1
|
Dergai O, Hernandez N. How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes. Trends Genet 2019; 35:457-469. [PMID: 31040056 DOI: 10.1016/j.tig.2019.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023]
Abstract
Nuclear eukaryotic genomes are transcribed by three related RNA polymerases (Pol), which transcribe distinct gene sets. Specific Pol recruitment is achieved through selective core promoter recognition by basal transcription factors (TFs). Transcription by an inappropriate Pol appears to be rare and to generate mostly unstable products. A collection of short noncoding RNA genes [for example, small nuclear RNA (snRNA) or 7SK RNA genes], which play essential roles in processes such as maturation of RNA molecules or control of Pol II transcription elongation, possess highly similar core promoters, and yet are transcribed for some by Pol II and for others by Pol III as a result of small promoter differences. Here we discuss the mechanisms of selective Pol recruitment to such promoters.
Collapse
Affiliation(s)
- Oleksandr Dergai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Hernandez G, Valafar F, Stumph WE. Insect small nuclear RNA gene promoters evolve rapidly yet retain conserved features involved in determining promoter activity and RNA polymerase specificity. Nucleic Acids Res 2006; 35:21-34. [PMID: 17148477 PMCID: PMC1761439 DOI: 10.1093/nar/gkl982] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In animals, most small nuclear RNAs (snRNAs) are synthesized by RNA polymerase II (Pol II), but U6 snRNA is synthesized by RNA polymerase III (Pol III). In Drosophila melanogaster, the promoters for the Pol II-transcribed snRNA genes consist of approximately 21 bp PSEA and approximately 8 bp PSEB. U6 genes utilize a PSEA but have a TATA box instead of the PSEB. The PSEAs of the two classes of genes bind the same protein complex, DmSNAPc. However, the PSEAs that recruit Pol II and Pol III differ in sequence at a few nucleotide positions that play an important role in determining RNA polymerase specificity. We have now performed a bioinformatic analysis to examine the conservation and divergence of the snRNA gene promoter elements in other species of insects. The 5' half of the PSEA is well-conserved, but the 3' half is divergent. Moreover, within each species positions exist where the PSEAs of the Pol III-transcribed genes differ from those of the Pol II-transcribed genes. Interestingly, the specific positions vary among species. Nevertheless, we speculate that these nucleotide differences within the 3' half of the PSEA act similarly to induce conformational alterations in DNA-bound SNAPc that result in RNA polymerase specificity.
Collapse
Affiliation(s)
- Genaro Hernandez
- Department of Chemistry and Biochemistry, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
- Department of Computer Science, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - Faramarz Valafar
- Department of Computer Science, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - William E. Stumph
- Department of Chemistry and Biochemistry, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
- To whom correspondence should be addressed. Tel: +1 619 594 5575; Fax: +1 619 594-4634;
| |
Collapse
|
3
|
Das A, Zhang Q, Palenchar JB, Chatterjee B, Cross GAM, Bellofatto V. Trypanosomal TBP functions with the multisubunit transcription factor tSNAP to direct spliced-leader RNA gene expression. Mol Cell Biol 2005; 25:7314-22. [PMID: 16055739 PMCID: PMC1190245 DOI: 10.1128/mcb.25.16.7314-7322.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-coding genes of trypanosomes are mainly transcribed polycistronically and cleaved into functional mRNAs in a process that requires trans splicing of a capped 39-nucleotide RNA derived from a short transcript, the spliced-leader (SL) RNA. SL RNA genes are individually transcribed from the only identified trypanosome RNA polymerase II promoter. We have purified and characterized a sequence-specific SL RNA promoter-binding complex, tSNAP(c), from the pathogenic parasite Trypanosoma brucei, which induces robust transcriptional activity within the SL RNA gene. Two tSNAP(c) subunits resemble essential components of the metazoan transcription factor SNAP(c), which directs small nuclear RNA transcription. A third subunit is unrelated to any eukaryotic protein and identifies tSNAP(c) as a unique trypanosomal transcription factor. Intriguingly, the unusual trypanosome TATA-binding protein (TBP) tightly associates with tSNAPc and is essential for SL RNA gene transcription. These findings provide the first view of the architecture of a transcriptional complex that assembles at an RNA polymerase II-dependent gene promoter in a highly divergent eukaryote.
