1
|
De Zoysa T, Hauke AC, Iyer NR, Marcus E, Ostrowski SM, Stegemann F, Ermolenko DN, Fay JC, Phizicky EM. A connection between the ribosome and two S. pombe tRNA modification mutants subject to rapid tRNA decay. PLoS Genet 2024; 20:e1011146. [PMID: 38295128 PMCID: PMC10861057 DOI: 10.1371/journal.pgen.1011146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/12/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
tRNA modifications are crucial in all organisms to ensure tRNA folding and stability, and accurate translation. In both the yeast Saccharomyces cerevisiae and the evolutionarily distant yeast Schizosaccharomyces pombe, mutants lacking certain tRNA body modifications (outside the anticodon loop) are temperature sensitive due to rapid tRNA decay (RTD) of a subset of hypomodified tRNAs. Here we show that for each of two S. pombe mutants subject to RTD, mutations in ribosomal protein genes suppress the temperature sensitivity without altering tRNA levels. Prior work showed that S. pombe trm8Δ mutants, lacking 7-methylguanosine, were temperature sensitive due to RTD, and that one class of suppressors had mutations in the general amino acid control (GAAC) pathway, which was activated concomitant with RTD, resulting in further tRNA loss. We now find that another class of S. pombe trm8Δ suppressors have mutations in rpl genes, encoding 60S subunit proteins, and that suppression occurs with minimal restoration of tRNA levels and reduced GAAC activation. Furthermore, trm8Δ suppression extends to other mutations in the large or small ribosomal subunit. We also find that S. pombe tan1Δ mutants, lacking 4-acetylcytidine, are temperature sensitive due to RTD, that one class of suppressors have rpl mutations, associated with minimal restoration of tRNA levels, and that suppression extends to other rpl and rps mutations. However, although S. pombe tan1Δ temperature sensitivity is associated with some GAAC activation, suppression by an rpl mutation only modestly inhibits GAAC activation. We propose a model in which ribosomal protein mutations result in reduced ribosome concentrations, leading to both reduced ribosome collisions and a reduced requirement for tRNA, with these effects having different relative importance in trm8Δ and tan1Δ mutants. This model is consistent with our results in S. cerevisiae trm8Δ trm4Δ mutants, known to undergo RTD, fueling speculation that this model applies across eukaryotes.
Collapse
Affiliation(s)
- Thareendra De Zoysa
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Alayna C. Hauke
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Nivedita R. Iyer
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Sarah M. Ostrowski
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Franziska Stegemann
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Dmitri N. Ermolenko
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Justin C. Fay
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| |
Collapse
|
2
|
Fernández-Fernández J, Martín-Villanueva S, Perez-Fernandez J, de la Cruz J. The Role of Ribosomal Proteins eL15 and eL36 in the Early Steps of Yeast 60S Ribosomal Subunit Assembly. J Mol Biol 2023; 435:168321. [PMID: 37865285 DOI: 10.1016/j.jmb.2023.168321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Ribosomal proteins have important roles in maintaining the structure and function of mature ribosomes, but they also drive crucial rearrangement reactions during ribosome biogenesis. The contribution of most, but not all, ribosomal proteins to ribosome synthesis has been previously analyzed in the yeast Saccharomyces cerevisiae. Herein, we characterize the role of yeast eL15 during 60S ribosomal subunit formation. In vivo depletion of eL15 results in a shortage of 60S subunits and the appearance of half-mer polysomes. This is likely due to defective processing of the 27SA3 to the 27SBS pre-rRNA and impaired subsequent processing of both forms of 27SB pre-rRNAs to mature 25S and 5.8S rRNAs. Indeed, eL15 depletion leads to the efficient turnover of the de novo formed 27S pre-rRNAs. Additionally, depletion of eL15 blocks nucleocytoplasmic export of pre-60S particles. Moreover, we have analyzed the impact of depleting either eL15 or eL36 on the composition of early pre-60S particles, thereby revealing that the depletion of eL15 or eL36 not only affects each other's assembly into pre-60S particles but also that of neighboring ribosomal proteins, including eL8. These intermediates also lack most ribosome assembly factors required for 27SA3 and 27SB pre-rRNA processing, named A3- and B-factors, respectively. Importantly, our results recapitulate previous ones obtained upon eL8 depletion. We conclude that assembly of eL15, together with that of eL8 and eL36, is a prerequisite to shape domain I of 5.8S/25S rRNA within early pre-60S particles, through their binding to this rRNA domain and the recruitment of specific groups of assembly factors.
Collapse
Affiliation(s)
- José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain
| | - Jorge Perez-Fernandez
- Department of Biochemistry III, University of Regensburg, D-93051 Regensburg, Germany.
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain.
| |
Collapse
|
3
|
De Zoysa T, Hauke AC, Iyer NR, Marcus E, Ostrowski SM, Fay JC, Phizicky EM. A connection between the ribosome and two S. pombe tRNA modification mutants subject to rapid tRNA decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558340. [PMID: 37790432 PMCID: PMC10542129 DOI: 10.1101/2023.09.18.558340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
tRNA modifications are crucial in all organisms to ensure tRNA folding and stability, and accurate translation in the ribosome. In both the yeast Saccharomyces cerevisiae and the evolutionarily distant yeast Schizosaccharomyces pombe, mutants lacking certain tRNA body modifications (outside the anticodon loop) are temperature sensitive due to rapid tRNA decay (RTD) of a subset of hypomodified tRNAs. Here we show that for each of two S. pombe mutants subject to RTD, mutations in ribosomal protein genes suppress the temperature sensitivity without altering tRNA levels. Prior work showed that S. pombe trm8Δ mutants, lacking 7-methylguanosine, were temperature sensitive due to RTD and that one class of suppressors had mutations in the general amino acid control (GAAC) pathway, which was activated concomitant with RTD, resulting in further tRNA loss. We now find that another class of S. pombe trm8Δ suppressors have mutations in rpl genes, encoding 60S subunit proteins, and that suppression occurs with minimal restoration of tRNA levels and reduced GAAC activation. Furthermore, trm8Δ suppression extends to other mutations in the large or small ribosomal subunit. We also find that S. pombe tan1Δ mutants, lacking 4-acetylcytidine, are temperature sensitive due to RTD, that one class of suppressors have rpl mutations, associated with minimal restoration of tRNA levels, and that suppression extends to other rpl and rps mutations. However, although S. pombe tan1Δ temperature sensitivity is associated with some GAAC activation, suppression by an rpl mutation does not significantly inhibit GAAC activation. These results suggest that ribosomal protein mutations suppress the temperature sensitivity of S. pombe trm8Δ and tan1Δ mutants due to reduced ribosome concentrations, leading to both a reduced requirement for tRNA, and reduced ribosome collisions and GAAC activation. Results with S. cerevisiae trm8Δ trm4Δ mutants are consistent with this model, and fuel speculation that similar results will apply across eukaryotes.
Collapse
Affiliation(s)
- Thareendra De Zoysa
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, USA 14642
| | - Alayna C. Hauke
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, USA 14642
| | - Nivedita R. Iyer
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, USA 14642
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, USA 14642
| | - Sarah M. Ostrowski
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, USA 14642
| | - Justin C. Fay
- Department of Biology, University of Rochester, Rochester, NY, USA 14627
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, USA 14642
| |
Collapse
|
4
|
Pillet B, Méndez-Godoy A, Murat G, Favre S, Stumpe M, Falquet L, Kressler D. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. eLife 2022; 11:74255. [PMID: 35357307 PMCID: PMC8970588 DOI: 10.7554/elife.74255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production. Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.
Collapse
Affiliation(s)
- Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Guillaume Murat
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sébastien Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Rodríguez-Galán O, García-Gómez JJ, Rosado IV, Wei W, Méndez-Godoy A, Pillet B, Alekseenko A, Steinmetz L, Pelechano V, Kressler D, de la Cruz J. A functional connection between translation elongation and protein folding at the ribosome exit tunnel in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:206-220. [PMID: 33330942 PMCID: PMC7797049 DOI: 10.1093/nar/gkaa1200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.
