1
|
Seifert-Davila W, Girbig M, Hauptmann L, Hoffmann T, Eustermann S, Müller CW. Structural insights into human TFIIIC promoter recognition. SCIENCE ADVANCES 2023; 9:eadh2019. [PMID: 37418517 PMCID: PMC11811891 DOI: 10.1126/sciadv.adh2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Transcription factor (TF) IIIC recruits RNA polymerase (Pol) III to most of its target genes. Recognition of intragenic A- and B-box motifs in transfer RNA (tRNA) genes by TFIIIC modules τA and τB is the first critical step for tRNA synthesis but is mechanistically poorly understood. Here, we report cryo-electron microscopy structures of the six-subunit human TFIIIC complex unbound and bound to a tRNA gene. The τB module recognizes the B-box via DNA shape and sequence readout through the assembly of multiple winged-helix domains. TFIIIC220 forms an integral part of both τA and τB connecting the two subcomplexes via a ~550-amino acid residue flexible linker. Our data provide a structural mechanism by which high-affinity B-box recognition anchors TFIIIC to promoter DNA and permits scanning for low-affinity A-boxes and TFIIIB for Pol III activation.
Collapse
Affiliation(s)
- Wolfram Seifert-Davila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Candidate for joint PhD degree from EMBL and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Mathias Girbig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Abstract
RNA polymerase III (Pol III) is a large multisubunit complex conserved in all eukaryotes that plays an essential role in producing a variety of short non-coding RNAs, such as tRNA, 5S rRNA and U6 snRNA transcripts. Pol III comprises of 17 subunits in both yeast and human with a 10-subunit core and seven peripheral subunits. Because of its size and complexity, Pol III has posed a formidable challenge to structural biologists. The first atomic cryogenic electron microscopy structure of yeast Pol III leading to the canonical view was reported in 2015. Within the last few years, the optimization of endogenous extract and purification procedure and the technical and methodological advances in cryogenic electron microscopy, together allow us to have a first look at the unprecedented details of human Pol III organization. Here, we look back on the structural studies of human Pol III and discuss them in the light of our current understanding of its role in eukaryotic transcription.
Collapse
Affiliation(s)
- Qianmin Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| |
Collapse
|
3
|
Carter-Timofte ME, Paludan SR, Mogensen TH. RNA Polymerase III as a Gatekeeper to Prevent Severe VZV Infections. Trends Mol Med 2018; 24:904-915. [PMID: 30115567 DOI: 10.1016/j.molmed.2018.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/07/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
In most individuals, varicella zoster virus (VZV) causes varicella upon primary infection and zoster during reactivation. However, in a subset of individuals, VZV may cause severe disease, including encephalitis. Host genetics is believed to be the main determinant of exacerbated disease manifestations. Recent studies have demonstrated that defects in the DNA sensor RNA polymerase III (POL III) confer selective increased susceptibility to VZV infection, thus providing fundamental new insight into VZV immunity. Here we describe the roles of POL III in housekeeping and immune surveillance during VZV infection. We present the latest knowledge on the role of POL III in VZV infection and discuss outstanding questions related to the role of POL III in VZV immunity, and how this insight can be translated into clinical medicine.
Collapse
MESH Headings
- Adult
- Chickenpox/genetics
- Chickenpox/immunology
- Chickenpox/pathology
- Chickenpox/virology
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- DNA, Viral/genetics
- DNA, Viral/immunology
- Encephalitis, Varicella Zoster/genetics
- Encephalitis, Varicella Zoster/immunology
- Encephalitis, Varicella Zoster/pathology
- Encephalitis, Varicella Zoster/virology
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Herpes Zoster/genetics
- Herpes Zoster/immunology
- Herpes Zoster/pathology
- Herpes Zoster/virology
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/immunology
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- Immunologic Surveillance
- Interferons/genetics
- Interferons/immunology
- Protein Subunits/genetics
- Protein Subunits/immunology
- RNA Polymerase III/genetics
- RNA Polymerase III/immunology
- Receptors, Immunologic
- Virus Activation
Collapse
Affiliation(s)
- Madalina E Carter-Timofte
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 82, 8200 Aarhus N, Denmark.
| |
Collapse
|
4
|
Chymkowitch P, Enserink JM. Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:310-319. [PMID: 29127063 DOI: 10.1016/j.bbagrm.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
RNA polymerase III (RNAPIII) transcribes tRNA genes, 5S RNA as well as a number of other non-coding RNAs. Because transcription by RNAPIII is an energy-demanding process, its activity is tightly linked to the stress levels and nutrient status of the cell. Multiple signaling pathways control RNAPIII activity in response to environmental cues, but exactly how these pathways regulate RNAPIII is still poorly understood. One major target of these pathways is the transcriptional repressor Maf1, which inhibits RNAPIII activity under conditions that are detrimental to cell growth. However, recent studies have found that the cell can also directly regulate the RNAPIII machinery through phosphorylation and sumoylation of RNAPIII subunits. In this review we summarize post-translational modifications of RNAPIII subunits that mainly have been identified in large-scale proteomics studies, and we highlight several examples to discuss their relevance for regulation of RNAPIII.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Microbiology, Oslo University Hospital, NO-0027 Oslo, Norway.
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway.
| |
Collapse
|
5
|
Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:318-30. [PMID: 23099421 PMCID: PMC3568203 DOI: 10.1016/j.bbagrm.2012.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/β respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
6
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
7
|
Different functional modes of p300 in activation of RNA polymerase III transcription from chromatin templates. Mol Cell Biol 2008; 28:5764-76. [PMID: 18644873 DOI: 10.1128/mcb.01262-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional coactivators that regulate the activity of human RNA polymerase III (Pol III) in the context of chromatin have not been reported. Here, we describe a completely defined in vitro system for transcription of a human tRNA gene assembled into a chromatin template. Transcriptional activation and histone acetylation in this system depend on recruitment of p300 by general initiation factor TFIIIC, thus providing a new paradigm for recruitment of histone-modifying coactivators. Beyond its role as a chromatin-modifying factor, p300 displays an acetyltransferase-independent function at the level of preinitiation complex assembly. Thus, direct interaction of p300 with TFIIIC stabilizes binding of TFIIIC to core promoter elements and results in enhanced transcriptional activity on histone-free templates. Additional studies show that p300 is recruited to the promoters of actively transcribed tRNA and U6 snRNA genes in vivo. These studies identify TFIIIC as a recruitment factor for p300 and thus may have important implications for the emerging concept that tRNA genes or TFIIIC binding sites act as chromatin barriers to prohibit spreading of silenced heterochromatin domains.
Collapse
|
8
|
Dumay-Odelot H, Marck C, Durrieu-Gaillard S, Lefebvre O, Jourdain S, Prochazkova M, Pflieger A, Teichmann M. Identification, molecular cloning, and characterization of the sixth subunit of human transcription factor TFIIIC. J Biol Chem 2007; 282:17179-89. [PMID: 17409385 DOI: 10.1074/jbc.m611542200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIIC in yeast and humans is required for transcription of tRNA and 5 S RNA genes by RNA polymerase III. In the yeast Saccharomyces cerevisiae, TFIIIC is composed of six subunits, five of which are conserved in humans. We report the identification, molecular cloning, and characterization of the sixth subunit of human TFIIIC, TFIIIC35, which is related to the smallest subunit of yeast TFIIIC. Human TFIIIC35 does not contain the phosphoglycerate mutase domain of its yeast counterpart, and these two proteins display only limited homology within a 34-amino acid domain. Homologs of the sixth TFIIIC subunit are also identified in other eukaryotes, and their phylogenic evolution is analyzed. Affinity-purified human TFIIIC from an epitope-tagged TFIIIC35 cell line is active in binding to and in transcription of the VA1 gene in vitro. Furthermore, TFIIIC35 specifically interacts with the human TFIIIC subunits TFIIIC63 and, to a lesser extent, TFIIIC90 in vitro. Finally, we determined a limited region in the smallest subunit of yeast TFIIIC that is sufficient for interacting with the yeast TFIIIC subunit ScTfc1 (orthologous to TFIIIC63) and found it to be adjacent to and overlap the 34-amino acid domain that is conserved from yeast to humans.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université Bordeaux 2 Victor Ségalen, INSERM U869, rue Robert Escarpit, Pessac, F-33607, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Innes F, Ramsbottom B, White RJ. A test of the model that RNA polymerase III transcription is regulated by selective induction of the 110 kDa subunit of TFIIIC. Nucleic Acids Res 2006; 34:3399-407. [PMID: 16822860 PMCID: PMC1488882 DOI: 10.1093/nar/gkl432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 01/04/2023] Open
Abstract
TFIIIC is a RNA polymerase (pol) III-specific DNA-binding factor that is required for transcription of tRNA and 5S rRNA genes. Active human TFIIIC consists of five subunits. However, an inactive form has also been isolated that lacks one of the five subunits, called TFIIIC110. A model was proposed in which pol III transcription might be regulated by the specific induction of TFIIIC110, allowing formation of active TFIIIC from the inactive form. We have tested this model by transient transfection of HeLa and HEK293 cells with a vector expressing TFIIIC110. We have also made stably transfected HeLa cell lines that carry a doxycycline-inducible version of the cDNA for TFIIIC110. We show that the induced TFIIIC110 enters the nucleus, binds other TFIIIC subunits and is recruited to tRNA and 5S rRNA genes in vivo. However, little or no effect is seen on the expression of pol III transcripts. The data argue against the model that pol III transcription can be effectively modulated through the specific induction of TFIIIC110.
