructed yeast strains to conditionally deplete TFIIA levels prior to gene activation. While the activation of certain genes, such as INO1, was dramatically impaired by TFIIA depletion, activation of other genes, such as CUP1, was unaffected. These data suggest that TFIIA facilitates DNA binding by TBP in vivo, that TFIIA may be regulated by factors that target distinct regions of the protein, and that promoters vary significantly in the degree to which they require TFIIA for activation.
Collapse
Affiliation(s)
- Q Liu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
22
|
Struhl K, Kadosh D, Keaveney M, Kuras L, Moqtaderi Z. Activation and repression mechanisms in yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:413-21. [PMID: 10384306 DOI: 10.1101/sqb.1998.63.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- K Struhl
- Department Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Interaction of the poly(A) binding protein, Pab1p, with mRNA plays an important role in gene expression. This work describes an analysis of pab1 mutants in Saccharomyces cerevisiae. Yeast pab1 mutants were found to be sensitive to elevated concentrations of copper (Cu) and 3-aminotriazole (3-AT) in the growth medium. This phenotype arises because these pab1 mutants underaccumulate mRNA, including the CUP1 and HIS3 mRNAs, the products of which are required for Cu and 3-AT resistance, respectively. To determine the cause of the mRNA underaccumulation, mRNA turnover and production were examined in the pab1-53 mutant. It was found that although the pattern of mRNA decay was altered, and substantial decapping of polyadenylated mRNA could be detected, mRNA was not destabilized in this strain. It was also found that the pab1 mutant was impaired in the production of mRNA. These data show that the decreased level of mRNA in the pab1-53 mutant arises from poor production, and they suggest that yeast Pab1p is involved in an aspect of nuclear mRNA metabolism. They also indicate that deadenylation can be uncoupled from decapping without significant changes in an mRNA's stability, and that this uncoupling can be tolerated by yeast.
Collapse
Affiliation(s)
- J P Morrissey
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA
| | | | | | | |
Collapse
|
24
|
Jackson-Fisher AJ, Chitikila C, Mitra M, Pugh BF. A role for TBP dimerization in preventing unregulated gene expression. Mol Cell 1999; 3:717-27. [PMID: 10394360 DOI: 10.1016/s1097-2765(01)80004-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recruitment of the TATA box-binding protein (TBP) to promoters in vivo is often rate limiting in gene expression. We present evidence that TBP negatively autoregulates its accessibility to promoter DNA in yeast through dimerization. The crystal structure of TBP dimers was used to design point mutations in the dimer interface. These mutants are impaired for dimerization in vitro, and in vivo they generate large increases in activator-independent gene expression. Overexpression of wild-type TBP suppresses these mutants, possibly by heterodimerizing with them. In addition to loss of autorepression, dimerization-defective TBPs are rapidly degraded in vivo. Direct detection of TBP dimers in vivo was achieved through chemical cross-linking. Taken together, the data suggest that TBP dimerization prevents unregulated gene expression and its own degradation.
Collapse
Affiliation(s)
- A J Jackson-Fisher
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
25
|
Shirra MK, Arndt KM. Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae. Genetics 1999; 152:73-87. [PMID: 10224244 PMCID: PMC1460605 DOI: 10.1093/genetics/152.1.73] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Binding of the TATA-binding protein (TBP) to the promoter is a pivotal step in RNA polymerase II transcription. To identify factors that regulate TBP, we selected for suppressors of a TBP mutant that exhibits promoter-specific defects in activated transcription in vivo and severely reduced affinity for TATA boxes in vitro. Dominant mutations in SNF4 and recessive mutations in REG1, OPI1, and RTF2 were isolated that specifically suppress the inositol auxotrophy of the TBP mutant strains. OPI1 encodes a repressor of INO1 transcription. REG1 and SNF4 encode regulators of the Glc7 phosphatase and Snf1 kinase, respectively, and have well-studied roles in glucose repression. In two-hybrid assays, one SNF4 mutation enhances the interaction between Snf4 and Snf1. Suppression of the TBP mutant by our reg1 and SNF4 mutations appears unrelated to glucose repression, since these mutations do not alleviate repression of SUC2, and glucose levels have little effect on INO1 transcription. Moreover, mutations in TUP1, SSN6, and GLC7, but not HXK2 and MIG1, can cause suppression. Our data suggest that association of TBP with the TATA box may be regulated, directly or indirectly, by a substrate of Snf1. Analysis of INO1 transcription in various mutant strains suggests that this substrate is distinct from Opi1.