Collapse
Affiliation(s)
- Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Juan J García-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Iván V Rosado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alfonso Méndez-Godoy
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
6
|
Martín-Villanueva S, Fernández-Pevida A, Fernández-Fernández J, Kressler D, de la Cruz J. Ubiquitin release from eL40 is required for cytoplasmic maturation and function of 60S ribosomal subunits in Saccharomyces cerevisiae. FEBS J 2019; 287:345-360. [PMID: 31306551 DOI: 10.1111/febs.14999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/23/2019] [Accepted: 07/12/2019] [Indexed: 01/13/2023]
Abstract
Ubiquitin is generated by proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a linear polyubiquitin protein of head-to-tail monomers, or as a single N-terminal moiety to one of two ribosomal proteins, eL40 (Ubi1/2 precursors) and eS31 (Ubi3 precursor). It has been proposed that the ubiquitin moiety fused to these ribosomal proteins could act as a chaperone by facilitating their efficient production, folding and ribosome assembly in Saccharomyces cerevisiae. We have previously shown that ubiquitin release from eS31 is required for yeast viability and that noncleaved Ubi3 can get incorporated into translation-competent 40S subunits. In this study, we have analysed the effects of mutations that partially or totally impair cleavage of the ubiquitin-eL40A fusion protein. While noncleaved Ubi1 is not able to support growth when it is the sole cellular source of eL40, it can assemble into nascent pre-60S particles. However, Ubi1-containing 60S ribosomal subunits are not competent for translation. This is likely due to a steric interference of the unprocessed ubiquitin with the binding and function of factors that interact with the ribosome's GTPase-associated centre. In agreement with this suggestion, Ubi1-containing ribosomes affect the efficient recycling of the anti-association factor Tif6 and have a reduced presence of translation elongation factors. We conclude that the removal of the ubiquitin moiety from ribosomal protein eL40 is an essential prerequisite for both the cytoplasmic maturation and the functionality of 60S ribosomal subunits.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Genética, Universidad de Sevilla, Spain
| | - Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Genética, Universidad de Sevilla, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Genética, Universidad de Sevilla, Spain
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Genética, Universidad de Sevilla, Spain
| |
Collapse
|
7
|
Espinar-Marchena F, Rodríguez-Galán O, Fernández-Fernández J, Linnemann J, de la Cruz J. Ribosomal protein L14 contributes to the early assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:4715-4732. [PMID: 29788267 PMCID: PMC5961077 DOI: 10.1093/nar/gky123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits.
Collapse
Affiliation(s)
- Francisco Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - Jan Linnemann
- Institut für Biochemie III, Universität Regensburg, 93053, Regensburg, Germany
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| |
Collapse
|
8
|
Segev N, Gerst JE. Specialized ribosomes and specific ribosomal protein paralogs control translation of mitochondrial proteins. J Cell Biol 2017; 217:117-126. [PMID: 29118025 PMCID: PMC5748985 DOI: 10.1083/jcb.201706059] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/19/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins exist mainly as paralog pairs in eukaryotes, yet the reasons for maintaining duplication are unclear. By using a novel proteomic approach, Segev and Gerst show paralog-specific regulation of the translation of mitochondrial proteins using specialized ribosomes. Genome duplication in eukaryotes created paralog pairs of ribosomal proteins (RPs) that show high sequence similarity/identity. However, individual paralogs can confer vastly different effects upon cellular processes, e.g., specific yeast paralogs regulate actin organization, bud site selection, and mRNA localization, although how specificity is conferred is unknown. Changes in the RP composition of ribosomes might allow for specialized translation of different subsets of mRNAs, yet it is unclear whether specialized ribosomes exist and if paralog specificity controls translation. Using translatome analyses, we show that the translation of mitochondrial proteins is highly down-regulated in yeast lacking RP paralogs required for normal mitochondrial function (e.g., RPL1b). Although RPL1a and RPL1b encode identical proteins, Rpl1b-containing ribosomes confer more efficient translation of respiration-related proteins. Thus, ribosomes varying in RP composition may confer specialized functions, and RP paralog specificity defines a novel means of translational control.
Collapse
Affiliation(s)
- Nadav Segev
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Delaveau T, Davoine D, Jolly A, Vallot A, Rouvière JO, Gerber A, Brochet S, Plessis M, Roquigny R, Merhej J, Leger T, Garcia C, Lelandais G, Laine E, Palancade B, Devaux F, Garcia M. Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae. Nucleic Acids Res 2016; 44:8826-8841. [PMID: 27580715 PMCID: PMC5062994 DOI: 10.1093/nar/gkw732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 08/11/2016] [Indexed: 01/21/2023] Open
Abstract
The discovery of novel specific ribosome-associated factors challenges the assumption that translation relies on standardized molecular machinery. In this work, we demonstrate that Tma108, an uncharacterized translation machinery-associated factor in yeast, defines a subpopulation of cellular ribosomes specifically involved in the translation of less than 200 mRNAs encoding proteins with ATP or Zinc binding domains. Using ribonucleoparticle dissociation experiments we established that Tma108 directly interacts with the nascent protein chain. Additionally, we have shown that translation of the first 35 amino acids of Asn1, one of the Tma108 targets, is necessary and sufficient to recruit Tma108, suggesting that it is loaded early during translation. Comparative genomic analyses, molecular modeling and directed mutagenesis point to Tma108 as an original M1 metallopeptidase, which uses its putative catalytic peptide-binding pocket to bind the N-terminus of its targets. The involvement of Tma108 in co-translational regulation is attested by a drastic change in the subcellular localization of ATP2 mRNA upon Tma108 inactivation. Tma108 is a unique example of a nascent chain-associated factor with high selectivity and its study illustrates the existence of other specific translation-associated factors besides RNA binding proteins.
Collapse
Affiliation(s)
- Thierry Delaveau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Dimitri Davoine
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Ariane Jolly
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Antoine Vallot
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Jérôme O Rouvière
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Athenaïs Gerber
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Sandra Brochet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Marion Plessis
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Roxane Roquigny
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Jawad Merhej
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Thibaut Leger
- Proteomics facility, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- Proteomics facility, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Gaëlle Lelandais
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Elodie Laine
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Frédéric Devaux
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| | - Mathilde Garcia
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie computationnelle et quantitative - Institut de Biologie Paris Seine (LCQB - IBPS), 75005 Paris, France
| |
Collapse
|
10
|
Fernández-Pevida A, Martín-Villanueva S, Murat G, Lacombe T, Kressler D, de la Cruz J. The eukaryote-specific N-terminal extension of ribosomal protein S31 contributes to the assembly and function of 40S ribosomal subunits. Nucleic Acids Res 2016; 44:7777-91. [PMID: 27422873 PMCID: PMC5027506 DOI: 10.1093/nar/gkw641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
Abstract
The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Thierry Lacombe
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
11
|
Espinar-Marchena FJ, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Pevida A, Babiano R, de la Cruz J. Role of the yeast ribosomal protein L16 in ribosome biogenesis. FEBS J 2016; 283:2968-85. [PMID: 27374275 DOI: 10.1111/febs.13797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Most ribosomal proteins play essential roles in ribosome synthesis and function. In this study, we have analysed the contribution of yeast ribosomal protein L16 to ribosome biogenesis. We show that in vivo depletion of the essential L16 protein results in a deficit in 60S subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability and rapid turnover of early and intermediate pre-60S particles, as evidenced by the reduced steady-state levels of 27SBS and 7SL /S pre-rRNA, and the low amounts of de novo synthesized 27S pre-rRNA and 25S rRNA. Additionally, depletion of L16 blocks nucleocytoplasmic export of pre-60S particles. Moreover, we show that L16 assembles in the nucleolus and binds to early 90S preribosomal particles. Many evolutionarily conserved ribosomal proteins possess extra eukaryote-specific amino- or carboxy-terminal extensions and/or internal loops. Here, we have also investigated the role of the eukaryote-specific carboxy-terminal extension of L16. Progressive truncation of this extension recapitulates, albeit to a lesser extent, the growth and ribosome biogenesis defects of the L16 depletion. We conclude that L16 assembly is a prerequisite to properly stabilize rRNA structures within early pre-60S particles, thereby favouring efficient 27S pre-rRNA processing within the internal transcribed spacer 1 at sites A3 and B1 . Upon depletion of L16, the lack of this stabilization aborts early pre-60S particle assembly and subjects these intermediates to turnover.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| |
Collapse
|
12
|
Garrido-Godino AI, García-López MC, García-Martínez J, Pelechano V, Medina DA, Pérez-Ortín JE, Navarro F. Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:731-43. [PMID: 27001033 DOI: 10.1016/j.bbagrm.2016.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/22/2023]
Abstract
The RPB1 mutants in the foot region of RNA polymerase II affect the assembly of the complex by altering the correct association of both the Rpb6 and the Rpb4/7 dimer. Assembly defects alter both transcriptional activity as well as the amount of enzyme associated with genes. Here, we show that the global transcriptional analysis of foot mutants reveals the activation of an environmental stress response (ESR), which occurs at a permissive temperature under optimal growth conditions. Our data indicate that the ESR that occurs in foot mutants depends mostly on a global post-transcriptional regulation mechanism which, in turn, depends on Rpb4-mRNA imprinting. Under optimal growth conditions, we propose that Rpb4 serves as a key to globally modulate mRNA stability as well as to coordinate transcription and decay. Overall, our results imply that post-transcriptional regulation plays a major role in controlling the ESR at both the transcription and mRNA decay levels.