Collapse
Affiliation(s)
- Fiona Innes
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of GlasgowGlasgow G12 8QQ, UK
- Beatson Institute for Cancer Research, Garscube EstateSwitchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ben Ramsbottom
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of GlasgowGlasgow G12 8QQ, UK
- Beatson Institute for Cancer Research, Garscube EstateSwitchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Robert J. White
- Beatson Institute for Cancer Research, Garscube EstateSwitchback Road, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
10
|
Weser S, Gruber C, Hafner HM, Teichmann M, Roeder RG, Seifart KH, Meissner W. Transcription Factor (TF)-like Nuclear Regulator, the 250-kDa Form of Homo sapiens TFIIIB″, Is an Essential Component of Human TFIIIC1 Activity. J Biol Chem 2004; 279:27022-9. [PMID: 15096501 DOI: 10.1074/jbc.m312790200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The general human RNA polymerase III transcription factor (TF) IIIC1 has hitherto been ill defined with respect to the polypeptides required for reconstitution of its activity. Here we identify Homo sapiens TFIIIB" (HsBdp1) as an essential component of hTFIIIC1 and hTFIIIC1-like activities. Several forms of HsBdp1 are described. The 250-kDa form of HsBdp1, also designated the "transcription factor-like nuclear regulator," strictly co-eluted with TFIIIC1 activity over multiple chromatographic purification steps as revealed by Western blot with anti-HsBdp1 antibodies and by MALDI-TOF analysis. In addition, TFIIIC1 activity could be depleted from partially purified fractions with anti-HsBdp1 antibodies but not with control antibodies. Moreover, highly purified recombinant HsBdp1 could replace TFIIIC1 activity in reconstituted transcription of the VAI gene in vitro. Furthermore, smaller proteins of approximately 90-150 kDa that were recognized by anti-HsBdp1 antibodies co-eluted with TFIIIC1-like activity. Finally, cytoplasmic extracts from differentiated mouse F9 fibroblast cells that lacked TFIIIC1 activity could be made competent for transcription of the VA1 gene by the addition of TFIIIC1, TFIIIC1-like, or recombinant HsBdp1. These results suggest that HsBdp1 proteins represent essential components of TFIIIC1 and TFIIIC1-like activities.
Collapse
Affiliation(s)
- Stephan Weser
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Lahnstrasse 3, D-35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Hu P, Wu S, Hernandez N. A minimal RNA polymerase III transcription system from human cells reveals positive and negative regulatory roles for CK2. Mol Cell 2003; 12:699-709. [PMID: 14527415 DOI: 10.1016/j.molcel.2003.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In higher eukaryotes, RNA polymerase (pol) III is known to use different transcription factors to recognize three basic types of promoters, but in no case have these transcription factors been completely defined. We show that a highly purified pol III complex combined with the recombinant transcription factors SNAP(c), TBP, Brf2, and Bdp1 directs multiple rounds of transcription initiation and termination from the human U6 promoter. The pol III complex contains traces of CK2, and CK2 associates with the U6 promoter region in vivo. Transcription requires CK2 phosphorylation of the pol III complex. In contrast, CK2 phosphorylation of TBP, Brf2, and Bdp1 combined is inhibitory. The results define a minimum core machinery, the ultimate target of regulatory mechanisms, capable of directing all steps of the transcription process-initiation, elongation, and termination-by a metazoan RNA polymerase, and suggest positive and negative regulatory roles for CK2 in transcription by pol III.
Collapse
Affiliation(s)
- Ping Hu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
12
|
Weser S, Riemann J, Seifart KH, Meissner W. Assembly and isolation of intermediate steps of transcription complexes formed on the human 5S rRNA gene. Nucleic Acids Res 2003; 31:2408-16. [PMID: 12711686 PMCID: PMC154231 DOI: 10.1093/nar/gkg345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
By employing purified transcription factors and RNA polymerase III (pol III), we generated active pol III transcription complexes on the human 5S rRNA gene. These large complexes were separated by size exclusion chromatography from non- incorporated proteins. In addition, we succeeded in isolating specific intermediate stages of complex formation. Such isolated partial complexes require complementation with the missing activities for full transcription activity. One central finding is that a 5S DNA-TFIIIA-TFIIIC2-TFIIIBbeta complex could be isolated which had been assembled in the absence of the general pol III transcription factor IIIC1. Thus TFIIIC1 is not an assembly factor for other transcription factors. Although pol III has the potential to bind unspecifically to DNA, such polymerase molecules cannot be rendered initiation competent by direct recruitment to a 5S DNA-TFIIIA-TFIIIC2- TFIIIBbeta complex, but this process strictly requires additional TFIIIC1 activity. This clearly demonstrates that in contrast to yeast cells, hTFIIIB(beta), although required, does not suffice for the functional recruitment of polymerase III. These data document that TFIIIC1 is the second transcription factor required for the recruitment of pol III in mammalian cells.
Collapse
Affiliation(s)
- Stephan Weser
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Lahnstrasse 3, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
13
|
Abstract
Gene transcription is repetitive, enabling the synthesis of multiple copies of identical RNA molecules from the same template. The cyclic process of RNA synthesis from active genes, referred to as transcription reinitiation, contributes significantly to the level of RNAs in living cells. Contrary to the perception that multiple transcription cycles are a mere iteration of mechanistically identical steps, a large body of evidence indicates that, in most transcription systems, reinitiation involves highly specific and regulated pathways. These pathways influence the availability for reinitiation of template DNA and/or transcription proteins, and represent an important yet poorly characterized aspect of gene regulation.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Italy.
| | | |
Collapse
|
14
|
Hu P, Wu S, Sun Y, Yuan CC, Kobayashi R, Myers MP, Hernandez N. Characterization of human RNA polymerase III identifies orthologues for Saccharomyces cerevisiae RNA polymerase III subunits. Mol Cell Biol 2002; 22:8044-55. [PMID: 12391170 PMCID: PMC134740 DOI: 10.1128/mcb.22.22.8044-8055.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 08/05/2002] [Accepted: 08/15/2002] [Indexed: 11/20/2022] Open
Abstract
Unlike Saccharomyces cerevisiae RNA polymerase III, human RNA polymerase III has not been entirely characterized. Orthologues of the yeast RNA polymerase III subunits C128 and C37 remain unidentified, and for many of the other subunits, the available information is limited to database sequences with various degrees of similarity to the yeast subunits. We have purified an RNA polymerase III complex and identified its components. We found that two RNA polymerase III subunits, referred to as RPC8 and RPC9, displayed sequence similarity to the RNA polymerase II RPB7 and RPB4 subunits, respectively. RPC8 and RPC9 associated with each other, paralleling the association of the RNA polymerase II subunits, and were thus paralogues of RPB7 and RPB4. Furthermore, the complex contained a prominent 80-kDa polypeptide, which we called RPC5 and which corresponded to the human orthologue of the yeast C37 subunit despite limited sequence similarity. RPC5 associated with RPC53, the human orthologue of S. cerevisiae C53, paralleling the association of the S. cerevisiae C37 and C53 subunits, and was required for transcription from the type 2 VAI and type 3 human U6 promoters. Our results provide a characterization of human RNA polymerase III and show that the RPC5 subunit is essential for transcription.
