1
|
Liwocha J, Li J, Purser N, Rattanasopa C, Maiwald S, Krist DT, Scott DC, Steigenberger B, Prabu JR, Schulman BA, Kleiger G. Mechanism of millisecond Lys48-linked poly-ubiquitin chain formation by cullin-RING ligases. Nat Struct Mol Biol 2024; 31:378-389. [PMID: 38326650 PMCID: PMC10873206 DOI: 10.1038/s41594-023-01206-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
E3 ubiquitin ligases, in collaboration with E2 ubiquitin-conjugating enzymes, modify proteins with poly-ubiquitin chains. Cullin-RING ligase (CRL) E3s use Cdc34/UBE2R-family E2s to build Lys48-linked poly-ubiquitin chains to control an enormous swath of eukaryotic biology. Yet the molecular mechanisms underlying this exceptional linkage specificity and millisecond kinetics of poly-ubiquitylation remain unclear. Here we obtain cryogenic-electron microscopy (cryo-EM) structures that provide pertinent insight into how such poly-ubiquitin chains are forged. The CRL RING domain not only activates the E2-bound ubiquitin but also shapes the conformation of a distinctive UBE2R2 loop, positioning both the ubiquitin to be transferred and the substrate-linked acceptor ubiquitin within the active site. The structures also reveal how the ubiquitin-like protein NEDD8 uniquely activates CRLs during chain formation. NEDD8 releases the RING domain from the CRL, but unlike previous CRL-E2 structures, does not contact UBE2R2. These findings suggest how poly-ubiquitylation may be accomplished by many E2s and E3s.
Collapse
Affiliation(s)
- Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Chutima Rattanasopa
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Samuel Maiwald
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Gary Kleiger
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
2
|
Marshall RS, Vierstra RD. A trio of ubiquitin ligases sequentially drives ubiquitylation and autophagic degradation of dysfunctional yeast proteasomes. Cell Rep 2022; 38:110535. [PMID: 35294869 DOI: 10.1016/j.celrep.2022.110535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
As central effectors of ubiquitin (Ub)-mediated proteolysis, proteasomes are regulated at multiple levels, including degradation of unwanted or dysfunctional particles via autophagy (termed proteaphagy). In yeast, inactive proteasomes are exported from the nucleus, sequestered into cytoplasmic aggresomes via the Hsp42 chaperone, extensively ubiquitylated, and then tethered to the expanding phagophore by the autophagy receptor Cue5. Here, we demonstrate the need for ubiquitylation driven by the trio of Ub ligases (E3s), San1, Rsp5, and Hul5, which together with their corresponding E2s work sequentially to promote nuclear export and Cue5 recognition. Whereas San1 functions prior to nuclear export, Rsp5 and Hul5 likely decorate aggresome-localized proteasomes in concert. Ultimately, topologically complex Ub chain(s) containing both K48 and K63 Ub-Ub linkages are assembled, mainly on the regulatory particle, to generate autophagy-competent substrates. Because San1, Rsp5, Hul5, Hsp42, and Cue5 also participate in general proteostasis, proteaphagy likely engages a fundamental mechanism for eliminating inactive/misfolded proteins.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
| |
Collapse
|
3
|
Albrecht D, Hürlimann HC, Ceschin J, Saint-Marc C, Pinson B, Daignan-Fornier B. Multiple chemo-genetic interactions between a toxic metabolite and the ubiquitin pathway in yeast. Curr Genet 2018; 64:1275-1286. [PMID: 29721631 DOI: 10.1007/s00294-018-0843-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
AICAR is the precursor of ZMP, a metabolite with antiproliferative properties in yeast and human. We aim at understanding how AICAR (and its active form ZMP) affects essential cellular processes. In this work, we found that ZMP accumulation is synthetic lethal with a hypomorphic allele of the ubiquitin-activating enzyme Uba1. A search for gene-dosage suppressors revealed that ubiquitin overexpression was sufficient to restore growth of the uba1 mutant upon AICAR treatment, suggesting that the ubiquitin pool is critical for cells to cope with AICAR. Accordingly, two mutants with constitutive low ubiquitin, ubp6 and doa1, were highly sensitive to AICAR, a phenotype that could be suppressed by ubiquitin overexpression. We established, by genetic means, that these new AICAR-sensitive mutants act in a different pathway from the rad6/bre1 mutants which were previously reported as sensitive to AICAR (Albrecht et al., Genetics 204:1447-1460, 2016). Two ubiquitin-conjugating enzymes (Ubc4 and Cdc34) and a ubiquitin ligase (Cdc4) were found to contribute to the ability of cells to cope with ZMP. This study illustrates the complexity of chemo-genetic interactions and shows how genetic analyses allow deciphering the implicated pathways, the individual gene effects, and their combined phenotypic contribution. Based on additivity and suppression patterns, we conclude that AICAR treatment shows synthetic interactions with distinct branches of the yeast ubiquitin pathway.
Collapse
Affiliation(s)
- Delphine Albrecht
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Hans C Hürlimann
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Institut für Biologie, Martin-Luther Universität, Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Johanna Ceschin
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Christelle Saint-Marc
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue C. Saint-Saëns CS 61390, 33077, Bordeaux, France.
| |
Collapse
|
4
|
Rojas F, Koszela J, Búa J, Llorente B, Burchmore R, Auer M, Mottram JC, Téllez-Iñón MT. The ubiquitin-conjugating enzyme CDC34 is essential for cytokinesis in contrast to putative subunits of a SCF complex in Trypanosoma brucei. PLoS Negl Trop Dis 2017; 11:e0005626. [PMID: 28609481 PMCID: PMC5507466 DOI: 10.1371/journal.pntd.0005626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/11/2017] [Accepted: 05/06/2017] [Indexed: 12/31/2022] Open
Abstract
The ubiquitin-proteasome system is a post-translational regulatory pathway for controlling protein stability and activity that underlies many fundamental cellular processes, including cell cycle progression. Target proteins are tagged with ubiquitin molecules through the action of an enzymatic cascade composed of E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases. One of the E3 ligases known to be responsible for the ubiquitination of cell cycle regulators in eukaryotes is the SKP1-CUL1-F-box complex (SCFC). In this work, we identified and studied the function of homologue proteins of the SCFC in the life cycle of Trypanosoma brucei, the causal agent of the African sleeping sickness. Depletion of trypanosomal SCFC components TbRBX1, TbSKP1, and TbCDC34 by RNAi resulted in decreased growth rate and contrasting cell cycle abnormalities for both procyclic (PCF) and bloodstream (BSF) forms. Depletion of TbRBX1 in PCF cells interfered with kinetoplast replication, whilst depletion of TbSKP1 arrested PCF and BSF cells in the G1/S transition. Silencing of TbCDC34 in BSF cells resulted in a block in cytokinesis and caused rapid clearance of parasites from infected mice. We also show that TbCDC34 is able to conjugate ubiquitin in vitro and in vivo, and that its activity is necessary for T. brucei infection progression in mice. This study reveals that different components of a putative SCFC have contrasting phenotypes once depleted from the cells, and that TbCDC34 is essential for trypanosome replication, making it a potential target for therapeutic intervention. African sleeping sickness is a neglected tropical disease caused by infection with the protozoan parasite Trypanosoma brucei, which is transmitted to humans by tsetse flies (Glossina genus). Treatment of the disease is complex and relies on limited pharmaceutical options. Understanding how T. brucei regulates cell cycle progression at a molecular level when alternating between the mammalian host and the insect vector could lead to better therapies. In this study, we examined different T. brucei proteins with homology to components of the SKP1-CUL1-F-box ubiquitin ligase complex (SCFC), previously characterized in other eukaryotes as a regulator of cell cycle progression. We found that depletion of the homologues of a putative SCFC cause T. brucei to develop abnormally, generating different phenotypes of the mammalian and insect stages. Interestingly, depletion of the ubiquitin conjugating enzyme TbCDC34 arrest cells in a pre-cytokinesis stage, indicating that this protein is essential for cytokinesis. In addition to improving our fundamental understanding of the molecular regulation underlying the sophisticated life cycle of T. brucei, this work pinpoints a potential target for drug development against trypanosomiasis.