Collapse
Affiliation(s)
- M K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
26
|
Miyao T, Woychik NA. RNA polymerase subunit RPB5 plays a role in transcriptional activation. Proc Natl Acad Sci U S A 1998; 95:15281-6. [PMID: 9860960 PMCID: PMC28034 DOI: 10.1073/pnas.95.26.15281] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mutation in RPB5 (rpb5-9), an essential RNA polymerase subunit assembled into RNA polymerases I, II, and III, revealed a role for this subunit in transcriptional activation. Activation by GAL4-VP16 was impaired upon in vitro transcription with mutant whole-cell extracts. In vivo experiments using inducible reporter plasmids and Northern analysis support the in vitro data and demonstrate that RPB5 influences activation at some, but not all, promoters. Remarkably, this mutation maps to a conserved region of human RPB5 implicated by others to play a role in activation. Chimeric human-yeast RPB5 containing this conserved region now can function in place of its yeast counterpart. The defects noted with rpb5-9 are similar to those seen in truncation mutants of the RPB1-carboxyl terminal domain (CTD). We demonstrate that RPB5 and the RPB1-CTD have overlapping roles in activation because the double mutant is synthetically lethal and has exacerbated activation defects at the GAL1/10 promoter. These studies demonstrate that there are multiple activation targets in RNA polymerase II and that RPB5 and the CTD have similar roles in activation.
Collapse
Affiliation(s)
- T Miyao
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Molecular Genetics and Microbiology, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- S K Burley
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
28
|
Liu D, Ishima R, Tong KI, Bagby S, Kokubo T, Muhandiram DR, Kay LE, Nakatani Y, Ikura M. Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 1998; 94:573-83. [PMID: 9741622 DOI: 10.1016/s0092-8674(00)81599-8] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
General transcription factor TFIID consists of TATA box-binding protein (TBP) and TBP-associated factors (TAF(II)s), which together play a central role in both positive and negative regulation of transcription. The N-terminal region of the 230 kDa Drosophila TAF(II) (dTAF(II)230) binds directly to TBP and inhibits TBP binding to the TATA box. We report here the solution structure of the complex formed by dTAF(II)230 N-terminal region (residues 11-77) and TBP. dTAF(II)230(11-77) comprises three alpha helices and a beta hairpin, forming a core that occupies the concave DNA-binding surface of TBP. The TBP-binding surface of dTAF(II)230 markedly resembles the minor groove surface of the partially unwound TATA box in the TBP-TATA complex. This protein mimicry of the TATA element surface provides the structural basis of the mechanism by which dTAF(II)230 negatively controls the TATA box-binding activity within the TFIID complex.
Collapse
Affiliation(s)
- D Liu
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Denison C, Kodadek T. Small-molecule-based strategies for controlling gene expression. CHEMISTRY & BIOLOGY 1998; 5:R129-45. [PMID: 9653545 DOI: 10.1016/s1074-5521(98)90167-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A central goal in chemical biology is to gain control over biological pathways using small molecules, and the mRNA-synthesizing machinery is a particular important target. New advances in our understanding of transcriptional regulation suggests strategies to manipulate these pathways using small molecules.