Collapse
Affiliation(s)
- Ping Hu
- Graduate Program of Molecular and Cellular Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Laura Schramm
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
16
|
Sabri N, Farrants AKO, Hellman U, Visa N. Evidence for a posttranscriptional role of a TFIIICalpha-like protein in Chironomus tentans. Mol Biol Cell 2002; 13:1765-77. [PMID: 12006668 PMCID: PMC111142 DOI: 10.1091/mbc.01-09-0436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have cloned and sequenced a cDNA that encodes for a nuclear protein of 238 kDa in the dipteran Chironomus tentans. This protein, that we call p2D10, is structurally similar to the alpha subunit of the general transcription factor TFIIIC. Using immunoelectron microscopy we have shown that a fraction of p2D10 is located at sites of transcription, which is consistent with a possible role of this protein in transcription initiation. We have also found that a large fraction of p2D10 is located in the nucleoplasm and in the nuclear pore complexes. Using gel filtration chromatography and coimmunoprecipitation methods, we have identified and characterized two p2D10-containing complexes that differ in molecular mass and composition. The heavy p2D10-containing complex contains at least one other component of the TFIIIC complex, TFIIIC-epsilon. Based on its molecular mass and composition, the heavy p2D10-containing complex may be the Pol III holoenzyme. The light p2D10-containing complex contains RNA together with at least two proteins that are thought to be involved in mRNA trafficking, RAE1 and hrp65. The observations reported here suggest that this new TFIIIC-alpha-like protein is involved in posttranscriptional steps of premRNA metabolism in Chironomus tentans.
Collapse
Affiliation(s)
- Nafiseh Sabri
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691, Sweden
| | | | | | | |
Collapse
|
17
|
Srinivasan L, Gopinathan KP. Characterization of RNA polymerase III transcription factor TFIIIC from the mulberry silkworm, Bombyx mori. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1780-9. [PMID: 11895449 DOI: 10.1046/j.1432-1327.2002.02825.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fractionation of nuclear extracts from posterior silk glands of mulberry silkworm Bombyx mori, resolved the transcription factor TFIIIC into two components (designated here as TFIIIC and TFIIIC1) as in HeLa cell nuclear extracts. The reconstituted transcription of tRNA genes required the presence of both components. The affinity purified TFIIIC is a heteromeric complex comprising of five subunits ranging from 44 to 240 kDa. Of these, the 51-kDa subunit could be specifically crosslinked to the B box of tRNA1Gly. Purified swTFIIIC binds to the B box sequences with an affinity in the same range as of yTFIIIC or hTFIIIC2. Although an histone acetyl transferase (HAT) activity was associated with the TFIIIC fractions during the initial stages of purification, the HAT activity, unlike the human TFIIIC preparations, was separated at the final DNA affinity step. The tRNA transcription from DNA template was independent of HAT activity but the repressed transcription from chromatin template could be partially restored by external supplementation of the dissociated HAT activity. This is the first report on the purification and characterization of TFIIIC from insect systems.
Collapse
Affiliation(s)
- Lakshmi Srinivasan
- Microbiology and Cell Biology Department, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
18
|
Dieci G, Giuliodori S, Catellani M, Percudani R, Ottonello S. Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae. J Biol Chem 2002; 277:6903-14. [PMID: 11741971 DOI: 10.1074/jbc.m105036200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The SCR1 gene, coding for the 7SL RNA of the signal recognition particle, is the last known class III gene of Saccharomyces cerevisiae that remains to be characterized with respect to its mode of transcription and promoter organization. We show here that SCR1 represents a unique case of a non-tRNA class III gene in which intragenic promoter elements (the TFIIIC-binding A- and B-blocks), corresponding to the D and TpsiC arms of mature tRNAs, have been adapted to a structurally different small RNA without losing their transcriptional function. In fact, despite the presence of an upstream canonical TATA box, SCR1 transcription strictly depends on the presence of functional, albeit quite unusual, A- and B-blocks and requires all the basal components of the RNA polymerase III transcription apparatus, including TFIIIC. Accordingly, TFIIIC was found to protect from DNase I digestion an 80-bp region comprising the A- and B-blocks. B-block inactivation completely compromised TFIIIC binding and transcription capacity in vitro and in vivo. An inactivating mutation in the A-block selectively affected TFIIIC binding to this promoter element but resulted in much more dramatic impairment of in vivo than in vitro transcription. Transcriptional competition and nucleosome disruption experiments showed that this stronger in vivo defect is due to a reduced ability of A-block-mutated SCR1 to compete with other genes for TFIIIC binding and to counteract the assembly of repressive chromatin structures through TFIIIC recruitment. A kinetic analysis further revealed that facilitated RNA polymerase III recycling, far from being restricted to typical small sized class III templates, also takes place on the 522-bp-long SCR1 gene, the longest known class III transcriptional unit.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Binding, Competitive
- Chromatin/chemistry
- Chromatin/metabolism
- Cloning, Molecular
- Deoxyribonuclease I/metabolism
- Kinetics
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis
- Mutagenesis, Site-Directed
- Mutation
- Nucleosomes/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA/metabolism
- RNA Polymerase III/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Transfer/metabolism
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/metabolism
- Signal Recognition Particle/metabolism
- Transcription Factors, TFIII/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, I-43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
19
|
Meissner W, Thomae R, Seifart KH. The activity of transcription factor IIIC1 is impaired during differentiation of F9 cells. J Biol Chem 2002; 277:7148-56. [PMID: 11741993 DOI: 10.1074/jbc.m108721200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation in vitro of mouse F9 embryonal carcinoma (EC) cells to the parietal endoderm (PE) mimics processes of development of the early mouse embryo. This differentiation is accompanied by a dramatic down-regulation of all genes transcribed by RNA polymerase III (pol III). Complementation of extracts from cells, differentiated for various time periods with purified pol III transcription factors show for the first time that TFIIIC1 can substantially restore this impaired transcription, particularly in the early stages of differentiation. At later stages (day 7) the TBP (TATA-binding protein )-TAF complex, TFIIIBbeta, may also become limiting, which can contribute to but cannot account for the reduced transcription of type 2 promoters in PE cells. Because TFIIIBbeta is not required for the expression of type 3 promoters, other components must necessarily be involved, and our results show that U6 transcription can significantly be reactivated by TFIIIC1. By employing a variant type 3 promoter construct, which essentially requires a mutant form of TBP (TBP-DR2), we show that TBP is not limiting in PE extracts. The partial purification of pol III transcription factors from PE and EC cells revealed that TFIIIC2 activity could be purified from both cell types, whereas TFIIIC1 activity was dramatically reduced in extracts from PE cells.
Collapse
Affiliation(s)
- Wolfgang Meissner
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Lahnstrasse 3, D-35037 Marburg, Germany.
| | | | | |
Collapse
|
20
|
Abstract
During heat shock recovery in Hela cells, the level of Alu RNA transiently increases with kinetics that approximately parallel the transient expression of heat shock protein mRNAs. Coincidentally, there is a transient increase in the accessibility of Alu chromatin to restriction enzyme cleavage suggesting that an opening and re-closing of chromatin regulates the Alu stress response. Similar changes occur in alpha satellite and LINE1 chromatin showing that heat shock induces a genome-wide remodeling of chromatin structure which is independent of transcription. The increased accessibility of restriction sites within these repetitive sequences is inconsistent with a simple lengthening of the nucleosome linker region but instead suggests a scrambling of nucleosome positions. Chromatin structure and its dynamics account for many of the principal features of SINE transcriptional regulation potentially providing a functional rationale for the dispersion and high copy number of SINEs.