Collapse
Affiliation(s)
- Federico Rojas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
- * E-mail:
| | - Joanna Koszela
- Institute of Quantitative Biology Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Jacqueline Búa
- Instituto Nacional de Parasitología ‘Dr. M. Fatala Chabén’, A.N.L.I.S., ‘Dr. Carlos G. Malbrán’, Buenos Aires, Argentina
| | - Briardo Llorente
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Manfred Auer
- Institute of Quantitative Biology Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Jeremy C. Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - María Teresa Téllez-Iñón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Ziemba A, Hill S, Sandoval D, Webb K, Bennett EJ, Kleiger G. Multimodal mechanism of action for the Cdc34 acidic loop: a case study for why ubiquitin-conjugating enzymes have loops and tails. J Biol Chem 2013; 288:34882-96. [PMID: 24129577 DOI: 10.1074/jbc.m113.509190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Together with ubiquitin ligases (E3), ubiquitin-conjugating enzymes (E2) are charged with the essential task of synthesizing ubiquitin chains onto protein substrates. Some 75% of the known E2s in the human proteome contain unique insertions in their primary sequences, yet it is largely unclear what effect these insertions impart on the ubiquitination reaction. Cdc34 is an important E2 with prominent roles in cell cycle regulation and signal transduction. The amino acid sequence of Cdc34 contains an insertion distal to the active site that is absent in most other E2s, yet this acidic loop (named for its four invariably conserved acidic residues) is critical for Cdc34 function both in vitro and in vivo. Here we have investigated how the acidic loop in human Cdc34 promotes ubiquitination, identifying two key molecular events during which the acidic loop exerts its influence. First, the acidic loop promotes the interaction between Cdc34 and its ubiquitin ligase partner, SCF. Second, two glutamic acid residues located on the distal side of the loop collaborate with an invariably conserved histidine on the proximal side of the loop to suppress the pKa of an ionizing species on ubiquitin or Cdc34 which greatly contributes to Cdc34 catalysis. These results demonstrate that insertions can guide E2s to their physiologically relevant ubiquitin ligases as well as provide essential modalities that promote catalysis.
Collapse
Affiliation(s)
- Amy Ziemba
- From the Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | | | | | | | | | | |
Collapse
|
6
|
Papaleo E, Casiraghi N, Arrigoni A, Vanoni M, Coccetti P, De Gioia L. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade. PLoS One 2012; 7:e40786. [PMID: 22815819 PMCID: PMC3399832 DOI: 10.1371/journal.pone.0040786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/12/2012] [Indexed: 12/31/2022] Open
Abstract
The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3, and influencing the ultimate fate of the substrates. Several E2s are characterized by an extended acidic insertion in loop 7 (L7), which if mutated is known to impair the proper E2-related functions. In the present contribution, we show that acidic loop is a conserved ancestral motif in E2s, relying on the presence of alternate hydrophobic and acidic residues. Moreover, the dynamic properties of a subset of family 3 E2s, as well as their binary and ternary complexes with Ub and the cognate E3, have been investigated. Here we provide a model of L7 role in the different steps of the ubiquitination cascade of family 3 E2s. The L7 hydrophobic residues turned out to be the main determinant for the stabilization of the E2 inactive conformations by a tight network of interactions in the catalytic cleft. Moreover, phosphorylation is known from previous studies to promote E2 competent conformations for Ub charging, inducing electrostatic repulsion and acting on the L7 acidic residues. Here we show that these active conformations are stabilized by a network of hydrophobic interactions between L7 and L4, the latter being a conserved interface for E3-recruitment in several E2s. In the successive steps, L7 conserved acidic residues also provide an interaction interface for both Ub and the Rbx1 RING subdomain of the cognate E3. Our data therefore suggest a crucial role for L7 of family 3 E2s in all the E2-mediated steps of the ubiquitination cascade. Its different functions are exploited thank to its conserved hydrophobic and acidic residues in a finely orchestrate mechanism.
Collapse
Affiliation(s)
- Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Cocklin R, Goebl M. Nutrient sensing kinases PKA and Sch9 phosphorylate the catalytic domain of the ubiquitin-conjugating enzyme Cdc34. PLoS One 2011; 6:e27099. [PMID: 22087249 PMCID: PMC3210133 DOI: 10.1371/journal.pone.0027099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/10/2011] [Indexed: 11/18/2022] Open
Abstract
Cell division is controlled in part by the timely activation of the CDK, Cdc28, through its association with G1 and G2 cyclins. Cdc28 complexes are regulated in turn by the ubiquitin conjugating enzyme Cdc34 and SCF ubiquitin ligase complexes of the ubiquitin-proteasome system (UPS) to control the initiation of DNA replication. Here we demonstrate that the nutrient sensing kinases PKA and Sch9 phosphorylate S97 of Cdc34. S97 is conserved across species and restricted to the catalytic domain of Cdc34/Ubc7-like E2s. Cdc34-S97 phosphorylation is cell cycle regulated, elevated during active cell growth and division and decreased during cell cycle arrest. Cell growth and cell division are orchestrated to maintain cell size homeostasis over a wide range of nutrient conditions. Cells monitor changes in their environment through nutrient sensing protein kinases. Thus Cdc34 phosphorylation by PKA and Sch9 provides a direct tether between G1 cell division events and cell growth.