Collapse
Affiliation(s)
- A I Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain
| | - M C García-López
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain
| | - J García-Martínez
- Departamento de Genética, Facultad de Biológicas, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain; ERI Biotecmed, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - V Pelechano
- European Molecular Biology Laboratories (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - D A Medina
- ERI Biotecmed, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - J E Pérez-Ortín
- ERI Biotecmed, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain.
| | - F Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain.
| |
Collapse
|
13
|
Wegrecki M, Rodríguez-Galán O, de la Cruz J, Bravo J. The structure of Erb1-Ytm1 complex reveals the functional importance of a high-affinity binding between two β-propellers during the assembly of large ribosomal subunits in eukaryotes. Nucleic Acids Res 2015; 43:11017-30. [PMID: 26476442 PMCID: PMC4678814 DOI: 10.1093/nar/gkv1043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Ribosome biogenesis is one of the most essential pathways in eukaryotes although it is still not fully characterized. Given the importance of this process in proliferating cells, it is obvious that understanding the macromolecular details of the interactions that take place between the assembly factors, ribosomal proteins and nascent pre-rRNAs is essentially required for the development of new non-genotoxic treatments for cancer. Herein, we have studied the association between the WD40-repeat domains of Erb1 and Ytm1 proteins. These are essential factors for the biogenesis of 60S ribosomal subunits in eukaryotes that form a heterotrimeric complex together with the also essential Nop7 protein. We provide the crystal structure of a dimer formed by the C-terminal part of Erb1 and Ytm1 from Chaetomium thermophilum at 2.1 Å resolution. Using a multidisciplinary approach we show that the β-propeller domains of these proteins interact in a novel manner that leads to a high-affinity binding. We prove that a point mutation within the interface of the complex impairs the interaction between the two proteins and negatively affects growth and ribosome production in yeast. Our study suggests insights into the association of the Erb1-Ytm1 dimer with pre-ribosomal particles.
Collapse
Affiliation(s)
- Marcin Wegrecki
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jeronimo Bravo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
14
|
Gómez-Herreros F, Rodríguez-Galán O, Morillo-Huesca M, Maya D, Arista-Romero M, de la Cruz J, Chávez S, Muñoz-Centeno MC. Balanced production of ribosome components is required for proper G1/S transition in Saccharomyces cerevisiae. J Biol Chem 2013; 288:31689-700. [PMID: 24043628 DOI: 10.1074/jbc.m113.500488] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell cycle regulation is a very accurate process that ensures cell viability and the genomic integrity of daughter cells. A fundamental part of this regulation consists in the arrest of the cycle at particular points to ensure the completion of a previous event, to repair cellular damage, or to avoid progression in potentially risky situations. In this work, we demonstrate that a reduction in nucleotide levels or the depletion of RNA polymerase I or III subunits generates a cell cycle delay at the G1/S transition in Saccharomyces cerevisiae. This delay is concomitant with an imbalance between ribosomal RNAs and proteins which, among others, provokes an accumulation of free ribosomal protein L5. Consistently with a direct impact of free L5 on the G1/S transition, rrs1 mutants, which weaken the assembly of L5 and L11 on pre-60S ribosomal particles, enhance both the G1/S delay and the accumulation of free ribosomal protein L5. We propose the existence of a surveillance mechanism that couples the balanced production of yeast ribosomal components and cell cycle progression through the accumulation of free ribosomal proteins. This regulatory pathway resembles the p53-dependent nucleolar-stress checkpoint response described in human cells, which indicates that this is a general control strategy extended throughout eukaryotes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- From the Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Letzring DP, Wolf AS, Brule CE, Grayhack EJ. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA (NEW YORK, N.Y.) 2013; 19:1208-17. [PMID: 23825054 PMCID: PMC3753928 DOI: 10.1261/rna.039446.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Translation of CGA codon repeats in the yeast Saccharomyces cerevisiae is inefficient, resulting in dose-dependent reduction in expression and in production of an mRNA cleavage product, indicative of a stalled ribosome. Here, we use genetics and translation inhibitors to understand how ribosomes respond to CGA repeats. We find that CGA codon repeats result in a truncated polypeptide that is targeted for degradation by Ltn1, an E3 ubiquitin ligase involved in nonstop decay, although deletion of LTN1 does not improve expression downstream from CGA repeats. Expression downstream from CGA codons at residue 318, but not at residue 4, is improved by deletion of either ASC1 or HEL2, previously implicated in inhibition of translation by polybasic sequences. Thus, translation of CGA repeats likely causes ribosomes to stall and exploits known quality control systems. Expression downstream from CGA repeats at amino acid 4 is improved by paromomycin, an aminoglycoside that relaxes decoding specificity. Paromomycin has no effect if native tRNA(Arg(ICG)) is highly expressed, consistent with the idea that failure to efficiently decode CGA codons might occur in part due to rejection of the cognate tRNA(Arg(ICG)). Furthermore, expression downstream from CGA repeats is improved by inactivation of RPL1B, one of two genes encoding the universally conserved ribosomal protein L1. The effects of rpl1b-Δ and of either paromomycin or tRNA(Arg(ICG)) on CGA decoding are additive, suggesting that the rpl1b-Δ mutant suppresses CGA inhibition by means other than increased acceptance of tRNA(Arg(ICG)). Thus, inefficient decoding of CGA likely involves at least two independent defects in translation.
Collapse
Affiliation(s)
- Daniel P. Letzring
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | - Andrew S. Wolf
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | - Christina E. Brule
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | - Elizabeth J. Grayhack
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
- Corresponding authorE-mail
| |
Collapse
|
16
|
Babiano R, Badis G, Saveanu C, Namane A, Doyen A, Díaz-Quintana A, Jacquier A, Fromont-Racine M, de la Cruz J. Yeast ribosomal protein L7 and its homologue Rlp7 are simultaneously present at distinct sites on pre-60S ribosomal particles. Nucleic Acids Res 2013; 41:9461-70. [PMID: 23945946 PMCID: PMC3814368 DOI: 10.1093/nar/gkt726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ribosome biogenesis requires >300 assembly factors in Saccharomyces cerevisiae. Ribosome assembly factors Imp3, Mrt4, Rlp7 and Rlp24 have sequence similarity to ribosomal proteins S9, P0, L7 and L24, suggesting that these pre-ribosomal factors could be placeholders that prevent premature assembly of the corresponding ribosomal proteins to nascent ribosomes. However, we found L7 to be a highly specific component of Rlp7-associated complexes, revealing that the two proteins can bind simultaneously to pre-ribosomal particles. Cross-linking and cDNA analysis experiments showed that Rlp7 binds to the ITS2 region of 27S pre-rRNAs, at two sites, in helix III and in a region adjacent to the pre-rRNA processing sites C1 and E. However, L7 binds to mature 25S and 5S rRNAs and cross-linked predominantly to helix ES7Lb within 25S rRNA. Thus, despite their predicted structural similarity, our data show that Rlp7 and L7 clearly bind at different positions on the same pre-60S particles. Our results also suggest that Rlp7 facilitates the formation of the hairpin structure of ITS2 during 60S ribosomal subunit maturation.
Collapse
Affiliation(s)
- Reyes Babiano
- Departamento de Genética, Universidad de Sevilla, E-41012 Seville, Spain, Institut Pasteur, Génétique des Interactions Macromoléculaires, CNRS UMR-3525, Paris, France and Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fernández-Pevida A, Rodríguez-Galán O, Díaz-Quintana A, Kressler D, de la Cruz J. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. J Biol Chem 2012; 287:38390-407. [PMID: 22995916 DOI: 10.1074/jbc.m112.400564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.