Collapse
Affiliation(s)
- C Kim
- Department of Chemistry, University of California, Davis, CA 95616-8535, USA
| | | | | |
Collapse
|
21
|
Hamada M, Huang Y, Lowe TM, Maraia RJ. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Mol Cell Biol 2001; 21:6870-81. [PMID: 11564871 PMCID: PMC99864 DOI: 10.1128/mcb.21.20.6870-6881.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to directing transcription initiation, core promoters integrate input from distal regulatory elements. Except for rare exceptions, it has been generally found that eukaryotic tRNA and rRNA genes do not contain TATA promoter elements and instead use protein-protein interactions to bring the TATA-binding protein (TBP), to the core promoter. Genomewide analysis revealed TATA elements in the core promoters of tRNA and 5S rRNA (Pol III), U1 to U5 snRNA (Pol II), and 37S rRNA (Pol I) genes in Schizosaccharomyces pombe. Using tRNA-dependent suppression and other in vivo assays, as well as in vitro transcription, we demonstrated an obligatory requirement for upstream TATA elements for tRNA and 5S rRNA expression in S. pombe. The Pol III initiation factor Brf is found in complexes with TFIIIC and Pol III in S. pombe, while TBP is not, consistent with independent recruitment of TBP by TATA. Template commitment assays are consistent with this and confirm that the mechanisms of transcription complex assembly and initiation by Pol III in S. pombe differ substantially from those in other model organisms. The results were extended to large-rRNA synthesis, as mutation of the TATA element in the Pol I promoter also abolishes rRNA expression in fission yeast. A survey of other organisms' genomes reveals that a substantial number of eukaryotes may use widespread TATAs for transcription. These results indicate the presence of TATA-unified transcription systems in contemporary eukaryotes and provide insight into the residual need for TBP by all three Pols in other eukaryotes despite a lack of TATA elements in their promoters.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Base Sequence
- Conserved Sequence
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Evolution, Molecular
- Genome, Fungal
- Immunoblotting
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA Polymerase III/genetics
- RNA Polymerase III/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer/metabolism
- Schizosaccharomyces/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- TATA-Box Binding Protein
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- M Hamada
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | |
Collapse
|
22
|
Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90. [PMID: 11433012 PMCID: PMC55761 DOI: 10.1093/nar/29.13.2675] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA
| | | |
Collapse
|
23
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
24
|
Chong SS, Hu P, Hernandez N. Reconstitution of transcription from the human U6 small nuclear RNA promoter with eight recombinant polypeptides and a partially purified RNA polymerase III complex. J Biol Chem 2001; 276:20727-34. [PMID: 11279001 DOI: 10.1074/jbc.m100088200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human U6 small nuclear (sn) RNA core promoter consists of a proximal sequence element, which recruits the multisubunit factor SNAP(c), and a TATA box, which recruits the TATA box-binding protein, TBP. In addition to SNAP(c) and TBP, transcription from the human U6 promoter requires two well defined factors. The first is hB", a human homologue of the B" subunit of yeast TFIIIB generally required for transcription of RNA polymerase III genes, and the second is hBRFU, one of two human homologues of the yeast TFIIIB subunit BRF specifically required for transcription of U6-type RNA polymerase III promoters. Here, we have partially purified and characterized a RNA polymerase III complex that can direct transcription from the human U6 promoter when combined with recombinant SNAP(c), recombinant TBP, recombinant hB", and recombinant hBRFU. These results open the way to reconstitution of U6 transcription from entirely defined components.
Collapse
Affiliation(s)
- S S Chong
- Department of Microbiology and Graduate Program of Molecular and Cellular Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
25
|
Meissner W, Rothfels H, Schäfer B, Seifart K. Development of an inducible pol III transcription system essentially requiring a mutated form of the TATA-binding protein. Nucleic Acids Res 2001; 29:1672-82. [PMID: 11292839 PMCID: PMC31323 DOI: 10.1093/nar/29.8.1672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We attempted to devise a transcription system in which a particular DNA sequence of interest could be inducibly expressed under the control of a modified polymerase III (pol III) promoter. Its activation requires a mutated transcription factor not contained endogenously in human cells. We constructed such a promoter by fusing elements of the beta-lactamase gene of Escherichia coli, containing a modified TATA-box and a pol III terminator, to the initiation region of the human U6 gene. This construct functionally resembles a 5'-regulated pol III gene and its transcribed segment can be exchanged for an arbitrary sequence. Its transcription in vitro by pol III requires the same factors as the U6 gene with the major exception that the modified TATA-box of this construct only interacts with a TATA-binding protein (TBP) mutant (TBP-DR2) but not with TBP wild-type (TBPwt). Its transcription therefore requires TBP-DR2 exclusively instead of TBPWT: In order to render the system inducible, we fused the gene coding for TBP-DR2 to a tetracycline control element and stably transfected this new construct into HeLa cells. Induction of such a stable and viable clone with tetracycline resulted in the expression of functional TBP-DR2. This system may conceptually be used in the future to inducibly express an arbitrary DNA sequence in vivo under the control of the above mentioned promoter.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA/genetics
- DNA/metabolism
- DNA Footprinting
- DNA Polymerase III/metabolism
- DNA, Recombinant/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Escherichia coli/genetics
- Genes, Bacterial/genetics
- Genetic Vectors/genetics
- HeLa Cells
- Humans
- Mutation/genetics
- Protein Binding
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Nuclear/genetics
- Substrate Specificity
- TATA Box/genetics
- TATA-Box Binding Protein
- Templates, Genetic
- Terminator Regions, Genetic/genetics
- Tetracycline/pharmacology
- Transcription Factor TFIIIB
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- beta-Lactamases/genetics
Collapse
Affiliation(s)
- W Meissner
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps Universität Marburg, Lahnstrasse 3, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
26
|
Ellsworth D, Finnen RL, Flint SJ. Superimposed promoter sequences of the adenoviral E2 early RNA polymerase III and RNA polymerase II transcription units. J Biol Chem 2001; 276:827-34. [PMID: 11031267 DOI: 10.1074/jbc.m007036200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human adenovirus type 2 E2 early (E2E) transcriptional control region contains an efficient RNA polymerase III promoter, in addition to the well characterized promoter for RNA polymerase II. To determine whether this promoter includes intragenic sequences, we examined the effects of precise substitutions introduced between positions +2 and +62 on E2E transcription in an RNA polymerase III-specific, in vitro system. Two noncontiguous sequences within this region were necessary for efficient or accurate transcription by this enzyme. The sequence and properties of the functional element proximal to the sites of initiation identified it as an A box. Although a B box sequence could not be unambiguously located, substitutions between positions +42 and +62 that severely impaired transcription also inhibited binding of the human general initiation protein TFIIIC. Thus, this region of the RNA polymerase III E2E promoter contains a B box sequence. We also identified previously unrecognized intragenic sequences of the E2E RNA polymerase II promoter. In conjunction with our previous observations, these data establish that RNA polymerase II and RNA polymerase III promoter sequences are superimposed from approximately positions -30 to +20 of the complex E2E transcriptional control region. The alterations in transcription induced by certain mutations suggest that components of the RNA polymerase II and RNA polymerase III transcriptional machines compete for access to overlapping binding sites in the E2E template.
Collapse
MESH Headings
- Adenovirus E2 Proteins/genetics
- Base Sequence
- Binding Sites
- Consensus Sequence/genetics
- Gene Expression Regulation, Viral
- Genes, Overlapping/genetics
- HeLa Cells
- Humans
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Polymerase II/metabolism
- RNA Polymerase III/metabolism
- RNA, Transfer/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Templates, Genetic
- Terminator Regions, Genetic/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- D Ellsworth
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
27
|
Wang Z, Bai L, Hsieh YJ, Roeder RG. Nuclear factor 1 (NF1) affects accurate termination and multiple-round transcription by human RNA polymerase III. EMBO J 2000; 19:6823-32. [PMID: 11118217 PMCID: PMC305894 DOI: 10.1093/emboj/19.24.6823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have shown previously that the TFIIIC1/TFIIIC1' fraction interacts specifically with the VA1 terminator regions to affect both termination and initiation/reinitiation of transcription by human RNA polymerase III. Here, we further purified the VA1 terminator-binding factor to apparent homogeneity and found, by peptide sequence analysis, that it belongs to the NF1 protein family. NF1 interacts specifically with the NF1-binding sites within the terminator regions of the VA1 gene and with two subunits (TFIIIC220 and TFIIIC110) of human TFIIIC2. Immunodepletion with anti-NF1 antibodies dramatically decreases transcription from the VA1 template in nuclear extract, and mutation at the NF1-binding site in the terminator region of the VA1 gene selectively affects multiple-round transcription (reinitiation of transcription) and termination. In addition, NF1 acts in conjunction with TFIIIC to promote accurate termination by RNA polymerase III on a C-tailed VA1 template.