Collapse
Affiliation(s)
- C Denison
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573, USA
| | | |
Collapse
|
30
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
31
|
Drysdale CM, Jackson BM, McVeigh R, Klebanow ER, Bai Y, Kokubo T, Swanson M, Nakatani Y, Weil PA, Hinnebusch AG. The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol Cell Biol 1998; 18:1711-24. [PMID: 9488488 PMCID: PMC108886 DOI: 10.1128/mcb.18.3.1711] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1997] [Accepted: 12/17/1997] [Indexed: 02/06/2023] Open
Abstract
The Gcn4p activation domain contains seven clusters of hydrophobic residues that make additive contributions to transcriptional activation in vivo. We observed efficient binding of a glutathione S-transferase (GST)-Gcn4p fusion protein to components of three different coactivator complexes in Saccharomyces cerevisiae cell extracts, including subunits of transcription factor IID (TFIID) (yeast TAFII20 [yTAFII20], yTAFII60, and yTAFII90), the holoenzyme mediator (Srb2p, Srb4p, and Srb7p), and the Adap-Gcn5p complex (Ada2p and Ada3p). The binding to these coactivator subunits was completely dependent on the hydrophobic clusters in the Gcn4p activation domain. Alanine substitutions in single clusters led to moderate reductions in binding, double-cluster substitutions generally led to greater reductions in binding than the corresponding single-cluster mutations, and mutations in four or more clusters reduced binding to all of the coactivator proteins to background levels. The additive effects of these mutations on binding of coactivator proteins correlated with their cumulative effects on transcriptional activation by Gcn4p in vivo, particularly with Ada3p, suggesting that recruitment of these coactivator complexes to the promoter is a cardinal function of the Gcn4p activation domain. As judged by immunoprecipitation analysis, components of the mediator were not associated with constituents of TFIID and Adap-Gcn5p in the extracts, implying that GST-Gcn4p interacted with the mediator independently of these other coactivators. Unexpectedly, a proportion of Ada2p coimmunoprecipitated with yTAFII90, and the yTAFII20, -60, and -90 proteins were coimmunoprecipitated with Ada3p, revealing a stable interaction between components of TFIID and the Adap-Gcn5p complex. Because GST-Gcn4p did not bind specifically to highly purified TFIID, Gcn4p may interact with TFIID via the Adap-Gcn5p complex or some other adapter proteins. The ability of Gcn4p to interact with several distinct coactivator complexes that are physically and genetically linked to TATA box-binding protein can provide an explanation for the observation that yTAFII proteins are dispensable for activation by Gcn4p in vivo.
Collapse
Affiliation(s)
- C M Drysdale
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kokubo T, Swanson MJ, Nishikawa JI, Hinnebusch AG, Nakatani Y. The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol Cell Biol 1998; 18:1003-12. [PMID: 9447997 PMCID: PMC108812 DOI: 10.1128/mcb.18.2.1003] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1996] [Accepted: 11/18/1997] [Indexed: 02/05/2023] Open
Abstract
The Drosophila 230-kDa TFIID subunit (dTAF230) interacts with the DNA binding domain of TATA box-binding protein (TBP) which exists in the same complex. Here, we characterize the inhibitory domain in the yeast TAF145 (yTAF145), which is homologous to dTAF230. Mutation studies show that the N-terminal inhibitory region (residues 10 to 71) can be divided into two subdomains, I (residues 10 to 37) and II (residues 46 to 71). Mutations in either subdomain significantly impair function. Acidic residues in subdomain II are important for the interaction with TBP. In addition, yTAF145 interaction is impaired by mutating the basic residues on the convex surface of TBP, which are crucial for interaction with TFIIA. Consistently, TFIIA and yTAF145 bind competitively to TBP. A deletion of the inhibitory domain of yTAF145 leads to a temperature-sensitive growth phenotype. Importantly, this phenotype is suppressed by overexpression of the TFIIA subunits, indicating that the yTAF145 inhibitory domain is involved in TFIIA function.
Collapse
Affiliation(s)
- T Kokubo
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
33
|
Lehman AM, Ellwood KB, Middleton BE, Carey M. Compensatory energetic relationships between upstream activators and the RNA polymerase II general transcription machinery. J Biol Chem 1998; 273:932-9. [PMID: 9422752 DOI: 10.1074/jbc.273.2.932] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of RNA polymerase II transcription in vivo and in vitro is synergistic with respect to increasing numbers of activator binding sites or increasing concentrations of activator. The Epstein-Barr virus ZEBRA protein manifests both forms of synergy during activation of genes involved in the viral lytic cycle. The synergy has an underlying mechanistic basis that we and others have proposed is founded largely on the energetic contributions of (i) upstream ZEBRA binding to its sites, (ii) the general pol II machinery binding to the core promoter, and (iii) interactions between ZEBRA and the general machinery. We hypothesize that these interactions form a network for which a minimum stability must be attained to activate transcription. One prediction of this model is that the energetic contributions should be reciprocal, such that a strong core promoter linked to a weak upstream promoter would be functionally analogous to a weak core linked to a strong upstream promoter. We tested this view by measuring the transcriptional response after systematically altering the upstream and core promoters. Our data provide strong qualitative support for this hypothesis and provide a theoretical basis for analyzing Epstein-Barr virus gene regulation.