Collapse
|
18
|
Eukaryotic cells producing ribosomes deficient in Rpl1 are hypersensitive to defects in the ubiquitin-proteasome system. PLoS One 2011; 6:e23579. [PMID: 21858174 PMCID: PMC3155557 DOI: 10.1371/journal.pone.0023579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/20/2011] [Indexed: 11/20/2022] Open
Abstract
It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132.
Collapse
|
19
|
Dynamics of the putative RNA helicase Spb4 during ribosome assembly in Saccharomyces cerevisiae. Mol Cell Biol 2011; 31:4156-64. [PMID: 21825077 DOI: 10.1128/mcb.05436-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spb4 is a putative ATP-dependent RNA helicase that is required for proper processing of 27SB pre-rRNAs and therefore for 60S ribosomal subunit biogenesis. To define the timing of association of this protein with preribosomal particles, we have studied the composition of complexes that copurify with Spb4 tagged by tandem affinity purification (TAP-tagged Spb4). These complexes contain mainly the 27SB pre-rRNAs and about 50 ribosome biogenesis proteins, primarily components of early pre-60S ribosomal particles. To a lesser extent, some protein factors of 90S preribosomal particles and the 35S and 27SA pre-rRNAs also copurify with TAP-tagged Spb4. Moreover, we have obtained by site-directed mutagenesis an allele that results in the R360A substitution in the conserved motif VI of the Spb4 helicase domain. This allele causes a dominant-negative phenotype when overexpressed in the wild-type strain. Cells expressing Spb4(R360A) display an accumulation of 35S and 27SB pre-rRNAs and a net 40S ribosomal subunit defect. TAP-tagged Spb4(R360A) displays a greater steady-state association with 90S preribosomal particles than TAP-tagged wild-type Spb4. Together, our data indicate that Spb4 is a component of early nucle(ol)ar pre-60S ribosomal particles containing 27SB pre-rRNA. Apparently, Spb4 binds 90S preribosomal particles and dissociates from pre-60S ribosomal particles after processing of 27SB pre-rRNA.
Collapse
|
20
|
Webb KJ, Al-Hadid Q, Zurita-Lopez CI, Young BD, Lipson RS, Clarke SG. The ribosomal l1 protuberance in yeast is methylated on a lysine residue catalyzed by a seven-beta-strand methyltransferase. J Biol Chem 2011; 286:18405-13. [PMID: 21460220 DOI: 10.1074/jbc.m110.200410] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of proteins of the translational apparatus is common in many organisms. In the yeast Saccharomyces cerevisiae, we provide evidence for the methylation of Rpl1ab, a well conserved protein forming the ribosomal L1 protuberance of the large subunit that functions in the release of tRNA from the exit site. We show that the intact mass of Rpl1ab is 14 Da larger than its calculated mass with the previously described loss of the initiator methionine residue and N-terminal acetylation. We determined that the increase in mass of yeast Rpl1ab is consistent with the addition of a methyl group to lysine 46 using top-down mass spectrometry. Lysine modification was confirmed by detecting (3)H-N-ε-monomethyllysine in hydrolysates of Rpl1ab purified from yeast cells radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. Mass spectrometric analysis of intact Rpl1ab purified from 37 deletion strains of known and putative yeast methyltransferases revealed that only the deletion of the YLR137W gene, encoding a seven-β-strand methyltransferase, results in the loss of the +14-Da modification. We expressed the YLR137W gene as a His-tagged protein in Escherichia coli and showed that it catalyzes N-ε-monomethyllysine formation within Rpl1ab on ribosomes from the ΔYLR137W mutant strain lacking the methyltransferase activity but not from wild-type ribosomes. We also showed that the His-tagged protein could catalyze monomethyllysine formation on a 16-residue peptide corresponding to residues 38-53 of Rpl1ab. We propose that the YLR137W gene be given the standard name RKM5 (ribosomal lysine (K) methyltransferase 5). Orthologs of RKM5 are found only in fungal species, suggesting a role unique to their survival.
Collapse
Affiliation(s)
- Kristofor J Webb
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
21
|
Reduction in ribosomal protein synthesis is sufficient to explain major effects on ribosome production after short-term TOR inactivation in Saccharomyces cerevisiae. Mol Cell Biol 2010; 31:803-17. [PMID: 21149576 DOI: 10.1128/mcb.01227-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ribosome synthesis depends on nutrient availability, sensed by the target of rapamycin (TOR) signaling pathway in eukaryotes. TOR inactivation affects ribosome biogenesis at the level of rRNA gene transcription, expression of ribosomal proteins (r-proteins) and biogenesis factors, preribosome processing, and transport. Here, we demonstrate that upon TOR inactivation, levels of newly synthesized ribosomal subunits drop drastically before the integrity of the RNA polymerase I apparatus is severely impaired but in good correlation with a sharp decrease in r-protein production. Inhibition of translation by cycloheximide mimics the rRNA maturation defect observed immediately after TOR inactivation. Both cycloheximide addition and the depletion of individual r-proteins also reproduce TOR-dependent nucleolar entrapment of specific ribosomal precursor complexes. We suggest that shortage of newly synthesized r-proteins after short-term TOR inactivation is sufficient to explain most of the observed effects on ribosome production.
Collapse
|
22
|
Why Dom34 stimulates growth of cells with defects of 40S ribosomal subunit biosynthesis. Mol Cell Biol 2010; 30:5562-71. [PMID: 20876302 DOI: 10.1128/mcb.00618-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A set of genome-wide screens for proteins whose absence exacerbates growth defects due to pseudo-haploinsufficiency of ribosomal proteins in Saccharomyces cerevisiae identified Dom34 as being particularly important for cell growth when there is a deficit of 40S ribosomal subunits. In contrast, strains with a deficit of 60S ribosomal proteins were largely insensitive to the loss of Dom34. The slow growth of cells lacking Dom34 and haploinsufficient for a protein of the 40S subunit is caused by a severe shortage of 40S subunits available for translation initiation due to a combination of three effects: (i) the natural deficiency of 40S subunits due to defective synthesis, (ii) the sequestration of 40S subunits due to the large accumulation of free 60S subunits, and (iii) the accumulation of ribosomes "stuck" in a distinct 80S form, insensitive to the Mg(2+) concentration, and at least temporarily unavailable for further translation. Our data suggest that these stuck ribosomes have neither mRNA nor tRNA. We postulate, based on our results and on previously published work, that the stuck ribosomes arise because of the lack of Dom34, which normally resolves a ribosome stalled due to insufficient tRNAs, to structural problems with its mRNA, or to a defect in the ribosome itself.
Collapse
|
23
|
Babiano R, de la Cruz J. Ribosomal protein L35 is required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 2010; 38:5177-92. [PMID: 20392820 PMCID: PMC2926614 DOI: 10.1093/nar/gkq260] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/19/2010] [Accepted: 03/29/2010] [Indexed: 11/12/2022] Open
Abstract
Ribosome synthesis involves the concomitance of pre-rRNA processing and ribosomal protein assembly. In eukaryotes, this is a complex process that requires the participation of specific sequences and structures within the pre-rRNAs, at least 200 trans-acting factors and the ribosomal proteins. There is little information on the function of individual 60S ribosomal proteins in ribosome synthesis. Herein, we have analysed the contribution of ribosomal protein L35 in ribosome biogenesis. In vivo depletion of L35 results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase, northern hybridization and primer extension analyses show that processing of the 27SB to 7S pre-rRNAs is strongly delayed upon L35 depletion. Most likely as a consequence of this, release of pre-60S ribosomal particles from the nucleolus to the nucleoplasm is also blocked. Deletion of RPL35A leads to similar although less pronounced phenotypes. Moreover, we show that L35 assembles in the nucleolus and binds to early pre-60S ribosomal particles. Finally, flow cytometry analysis indicated that L35-depleted cells mildly delay the G1 phase of the cell cycle. We conclude that L35 assembly is a prerequisite for the efficient cleavage of the internal transcribed spacer 2 at site C(2).
Collapse
Affiliation(s)
| | - Jesús de la Cruz
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
24
|
Pöll G, Braun T, Jakovljevic J, Neueder A, Jakob S, Woolford JL, Tschochner H, Milkereit P. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins. PLoS One 2009; 4:e8249. [PMID: 20011513 PMCID: PMC2788216 DOI: 10.1371/journal.pone.0008249] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022] Open
Abstract
The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins). They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU) proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i) how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii) the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.