Collapse
Affiliation(s)
- Z Wang
- The Laboratory of Biochemistry and Molecular Biology,The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
29
|
Lau OD, Kundu TK, Soccio RE, Ait-Si-Ali S, Khalil EM, Vassilev A, Wolffe AP, Nakatani Y, Roeder RG, Cole PA. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell 2000; 5:589-95. [PMID: 10882143 DOI: 10.1016/s1097-2765(00)80452-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Histone acetyltransferases (HATs) play important roles in the regulation of gene expression. In this report, we describe the design, synthesis, and application of peptide CoA conjugates as selective HAT inhibitors for the transcriptional coactivators p300 and PCAF. Two inhibitors (Lys-CoA for p300 and H3-CoA-20 for PCAF) were found to be potent (IC(50) approximately = 0.5 microM) and selective (approximately 200-fold) in blocking p300 and PCAF HAT activities. These inhibitors were used to probe enzymatic and transcriptional features of HAT function in several assay systems. These compounds should be broadly useful as biological tools for evaluating the roles of HATs in transcriptional studies and may serve as lead agents for the development of novel antineoplastic therapeutics.
Collapse
Affiliation(s)
- O D Lau
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brown TRP, Scott PH, Stein T, Winter AG, White RJ. RNA polymerase III transcription: its control by tumor suppressors and its deregulation by transforming agents. Gene Expr 2000; 9:15-28. [PMID: 11097422 PMCID: PMC5964957 DOI: 10.3727/000000001783992713] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The level of RNA polymerase (pol) III transcription is tightly linked to the rate of growth; it is low in resting cells and increases following mitogenic stimulation. When mammalian cells begin to proliferate, maximal pol III activity is reached shortly before the G1/S transition; it then remains high throughout S and G2 phases. Recent data suggest that the retinoblastoma protein RB and its relatives p107 and p130 may be largely responsible for this pattern of expression. During G0 and early G1 phase, RB and p130 bind and repress the pol III-specific factor TFIIIB; shortly before S phase they dissociate from TFIIIB, allowing transcription to increase. At the end of interphase, when cells enter mitosis, pol III transcription is again suppressed; this mitotic repression is achieved through direct phosphorylation of TFIIIB. Thus, pol III transcription levels fluctuate as mammalian cells cycle, being high in S and G2 phases and low during mitosis and early G1. In addition to this cyclic regulation, TFIIIB can be bound and repressed by the tumor suppressor p53. Conversely, it is a target for activation by several viruses, including SV40, HBV, and HTLV-1. Some viruses also increase the activity of a second pol III-specific factor called TFIIIC. A large proportion of transformed and tumor cell types express abnormally high levels of pol III products. This may be explained, at least in part, by the very high frequency with which RB and p53 become inactivated during neoplastic transformation; loss of function of these cardinal tumor suppressors may release TFIIIB from key restraints that operate in normal cells.
Collapse
Affiliation(s)
- Timothy R. P. Brown
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pamela H. Scott
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Torsten Stein
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew G. Winter
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Robert J. White
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
31
|
Makino Y, Yogosawa S, Kayukawa K, Coin F, Egly JM, Wang ZX, Roeder RG, Yamamoto K, Muramatsu M, Tamura TA. TATA-Binding protein-interacting protein 120, TIP120, stimulates three classes of eukaryotic transcription via a unique mechanism. Mol Cell Biol 1999; 19:7951-60. [PMID: 10567521 PMCID: PMC84880 DOI: 10.1128/mcb.19.12.7951] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a novel TATA-binding protein (TBP)-interacting protein (TIP120) from the rat liver. Here, in an RNA polymerase II (RNAP II)-reconstituted transcription system, we demonstrate that recombinant TIP120 activates the basal level of transcription from various kinds of promoters regardless of the template DNA topology and the presence of TFIIE/TFIIH and TBP-associated factors. Deletion analysis demonstrated that a 412-residue N-terminal domain, which includes an acidic region and the TBP-binding domain, is required for TIP120 function. Kinetic studies suggest that TIP120 functions during preinitiation complex (PIC) formation at the step of RNAP II/TFIIF recruitment to the promoter but not after the completion of PIC formation. Electrophoretic mobility shift assays showed that TIP120 enhanced PIC formation, and TIP120 also stimulated the nonspecific transcription and DNA-binding activity of RNAP II. These lines of evidence suggest that TIP120 is able to activate basal transcription by overcoming a kinetic impediment to RNAP II/TFIIF integration into the TBP (TFIID)-TFIIB-DNA-complex. Interestingly, TIP120 also stimulates RNAP I- and III-driven transcription and binds to RPB5, one of the common subunits of the eukaryotic RNA polymerases, in vitro. Furthermore, in mouse cells, ectopically expressed TIP120 enhances transcription from all three classes (I, II, and III) of promoters. We propose that TIP120 globally regulates transcription through interaction with basal transcription mechanisms common to all three transcription systems.
Collapse
Affiliation(s)
- Y Makino
- Department of Biology, Faculty of Science, Chiba University, and CREST Japan Science and Technology Corporation, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Teichmann M, Wang Z, Martinez E, Tjernberg A, Zhang D, Vollmer F, Chait BT, Roeder RG. Human TATA-binding protein-related factor-2 (hTRF2) stably associates with hTFIIA in HeLa cells. Proc Natl Acad Sci U S A 1999; 96:13720-5. [PMID: 10570139 PMCID: PMC24131 DOI: 10.1073/pnas.96.24.13720] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TATA-binding protein (TBP)-related factor TRF1, has been described in Drosophila and a related protein, TRF2, has been found in a variety of higher eukaryotes. We report that human (h)TRF2 is encoded by two mRNAs with common protein coding but distinct 5' nontranslated regions. One mRNA is expressed ubiquitously (hTRF2-mRNA1), whereas the other (hTRF2-mRNA2) shows a restricted expression pattern and is extremely abundant in testis. In addition, we show that hTRF2 forms a stable stoichiometric complex with hTFIIA, but not with TAFs, in HeLa cells stably transfected with flag-tagged hTRF2. Neither recombinant human (rh)TRF2 nor the native flag.hTRF2-TFIIA complex is able to replace TBP or TFIID in basal or activated transcription from various RNA polymerase II promoters. Instead, rhTRF2, but not the flag.hTRF2-TFIIA complex, moderately inhibits basal or activated transcription in the presence of rhTBP or flag.TFIID. This effect is either completely (TBP-mediated transcription) or partially (TFIID-mediated transcription) counteracted by addition of free TFIIA. Neither rhTRF2 nor flag. hTRF2-TFIIA has any effect on the repression of TFIID-mediated transcription by negative cofactor-2 (NC2) and neither substitutes for TBP in RNA polymerase III-mediated transcription.