Collapse
Affiliation(s)
- Ross Cocklin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mark Goebl
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
An acidic loop and cognate phosphorylation sites define a molecular switch that modulates ubiquitin charging activity in Cdc34-like enzymes. PLoS Comput Biol 2011; 7:e1002056. [PMID: 21637798 PMCID: PMC3102755 DOI: 10.1371/journal.pcbi.1002056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/01/2011] [Indexed: 11/19/2022] Open
Abstract
E2 ubiquitin-conjugating enzymes are crucial mediators of protein ubiquitination, which strongly influence the ultimate fate of the target substrates. Recently, it has been shown that the activity of several enzymes of the ubiquitination pathway is finely tuned by phosphorylation, an ubiquitous mechanism for cellular regulation, which modulates protein conformation. In this contribution, we provide the first rationale, at the molecular level, of the regulatory mechanism mediated by casein kinase 2 (CK2) phosphorylation of E2 Cdc34-like enzymes. In particular, we identify two co-evolving signature elements in one of the larger families of E2 enzymes: an acidic insertion in β4α2 loop in the proximity of the catalytic cysteine and two conserved key serine residues within the catalytic domain, which are phosphorylated by CK2. Our investigations, using yeast Cdc34 as a model, through 2.5 µs molecular dynamics simulations and biochemical assays, define these two elements as an important phosphorylation-controlled switch that modulates opening and closing of the catalytic cleft. The mechanism relies on electrostatic repulsions between a conserved serine phosphorylated by CK2 and the acidic residues of the β4α2 loop, promoting E2 ubiquitin charging activity. Our investigation identifies a new and unexpected pivotal role for the acidic loop, providing the first evidence that this loop is crucial not only for downstream events related to ubiquitin chain assembly, but is also mandatory for the modulation of an upstream crucial step of the ubiquitin pathway: the ubiquitin charging in the E2 catalytic cleft.
Collapse
|
9
|
Lass A, Cocklin R, Scaglione KM, Skowyra M, Korolev S, Goebl M, Skowyra D. The loop-less tmCdc34 E2 mutant defective in polyubiquitination in vitro and in vivo supports yeast growth in a manner dependent on Ubp14 and Cka2. Cell Div 2011; 6:7. [PMID: 21453497 PMCID: PMC3080790 DOI: 10.1186/1747-1028-6-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The S73/S97/loop motif is a hallmark of the Cdc34 family of E2 ubiquitin-conjugating enzymes that together with the SCF E3 ubiquitin ligases promote degradation of proteins involved in cell cycle and growth regulation. The inability of the loop-less Δ12Cdc34 mutant to support growth was linked to its inability to catalyze polyubiquitination. However, the loop-less triple mutant (tm) Cdc34, which not only lacks the loop but also contains the S73K and S97D substitutions typical of the K73/D97/no loop motif present in other E2s, supports growth. Whether tmCdc34 supports growth despite defective polyubiquitination, or the S73K and S97D substitutions, directly or indirectly, correct the defect caused by the loop absence, are unknown. RESULTS tmCdc34 supports yeast viability with normal cell size and cell cycle profile despite producing fewer polyubiquitin conjugates in vivo and in vitro. The in vitro defect in Sic1 substrate polyubiquitination is similar to the defect observed in reactions with Δ12Cdc34 that cannot support growth. The synthesis of free polyubiquitin by tmCdc34 is activated only modestly and in a manner dependent on substrate recruitment to SCFCdc4. Phosphorylation of C-terminal serines in tmCdc34 by Cka2 kinase prevents the synthesis of free polyubiquitin chains, likely by promoting their attachment to substrate. Nevertheless, tmCDC34 yeast are sensitive to loss of the Ubp14 C-terminal ubiquitin hydrolase and DUBs other than Ubp14 inefficiently disassemble polyubiquitin chains produced in tmCDC34 yeast extracts, suggesting that the free chains, either synthesized de novo or recycled from substrates, have an altered structure. CONCLUSIONS The catalytic motif replacement compromises polyubiquitination activity of Cdc34 and alters its regulation in vitro and in vivo, but either motif can support Cdc34 function in yeast viability. Robust polyubiquitination mediated by the S73/S97/loop motif is thus not necessary for Cdc34 role in yeast viability, at least under typical laboratory conditions.
Collapse
Affiliation(s)
- Agnieszka Lass
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ross Cocklin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kenneth M Scaglione
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Dept. of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Dept. of Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Goebl
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dorota Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
10
|
New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1. Genetics 2010; 187:701-15. [PMID: 21196523 DOI: 10.1534/genetics.110.125302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cdc34 ubiquitin-conjugating enzyme plays a central role in progression of the cell cycle. Through analysis of the phenotype of a mutant missing a highly conserved sequence motif within the catalytic domain of Cdc34, we discovered previously unrecognized levels of regulation of the Ace2 transcription factor and the cyclin-dependent protein kinase inhibitor Sic1. In cells carrying the Cdc34(tm) mutation, which alters the conserved sequence, the cyclin-dependent protein kinase inhibitor Sic1, an SCF(Cdc4) substrate, has a shorter half-life, while the cyclin Cln1, an SCF(Grr1) substrate, has a longer half-life than in wild-type cells. Expression of the SIC1 gene cluster, which is regulated by Swi5 and Ace2 transcription factors, is induced in CDC34(tm) cells. Levels of Swi5, Ace2, and the SCF(Grr1) targets Cln1 and Cln2 are elevated in Cdc34(tm) cells, and loss of Grr1 causes an increase in Ace2 levels. Sic1 levels are similar in CDC34(tm) ace2Δ and wild-type cells, explaining a paradoxical increase in the steady-state level of Sic1 protein despite its reduced half-life. A screen for mutations that interact with CDC34(tm) uncovered novel regulators of Sic1, including genes encoding the polyubiquitin chain receptors Rad23 and Rpn10.
Collapse
|
11
|
Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, Goebl MG, Iakoucheva LM. Identification, analysis, and prediction of protein ubiquitination sites. Proteins 2010; 78:365-80. [PMID: 19722269 DOI: 10.1002/prot.22555] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ubiquitination plays an important role in many cellular processes and is implicated in many diseases. Experimental identification of ubiquitination sites is challenging due to rapid turnover of ubiquitinated proteins and the large size of the ubiquitin modifier. We identified 141 new ubiquitination sites using a combination of liquid chromatography, mass spectrometry, and mutant yeast strains. Investigation of the sequence biases and structural preferences around known ubiquitination sites indicated that their properties were similar to those of intrinsically disordered protein regions. Using a combined set of new and previously known ubiquitination sites, we developed a random forest predictor of ubiquitination sites, UbPred. The class-balanced accuracy of UbPred reached 72%, with the area under the ROC curve at 80%. The application of UbPred showed that high confidence Rsp5 ubiquitin ligase substrates and proteins with very short half-lives were significantly enriched in the number of predicted ubiquitination sites. Proteome-wide prediction of ubiquitination sites in Saccharomyces cerevisiae indicated that highly ubiquitinated substrates were prevalent among transcription/enzyme regulators and proteins involved in cell cycle control. In the human proteome, cytoskeletal, cell cycle, regulatory, and cancer-associated proteins display higher extent of ubiquitination than proteins from other functional categories. We show that gain and loss of predicted ubiquitination sites may likely represent a molecular mechanism behind a number of disease-associatedmutations. UbPred is available at http://www.ubpred.org.