Collapse
Affiliation(s)
- Anish Das
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, 07103, USA
| | | | | | | | | | | |
Collapse
|
4
|
McNamara-Schroeder KJ, Hennessey RF, Harding GA, Jensen RC, Stumph WE. The Drosophila U1 and U6 gene proximal sequence elements act as important determinants of the RNA polymerase specificity of small nuclear RNA gene promoters in vitro and in vivo. J Biol Chem 2001; 276:31786-92. [PMID: 11431466 DOI: 10.1074/jbc.m101273200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of genes coding for metazoan spliceosomal snRNAs by RNA polymerase II (U1, U2, U4, U5) or RNA polymerase III (U6) is dependent upon a unique, positionally conserved regulatory element referred to as the proximal sequence element (PSE). Previous studies in the organism Drosophila melanogaster indicated that as few as three nucleotide differences in the sequences of the U1 and U6 PSEs can play a decisive role in recruiting the different RNA polymerases to transcribe the U1 and U6 snRNA genes in vitro. Those studies utilized constructs that contained only the minimal promoter elements of the U1 and U6 genes in an artificial context. To overcome the limitations of those earlier studies, we have now performed experiments that demonstrate that the Drosophila U1 and U6 PSEs have functionally distinct properties even in the environment of the natural U1 and U6 gene 5'-flanking DNAs. Moreover, assays in cells and in transgenic flies indicate that expression of genes from promoters that contain the "incorrect" PSE is suppressed in vivo. The Drosophila U6 PSE is incapable of recruiting RNA polymerase II to initiate transcription from the U1 promoter region, and the U1 PSE is unable to recruit RNA polymerase III to transcribe the U6 gene.
Collapse
Affiliation(s)
- K J McNamara-Schroeder
- Department of Chemistry and Molecular Biology Institute, San Diego State University, San Diego, California 92182-1030, USA
| | | | | | | | | |
Collapse
|
5
|
Hernandez N. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 2001; 276:26733-6. [PMID: 11390411 DOI: 10.1074/jbc.r100032200] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- N Hernandez
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
6
|
Hardin SB, Ortler CJ, McNamara-Schroeder KJ, Stumph WE. Similarities and differences in the conformation of protein-DNA complexes at the U1 and U6 snRNA gene promoters. Nucleic Acids Res 2000; 28:2771-8. [PMID: 10908334 PMCID: PMC102643 DOI: 10.1093/nar/28.14.2771] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most small nuclear RNAs (snRNAs) are synthesized by RNA polymerase II, but U6 snRNA is synthesized by RNA polymerase III. In the fruit fly Drosophila melanogaster the RNA polymerase specificity of the snRNA genes is determined by a few nucleotide differences within the proximal sequence element (PSE), a conserved sequence located approximately 40-65 bp upstream of the transcription start site. The PSE is essential for transcription of both RNA polymerase II-transcribed and RNA polymerase III-transcribed snRNA genes and is recognized in Drosophila by a multi-subunit protein factor termed DM:PBP. Previous studies that employed site-specific protein-DNA photocrosslinking indicated that the conformation of the DNA-protein complex is different depending upon whether DM:PBP is bound to a U1 or U6 PSE sequence. These conformational differences of the complex probably represent an early step in determining the selection of the correct RNA polymerase. We have now obtained evidence that DM:PBP modestly bends the DNA upon interacting with the PSE and that the direction of DNA bending is similar for both the U1 and U6 PSEs. Under the assumption that DM:PBP does not significantly twist the DNA, the direction of the bend in both cases is toward the face of the DNA helix contacted by the 45 kDa subunit of DM:PBP. Together with data from partial proteolysis assays, these results indicate that the conformational differences in the complexes of DM:PBP with the U1 and U6 PSEs more likely occur at the protein level rather than at the DNA level.
Collapse
Affiliation(s)
- S B Hardin
- Department of Chemistry and Molecular Biology Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | | | | | | |
Collapse
|
7
|
Luo H, Gilinger G, Mukherjee D, Bellofatto V. Transcription initiation at the TATA-less spliced leader RNA gene promoter requires at least two DNA-binding proteins and a tripartite architecture that includes an initiator element. J Biol Chem 1999; 274:31947-54. [PMID: 10542223 DOI: 10.1074/jbc.274.45.31947] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic transcriptional regulatory signals, defined as core and activator promoter elements, have yet to be identified in the earliest diverging group of eukaryotes, the primitive protozoans, which include the Trypanosomatidae family of parasites. The divergence within this family is highlighted by the apparent absence of the "universal" transcription factor TATA-binding protein. To understand gene expression in these protists, we have investigated spliced leader RNA gene transcription. The RNA product of this gene provides an m(7)G cap and a 39-nucleotide leader sequence to all cellular mRNAs via a trans-splicing reaction. Regulation of spliced leader RNA synthesis is controlled by a tripartite promoter located exclusively upstream from the transcription start site. Proteins PBP-1 and PBP-2 bind to two of the three promoter elements in the trypanosomatid Leptomonas seymouri. They represent the first trypanosome transcription factors with typical double-stranded DNA binding site recognition. These proteins ensure efficient transcription. However, accurate initiation is determined an initiator element with a a loose consensus of CYAC/AYR (+1), which differs from that found in metazoan initiator elements as well as from that identified in one of the earliest diverging protozoans, Trichomonas vaginalis. Trypanosomes may utilize initiator element-protein interactions, and not TATA sequence-TATA-binding protein interactions, to direct proper transcription initiation by RNA polymerase II.