Collapse
Affiliation(s)
- M Teichmann
- Laboratory of Biochemistry, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hsieh YJ, Kundu TK, Wang Z, Kovelman R, Roeder RG. The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol Cell Biol 1999; 19:7697-704. [PMID: 10523658 PMCID: PMC84812 DOI: 10.1128/mcb.19.11.7697] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1999] [Accepted: 08/20/1999] [Indexed: 11/20/2022] Open
Abstract
Human transcription factor IIIC (hTFIIIC) is a multisubunit complex that directly recognizes promoter elements and recruits TFIIIB and RNA polymerase III. Here we describe the cDNA cloning and characterization of the 90-kDa subunit (hTFIIIC90) that is present within a DNA-binding subcomplex (TFIIIC2) of TFIIIC. hTFIIIC90 has no specific homology to any of the known yeast TFIIIC subunits. Immunodepletion and immunoprecipitation studies indicate that hTFIIIC90 is a bona fide subunit of TFIIIC2 and absolutely required for RNA polymerase III transcription. hTFIIIC90 shows interactions with the hTFIIIC220, hTFIIIC110, and hTFIIIC63 subunits of TFIIIC, the hTFIIIB90 subunit of TFIIIB, and the human RPC39 (hRPC39) and hRPC62 subunits of an initiation-specific subcomplex of RNA polymerase III. These interactions may facilitate both TFIIIB and RNA polymerase III recruitment to the preinitiation complex by TFIIIC. We show that hTFIIIC90 has an intrinsic histone acetyltransferase activity with a substrate specificity for histone H3.
Collapse
Affiliation(s)
- Y J Hsieh
- Laboratory of Biochemistry, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
34
|
Hsieh YJ, Wang Z, Kovelman R, Roeder RG. Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III. Mol Cell Biol 1999; 19:4944-52. [PMID: 10373544 PMCID: PMC84305 DOI: 10.1128/mcb.19.7.4944] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human transcription factor IIIC (hTFIIIC) is a multisubunit complex that mediates transcription of class III genes through direct recognition of promoters (for tRNA and virus-associated RNA genes) or promoter-TFIIIA complexes (for the 5S RNA gene) and subsequent recruitment of TFIIIB and RNA polymerase III. We describe the cognate cDNA cloning and characterization of two subunits (hTFIIIC63 and hTFIIIC102) that are present within a DNA-binding subcomplex (TFIIIC2) of TFIIIC and are related in structure and function to two yeast TFIIIC subunits (yTFIIIC95 and yTFIIIC131) previously shown to interact, respectively, with the promoter (A box) and with a subunit of yeast TFIIIB. hTFIIIC63 and hTFIIIC102 show parallel in vitro interactions with the homologous human TFIIIB and RNA polymerase III components, as well as additional interactions that may facilitate both TFIIIB and RNA polymerase III recruitment. These include novel interactions of hTFIIIC63 with hTFIIIC102, with hTFIIIB90, and with hRPC62, in addition to the hTFIIIC102-hTFIIIB90 and hTFIIIB90-hRPC39 interactions that parallel the previously described interactions in yeast. As reported for yTFIIIC131, hTFIIIC102 contains acidic and basic regions, tetratricopeptide repeats (TPRs), and a helix-loop-helix domain, and mutagenesis studies have implicated the TPRs in interactions both with hTFIIIC63 and with hTFIIIB90. These observations further document conservation from yeast to human of the structure and function of the RNA polymerase III transcription machinery, but in addition, they provide new insights into the function of hTFIIIC and suggest direct involvement in recruitment of both TFIIIB and RNA polymerase III.
Collapse
Affiliation(s)
- Y J Hsieh
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
35
|
Kundu TK, Wang Z, Roeder RG. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol Cell Biol 1999; 19:1605-15. [PMID: 9891093 PMCID: PMC116088 DOI: 10.1128/mcb.19.2.1605] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1998] [Accepted: 11/12/1998] [Indexed: 12/13/2022] Open
Abstract
Human TFIIIC is a multisubunit factor that is essential for transcription by RNA polymerase III on tRNA and virus-associated RNA genes and initiates preinitiation complex assembly by direct recognition of promoter elements. We show that highly purified TFIIIC, at concentrations above those sufficient for transcription of naked DNA templates, effectively relieves nucleosome-mediated repression on an in vitro-reconstituted chromatin template. Highly purified TFIIIC alone can bind to the A and B boxes of a tRNA gene within a chromatin template and, further, displays a histone acetyltransferase activity that is intrinsic to at least one (and probably three) of its subunits. The possibility of a direct link between TFIIIC-dependent chromatin transcription and acetyltransferase activities is suggested by the partial loss of these activities, but not DNA transcription activity, following pretreatment of TFIIIC with p-hydroxymercuribenzoic acid.
Collapse
Affiliation(s)
- T K Kundu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
36
|
Kober I, Teichmann M, Seifart KH. hTFIIIB-beta stably binds to pol II promoters and recruits RNA polymerase III in a hTFIIIC1 dependent way. J Mol Biol 1998; 284:7-20. [PMID: 9811538 DOI: 10.1006/jmbi.1998.2165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been shown that under specific conditions, transcription of protein coding genes can be efficiently initiated by RNA polymerase (pol) III in vitro. We examined the formation and composition of such pol III transcription complexes on the duck histone H5 and alphaA-globin promoters and found that the essential step for the formation of pol III transcription complexes on these pol II promoters was the stable binding of transcription factor (TF) IIIB-beta. For this process, the intact TFIIIB-beta complex, consisting of TBP and associated factors (TAFs) was needed and the prior association of pol III assembly factors was not necessary. We demonstrate for the first time that hTFIIIB-beta alone is able to bind to pol II promoter DNA. This resulted in a very stable complex which was resistant to high concentrations of heparin. Although immunodepletion revealed that TBP is essentially required for complex formation, other components of hTFIIIB-beta must also be involved, since TBP itself is unable to form heparin-resistant complexes and does not mediate pol III commitment per se. pol III is recruited to these pol II promoters in a strictly TFIIIC1 dependent way. After binding of TFIIIB-beta, the addition of TFIIIC1 and pol III were sufficient to yield productive pol III transcription complexes, which utilized the correct pol II initiation site. From these findings, we postulate that TFIIIC1 is involved in the recruitment of pol III and may thus form a bridge between TFIIIB-beta and the enzyme. This finding provides the first evidence for functional contacts between TFIIIC1 and pol III, which could be of general importance for the assembly of pol III transcription complexes.
Collapse
Affiliation(s)
- I Kober
- Institut für Molekularbiologie und Tumorforschung, Lahnstrasse 3, Marburg, D-35033, Germany
| | | | | |
Collapse
|
37
|
Goodier JL, Maraia RJ. Terminator-specific recycling of a B1-Alu transcription complex by RNA polymerase III is mediated by the RNA terminus-binding protein La. J Biol Chem 1998; 273:26110-6. [PMID: 9748291 DOI: 10.1074/jbc.273.40.26110] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient synthesis of many small abundant RNAs is achieved by the proficient recycling of RNA polymerase (pol) III and stable transcription complexes. Cellular Alu and related retroposons represent unusual pol III genes that are normally repressed but are activated by viral infection and other conditions. The core sequences of these elements contain pol III promoters but must rely on fortuitous downstream oligo(dT) tracts for terminator function. We show that a B1-Alu gene differs markedly from a classical pol III gene (tRNAiMet) in terminator sequence requirements. B1-Alu genes that differ only in terminator sequence context direct differential RNA 3' end formation. These genes are assembled into stable transcription complexes but differ in their ability to be recycled in the presence of the La transcription termination factor. La binds to the nascent RNA 3' UUUOH end motif that is generated by transcriptional termination within the pol III termination signal, oligo(dT). We found that the recycling efficiency of the B1-Alu genes is correlated with the ability of La to access the 3' end of the nascent transcript and protect it from 3'-5' exonucleolytic processing. These results illuminate a relationship between RNA 3' end formation and transcription termination, and La-mediated reinitiation by pol III.