Collapse
Affiliation(s)
- Gisela Pöll
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Tobias Braun
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Andreas Neueder
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Steffen Jakob
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - John L. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JLW); (HT); (PM)
| | - Herbert Tschochner
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (JLW); (HT); (PM)
| | - Philipp Milkereit
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (JLW); (HT); (PM)
| |
Collapse
|
25
|
Rodríguez-Mateos M, García-Gómez JJ, Francisco-Velilla R, Remacha M, de la Cruz J, Ballesta JPG. Role and dynamics of the ribosomal protein P0 and its related trans-acting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2009; 37:7519-32. [PMID: 19789271 PMCID: PMC2794172 DOI: 10.1093/nar/gkp806] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 11/25/2022] Open
Abstract
Mrt4 is a nucleolar component of the ribosome assembly machinery that shares notable similarity and competes for binding to the 25S rRNA GAR domain with the ribosomal protein P0. Here, we show that loss of function of either P0 or Mrt4 results in a deficit in 60S subunits, which is apparently due to impaired rRNA processing of 27S precursors. Mrt4, which shuttles between the nucleus and the cytoplasm, defines medium pre-60S particles. In contrast, P0 is absent from medium but present in late/cytoplasmic pre-60S complexes. The absence of Mrt4 notably increased the amount of P0 in nuclear Nop7-TAP complexes and causes P0 assembly to medium pre-60S particles. Upon P0 depletion, Mrt4 is relocated to the cytoplasm within aberrant 60S subunits. We conclude that Mrt4 controls the position and timing of P0 assembly. In turn, P0 is required for the release of Mrt4 and exchanges with this factor at the cytoplasm. Our results also suggest other P0 assembly alternatives.
Collapse
Affiliation(s)
- María Rodríguez-Mateos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Juan J. García-Gómez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Miguel Remacha
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Jesús de la Cruz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Juan P. G. Ballesta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| |
Collapse
|
26
|
Rodríguez-Mateos M, Abia D, García-Gómez JJ, Morreale A, de la Cruz J, Santos C, Remacha M, Ballesta JPG. The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein. Nucleic Acids Res 2009; 37:3514-21. [PMID: 19346338 PMCID: PMC2699499 DOI: 10.1093/nar/gkp209] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/06/2009] [Accepted: 03/14/2009] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein.
Collapse
Affiliation(s)
- María Rodríguez-Mateos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - David Abia
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Juan J. García-Gómez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Antonio Morreale
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Jesús de la Cruz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Cruz Santos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Miguel Remacha
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| | - Juan P. G. Ballesta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 and Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, Sevilla
| |
Collapse
|
27
|
Abstract
The 'stalk' is a large ribosomal subunit domain that regulates translation. In the present study the role of the ribosomal stalk P proteins in modulating ribosomal activity has been investigated in human cells using RNA interference. A strong down-regulation of P2 mRNA and a drastic decrease in P2 protein in a stable human cell line was achieved using a doxycycline-inducible system. Interestingly, the amount of P1 protein was similarly decreased in these cells, in contrast with the expression of P1 mRNA. The loss of P1/P2 proteins produced a decrease in the growth rate of these cells, as well as an altered polysome pattern with reduced translation efficiency, but without affecting the free 40 S/60 S subunit ratio. A decrease in the ribosomal-subunit joining capacity was also observed. These data indicate that P1/P2 proteins modulate cytoplasmic translation by influencing the interaction between subunits, thereby regulating the rate of cell proliferation.
Collapse
|
28
|
Piekna-Przybylska D, Przybylski P, Baudin-Baillieu A, Rousset JP, Fournier MJ. Ribosome performance is enhanced by a rich cluster of pseudouridines in the A-site finger region of the large subunit. J Biol Chem 2008; 283:26026-36. [PMID: 18611858 DOI: 10.1074/jbc.m803049200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large subunit rRNA in eukaryotes contains an unusually dense cluster of 8-10 pseudouridine (Psi) modifications located in a three-helix structure (H37-H39) implicated in several functions. This region is dominated by a long flexible helix (H38) known as the "A-site finger" (ASF). The ASF protrudes from the large subunit just above the A-site of tRNA binding, interacts with 5 S rRNA and tRNA, and through the terminal loop, forms a bridge (B1a) with the small subunit. In yeast, the three-helix domain contains 10 Psis and 6 are concentrated in the ASF helix (3 of the ASF Psis are conserved among eukaryotes). Here, we show by genetic depletion analysis that the Psis in the ASF helix and adjoining helices are not crucial for cell viability; however, their presence notably enhances ribosome fitness. Depleting different combinations of Psis suggest that the modification pattern is important and revealed that loss of multiple Psis negatively influences ribosome performance. The effects observed include slower cell growth (reduced rates up to 23% at 30 degrees C and 40-50% at 37 degrees C and 11 degrees C), reduced level of the large subunit (up to 17%), impaired polysome formation (appearance of half-mers), reduced translation activity (up to 20% at 30 degrees C and 25% at 11 degrees C), and increased sensitivity to ribosome-based drugs. The results indicate that the Psis in the three-helix region improve fitness of a eukaryotic ribosome.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
29
|
A chemical genomic screen in Saccharomyces cerevisiae reveals a role for diphthamidation of translation elongation factor 2 in inhibition of protein synthesis by sordarin. Antimicrob Agents Chemother 2008; 52:1623-9. [PMID: 18285480 DOI: 10.1128/aac.01603-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sordarin and its derivatives are antifungal compounds of potential clinical interest. Despite the highly conserved nature of the fungal and mammalian protein synthesis machineries, sordarin is a selective inhibitor of protein synthesis in fungal organisms. In cells sensitive to sordarin, its mode of action is through preventing the release of translation elongation factor 2 (eEF2) during the translocation step, thus blocking protein synthesis. To further investigate the cellular components required for the effects of sordarin in fungal cells, we have used the haploid deletion collection of Saccharomyces cerevisiae to systematically identify genes whose deletion confers sensitivity or resistance to the compound. Our results indicate that genes in a number of cellular pathways previously unknown to play a role in sordarin response are involved in its growth effects on fungal cells and reveal a specific requirement for the diphthamidation pathway of cells in causing eEF2 to be sensitive to the effects of sordarin on protein synthesis. Our results underscore the importance of the powerful genomic tools developed in yeast (Saccharomyces cerevisiae) to more comprehensively understanding the cellular mechanisms involved in the response to therapeutic agents.
Collapse
|
30
|
Rosado IV, Kressler D, de la Cruz J. Functional analysis of Saccharomyces cerevisiae ribosomal protein Rpl3p in ribosome synthesis. Nucleic Acids Res 2007; 35:4203-13. [PMID: 17569673 PMCID: PMC1919493 DOI: 10.1093/nar/gkm388] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ribosome synthesis in eukaryotes requires a multitude of trans-acting factors. These factors act at many steps as the pre-ribosomal particles travel from the nucleolus to the cytoplasm. In contrast to the well-studied trans-acting factors, little is known about the contribution of the ribosomal proteins to ribosome biogenesis. Herein, we have analysed the role of ribosomal protein Rpl3p in 60S ribosomal subunit biogenesis. In vivo depletion of Rpl3p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability of early and intermediate pre-ribosomal particles, as evidenced by the low steady-state levels of 27SA3, 27SBS and 7SL/S precursors. Furthermore, depletion of Rpl3p impairs the nucleocytoplasmic export of pre-60S ribosomal particles. Interestingly, flow cytometry analysis indicates that Rpl3p-depleted cells arrest in the G1 phase. Altogether, we suggest that upon depletion of Rpl3p, early assembly of 60S ribosomal subunits is aborted and subsequent steps during their maturation and export prevented.