Collapse
Affiliation(s)
- A M Lehman
- Department of Biological Chemistry, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Drosophila heat shock factor (HSF) binds to specific sequence elements of heat shock genes and can activate their transcription 200-fold. Though HSF has an acidic activation domain, the mechanistic details of heat shock gene activation remain undefined. Here we report that HSF interacts directly with the general transcription factor TBP (TATA-box binding protein), and these two factors bind cooperatively to heat shock promoters. A third factor that binds heat shock promoters, GAGA factor, also interacts with HSF and further stabilizes HSF binding to heat shock elements (HSEs). The interaction of HSF and TBP is explored in some detail here and is shown to be mediated by residues in both the amino- and carboxyl-terminal portions of HSF. This HSF/TBP interaction can be specifically disrupted by competition with the potent acidic transcriptional activator VP16. We further show that the acidic domain of the largest subunit of Drosophila RNA polymerase II (Pol II) associates with TBP in vitro and is specifically displaced from TBP upon addition of HSF. The region of TBP that mediates both HSF and Pol II acidic domain binding maps to the conserved carboxyl-terminal repeats and depends on at least one of the TBP residues known to be contacted by VP16 and to be critical for transcription activation. We discuss these findings in the context of a model in which HSF triggers hsp70 transcription by freeing the hsp70 promoter-paused Pol II from the constraints on elongation caused by the affinity of Pol II for general transcription factors.
Collapse
Affiliation(s)
- P B Mason
- Department of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
35
|
Vichi P, Coin F, Renaud JP, Vermeulen W, Hoeijmakers JH, Moras D, Egly JM. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J 1997; 16:7444-56. [PMID: 9405373 PMCID: PMC1170344 DOI: 10.1093/emboj/16.24.7444] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A connection between transcription and DNA repair was demonstrated previously through the characterization of TFIIH. Using filter binding as well as in vitro transcription challenge competition assays, we now show that the promoter recognition factor TATA box-binding protein (TBP)/TFIID binds selectively to and is sequestered by cisplatin- or UV-damaged DNA, either alone or in the context of a larger protein complex including TFIIH. Computer-assisted 3D structural analysis reveals a remarkable similarity between the structure of the TATA box as found in its TBP complex and that of either platinated or UV-damaged oligonucleotides. Thus, cisplatin-treated or UV-irradiated DNA could be used as a competing binding site which may lure TBP/TFIID away from its normal promoter sequence, partially explaining the phenomenon of DNA damage-induced inhibition of RNA synthesis. Consistent with an involvement of damaged DNA-specific binding of TBP in inhibiting transcription, we find that microinjection of additional TBP in living human fibroblasts alleviates the reduction in RNA synthesis after UV irradiation. Future anticancer drugs could be designed with the consideration of lesion recognition by TBP and their ability to reduce transcription.
Collapse
Affiliation(s)
- P Vichi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, F-67404, Illkirch Cedex, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Chou S, Struhl K. Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains. Mol Cell Biol 1997; 17:6794-802. [PMID: 9372910 PMCID: PMC232535 DOI: 10.1128/mcb.17.12.6794] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biochemical experiments indicate that the general transcription factor IIB (TFIIB) can interact directly with acidic activation domains and that activators can stimulate transcription by increasing recruitment of TFIIB to promoters. For promoters at which recruitment of TFIIB to promoters is limiting in vivo, one would predict that transcriptional activity should be particularly sensitive to TFIIB mutations that decrease the association of TFIIB with promoter DNA and/or with activation domains; i.e., such TFIIB mutations should exacerbate a limiting step that occurs in wild-type cells. Here, we describe mutations on the DNA-binding surface of TFIIB that severely affect both TATA-binding protein (TBP)-TFIIB-TATA complex formation and interaction with the VP16 activation domain in vitro. These TFIIB mutations affect the stability of the TBP-TFIIB-TATA complex in vivo because they are synthetically lethal in combination with TBP mutants impaired for TFIIB binding. Interestingly, these TFIIB derivatives support viability, and they efficiently respond to Gal4-VP16 and natural acidic activators in different promoter contexts. These results suggest that in vivo, recruitment of TFIIB is not generally a limiting step for acidic activators. However, one TFIIB derivative shows reduced transcription of GAL4, suggesting that TFIIB may be limiting at a subset of promoters in vivo.