Collapse
Affiliation(s)
- Predrag Radivojac
- School of Informatics, Indiana University, Bloomington, Indiana 47408, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Averbeck N, Gao XD, Nishimura SI, Dean N. Alg13p, the catalytic subunit of the endoplasmic reticulum UDP-GlcNAc glycosyltransferase, is a target for proteasomal degradation. Mol Biol Cell 2008; 19:2169-78. [PMID: 18337470 PMCID: PMC2366857 DOI: 10.1091/mbc.e07-10-1077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 02/20/2008] [Accepted: 02/28/2008] [Indexed: 11/11/2022] Open
Abstract
The second step of dolichol-linked oligosaccharide synthesis in the N-linked glycosylation pathway at the endoplasmic reticulum (ER) membrane is catalyzed by an unusual hetero-oligomeric UDP-N-acetylglucosamine transferase that in most eukaryotes is comprised of at least two subunits, Alg13p and Alg14p. Alg13p is the cytosolic and catalytic subunit that is recruited to the ER by the membrane protein Alg14p. We show that in Saccharomyces cerevisiae, cytosolic Alg13p is very short-lived, whereas membrane-associated Alg13 is relatively stable. Cytosolic Alg13p is a target for proteasomal degradation, and the failure to degrade excess Alg13p leads to glycosylation defects. Alg13p degradation does not require ubiquitin but instead, requires a C-terminal domain whose deletion results in Alg13p stability. Conversely, appending this sequence onto normally long-lived beta-galactosidase causes it to undergo rapid degradation, demonstrating that this C-terminal domain represents a novel and autonomous degradation motif. These data lead to the model that proteasomal degradation of excess unassembled Alg13p is an important quality control mechanism that ensures proper protein complex assembly and correct N-linked glycosylation.
Collapse
Affiliation(s)
- Nicole Averbeck
- *Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215; and
| | - Xiao-Dong Gao
- Graduate School of Advanced Life Science, Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Advanced Life Science, Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Neta Dean
- *Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215; and
| |
Collapse
|
13
|
Hwang GW, Furuchi T, Naganuma A. Ubiquitin-conjugating enzyme Cdc34 mediates cadmium resistance in budding yeast through ubiquitination of the transcription factor Met4. Biochem Biophys Res Commun 2007; 363:873-8. [PMID: 17904100 DOI: 10.1016/j.bbrc.2007.09.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/16/2007] [Indexed: 11/25/2022]
Abstract
Overexpression of the ubiquitin-conjugating enzyme Cdc34 conferred strong cadmium resistance on budding yeast. Proteasome activity, which is involved in the degradation of ubiquitinated proteins, was not essential for the acquisition of resistance to cadmium. The overexpression of Cdc34 accelerated the ubiquitination of the transcription factor Met4 and reduced expression of MET25 gene, which is a target of Met4. A MET25-disrupted strain of yeast was more resistant to cadmium than was the wild-type strain, but overexpression of Cdc34 in the MET25-disrupted cells did not affect sensitivity to cadmium. Met25 is an enzyme that catalyzes the synthesis of homocysteine from sulfide (S(2-)) and O-acetylhomocysteine and we detected the increased production of S(2-) upon overexpression of Cdc34. Our results suggest that overexpression of Cdc34 inactivates Met4 and interferes with expression of the MET25, with subsequent production of CdS, which has low toxicity, and, thus, a decrease in the cadmium toxicity.
Collapse
Affiliation(s)
- Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | |
Collapse
|
14
|
Gazdoiu S, Yamoah K, Wu K, Pan ZQ. Human Cdc34 employs distinct sites to coordinate attachment of ubiquitin to a substrate and assembly of polyubiquitin chains. Mol Cell Biol 2007; 27:7041-52. [PMID: 17698585 PMCID: PMC2168909 DOI: 10.1128/mcb.00812-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cdc34 E2 ubiquitin (Ub) conjugating enzyme catalyzes polyubiquitination of a substrate recruited by the Skp1-Cullin 1-F-box protein-ROC1 E3 Ub ligase. Using mutagenesis studies, we now show that human Cdc34 employs distinct sites to coordinate the transfer of Ub to a substrate and the assembly of polyubiquitin chains. Mutational disruption of the conserved charged stretch (residues 143 to 153) or the acidic loop residues D102 and D103 led to accumulation of monoubiquitinated IkappaBalpha while failing to yield polyubiquitin chains, due to a catalytic defect in Ub-Ub ligation. These results suggest an ability of human Cdc34 to position the attacking Ub for assembly of polyubiquitin chains. Analysis of Cdc34N85Q and Cdc34S138A revealed severe defects of these mutants in both poly- and monoubiquitination of IkappaBalpha, supporting a role for N85 in stabilizing the oxyanion and in coordinating, along with S138, the attacking lysine for catalysis. Finally, Cdc34S95D and Cdc34(E108A/E112A) abolished both poly- and monoubiquitination of IkappaBalpha. Unexpectedly, the catalytic defects of these mutants in di-Ub synthesis can be rescued by fusion of a glutathione S-transferase moiety at E2's N terminus. These findings support the hypothesis that human Cdc34 S95 and E108/E112 are required to position the donor Ub optimally for catalysis, in a manner that might depend on E2 dimerization.
Collapse
Affiliation(s)
- Stefan Gazdoiu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
15
|
Petroski MD, Deshaies RJ. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 2006; 123:1107-20. [PMID: 16360039 DOI: 10.1016/j.cell.2005.09.033] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/16/2005] [Accepted: 09/20/2005] [Indexed: 11/30/2022]
Abstract
Ubiquitin chains linked via lysine 48 (K48) of ubiquitin mediate recognition of ubiquitinated proteins by the proteasome. However, the mechanisms underlying polymerization of this targeting signal on a substrate are unknown. Here we dissect this process using the cyclin-dependent kinase inhibitor Sic1 and its ubiquitination by the cullin-RING ubiquitin ligase SCF(Cdc4) and the ubiquitin-conjugating enzyme Cdc34. We show that Sic1 ubiquitination can be separated into two steps: attachment of the first ubiquitin, which is rate limiting, followed by rapid elongation of a K48-linked ubiquitin chain. Mutation of an acidic loop conserved among Cdc34 orthologs has no effect on attachment of the first ubiquitin onto Sic1 but compromises the processivity and linkage specificity of ubiquitin-chain synthesis. We propose that the acidic loop favorably positions K48 of a substrate-linked ubiquitin to attack SCF bound Cdc34 approximately ubiquitin thioester and thereby enables processive synthesis of K48-linked ubiquitin chains by SCF-Cdc34.