Collapse
Affiliation(s)
- Iván V. Rosado
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain and Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Dieter Kressler
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain and Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Jesús de la Cruz
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain and Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
- *To whom correspondence should be addressed. +34 95 455 71 06+34 95 455 71 04
| |
Collapse
|
31
|
Dresios J, Panopoulos P, Synetos D. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol Microbiol 2006; 59:1651-63. [PMID: 16553873 DOI: 10.1111/j.1365-2958.2006.05054.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
32
|
Abstract
The synthesis of ribosomes in Saccharomyces cerevisiae consumes a prodigious amount of the cell's resources and, consequently, is tightly regulated. The rate of ribosome synthesis responds not only to nutritional cues but also to signals dependent on other macromolecular pathways of the cell, e.g., a defect in the secretory pathway leads to severe repression of transcription of both rRNA and ribosomal protein genes. A search for mutants that interrupted this repression revealed, surprisingly, that inactivation of RPL1B, one of a pair of genes encoding the 60S ribosomal protein L1, almost completely blocked the repression of rRNA and ribosomal protein gene transcription that usually follows a defect in the secretory pathway. Further experiments showed that almost any mutation leading to a defect in 60S subunit synthesis had the same effect, whereas mutations affecting 40S subunit synthesis did not. Although one might suspect that this effect would be due to a decrease in the initiation of translation or to the presence of half-mers, i.e., polyribosomes awaiting a 60S subunit, our data show that this is not the case. Rather, a variety of experiments suggest that some aspect of the production of defective 60S particles or, more likely, their breakdown suppresses the signal generated by a defect in the secretory pathway that represses ribosome synthesis.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
33
|
DeLabre ML, Kessl J, Karamanou S, Trumpower BL. RPL29 codes for a non-essential protein of the 60S ribosomal subunit in Saccharomyces cerevisiae and exhibits synthetic lethality with mutations in genes for proteins required for subunit coupling. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:255-61. [PMID: 11997090 DOI: 10.1016/s0167-4781(01)00372-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RPL29 (YFR032c-a) is a non-essential gene that codes for a 60S ribosomal subunit protein in Saccharomyces cerevisiae. Deletion of RPL29 leads to a moderate accumulation of half-mer polysomes with little or no change in the amounts of free 60S subunits. In vitro translation and the growth rate are also delayed in the Deltarpl29 strain. Such a phenotype is characteristic of mutants defective in 60S to 40S subunit joining. The Deltarpl29 strain exhibits synthetic lethality with mutations in RPL10, the gene encoding an essential 60S ribosomal subunit protein that is required for 60S to 40S subunit joining. The Deltarpl29 strain also exhibits synthetic lethality with RSA1, a gene encoding a nucleoplasmic protein required for the loading of Rpl10p onto the 60S subunit. Over-expression of RPL10 suppresses the half-mer phenotype of the Deltarpl29 strain, but does not correct the growth defect of the deletion strain. We conclude that absence of Rpl29p impairs proper assembly of proteins onto the 60S subunit and that this retards subunit joining and additionally retards protein synthesis subsequent to subunit joining.
Collapse
Affiliation(s)
- Marie Laure DeLabre
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
34
|
Saveanu C, Bienvenu D, Namane A, Gleizes PE, Gas N, Jacquier A, Fromont-Racine M. Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. EMBO J 2001; 20:6475-84. [PMID: 11707418 PMCID: PMC125736 DOI: 10.1093/emboj/20.22.6475] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Revised: 09/24/2001] [Accepted: 09/27/2001] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic ribosome maturation depends on a set of well ordered processing steps. Here we describe the functional characterization of yeast Nog2p (Ynr053cp), a highly conserved nuclear protein. Nog2p contains a putative GTP-binding site, which is essential in vivo. Kinetic and steady-state measurements of the levels of pre-rRNAs in Nog2p-depleted cells showed a defect in 5.8S and 25S maturation and a concomitant increase in the levels of both 27SB(S) and 7S(S) precursors. We found Nog2p physically associated with large pre-60S complexes highly enriched in the 27SB and 7S rRNA precursors. These complexes contained, besides a subset of ribosomal proteins, at least two additional factors, Nog1p, another putative GTP-binding protein, and Rlp24p (Ylr009wp), which belongs to the Rpl24e family of archaeal and eukaryotic ribosomal proteins. In the absence of Nog2p, the pre-60S ribosomal complexes left the nucleolus, but were retained in the nucleoplasm. These results suggest that transient, possibly GTP-dependent association of Nog2p with the pre-ribosomes might trigger late rRNA maturation steps in ribosomal large subunit biogenesis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alternative Splicing
- Amino Acid Sequence
- Binding Sites
- Blotting, Northern
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- GTP Phosphohydrolases/chemistry
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- GTP-Binding Proteins/metabolism
- Genotype
- Glucose/metabolism
- Green Fluorescent Proteins
- Humans
- In Situ Hybridization
- Kinetics
- Luminescent Proteins/metabolism
- Mass Spectrometry
- Microscopy, Electron
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Plasmids/metabolism
- Polyribosomes/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Sequence Homology, Amino Acid
- Time Factors
Collapse
Affiliation(s)
| | | | - Abdelkader Namane
- Génétique des Interactions Macromoléculaires, Institut Pasteur (CNRS-URA2171),
PT ‘Proteomique’, Institut Pasteur (CNRS-URA2185), 25–28 rue du Dr Roux, 75724 Paris Cedex 15 and Laboratoire de Biologie Moléculaire Eucaryote (LBME-CNRS), 118 route de Narbonne, 31062 Toulouse Cedex, France Corresponding author e-mail:
| | - Pierre-Emmanuel Gleizes
- Génétique des Interactions Macromoléculaires, Institut Pasteur (CNRS-URA2171),
PT ‘Proteomique’, Institut Pasteur (CNRS-URA2185), 25–28 rue du Dr Roux, 75724 Paris Cedex 15 and Laboratoire de Biologie Moléculaire Eucaryote (LBME-CNRS), 118 route de Narbonne, 31062 Toulouse Cedex, France Corresponding author e-mail:
| | - Nicole Gas
- Génétique des Interactions Macromoléculaires, Institut Pasteur (CNRS-URA2171),
PT ‘Proteomique’, Institut Pasteur (CNRS-URA2185), 25–28 rue du Dr Roux, 75724 Paris Cedex 15 and Laboratoire de Biologie Moléculaire Eucaryote (LBME-CNRS), 118 route de Narbonne, 31062 Toulouse Cedex, France Corresponding author e-mail:
| | | | - Micheline Fromont-Racine
- Génétique des Interactions Macromoléculaires, Institut Pasteur (CNRS-URA2171),
PT ‘Proteomique’, Institut Pasteur (CNRS-URA2185), 25–28 rue du Dr Roux, 75724 Paris Cedex 15 and Laboratoire de Biologie Moléculaire Eucaryote (LBME-CNRS), 118 route de Narbonne, 31062 Toulouse Cedex, France Corresponding author e-mail:
| |
Collapse
|
35
|
Keller G, Ray E, Brown PO, Winge DR. Haa1, a protein homologous to the copper-regulated transcription factor Ace1, is a novel transcriptional activator. J Biol Chem 2001; 276:38697-702. [PMID: 11504737 DOI: 10.1074/jbc.m107131200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae genome contains a predicted gene, YPR008w, homologous to the gene encoding the copper-activated transcription factor Ace1. The product of the YPR008w gene, designated Haa1, regulates the transcription of a set of yeast genes, many of which encode membrane proteins. Two main target genes of Haa1 are the multidrug resistance gene YGR138c and the YRO2 homolog to the plasma membrane Hsp30. Haa1 is localized to the nucleus. Haa1-induced expression of YGR138c and YRO2 appears to be direct. Induction of HAA1 using a GAL1/HAA1 fusion gene resulted in rapid galactose-induced expression of both HAA1 and target genes. Although Haa1 has a sequence very similar to the Cu-activated DNA binding domain of Ace1, expression of Haa1 target genes was found to be independent of the copper status of cells. Haa1 does not exhibit metalloregulation in cells incubated with a range of transition metal salts. Haa1 does not exhibit any cross-talk with Ace1. Overexpression of Haa1 does not compensate for cells lacking a functional Ace1. The lack of metalloregulation of Haa1 despite the strong sequence similarity to the copper regulatory domain of Ace1 is discussed.