Collapse
Affiliation(s)
- S Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
37
|
Hoffmann A, Oelgeschläger T, Roeder RG. Considerations of transcriptional control mechanisms: do TFIID-core promoter complexes recapitulate nucleosome-like functions? Proc Natl Acad Sci U S A 1997; 94:8928-35. [PMID: 9256411 PMCID: PMC33761 DOI: 10.1073/pnas.94.17.8928] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The general transcription initiation factor TFIID was originally identified, purified, and characterized with a biochemical assay in which accurate transcription initiation is reconstituted with multiple, chromatographically separable activities. Biochemical analyses have demonstrated that TFIID is a multiprotein complex that directs preinitiation complex assembly on both TATA box-containing and TATA-less promoters, and some TFIID subunits have been shown to be molecular targets for activation domains in DNA-binding regulatory proteins. These findings have most commonly been interpreted to support the view that transcriptional activation by upstream factors is the result of enhanced TFIID recruitment to the core promoter. Recent insights into the architecture and cell-cycle regulation of the multiprotein TFIID complex prompt both a reassessment of the functional role of TFIID in gene activation and a review of some of the less well-appreciated literature on TFIID. We present a speculative model for diverse functional roles of TFIID in the cell, explore the merits of the model in the context of published data, and suggest experimental approaches to resolve unanswered questions. Finally, we point out how the proposed functional roles of TFIID in eukaryotic class II transcription fit into a model for promoter recognition and activation that applies to both eubacteria and eukaryotes.
Collapse
Affiliation(s)
- A Hoffmann
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
38
|
Stolinski LA, Eisenmann DM, Arndt KM. Identification of RTF1, a novel gene important for TATA site selection by TATA box-binding protein in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:4490-500. [PMID: 9234706 PMCID: PMC232302 DOI: 10.1128/mcb.17.8.4490] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interaction of the TATA box-binding protein (TBP) with promoters of RNA polymerase II-transcribed genes is an early and essential step in mRNA synthesis. Previous studies have demonstrated that the rate-limiting binding of TBP to a TATA element can be influenced by transcriptional regulatory proteins. To identify additional factors that may regulate DNA binding by TBP in vivo, we performed a genetic selection for extragenic suppressors of a yeast TBP mutant that exhibits altered and relaxed DNA binding specificity. This analysis has led to the discovery of a previously unidentified gene, RTF1. The original rtf1 suppressor mutation, which encodes a single amino acid change in Rtf1, and an rtf1 null allele suppress the effects of the TBP specificity mutant by altering transcription initiation. Differences in the patterns of transcription initiation in these strains strongly suggest that the rtf1 missense mutation is distinct from a simple loss-of-function allele. The results of genetic crosses indicate that suppression of TBP mutants by mutations in RTF1 occurs in an allele-specific fashion. In a strain containing wild-type TBP, the rtf1 null mutation suppresses the transcriptional effects of a Ty delta insertion mutation in the promoter of the HIS4 gene, a phenotype also conferred by the TBP altered-specificity mutant. Finally, as shown by indirect immunofluorescence experiments, Rtf1 is a nuclear protein. Taken together, our findings suggest that Rtf1 either directly or indirectly regulates the DNA binding properties of TBP and, consequently, the relative activities of different TATA elements in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Nucleus/chemistry
- Cloning, Molecular
- Crosses, Genetic
- DNA, Fungal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/analysis
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Genes, Fungal/genetics
- Molecular Sequence Data
- Molecular Weight
- Phenotype
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Repetitive Sequences, Nucleic Acid/genetics
- Retroelements/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Analysis, DNA
- Suppression, Genetic
- TATA Box/genetics
- TATA-Box Binding Protein
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- L A Stolinski
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
39
|
Gonzalez-Couto E, Klages N, Strubin M. Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. Proc Natl Acad Sci U S A 1997; 94:8036-41. [PMID: 9223310 PMCID: PMC21552 DOI: 10.1073/pnas.94.15.8036] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic transcriptional activators may function by stimulating formation of RNA polymerase II preinitiation complexes at the core promoter of genes. In this case, their mode of action will intrinsically depend on how these complexes assemble on promoters in living cells, an issue that remains largely unexplored. Here we show that in yeast the basal transcription machinery is brought to the promoter in the form of at least two subcomplexes, TFIID and a complex comprising TFIIB and other essential components. Individual recruitment of either complex by artificial contact with a transcriptionally inactive, sequence-specific DNA-binding protein suffices to trigger transcriptional activation from a wild-type core promoter bearing the appropriate binding site. In contrast, activation from a promoter containing a weakened TATA element is only observed upon recruitment of TFIID. Tethering TFIIB on that promoter remains without effect, but the simultaneous recruitment of both components leads to strong synergistic activation. These findings suggest a simple mechanism whereby two activators that contact distinct subcomplexes of the basal machinery may stimulate transcription synergistically and differentially depending on the nature of the promoter.