Collapse
Affiliation(s)
- Matthew D Petroski
- Howard Hughes Medical Institute, Division of Biology, 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | | |
Collapse
|
16
|
Gazdoiu S, Yamoah K, Wu K, Escalante CR, Tappin I, Bermudez V, Aggarwal AK, Hurwitz J, Pan ZQ. Proximity-induced activation of human Cdc34 through heterologous dimerization. Proc Natl Acad Sci U S A 2005; 102:15053-8. [PMID: 16210246 PMCID: PMC1242854 DOI: 10.1073/pnas.0507646102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cdc34 is an E2-conjugating enzyme required for catalyzing the polyubiquitination reaction mediated by the Skp1.CUL1.F-box (SCF) protein E3 ubiquitin (Ub) ligase. Here, we show that the activity of human Cdc34 in the Ub-Ub ligation reaction was enhanced dramatically by SCF's core Ub ligase module, composed of a heterodimeric complex formed by the ROC1 RING finger protein and the CUL1 C terminus that contains a Nedd8 moiety covalently conjugated at K720. Unexpectedly, we found that N-terminal fusion of a GST moiety to human Cdc34 generated dimeric GST-Cdc34 that was constitutively active in supporting the assembly of K48-linked polyUb chains independently of SCF. Furthermore, fusion of a FK506-binding protein (FKBP) to the N terminus of human Cdc34 yielded FKBP-Cdc34 that was induced to form a dimer upon treatment with the chemical inducer AP20187. The AP20187-induced dimeric form of FKBP-Cdc34 was substantially more active than the monomer in catalyzing Ub-Ub ligation. Thus, juxtaposition of human Cdc34 activates its catalytic capability, suggesting that the SCF-mediated polyubiquitination reaction may require the conversion of Cdc34 from an inactive monomer to a highly active dimeric form.
Collapse
Affiliation(s)
- Stefan Gazdoiu
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Winn PJ, Religa TL, Battey JND, Banerjee A, Wade RC. Determinants of functionality in the ubiquitin conjugating enzyme family. Structure 2005; 12:1563-74. [PMID: 15341722 DOI: 10.1016/j.str.2004.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 06/11/2004] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
The E2 enzymes are key enzymes in the ubiquitin and ubiquitin-like protein ligation pathways. To understand the functionality of the different E2 enzymes, we analyzed 190 protein sequences and 211 structures and electrostatic potentials. Key findings include: The ScUbc1 orthologs are defined by a C-terminal UBA domain. An N-terminal sequence motif that is highly conserved in all E2s except for Cdc34 orthologs is important for the stabilization of the L7 loop and is likely to be involved in E1 binding. ScUbc11p has a different electrostatic potential from E2-Cp and other proteins with which it has high sequence similarity but different functionality. All the E2s known to ubiquitinate histones have a negative potential. The members of the NCUBE family have a positive electrostatic potential, although its form is different from that of the SUMO conjugating E2s. The specificities of only the ScUbc4/Ubc5 and ScUbc1p orthologs are reflected in their L4 and L7 loops.
Collapse
Affiliation(s)
- Peter J Winn
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
18
|
Gardner RG, Nelson ZW, Gottschling DE. Degradation-mediated protein quality control in the nucleus. Cell 2005; 120:803-15. [PMID: 15797381 DOI: 10.1016/j.cell.2005.01.016] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/11/2005] [Accepted: 01/18/2005] [Indexed: 11/30/2022]
Abstract
Protein quality control degradation systems rid the cell of aberrant proteins, preventing detrimental effects on normal cellular function. Although such systems have been identified in most subcellular compartments, none have been found in the nucleus. Here, we report the discovery of such a system in Saccharomyces cerevisiae. It is defined by San1p, a ubiquitin-protein ligase that, in conjunction with the ubiquitin-conjugating enzymes Cdc34p and Ubc1p, targets four distinct mutant nuclear proteins for ubiquitination and destruction by the proteasome. San1p has exquisite specificity for aberrant proteins and does not target the wild-type versions of its mutant substrates. San1p is nuclear localized and requires nuclear localization for function. Loss of SAN1 results in a chronic stress response, underscoring its role of protein quality control in the cell. We propose that San1p-mediated degradation acts as the last line of proteolytic defense against the deleterious accumulation of aberrant proteins in the nucleus and that analogous systems exist in other eukaryotes.
Collapse
Affiliation(s)
- Richard G Gardner
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
19
|
Brunson LE, Dixon C, LeFebvre A, Sun L, Mathias N. Identification of residues in the WD-40 repeat motif of the F-box protein Met30p required for interaction with its substrate Met4p. Mol Genet Genomics 2005; 273:361-70. [PMID: 15883825 DOI: 10.1007/s00438-005-1137-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
The SCF family of ubiquitin-ligases consists of a common core machinery, namelySkp1p, Cdc53p, Hrt1p, and a variable component, the F-box protein that is responsible for substrate recognition. The F-box motif, which consists of approximately 40 amino acids, connects the F-box protein to the core ubiquitin-ligase machinery. Distinct SCF complexes, defined by distinct F-box proteins, target different substrate proteins for proteasome-dependent degradation. As part of the SCF(Met30p) complex, the F-box protein Met30p selects the substrate Met4p, a transcriptional activator for MET biosynthetic genes that mediate sulfur uptake and biosynthesis of sulfur containing compounds. When cells are grown in the absence of methionine, Met4p evades degradation by the SCF(Met30p) complex and activates the MET biosynthetic pathway. However, overproduction of Met30p represses MET gene expression and induces methionine auxotrophy in an otherwise methionine prototrophic strain. Here we demonstrate that overproduction of the C-terminal portion of Met30p, which is composed almost entirely of seven WD-40 repeat motifs, is necessary and sufficient to induce methionine auxotrophy and complement the temperature sensitive (ts) met30-6 mutation. Furthermore, we show that this region of Met30p is important for binding Met4p and that mutations that disrupt this interaction prevent both the induction of methionine auxotrophy and complementation of the met30-6 mutation. These assays have been exploited to identify residues that are important for the interaction of Met30p with its substrate. Since the C-terminal domain of Met30p lacks the F-box and cannot support the ubiquitination of Met4p, our results indicate that the recruitment of Met4p to the SCF(Met30p) complex itself results in inactivation of Met4p, independently of its ubiquitination.
Collapse
Affiliation(s)
- Lee Ellen Brunson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Cullin-RING complexes comprise the largest known class of ubiquitin ligases. Owing to the great diversity of their substrate-receptor subunits, it is possible that there are hundreds of distinct cullin-RING ubiquitin ligases in eukaryotic cells, which establishes these enzymes as key mediators of post-translational protein regulation. In this review, we focus on the composition, regulation and function of cullin-RING ligases, and describe how these enzymes can be characterized by a set of general principles.