Collapse
Affiliation(s)
- J L Goodier
- Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | |
Collapse
|
38
|
Manaud N, Arrebola R, Buffin-Meyer B, Lefebvre O, Voss H, Riva M, Conesa C, Sentenac A. A chimeric subunit of yeast transcription factor IIIC forms a subcomplex with tau95. Mol Cell Biol 1998; 18:3191-200. [PMID: 9584160 PMCID: PMC108901 DOI: 10.1128/mcb.18.6.3191] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 03/05/1998] [Indexed: 02/07/2023] Open
Abstract
The multisubunit yeast transcription factor IIIC (TFIIIC) is a multifunctional protein required for promoter recognition, transcription factor IIIB recruitment, and chromatin antirepression. We report the isolation and characterization of TFC7, an essential gene encoding the 55-kDa polypeptide, tau55, present in affinity-purified TFIIIC. tau55 is a chimeric protein generated by an ancient chromosomal rearrangement. Its C-terminal half is essential for cell viability and sufficient to ensure TFIIIC function in DNA binding and transcription assays. The N-terminal half is nonessential and highly similar to a putative yeast protein encoded on another chromosome and to a cyanobacterial protein of unknown function. Partial deletions of the N-terminal domain impaired tau55 function at a high temperature or in media containing glycerol or ethanol, suggesting a link between PolIII transcription and metabolic pathways. Interestingly, tau55 was found, together with TFIIIC subunit tau95, in a protein complex which was distinct from TFIIIC and which may play a role in the regulation of PolIII transcription, possibly in relation to cell metabolism.
Collapse
Affiliation(s)
- N Manaud
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang Z, Roeder RG. DNA topoisomerase I and PC4 can interact with human TFIIIC to promote both accurate termination and transcription reinitiation by RNA polymerase III. Mol Cell 1998; 1:749-57. [PMID: 9660958 DOI: 10.1016/s1097-2765(00)80074-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A human TFIIIC-containing complex (operationally designated holo TFIIIC) has been isolated by immunoaffinity methods and further resolved into two components that are both required for promoter-directed transcription of the VA1 gene. One component, designated TFIIIC, contains 5 polypeptides previously ascribed to TFIIIC2 and 4 additional polypeptides that correspond to TFIIIC1. Included within the other component are factors, namely DNA topoisomerase I and PC4, previously shown to serve as coactivators for transcription by RNA polymerase II. Topoisomerase I and PC4 both enhance TFIIIC interactions with down-stream promoter regions and promote multiple, but not single, round transcription by RNA polymerase III from preformed preinitiation complexes. Novel functions for holo TFIIIC in transcription elongation and accurate termination events that could be important for efficient reinitiation are also described.
Collapse
Affiliation(s)
- Z Wang
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
40
|
Arrebola R, Manaud N, Rozenfeld S, Marsolier MC, Lefebvre O, Carles C, Thuriaux P, Conesa C, Sentenac A. Tau91, an essential subunit of yeast transcription factor IIIC, cooperates with tau138 in DNA binding. Mol Cell Biol 1998; 18:1-9. [PMID: 9418847 PMCID: PMC121441 DOI: 10.1128/mcb.18.1.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription factor IIIC (TFIIIC) (or tau) is a large multisubunit and multifunctional factor required for transcription of all class III genes in Saccharomyces cerevisiae. It is responsible for promoter recognition and TFIIIB assembly. We report here the cloning and characterization of TFC6, an essential gene encoding the 91-kDa polypeptide, tau91, present in affinity-purified TFIIIC. Tau91 has a predicted molecular mass of 74 kDa. It harbors a central cluster of His and Cys residues and has basic and acidic amino acid regions, but it shows no specific similarity to known proteins or predicted open reading frames. The TFIIIC subunit status of tau91 was established by the following biochemical and genetic evidence. Antibodies to tau91 bound TFIIIC-DNA complexes in gel shift assays; in vivo, a B block-deficient U6 RNA gene (SNR6) harboring GAL4 binding sites was reactivated by fusing the GAL4 DNA binding domain to tau91; and a point mutation in TFC6 (tau91-E330K) was found to suppress the thermosensitive phenotype of a tfc3-G349E mutant affected in the B block binding subunit (tau138). The suppressor mutation alleviated the DNA binding and transcription defects of mutant TFIIIC in vitro. These results indicated that tau91 cooperates with tau138 for DNA binding. Recombinant tau91 by itself did not interact with a tRNA gene, although it showed a strong affinity for single-stranded DNA.
Collapse
Affiliation(s)
- R Arrebola
- Service de Biochemie et de Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ulmasov B, Capone J, Folk W. Regulated expression of plant tRNA genes by the prokaryotic tet and lac repressors. PLANT MOLECULAR BIOLOGY 1997; 35:417-424. [PMID: 9349265 DOI: 10.1023/a:1005819007549] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The prokaryotic tet operator (tetO) sequence was inserted at positions upstream and downstream of sequences encoding the Arabidopsis thaliana tRNA(Lys)AUC or tRNA(Trp)AUC suppressor tRNAs, and tRNA expression in carrot protoplasts was measured by translational suppression of a nonsense codon in a luciferase reporter gene. Regulation of tRNA expression by the tetracycline repressor (tetR) occurred from genes with the tetO inserted at position -1 (for the tRNA(Trp)AUC gene), or at positions -2, -6 and -10 (for the tRNA(Lys)AUC gene), and repression reached 90%. The inducer tetracycline (Tc) restored tRNA expression. Similarly, carrot protoplasts transfected with human tRNA(Ser)AUC genes containing the lac operator (lacO) in their 5'-flanking sequence with or without the lac repressor (lacI) gene, conditionally expressed tRNAs which suppressed the luciferase reporter. Up to 30-fold repression occurred by the lactose repressor when lacO was located at position -1 of the tRNA(Ser)AUC coding sequence. In the presence of the inducer isopropyl-beta-thiogalactoside (IPTG), repression was relieved. These results demonstrate that sequences flanking tRNA genes can strongly influence tRNA expression in plants, and in a conditional fashion when bound by inducible proteins.
Collapse
MESH Headings
- Arabidopsis/genetics
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Base Sequence
- Daucus carota
- Escherichia coli Proteins
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Humans
- Lac Repressors
- Molecular Sequence Data
- Operator Regions, Genetic/genetics
- Prokaryotic Cells
- Protein Biosynthesis/genetics
- Protoplasts
- RNA, Transfer/genetics
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Trp/genetics
- Recombinant Fusion Proteins
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Suppression, Genetic/genetics
- Tetracycline/pharmacology
Collapse
Affiliation(s)
- B Ulmasov
- Department of Biochemistry, University of Missouri-Columbia 65211, USA
| | | | | |
Collapse
|
42
|
Ladomery M. Multifunctional proteins suggest connections between transcriptional and post-transcriptional processes. Bioessays 1997; 19:903-9. [PMID: 9363684 DOI: 10.1002/bies.950191010] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent findings indicate that substantial cross-talk may exist between transcriptional and post-transcriptional processes. Firstly, there are suggestions that specific promoters influence the post-transcriptional fate of transcripts, pointing to communication between protein complexes assembled on DNA and nascent pre-mRNA. Secondly, an increasing number of proteins appear to be multifunctional, participating in transcriptional and post-transcriptional events. The classic example is TFIIIA, required for both the transcription of 5S rRNA genes and the packaging of 5S rRNA. TFIIIA is now joined by the Y-box proteins, which bind DNA (transcription activation and repression) and RNA (mRNA packaging). Furthermore, the tumour suppressor WT1, at first thought to be a typical transcription factor, may also be involved in splicing; conversely, hnRNP K, a bona fide pre-mRNA-binding protein, appears to be a transcription factor. Other examples of multifunctional proteins are mentioned: notably PTB, Sxl, La and PU.1. It is now reasonable to assert that some proteins, which were first identified as transcription factors, could just as easily have been identified as splicing factors, hnRNP, mRNP proteins and vice versa. It is no longer appropriate to view gene expression as a series of compartmentalised processes; instead, multifunctional proteins are likely to co-ordinate different steps of gene expression.