Collapse
Affiliation(s)
- G Keller
- University of Utah Health Sciences Center, Departments of Medicine and Biochemistry, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
36
|
Kolodrubetz D, Kruppa M, Burgum A. Gene dosage affects the expression of the duplicated NHP6 genes of Saccharomyces cerevisiae. Gene 2001; 272:93-101. [PMID: 11470514 DOI: 10.1016/s0378-1119(01)00568-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nhp6Ap and Nhp6Bp, which are 87% identical in sequence, are moderately abundant, chromosome-associated proteins from Saccharomyces cerevisiae. In wild type cells Nhp6Ap is present at three times the level of Nhp6Bp. The effects of altering NHP6A or NHP6B gene number on the expression of its partner has been examined using Northern blots and reporter genes. Deletion of NHP6A led to a three-fold increase in NHP6B synthesis while an extra copy of NHP6A reduced NHP6B expression two-fold. Changes in the NHP6B gene copy number caused more moderate changes in NHP6A synthesis. The regulation of one NHP6 gene by the other uses a mechanism that detects the level of Nhp6 protein (or RNA) rather than gene number, since overexpression of Nhp6B protein from a single gene led to a dramatic decrease in NHP6A synthesis. Deletion analysis showed that the regulatory element involved in gene dosage compensation maps to a 190 bp segment in the NHP6B promoter. The simplest model, that each Nhp6 protein can act as a transcriptional repressor at the other NHP6 gene, is not true since purified Nhp6A protein does not bind specifically to the NHP6B promoter region. Instead, Nhp6p appears to interact with or through another protein in regulating transcription from the NHP6 genes.
Collapse
Affiliation(s)
- D Kolodrubetz
- Department of Microbiology, Mail Code 7758, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
37
|
Wyers F, Minet M, Dufour ME, Vo LT, Lacroute F. Deletion of the PAT1 gene affects translation initiation and suppresses a PAB1 gene deletion in yeast. Mol Cell Biol 2000; 20:3538-49. [PMID: 10779343 PMCID: PMC85646 DOI: 10.1128/mcb.20.10.3538-3549.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast poly(A) binding protein Pab1p mediates the interactions between the 5' cap structure and the 3' poly(A) tail of mRNA, whose structures synergistically activate translation in vivo and in vitro. We found that deletion of the PAT1 (YCR077c) gene suppresses a PAB1 gene deletion and that Pat1p is required for the normal initiation of translation. A fraction of Pat1p cosediments with free 40S ribosomal subunits on sucrose gradients. The PAT1 gene is not essential for viability, although disruption of the gene severely impairs translation initiation in vivo, resulting in the accumulation of 80S ribosomes and in a large decrease in the amounts of heavier polysomes. Pat1p contributes to the efficiency of translation in a yeast cell-free system. However, the synergy between the cap structure and the poly(A) tail is maintained in vitro in the absence of Pat1p. Analysis of translation initiation intermediates on gradients indicates that Pat1p acts at a step before or during the recruitment of the 40S ribosomal subunit by the mRNA, a step which may be independent of that involving Pab1p. We conclude that Pat1p is a new factor involved in protein synthesis and that Pat1p might be required for promoting the formation or the stabilization of the preinitiation translation complexes.
Collapse
Affiliation(s)
- F Wyers
- Centre de Génétique Moléculaire, C.N.R.S., 91198 Gif sur Yvette, France.
| | | | | | | | | |
Collapse
|
38
|
Murray JM, Johnson DI. Isolation and characterization of Nrf1p, a novel negative regulator of the Cdc42p GTPase in Schizosaccharomyces pombe. Genetics 2000; 154:155-65. [PMID: 10628977 PMCID: PMC1460887 DOI: 10.1093/genetics/154.1.155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24(ts) mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1(+), encoded an approximately 15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Deltanrf1 mutant was viable but overexpression of nrf1(+) in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1(+) also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.
Collapse
Affiliation(s)
- J M Murray
- Department of Microbiology and Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
39
|
Muhlrad D, Parker R. Aberrant mRNAs with extended 3' UTRs are substrates for rapid degradation by mRNA surveillance. RNA (NEW YORK, N.Y.) 1999; 5:1299-307. [PMID: 10573121 PMCID: PMC1369852 DOI: 10.1017/s1355838299990829] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The mRNA surveillance system is known to rapidly degrade aberrant mRNAs that contain premature termination codons in a process referred to as nonsense-mediated decay. A second class of aberrant mRNAs are those wherein the 3' UTR is abnormally extended due to a mutation in the polyadenylation site. We provide several observations that these abnormally 3'-extended mRNAs are degraded by the same machinery that degrades mRNAs with premature nonsense codons. First, the decay of the 3'-extended mRNAs is dependent on the same decapping enzyme and 5'-to-3' exonuclease. Second, the decay is also dependent on the proteins encoded by the UPF1, UPF2, and UPF3 genes, which are known to be specifically required for the rapid decay of mRNAs containing nonsense codons. Third, the ability of an extended 3' UTR to trigger decay is prevented by stabilizing sequences within the PGK1 coding region that are known to protect mRNAs from the rapid decay induced by premature nonsense codons. These results indicate that the mRNA surveillance system plays a role in degrading abnormally extended 3' UTRs. Based on these results, we propose a model in which the mRNA surveillance machinery degrades aberrant mRNAs due to the absence of the proper spatial arrangement of the translation-termination codon with respect to the 3' UTR element as defined by the utilization of a polyadenylation site.
Collapse
Affiliation(s)
- D Muhlrad
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
40
|
Wu G, Hashimoto T. Sequence analysis of genes encoding ribosomal proteins of amitochondriate protists: L1 of Trichomonas vaginalis and L29 of Giardia lamblia. Parasitol Int 1999; 48:135-44. [PMID: 11269274 DOI: 10.1016/s1383-5769(99)00010-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Two genes encoding the ribosomal proteins were cloned and sequenced from amitochondriate protists, L1 (L10a in mammalian nomenclature) from Trichomonas vaginalis and L29 (L35 in mammalian nomenclature) from Giardia lamblia. The deduced amino acid sequences were analyzed by sequence alignments and phylogenetic reconstructions. Both the T. vaginalis L1 and the G. lamblia L29 displayed eukaryotic sequence features, when compared with all the homologs from the three primary kingdoms.
Collapse
Affiliation(s)
- G Wu
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
41
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999; 63:405-45. [PMID: 10357856 PMCID: PMC98971 DOI: 10.1128/mmbr.63.2.405-445.1999] [Citation(s) in RCA: 818] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
42
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999. [PMID: 10357856 DOI: 10.1007/s13146-011-0050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
43
|
Escribano V, Eraso P, Portillo F, Mazón MJ. Sequence analysis of a 14·6 kb DNA fragment of Saccharomyces cerevisiae chromosome VII reveals SEC27, SSM1b, a putative S-adenosylmethionine-dependent enzyme and six new open reading frames. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(199607)12:9<887::aid-yea971>3.0.co;2-d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
de la Cruz J, Kressler D, Rojo M, Tollervey D, Linder P. Spb4p, an essential putative RNA helicase, is required for a late step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 1998; 4:1268-81. [PMID: 9769101 PMCID: PMC1369699 DOI: 10.1017/s1355838298981158] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Spb4p is a putative ATP-dependent RNA helicase that is required for synthesis of 60S ribosomal subunits. Polysome analyses of strains genetically depleted of Spb4p or carrying the cold-sensitive spb4-1 mutation revealed an underaccumulation of 60S ribosomal subunits. Analysis of pre-rRNA processing by pulse-chase labeling, northern hybridization, and primer extension indicated that these strains exhibited a reduced synthesis of the 25S/5.8S rRNAs, due to inhibition of processing of the 27SB pre-rRNAs. At later times of depletion of Spb4p or following transfer of the spb4-1 strain to more restrictive temperatures, the early pre-rRNA processing steps at sites A0, Al, and A2 were also inhibited. Sucrose gradient fractionation showed that the accumulated 27SB pre-rRNAs are associated with a high-molecular-weight complex, most likely the 66S pre-ribosomal particle. An HA epitope-tagged Spb4p is localized to the nucleolus and the adjacent nucleoplasmic area. On sucrose gradients, HA-Spb4p was found almost exclusively in rapidly sedimenting complexes and showed a peak in the fractions containing the 66S pre-ribosomes. We propose that Spb4p is involved directly in a late and essential step during assembly of 60S ribosomal subunits, presumably by acting as an rRNA helicase.