Collapse
Affiliation(s)
- Matthew D Petroski
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
| | | |
Collapse
|
21
|
Varelas X, Ptak C, Ellison MJ. Cdc34 self-association is facilitated by ubiquitin thiolester formation and is required for its catalytic activity. Mol Cell Biol 2003; 23:5388-400. [PMID: 12861024 PMCID: PMC165730 DOI: 10.1128/mcb.23.15.5388-5400.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a coimmunoprecipitation strategy, we showed that the Cdc34 ubiquitin (Ub)-conjugating enzyme from Saccharomyces cerevisiae self-associates in cell lysates, thereby indicating an in vivo interaction. The ability of Cdc34 to interact with itself is not dependent on its association with the ubiquitin ligase Skp1-Cdc53/Cul1-Hrt1-F-box complex. Rather, this interaction depends upon the integrity of the Cdc34-Ub thiolester. Furthermore, several principal determinants within the Cdc34 catalytic domain, including the active-site cysteine, amino acid residues S73 and S97, and its catalytic domain insertion, also play a role in self-association. Mutational studies have shown that these determinants are functionally important in vivo and operate at the levels of both Cdc34-Ub thiolester formation and Cdc34-mediated multi-Ub chain assembly. These determinants are spatially situated in a region that is close to the active site, corresponding closely to the previously identified E2-Ub interface. These observations indicate that the formation of the Cdc34-Ub thiolester is important for Cdc34 self-association and that the interaction of Cdc34-Ub thiolesters is in turn a prerequisite for both multi-Ub chain assembly and Cdc34's essential function(s). A conclusion from these findings is that the placement of ubiquitin on the Cdc34 surface is a structurally important feature of Cdc34's function.
Collapse
Affiliation(s)
- Xaralabos Varelas
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
22
|
Dixon C, Brunson LE, Roy MM, Smothers D, Sehorn MG, Mathias N. Overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p inhibits ubiquitin ligase activities of their SCF complexes. EUKARYOTIC CELL 2003; 2:123-33. [PMID: 12582129 PMCID: PMC141164 DOI: 10.1128/ec.2.1.123-133.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 11/01/2002] [Indexed: 11/20/2022]
Abstract
Ubiquitin ligases direct the transfer of ubiquitin onto substrate proteins and thus target the substrate for proteasome-dependent degradation. SCF complexes are a family of ubiquitin ligases composed of a common core of components and a variable component called an F-box protein that defines substrate specificity. Distinct SCF complexes, defined by a particular F-box protein, target different substrate proteins for degradation. Although a few have been identified to be involved in important biological pathways, such as the cell division cycle and coordinating cellular responses to changes in environmental conditions, the role of the overwhelming majority of F-box proteins is not clear. Creating inhibitors that will block the in vivo activities of specific SCF ubiquitin ligases may provide identification of substrates of these uncharacterized F-box proteins. Using Saccharomyces cerevisiae as a model system, we demonstrate that overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p results in specific inhibition of their SCF complexes. Analyses of mutant amino-terminal alleles demonstrate that the interaction of these polypeptides with their full-length counterparts is an important step in the inhibitory process. These results suggest a common means to inhibit specific SCF complexes in vivo.
Collapse
Affiliation(s)
- Cheryl Dixon
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hwang GW, Furuchi T, Naganuma A. A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methylmercury. FASEB J 2002; 16:709-11. [PMID: 11978736 DOI: 10.1096/fj.01-0899fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanism responsible for the toxic effects of methylmercury (MeHg), an important environmental pollutant, is poorly understood. We have identified a gene, CDC34, that confers resistance to MeHg in Saccharomyces cerevisiae by screening a yeast genomic DNA library. CDC34 encodes a ubiquitin-conjugating enzyme, Cdc34, which is involved in ubiquitin-dependent proteolysis. Overexpression of Cdc34 results in significant resistance to MeHg both in yeast and human cells, and it increases the cellular level of ubiquitinated proteins. The ubiquitin-conjugating activity of Cdc34 is essential for the Cdc34-mediated resistance to MeHg, and the protective effect of the overexpression of Cdc34 is depressed by inhibition of proteasome activity. Our results support the hypothesis that MeHg induces the cellular accumulation of a certain protein(s) that causes cell damage and that this protein(s) is degraded after its ubiquitination in proteasomes.
Collapse
Affiliation(s)
- Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | |
Collapse
|
24
|
Furuchi T, Hwang GW, Naganuma A. Overexpression of the ubiquitin-conjugating enzyme Cdc34 confers resistance to methylmercury in Saccharomyces cerevisiae. Mol Pharmacol 2002; 61:738-41. [PMID: 11901211 DOI: 10.1124/mol.61.4.738] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A search was made for genes that confer resistance to methylmercury in yeast using a genomic DNA library derived from Saccharomyces cerevisiae. The genomic library was introduced into yeast and transformants that grew in the presence of a normally toxic concentration of methylmercury were selected. We sequenced the genomic DNA fragment in the plasmid from the clone with the highest resistance to methylmercury and analyzed the sequence for presence of an open reading frame that might confer resistance to methylmercury. We identified a gene, CDC34 (also known as UBC3), that increased resistance to methylmercury when overexpressed in yeast. CDC34 encodes a ubiquitin-conjugating enzyme; such proteins play important roles in the selective targeting of proteins for degradation. Overexpression of UBC4 and of UBC7, two other genes for ubiquitin-conjugating enzymes, also conferred resistance to methylmercury. Yeast strains transformed with the CDC34 gene were resistant not only to methylmercury but also to mercuric chloride and p-chloromercuribenzoate. To our knowledge, this is the first demonstration that overexpression of genes for ubiquitin-conjugating enzymes confers resistance to xenobiotics. Our results suggest that ubiquitination system might be involved in protection against the toxicity of mercury compounds, such as methylmercury, in eukaryotic cells.
Collapse
Affiliation(s)
- Takemitsu Furuchi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
25
|
Ptak C, Gwozd C, Huzil JT, Gwozd TJ, Garen G, Ellison MJ. Creation of a pluripotent ubiquitin-conjugating enzyme. Mol Cell Biol 2001; 21:6537-48. [PMID: 11533242 PMCID: PMC99800 DOI: 10.1128/mcb.21.19.6537-6548.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the creation of a pluripotent ubiquitin-conjugating enzyme (E2) generated through a single amino acid substitution within the catalytic domain of RAD6 (UBC2). This RAD6 derivative carries out the stress-related function of UBC4 and the cell cycle function of CDC34 while maintaining its own DNA repair function. Furthermore, it carries out CDC34's function in the absence of the CDC34 carboxy-terminal extension. By using sequence and structural comparisons, the residues that define the unique functions of these three E2s were found on the E2 catalytic face partitioned to either side by a conserved divide. One of these patches corresponds to a binding site for both HECT and RING domain proteins, suggesting that a single substitution in the catalytic domain of RAD6 confers upon it the ability to interact with multiple ubiquitin protein ligases (E3s). Other amino acid substitutions made within the catalytic domain of RAD6 either caused loss of its DNA repair function or modified its ability to carry out multiple E2 functions. These observations suggest that while HECT and RING domain binding may generally be localized to a specific patch on the E2 surface, other regions of the functional E2 face also play a role in specificity. Finally, these data also indicate that RAD6 uses a different functional region than either UBC4 or CDC34, allowing it to acquire the functions of these E2s while maintaining its own. The pluripotent RAD6 derivative, coupled with sequence, structural, and phylogenetic data, suggests that E2s have diverged from a common multifunctional progenitor.