Collapse
Affiliation(s)
- M Ladomery
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland.
| |
Collapse
|
43
|
Goodier JL, Fan H, Maraia RJ. A carboxy-terminal basic region controls RNA polymerase III transcription factor activity of human La protein. Mol Cell Biol 1997; 17:5823-32. [PMID: 9315640 PMCID: PMC232430 DOI: 10.1128/mcb.17.10.5823] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human La protein has been shown to serve as a transcription factor for RNA polymerase III (pol III) by facilitating transcription termination and recycling of transcription complexes. In addition, La binds to the 3' oligo(U) ends common to all nascent pol III transcripts, and in the case of B1-Alu RNA, protects it from 3'-end processing (R. J. Maraia, D. J. Kenan, and J. D. Keene, Mol. Cell. Biol. 14:2147-2158, 1994). Others have previously dissected the La protein into an N-terminal domain that binds RNA and a C-terminal domain that does not. Here, deletion and substitution mutants of La were examined for general RNA binding, RNA 3'-end protection, and transcription factor activity. Although some La mutants altered in a C-terminal basic region bind RNA in mobility shift assays, they are defective in RNA 3'-end protection and do not support transcription, while one C-terminal substitution mutant is defective only in transcription. Moreover, a C-terminal fragment lacking RNA binding activity appears able to support low levels of transcription by pol III. While efficient multiround transcription is supported only by mutants that bind RNA and contain a C-terminal basic region. These analyses indicate that RNA binding contributes to but is not sufficient for La transcription factor activity and that the C-terminal domain plays a role in transcription that is distinguishable from simple RNA binding. The transcription factor activity of La can be reversibly inhibited by RNA, suggesting the potential for feedback inhibition of pol III transcription.
Collapse
Affiliation(s)
- J L Goodier
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
44
|
Wang Z, Luo T, Roeder RG. Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. Genes Dev 1997; 11:2371-82. [PMID: 9308965 PMCID: PMC316516 DOI: 10.1101/gad.11.18.2371] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcription by RNA polymerase III (Pol III) requires multiple general initiation factors that, in isolated form, assemble onto the promoter in an ordered fashion. Here, it is shown that all components required for transcription of the VA1 and tRNA genes, including TFIIIB, TFIIIC, and RNA Pol III, can be coimmunopurified from a HeLa cell line that constantly expresses a FLAG epitope-tagged subunit of human RNA Pol III. This finding of an RNA Pol III "holoenzyme" suggests similarities between transcription initiation by RNA Pol II and RNA Pol III and has led to the identification of a novel general initiation factor (TDF, translation dependent factor) that is present within the holoenzyme. TDF is selectively inactivated during protein synthesis inhibition by cycloheximide and at a late stage of adenovirus infection, thus accounting for the loss of RNA Pol III-mediated transcription of the tRNA and VA RNA genes under these conditions. On the basis of these observations, possible mechanisms for the global regulation of transcription by RNA Pol III and for disassembly of RNA Pol III initiation complexes are proposed.
Collapse
Affiliation(s)
- Z Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
45
|
Oettel S, Härtel F, Kober I, Iben S, Seifart KH. Human transcription factors IIIC2 , IIIC1 and a novel component IIIC0 fulfil different aspects of DNA binding to various pol III genes. Nucleic Acids Res 1997; 25:2440-7. [PMID: 9171097 PMCID: PMC146769 DOI: 10.1093/nar/25.12.2440] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human transcription factor IIIC2 interacts with the TFIIIA-5S DNA complex and forms a ternary TFIIIA/IIIC2-5S DNA complex. Formation of this complex does not preclude simultaneous binding of TFIIIC2to the B-box sequence of a second template. This suggests that the domain(s) or subunit(s) required for indirect recognition of the 5S promoter by TFIIIC2 are different from those necessary for direct binding of TFIIIC2 to B-box-containing pol III promoters. Whereas TFIIIC2 is only required for transcription of the 'classical' pol III genes, TFIIIC1 is generally required for transcription of all pol III genes, including that of the U6 gene. The activity of TFIIIC1 strongly enhances specific binding of basal pol III factors TFIIIA, TFIIIC2 and the PSE binding protein (PBP) to their cognate promoter elements and it acts independently of the corresponding termination regions. Moreover, we characterize an activity, TFIIIC0, purified from phosphocellulose fraction C, which shows strong DNase I protection of the termination region of several pol III genes and which is functionally and chromatographically distinct from TFIIIC1 and TFIIIC2.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Cell Line
- Cell Nucleus/metabolism
- Chromatography, Ion Exchange
- Cytoplasm/metabolism
- DNA Footprinting
- DNA Polymerase III/biosynthesis
- DNA Polymerase III/genetics
- DNA, Ribosomal/metabolism
- Deoxyribonuclease I
- Genes, Synthetic
- Humans
- Mice
- Promoter Regions, Genetic
- RNA, Ribosomal, 5S/biosynthesis
- RNA, Ribosomal, 5S/genetics
- Templates, Genetic
- Terminator Regions, Genetic
- Transcription Factor TFIIA
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription Factors, TFIII
- Transcription, Genetic
Collapse
Affiliation(s)
- S Oettel
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Lahnstrasse 3, D-35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Chu WM, Wang Z, Roeder RG, Schmid CW. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J Biol Chem 1997; 272:14755-61. [PMID: 9169441 DOI: 10.1074/jbc.272.23.14755] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The retinoblastoma susceptibility gene product (Rb) generally represses RNA polymerase III (Pol III)-directed transcription. This implies that Rb interacts with essential transcription factors. Mutations in either the A or B subdomains in the Rb pocket interfere with Rb-mediated repression of Pol III-directed transcription, which indicates that both subdomains are directly involved in this activity. Addition of either purified TFIIIB or purified TFIIIC2 partially relieves Rb-mediated repression and restores activity to nuclear extracts that had been depleted of essential factors by binding to Rb. Pull down and coimmunoprecipitation experiments as well as functional assays indicate that Rb interacts with both TFIIIB and TFIIIC2 and that the A subdomain is primarily required for binding TFIIIB and the B subdomain for binding TFIIIC2. While Rb interacts with both factors, the A subdomain is more important than the B subdomain in directing Rb-mediated repression, and TFIIIB is the principal target of that activity.
Collapse
Affiliation(s)
- W M Chu
- Section of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
47
|
Wang Z, Roeder RG. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev 1997; 11:1315-26. [PMID: 9171375 DOI: 10.1101/gad.11.10.1315] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcription by RNA polymerase III involves recruitment of the polymerase by template-bound accessory factors, followed by initiation, elongation, and termination steps. An immunopurification approach has been used to demonstrate that human RNA Pol III is composed of 16 subunits, some of which are apparently modified in HeLa cells. Partial denaturing conditions and sucrose gradient sedimentation at high salt result in the dissociation of a subcomplex that includes hRPC32, hRPC39, and hRPC62. Cognate cDNAs were isolated and shown to encode three subunits that are specific to RNA Pol III and homologous to three yeast subunits. The human RNA Pol III core lacking the subcomplex functions in transcription elongation and termination following nonspecific initiation on a tailed template, but fails to show promoter-dependent transcription initiation in conjunction with accessory factors. The capability for specific transcription initiation can be restored either by the natural subcomplex or by a stable subcomplex composed of recombinant hRPC32, hRPC39, and hRPC62 polypeptides. One component (hRPC39) of this subcomplex interacts physically with both hTBP and hTFIIIB90, two subunits of human RNA Pol III transcription initiation factor IIIB. These data strongly suggest that the hRPC32-hRPC39-hRPC62 subcomplex directs RNA Pol III binding to the TFIIIB-DNA complex via the interactions between TFIIIB and hRPC39.
Collapse
Affiliation(s)
- Z Wang
- The Rockefeller University, Laboratory of Biochemistry and Molecular Biology, New York, New York 10021, USA
| | | |
Collapse
|
48
|
Fan H, Sakulich AL, Goodier JL, Zhang X, Qin J, Maraia RJ. Phosphorylation of the human La antigen on serine 366 can regulate recycling of RNA polymerase III transcription complexes. Cell 1997; 88:707-15. [PMID: 9054510 DOI: 10.1016/s0092-8674(00)81913-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human La antigen is an RNA-binding protein that facilitates transcriptional termination and reinitiation by RNA polymerase III. Native La protein fractionates into transcriptionally active and inactive forms that are unphosphorylated and phosphorylated at serine 366, respectively, as determined by enzymatic and mass spectrometric analyses. Serine 366 comprises a casein kinase II phosphorylation site that resides within a conserved region in the La proteins from several species. RNA synthesis from isolated transcription complexes is inhibited by casein kinase II-mediated phosphorylation of La serine 366 and is reversible by dephosphorylation. This work demonstrates a novel mechanism of transcriptional control at the level of recycling of stable transcription complexes.
Collapse
Affiliation(s)
- H Fan
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|