Collapse
Affiliation(s)
- E Gonzalez-Couto
- Department of Genetics and Microbiology, University Medical Centre, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
40
|
Abstract
Promoters need to specify both the timing of transcriptional induction and the amount of transcript synthesized. In order to explore each of these effects separately, in vitro assays for the level of active preinitiation complex formation and for the rate of continuous RNA production were done. The effects were found to be influenced differently by different promoter elements. A consensus TATA element had a very strong effect on the rate of continuous RNA production, whereas two types of activators were important primarily in forming active transcription preinitiation complexes. Consensus TATA promoters exhibited high rates of continuous transcription; they assembled active preinitiation transcription complexes slowly but then produced transcripts continuously at an approximately fivefold-higher rate. Initiator-containing TATA-less promoters produced continuous transcripts slowly. Point mutations in the TATA element led to lower levels of transcription by reducing the number of preinitiation complexes and amplifying this reduction by lowering the apparent reinitiation rate. The results allow understanding of the sequence diversity of promoter elements in terms of specifying separate controls over the sensitivity of gene induction and over the strength of the induced promoter.
Collapse
Affiliation(s)
- D Yean
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California, Los Angeles 90095-1569, USA
| | | |
Collapse
|
41
|
Blair WS, Cullen BR. A yeast TATA-binding protein mutant that selectively enhances gene expression from weak RNA polymerase II promoters. Mol Cell Biol 1997; 17:2888-96. [PMID: 9111361 PMCID: PMC232141 DOI: 10.1128/mcb.17.5.2888] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We describe a unique gain-of-function mutant of the TATA-binding protein (TBP) subunit of Saccharomyces cerevisiae TFIID that, at least in part, renders transcriptional transactivators dispensable for efficient mRNA expression. The yTBPN69S mutant enhances transcription from weaker yeast promoter elements by up to 50-fold yet does not significantly increase gene expression directed by highly active promoters. Therefore, this TBP mutant and transcriptional transactivators appear to affect a common rate-limiting step in transcription initiation. Consistent with the hypothesis that this step is TFIID recruitment, tethering of TBP to a target promoter via a heterologous DNA binding domain, which is known to bypass the need for transcriptional transactivators, also nullifies the enhancing effect exerted by the N69S mutation. These data provide genetic support for the hypothesis that TFIID recruitment represents a rate-limiting step in the initiation of mRNA transcription that is specifically enhanced by transcriptional transactivators.
Collapse
Affiliation(s)
- W S Blair
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
Kim TK, Roeder RG. Critical role of the second stirrup region of the TATA-binding protein for transcriptional activation both in yeast and human. J Biol Chem 1997; 272:7540-5. [PMID: 9054459 DOI: 10.1074/jbc.272.11.7540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We previously identified three TATA-binding protein (TBP) point mutations (L114K, L189K, and K211L) that have severe effects on transcriptional activation by acidic activators, but no effect on basal transcription, in a yeast-derived TBP-dependent in vitro transcription system (Kim, T. K., Hashimoto, S., Kelleher, R. J., III, Flanagan, P. M., Kornberg, R. D., Horikoshi, M., and Roeder, R. G. (1994) Nature 369, 252-255). These activation defects were also demonstrated in vivo in yeast cells (Lee, M., and Struhl, K. (1995) Mol. Cell. Biol. 15, 5461-5469). Here, the transcriptional activities of these and other TBP mutations were examined in human by both in vitro and in vivo assays. Mutations L189K and E188K, which lie in the second stirrup region of TBP, show defective activation by acidic activators both in yeast and human. Somewhat surprisingly, mutations L114K and K211L have almost no demonstrable effect on activation by acidic activators in human, in contrast to their severe effects on defective activator responses in yeast. The implications of these results for TBP structure and function are discussed.