Collapse
Affiliation(s)
- C Ptak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Smothers DB, Kozubowski L, Dixon C, Goebl MG, Mathias N. The abundance of Met30p limits SCF(Met30p) complex activity and is regulated by methionine availability. Mol Cell Biol 2000; 20:7845-52. [PMID: 11027256 PMCID: PMC86396 DOI: 10.1128/mcb.20.21.7845-7852.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated degradation plays a crucial role in many fundamental biological pathways, including the mediation of cellular responses to changes in environmental conditions. A family of ubiquitin ligase complexes, called SCF complexes, found throughout eukaryotes, is involved in a variety of biological pathways. In Saccharomyces cerevisiae, an SCF complex contains a common set of components, namely, Cdc53p, Skp1p, and Hrt1p. Substrate specificity is defined by a variable component called an F-box protein. The F- box is a approximately 40-amino-acid motif that allows the F-box protein to bind Skp1p. Each SCF complex recognizes different substrates according to which F-box protein is associated with the complex. In yeasts, three SCF complexes have been demonstrated to associate with the ubiquitin-conjugating enzyme Cdc34p and have ubiquitin ligase activity. F-box proteins are not abundant and are unstable. As part of the SCF(Met30p) complex, the F-box protein Met30p represses methionine biosynthetic gene expression when availability of L-methionine is high. Here we demonstrate that in vivo SCF(Met30p) complex activity can be regulated by the abundance of Met30p. Furthermore, we provide evidence that Met30p abundance is regulated by the availability of L-methionine. We propose that the cellular responses mediated by an SCF complex are directly regulated by environmental conditions through the control of F-box protein stability.
Collapse
Affiliation(s)
- D B Smothers
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
27
|
Schwer B, Saha N, Mao X, Chen HW, Shuman S. Structure-function analysis of yeast mRNA cap methyltransferase and high-copy suppression of conditional mutants by AdoMet synthase and the ubiquitin conjugating enzyme Cdc34p. Genetics 2000; 155:1561-76. [PMID: 10924457 PMCID: PMC1461192 DOI: 10.1093/genetics/155.4.1561] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we present a genetic analysis of the yeast cap-methylating enzyme Abd1p. To identify individual amino acids required for Abd1p function, we introduced alanine mutations at 35 positions of the 436-amino acid yeast protein. Two new recessive lethal mutations, F256A and Y330A, were identified. Alleles F256L and Y256L were viable, suggesting that hydrophobic residues at these positions sufficed for Abd1p function. Conservative mutations of Asp-178 established that an acidic moiety is essential at this position (i.e. , D178E was viable whereas D178N was not). Phe-256, Tyr-330, and Asp-178 are conserved in all known cellular cap methyltransferases. We isolated temperature-sensitive abd1 alleles and found that abd1-ts cells display a rapid shut-off of protein synthesis upon shift to the restrictive temperature, without wholesale reduction in steady-state mRNA levels. These in vivo results are consistent with classical biochemical studies showing a requirement for the cap methyl group in cap-dependent translation. We explored the issue of how cap methylation might be regulated in vivo by conducting a genetic screen for high-copy suppressors of the ts growth defect of abd1 mutants. The identification of the yeast genes SAM2 and SAM1, which encode AdoMet synthase, as abd1 suppressors suggests that Abd1p function can be modulated by changes in the concentration of its substrate AdoMet. We also identified the ubiquitin conjugating enzyme Cdc34p as a high-copy abd1 suppressor. We show that mutations of Cdc34p that affect its ubiquitin conjugation activity or its capacity to interact with the E3-SCF complex abrogate its abd1 suppressor function. Moreover, the growth defect of abd1 mutants is exacerbated by cdc34-2. These findings suggest a novel role for Cdc34p in gene expression and engender a model whereby cap methylation or cap utilization is negatively regulated by a factor that is degraded when Cdc34p is overexpressed.
Collapse
Affiliation(s)
- B Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
28
|
Mathias N, Johnson S, Byers B, Goebl M. The abundance of cell cycle regulatory protein Cdc4p is controlled by interactions between its F box and Skp1p. Mol Cell Biol 1999; 19:1759-67. [PMID: 10022863 PMCID: PMC83969 DOI: 10.1128/mcb.19.3.1759] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modification of a protein by ubiquitin usually results in rapid degradation of the ubiquitinated protein by the proteasome. The transfer of ubiquitin to substrate is a multistep process. Cdc4p is a component of a ubiquitin ligase that tethers the ubiquitin-conjugating enzyme Cdc34p to its substrates. Among the domains of Cdc4p that are crucial for function are the F-box, which links Cdc4p to Cdc53p through Skp1p, and the WD-40 repeats, which are required for binding the substrate for Cdc34p. In addition to Cdc4p, other F-box proteins, including Grr1p and Met30p, may similarly act together with Cdc53p and Skp1p to function as ubiquitin ligase complexes. Because the relative abundance of these complexes, known collectively as SCFs, is important for cell viability, we have sought evidence of mechanisms that modulate F-box protein regulation. Here we demonstrate that the abundance of Cdc4p is subject to control by a peptide segment that we term the R-motif (for "reduced abundance"). Furthermore, we show that binding of Skp1p to the F-box of Cdc4p inhibits R-motif-dependent degradation of Cdc4p. These results suggest a general model for control of SCF activities.