Collapse
Affiliation(s)
- J de la Cruz
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
45
|
Dick FA, Trumpower BL. Heterologous complementation reveals that mutant alleles of QSR1 render 60S ribosomal subunits unstable and translationally inactive. Nucleic Acids Res 1998; 26:2442-8. [PMID: 9580698 PMCID: PMC147575 DOI: 10.1093/nar/26.10.2442] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
QSR1 is a highly conserved gene which encodes a 60S ribosomal subunit protein that is required for joining of large and small ribosomal subunits. In this report we demonstrate heterologous complementation of a yeast QSR1 deletion strain with both the human and corn homologs and show that the human and corn proteins are assembled into hybrid yeast/human and yeast/corn ribosomes. While the homologous genes complement lethality of the QSR1 deletion, they also result in a diminished growth rate. Analyses of the translation rates of ribosomes containing the human and corn proteins reveal a partial loss of function. Velocity gradient analyses of the hybrid ribosomes after exposure to high concentrations of salt indicate that the decreased activity is due to lability of the hybrid 60S subunits.
Collapse
Affiliation(s)
- F A Dick
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
46
|
Chantrel Y, Gaisne M, Lions C, Verdière J. The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: Genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics 1998; 148:559-69. [PMID: 9504906 PMCID: PMC1459824 DOI: 10.1093/genetics/148.2.559] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report here that Hap1p (originally named Cyp1p) has an essential function in anaerobic or heme-deficient growth. Analysis of intragenic revertants shows that this function depends on the amino acid preceding the first cysteine residue of the DNA-binding domain of Hap1p. Selection of recessive extragenic suppressors of a hap1-hem1- strain allowed the identification, cloning, and molecular analysis of ASC1 (Cyp1 Absence of growth Supressor). The sequence of ASC1 reveals that its ORF is interrupted by an intron that shelters the U24 snoRNA. Deletion of the intron, inactivation of the ORF, and molecular localization of the mutations show unambiguously that it is the protein and not the snoRNA that is involved in the suppressor phenotype. ASC1, which is constitutively transcribed, encodes an abundant, cytoplasmically localized 35-kD protein that belongs to the WD repeat family, which is found in a large variety of eucaryotic organisms. Polysome profile analysis supports the involvement of this protein in translation. We propose that the absence of functional Asc1p allows the growth of hap1-hem1- cells by reducing the efficiency of translation. Based on sequence comparisons, we discuss the possibility that the protein intervenes in a kinase-dependent signal transduction pathway involved in this last function.
Collapse
Affiliation(s)
- Y Chantrel
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique, l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
47
|
Baudin-Baillieu A, Tollervey D, Cullin C, Lacroute F. Functional analysis of Rrp7p, an essential yeast protein involved in pre-rRNA processing and ribosome assembly. Mol Cell Biol 1997; 17:5023-32. [PMID: 9271380 PMCID: PMC232353 DOI: 10.1128/mcb.17.9.5023] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During the functional analysis of open reading frames (ORFs) identified during the sequencing of chromosome III of Saccharomyces cerevisiae, the previously uncharacterized ORF YCL031C (now designated RRP7) was deleted. RRP7 is essential for cell viability, and a conditional null allele was therefore constructed, by placing its expression under the control of a regulated GAL promoter. Genetic depletion of Rrp7p inhibited the pre-rRNA processing steps that lead to the production of the 20S pre-rRNA, resulting in reduced synthesis of the 18S rRNA and a reduced ratio of 40S to 60S ribosomal subunits. A screen for multicopy suppressors of the lethality of the GAL::rrp7 allele isolated the two genes encoding a previously unidentified ribosomal protein (r-protein) that is highly homologous to the rat r-protein S27. When present in multiple copies, either gene can suppress the lethality of an RRP7 deletion mutation and can partially restore the ribosomal subunit ratio in Rrp7p-depleted cells. Deletion of both r-protein genes is lethal; deletion of either single gene has an effect on pre-rRNA processing similar to that of Rrp7p depletion. We believe that Rrp7p is required for correct assembly of rpS27 into the preribosomal particle, with the inhibition of pre-rRNA processing appearing as a consequence of this defect.
Collapse
Affiliation(s)
- A Baudin-Baillieu
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique Laboratoire Propre Associé à l'Université Pierre-et-Marie-Curie, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
48
|
Eisinger DP, Dick FA, Trumpower BL. Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits. Mol Cell Biol 1997; 17:5136-45. [PMID: 9271391 PMCID: PMC232364 DOI: 10.1128/mcb.17.9.5136] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
QSR1 is a recently discovered, essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein. Thirty-one unique temperature-sensitive alleles of QSR1 were generated by regional codon randomization within a conserved 20-amino-acid sequence of the QSR1-encoded protein. The temperature-sensitive mutants arrest as viable, large, unbudded cells 24 to 48 h after a shift to 37 degrees C. Polysome and ribosomal subunit analysis by velocity gradient centrifugation of lysates from temperature-sensitive qsr1 mutants and from cells in which Qsr1p was depleted by down regulation of an inducible promoter revealed the presence of half-mer polysomes and a large pool of free 60S subunits that lack Qsr1p. In vitro subunit-joining assays and analysis of a mutant conditional for the synthesis of Qsr1p demonstrate that 60S subunits devoid of Qsr1p are unable to join with 40S subunits whereas 60S subunits that contain either wild-type or mutant forms of the protein are capable of subunit joining. The defective 60S subunits result from a reduced association of mutant Qsr1p with 60S subunits. These results indicate that Qsr1p is required for ribosomal subunit joining.
Collapse
Affiliation(s)
- D P Eisinger
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
49
|
Marton MJ, Vazquez de Aldana CR, Qiu H, Chakraburtty K, Hinnebusch AG. Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2alpha kinase GCN2. Mol Cell Biol 1997; 17:4474-89. [PMID: 9234705 PMCID: PMC232301 DOI: 10.1128/mcb.17.8.4474] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, phosphorylation of translation initiation factor eIF2 by protein kinase GCN2 leads to increased translation of the transcriptional activator GCN4 in amino acid-starved cells. The GCN1 and GCN20 proteins are components of a protein complex required for the stimulation of GCN2 kinase activity under starvation conditions. GCN20 is a member of the ATP-binding cassette (ABC) family, most of the members of which function as membrane-bound transporters, raising the possibility that the GCN1/GCN20 complex regulates GCN2 indirectly as an amino acid transporter. At odds with this idea, indirect immunofluorescence revealed cytoplasmic localization of GCN1 and no obvious association with plasma or vacuolar membranes. In addition, a fraction of GCN1 and GCN20 cosedimented with polysomes and 80S ribosomes, and the ribosome association of GCN20 was largely dependent on GCN1. The C-terminal 84% of GCN20 containing the ABCs was found to be dispensable for complex formation with GCN1 and for the stimulation of GCN2 kinase function. Because ABCs provide the energy-coupling mechanism for ABC transporters, these results also contradict the idea that GCN20 regulates GCN2 as an amino acid transporter. The N-terminal 15 to 25% of GCN20, which is critically required for its regulatory function, was found to interact with an internal segment of GCN1 similar in sequence to translation elongation factor 3 (EF3). Based on these findings, we propose that GCN1 performs an EF3-related function in facilitating the activation of GCN2 by uncharged tRNA on translating ribosomes. The physical interaction between GCN20 and the EF3-like domain in GCN1 could allow for modulation of GCN1 activity, and the ABC domains in GCN20 may be involved in this regulatory function. A human homolog of GCN1 has been identified, and the portion of this protein most highly conserved with yeast GCN1 has sequence similarity to EF3. Thus, similar mechanisms for the detection of uncharged tRNA on translating ribosomes may operate in yeast and human cells.
Collapse
Affiliation(s)
- M J Marton
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
50
|
Geiger M, Gröbner P, Piendl W. Nucleotide sequence of a gene cluster encoding NusG and the L11-L1-L10-L12 ribosomal proteins from the thermophilic archaeon Sulfolobus solfataricus. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:170-7. [PMID: 9252104 DOI: 10.1016/s0167-4838(97)00073-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complete nucleotide sequence of a gene cluster encoding the NusG and the L 11-L1-L10-L12 ribosomal proteins from the thermophilic crenarchaeon Sulfolobus solfataricus has been determined. The genes are arranged in the same order as the equivalent genes in the rif region of Escherichia coli. The ribosomal proteins exhibit between 66% (L10) and 80% (L12) identity with their respective equivalents from Sulfolobus acidocaldarius. The short distance (5 nucleotides) between the nusG stop codon and the L11 start codon suggests that nusG and the genes for the ribosomal proteins are transcribed as a single unit.
Collapse
Affiliation(s)
- M Geiger
- Institut für Medizinische Chemie und Biochemie, Universität Innsbruck, Austria
| | | | | |
Collapse
|