Collapse
Affiliation(s)
- T K Kim
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
43
|
Lee M, Struhl K. A severely defective TATA-binding protein-TFIIB interaction does not preclude transcriptional activation in vivo. Mol Cell Biol 1997; 17:1336-45. [PMID: 9032260 PMCID: PMC231858 DOI: 10.1128/mcb.17.3.1336] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In yeast cells, mutations in the TATA-binding protein (TBP) that disrupt the interaction with the TATA element or with TFIIA can selectively impair the response to acidic activator proteins. We analyzed the transcriptional properties of TBP derivatives in which residues that directly interact with TFIIB were replaced by alanines. Surprisingly, a derivative with a 50-fold defect in TBP-TFIIB-TATA complex formation in vitro (E188A) supports viability and responds efficiently to activators in vivo. The E186A derivative, which displays a 100-fold defect in TBP-TFIIB-TATA complex formation, does not support viability, yet it does respond to activators. Conversely, the L189A mutation, which has the mildest effect on the interaction with TFIIB (10-fold), can abolish transcriptional activation and cell viability when combined with mutations on the DNA-binding surface. This "synthetic lethal" effect is not observed with E188A, suggesting that the previously described role of L189 in transcriptional activation may be related to its location on the DNA-binding surface and not to its interaction with TFIIB. Finally, when using TBP mutants defective on multiple interaction surfaces, we observed synthetic lethal effects between mutations on the TFIIA and TFIIB interfaces but found that mutations implicated in association with polymerase II and TFIIF did not have significant effects in vivo. Taken together, these results argue that, unlike the TBP-TATA and TBP-TFIIA interactions, the TBP-TFIIB interaction is not generally limiting for transcriptional activation in vivo.
Collapse
Affiliation(s)
- M Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
Nishikawa J, Kokubo T, Horikoshi M, Roeder RG, Nakatani Y. Drosophila TAF(II)230 and the transcriptional activator VP16 bind competitively to the TATA box-binding domain of the TATA box-binding protein. Proc Natl Acad Sci U S A 1997; 94:85-90. [PMID: 8990165 PMCID: PMC19240 DOI: 10.1073/pnas.94.1.85] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The transcription initiation factor TFIID, consisting of the TATA box-binding protein (TBP) and many TBP-associated factors (TAFs), plays a central role in both basal and activated transcription. An intriguing finding is that the 80-residue N-terminal region of Drosophila TAF(II)230 [dTAF(II)230-(2-81)] can bind directly to TBP and inhibit its function. Here, studies with mutated forms of TBP demonstrate that dTAF(II)230-(2-81) binds to the concave surface of TBP, which is important for TATA box binding. Previously, it was reported that a point mutation (L114K) on this concave surface destroys the ability of TBP to bind VP16 and to mediate VP16-dependent activation in vitro, but has no effect on basal transcription. Importantly, the same TBP mutation eliminates TBP binding to dTAF(II)230-(2-81). Consistent with these effects of the L114K mutation, dTAF(II)230-(2-81) and the VP16 activation domain compete for binding to wild-type TBP. These results indicate that transcriptional regulation may involve, in part, competitive interactions between transcriptional activators and TAFs on the TBP surface.
Collapse
Affiliation(s)
- J Nishikawa
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Bassuk AG, Leiden JM. The role of Ets transcription factors in the development and function of the mammalian immune system. Adv Immunol 1997; 64:65-104. [PMID: 9100980 DOI: 10.1016/s0065-2776(08)60887-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A G Bassuk
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
46
|
Affiliation(s)
- K Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Jackson BM, Drysdale CM, Natarajan K, Hinnebusch AG. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Mol Cell Biol 1996; 16:5557-71. [PMID: 8816468 PMCID: PMC231555 DOI: 10.1128/mcb.16.10.5557] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
GCN4 is a transcriptional activator in the bZIP family that regulates amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. The N-terminal 100 amino acids of GCN4 contains a potent activation function that confers high-level transcription in the absence of the centrally located acidic activation domain (CAAD) delineated in previous studies. To identify specific amino acids important for activation by the N-terminal domain, we mutagenized a GCN4 allele lacking the CAAD and screened alleles in vivo for reduced expression of the HIS3 gene. We found four pairs of closely spaced phenylalanines and a leucine residue distributed throughout the N-terminal 100 residues of GCN4 that are required for high-level activation in the absence of the CAAD. Trp, Leu, and Tyr were highly functional substitutions for the Phe residue at position 45. Combined with our previous findings, these results indicate that GCN4 contains seven clusters of aromatic or bulky hydrophobic residues which make important contributions to transcriptional activation at HIS3. None of the seven hydrophobic clusters is essential for activation by full-length GCN4, and the critical residues in two or three clusters must be mutated simultaneously to observe a substantial reduction in GCN4 function. Numerous combinations of four or five intact clusters conferred high-level transcription of HIS3. We propose that many of the hydrophobic clusters in GCN4 act independently of one another to provide redundant means of stimulating transcription and that the functional contributions of these different segments are cumulative at the HIS3 promoter. On the basis of the primacy of bulky hydrophobic residues throughout the activation domain, we suggest that GCN4 contains multiple sites that mediate hydrophobic contacts with one or more components of the transcription initiation machinery.