Collapse
Affiliation(s)
- N Mathias
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and the Walther Oncology Center, Indianapolis, Indiana 46202-5122, USA.
| | | | | | | |
Collapse
|
29
|
Lammer D, Mathias N, Laplaza JM, Jiang W, Liu Y, Callis J, Goebl M, Estelle M. Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. Genes Dev 1998; 12:914-26. [PMID: 9531531 PMCID: PMC316682 DOI: 10.1101/gad.12.7.914] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1997] [Accepted: 01/29/1998] [Indexed: 02/07/2023]
Abstract
The RUB1/NEDD-8 family of ubiquitin-related genes is widely represented among eukaryotes. Here we report that Cdc53p in Saccharomyces cerevisiae, a member of the Cullin family of proteins, is stably modified by the covalent attachment of a single Rub1p molecule. Two genes have been identified that are required for Rub1p conjugation to Cdc53p. The first gene, designated ENR2, encodes a protein with sequence similarity to the amino-terminal half of the ubiquitin-activating enzyme. By analogy with Aos1p, we infer that Enr2p functions in a bipartite Rub1p-activating enzyme. The second gene is SKP1, shown previously to be required for some ubiquitin-conjugation events. A deletion allele of ENR2 is lethal with temperature-sensitive alleles of cdc34 and enhances the phenotypes of cdc4, cdc53, and skp1, strongly implying that Rub1p conjugation to Cdc53p is required for optimal assembly or function of the E3 complex SCFCdc4. Consistent with this model, both enr2delta and an allele of Cdc53p that is not Rub1p modified, render cells sensitive to alterations in the levels of Cdc4p, Cdc34p, and Cdc53p.
Collapse
Affiliation(s)
- D Lammer
- Biology Department, Indiana University, Bloomington, Indiana, 47405 USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mathias N, Steussy CN, Goebl MG. An essential domain within Cdc34p is required for binding to a complex containing Cdc4p and Cdc53p in Saccharomyces cerevisiae. J Biol Chem 1998; 273:4040-5. [PMID: 9461595 DOI: 10.1074/jbc.273.7.4040] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The CDC34 gene of the yeast Saccharomyces cerevisiae encodes a ubiquitin-conjugating protein that transfers ubiquitin onto substrates to signal rapid degradation via the proteasome. Cdc34p has been implicated in signaling the destruction of a variety of substrates including the cyclin-dependent kinase inhibitor, Sic1p, which must be degraded for cells to enter S-phase. Mutants lacking CDC34 activity fail to degrade Sic1p and fail to enter S-phase, a phenotype that is also shared with cells lacking CDC4 and CDC53 activity. Here we demonstrate that Cdc4p, Cdc34p, and Cdc53p interact in vivo. We have mapped a Cdc4p/Cdc53p-binding region on Cdc34p; this region is essential for S-phase entry and thus the association of these three proteins is required for Sic1p degradation. All three proteins migrate in gel filtration to sizes that greatly exceed their actual size suggesting that they form stable associations with other proteins and we observe Cdc4p, Cdc34p, and Cdc53p fractionating into overlapping families of high molecular weight complexes. Finally, we demonstrate that Cdc4p, Cdc34p, and Cdc53p are stable throughout the cell cycle and that Cdc34p permanently resides as part of a complex throughout the cell cycle. This suggests that all Cdc34p substrates are ubiquitinated by a similar high molecular weight complex.
Collapse
Affiliation(s)
- N Mathias
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and the Walther Oncology Center, Indianapolis, Indiana, 46202-5122, USA.
| | | | | |
Collapse
|
31
|
Kopski KM, Huffaker TC. Suppressors of the ndc10-2 mutation: a role for the ubiquitin system in Saccharomyces cerevisiae kinetochore function. Genetics 1997; 147:409-20. [PMID: 9335582 PMCID: PMC1208167 DOI: 10.1093/genetics/147.2.409] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have isolated a new conditional-lethal mutation, ndc10-2, in the NDC10/CBF2/CTF14 gene that encodes the 110-kD subunit of the Saccharomyces cerevisiae CBF3 kinetochore complex. At the restrictive temperature of 37 degrees, ndc10-2 cells are able to assemble anaphase spindles, but fail to segregate their DNA, consistent with a defect in kinetochore function. To identify other factors that play a role in kinetochore assembly or function, we isolated both dosage and second site suppressors of the ndc10-2 mutation. These screens identified UBC6 as a dosage suppressor, and mutations in UBC6 and UBC7 as second-site suppressors of ndc10-2 heat sensitivity. Both UBC6 and UBC7 encode ubiquitin-conjugating enzymes that function in ubiquitin-mediated protein degradation. Furthermore, overexpression of a mutant ubiquitin suppresses the ndc10-2 mutation. These results implicate the ubiquitin system in the regulation of ndc10-2 function and suggest a role for the ubiquitin system in kinetochore function.
Collapse
Affiliation(s)
- K M Kopski
- Section of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
32
|
Tiwari-Woodruff SK, Schulteis CT, Mock AF, Papazian DM. Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys J 1997; 72:1489-500. [PMID: 9083655 PMCID: PMC1184345 DOI: 10.1016/s0006-3495(97)78797-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In voltage-dependent Shaker K+ channels, charged residues E293 in transmembrane segment S2 and R365, R368, and R371 in S4 contribute significantly to the gating charge movement that accompanies activation. Using an intragenic suppression strategy, we have now probed for structural interaction between transmembrane segments S2, S3, and S4 in Shaker channels. Charge reversal mutations of E283 in S2 and K374 in S4 disrupt maturation of the protein. Maturation was specifically and efficiently rescued by second-site charge reversal mutations, indicating that electrostatic interactions exist between E283 in S2 and R368 and R371 in S4, and between K374 in S4 and E293 in S2 and D316 in S3. Rescued subunits were incorporated into functional channels, demonstrating that a native structure was restored. Our data indicate that K374 interacts with E293 and D316 within the same subunit. These electrostatic interactions mediate the proper folding of the protein and are likely to persist in the native structure. Our results raise the possibility that the S4 segment is tilted relative to S2 and S3 in the voltage-sensing domain of Shaker channels. Such an arrangement might provide solvent access to voltage-sensing residues, which we find to be highly tolerant of mutations.
Collapse
Affiliation(s)
- S K Tiwari-Woodruff
- Department of Physiology, School of Medicine, University of California, Los Angeles 90095-1751, USA
| | | | | | | |
Collapse
|
33
|
Mathias N, Johnson SL, Winey M, Adams AE, Goetsch L, Pringle JR, Byers B, Goebl MG. Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins. Mol Cell Biol 1996; 16:6634-43. [PMID: 8943317 PMCID: PMC231665 DOI: 10.1128/mcb.16.12.6634] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Regulation of cell cycle progression occurs in part through the targeted degradation of both activating and inhibitory subunits of the cyclin-dependent kinases. During G1, CDC4, encoding a WD-40 repeat protein, and CDC34, encoding a ubiquitin-conjugating enzyme, are involved in the destruction of these regulators. Here we describe evidence indicating that CDC53 also is involved in this process. Mutations in CDC53 cause a phenotype indistinguishable from those of cdc4 and cdc34 mutations, numerous genetic interactions are seen between these genes, and the encoded proteins are found physically associated in vivo. Cdc53p defines a large family of proteins found in yeasts, nematodes, and humans whose molecular functions are uncharacterized. These results suggest a role for this family of proteins in regulating cell cycle proliferation through protein degradation.
Collapse
Affiliation(s)
- N Mathias
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | | | | | | | | | | | | | |
Collapse
|