Collapse
Affiliation(s)
- B M Jackson
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
48
|
Bryant GO, Martel LS, Burley SK, Berk AJ. Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vivo. Genes Dev 1996; 10:2491-504. [PMID: 8843200 DOI: 10.1101/gad.10.19.2491] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Regions on the surface of human TATA-box binding protein (TBP) required for activated transcription in vivo were defined by construction of a library of 89 surface residue mutants with radical substitutions that were assayed for their ability to support activated transcription in vivo, basal transcription in vitro, and TFIIA and TFIIB binding in vitro. Four epitopes were identified in which substitutions in two to four neighboring surface residues greatly inhibited activated transcription in vivo. One epitope in which substitutions inhibited both basal and activated transcription (E284, L287) is the interface between TBP and TFIIB. Another (A184, N189, E191, R205) is the recently determined interface between TBP and TFIIA. Mutations in residues in this TFIIA interface greatly inhibit activated, but not basal transcription, demonstrating a requirement for the TFIIA-TBP interaction for activated transcription in vivo in mammalian cells. The remaining two activation epitopes (TBP helix 2 residues R231, R235, R239, plus F250; and G175, C176, P247) are probably interfaces with other proteins required for activated transcription. The library of mutants responded virtually identically to two different types of activators, GL4-E1A and GAL4-VP16, indicating that transcriptional activation by different classes of activators requires common interactions with TBP.
Collapse
Affiliation(s)
- G O Bryant
- Department of Microbiology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles 90095-1570, USA
| | | | | | | |
Collapse
|
49
|
Apone LM, Virbasius CM, Reese JC, Green MR. Yeast TAF(II)90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev 1996; 10:2368-80. [PMID: 8824595 DOI: 10.1101/gad.10.18.2368] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The RNA polymerase II general transcription factor TFIID is a multisubunit complex comprising TATA-box binding protein and associated factors (TAFIIs). In vitro experiments have suggested that TAFIIs are essential coactivators required for RNA polymerase II-directed transcription activation. Here, for the first time, we analyze systematically the in vivo function of a specific TAFII, yeast TAFII90 (yTAFII90). We show that functional inactivation of yTAFII90 by temperature-sensitive mutations or depletion leads to arrest at the G2/M phase of the cell cycle. Unexpectedly, in the absence of functional yTAFII90, a variety of endogenous yeast genes were all transcribed normally, including those driven by well-characterized activators. Taken together, our results indicate that yTAFII90 is not required for transcription activation in general, and reveal linkages between TAF function and cell-cycle progression.
Collapse
Affiliation(s)
- L M Apone
- Howard Hughes Medical Institute, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
50
|
Moqtaderi Z, Bai Y, Poon D, Weil PA, Struhl K. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 1996; 383:188-91. [PMID: 8774887 DOI: 10.1038/383188a0] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transcription factor TFIID, a central component of the eukaryotic RNA polymerase II (Pol II) transcription apparatus, comprises the TATA-binding protein (TBP) and approximately ten TBP-associated factors (TAFs). Although the essential role of TBP in all eukaryotic transcription has been extensively analysed in vivo and in vitro, the function of the TAFs is less clear. In vitro, TAFs are dispensable for basal transcription but are required for the response to activators. In addition, specific TAFs may act as molecular bridges between particular activators and the general transcription machinery. In vivo, TAFS are required for yeast and mammalian cell growth, but little is known about their specific transcriptional functions. Using conditional alleles created by a new double-shutoff method, we show here that TAF depletion in yeast cells can reduce transcription from some promoters lacking conventional TATA elements. However, TAF depletion has surprisingly little effect on transcriptional enhancement by several activators, indicating that TAFs are not generally required for transcriptional activation in yeast.
Collapse
Affiliation(s)
- Z Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|