Collapse
Affiliation(s)
- H Luo
- Department of Microbiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103-2714, USA
| | | | | | | |
Collapse
|
8
|
Fast NM, Roger AJ, Richardson CA, Doolittle WF. U2 and U6 snRNA genes in the microsporidian Nosema locustae: evidence for a functional spliceosome. Nucleic Acids Res 1998; 26:3202-7. [PMID: 9628919 PMCID: PMC147691 DOI: 10.1093/nar/26.13.3202] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The removal of introns from pre-messenger RNA is mediated by the spliceosome, a large complex composed of many proteins and five small nuclear RNAs (snRNAs). Of the snRNAs, the U6 and U2 snRNAs are the most conserved in sequence, as they interact extensively with each other and also with the intron, in several base pairings that are necessary for splicing. We have isolated and sequenced the genes encoding both U6 and U2 snRNAs from the intracellularly parasitic microsporidian Nosema locustae . Both genes are expressed. Both RNAs can be folded into secondary structures typical of other known U6 and U2 snRNAs. In addition, the N.locustae U6 and U2 snRNAs have the potential to base pair in the functional intermolecular interactions that have been characterized by extensive analyses in yeast and mammalian systems. These results indicate that the N.locustae U6 and U2 snRNAs may be functional components of an active spliceosome, even though introns have not yet been found in microsporidian genes.
Collapse
Affiliation(s)
- N M Fast
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| | | | | | | |
Collapse
|
9
|
Wang Y, Stumph WE. Identification and topological arrangement of Drosophila proximal sequence element (PSE)-binding protein subunits that contact the PSEs of U1 and U6 small nuclear RNA genes. Mol Cell Biol 1998; 18:1570-9. [PMID: 9488474 PMCID: PMC108872 DOI: 10.1128/mcb.18.3.1570] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most small nuclear RNAs (snRNAs) are synthesized by RNA polymerase II, but U6 and a few others are synthesized by RNA polymerase III. Transcription of snRNA genes by either polymerase is dependent on a proximal sequence element (PSE) located upstream of position -40 relative to the transcription start site. In contrast to findings in vertebrates, sea urchins, and plants, the RNA polymerase specificity of Drosophila snRNA genes is intrinsically encoded in the PSE sequence itself. We have investigated the differential interaction of the Drosophila melanogaster PSE-binding protein (DmPBP) with U1 and U6 gene PSEs. By using a site specific protein-DNA photo-cross-linking assay, we identified three polypeptide subunits of DmPBP with apparent molecular masses of 95, 49, and 45 kDa that are in close proximity to the DNA and two additional putative polypeptides of 230 and 52 kDa that may be integral to the complex. The 95-kDa subunit cross-linked at positions spanning the entire length of the PSE, but the 49- and 45-kDa subunits cross-linked only to the 3' half of the PSE. The same polypeptides cross-linked to both the U1 and U6 PSE sequences. However, there were significant differences in the cross-linking patterns of these subunits at a subset of the phosphate positions, depending on whether binding was to a U1 or U6 gene PSE. These data suggest that RNA polymerase specificity is associated with distinct modes of interaction of DmPBP with the DNA at U1 and U6 promoters.
Collapse
Affiliation(s)
- Y Wang
- Department of Chemistry and Molecular Biology Institute, San Diego State University, California 92182-1030, USA
| | | |
Collapse
|
10
|
Jensen RC, Wang Y, Hardin SB, Stumph WE. The proximal sequence element (PSE) plays a major role in establishing the RNA polymerase specificity of Drosophila U-snRNA genes. Nucleic Acids Res 1998; 26:616-22. [PMID: 9421524 PMCID: PMC147272 DOI: 10.1093/nar/26.2.616] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Most small nuclear RNA (snRNA) genes are transcribed by RNA polymerase II, but some (e.g., U6) are transcribed by RNA polymerase III. In vertebrates a TATA box at a fixed distance downstream of the proximal sequence element (PSE) acts as a dominant determinant for recruiting RNA polymerase III to U6 gene promoters. In contrast, vertebrate snRNA genes that contain a PSE but lack a TATA box are transcribed by RNA polymerase II. In plants, transcription of both classes of snRNA genes requires a TATA box in addition to an upstream sequence element (USE), and polymerase specificity is determined by the spacing between these two core promoter elements. In these examples, the PSE (or USE) is interchangeable between the two classes of snRNA genes. Here we report the surprising finding that the Drosophila U1 and U6 PSEs cannot functionally substitute for each other; rather, determination of RNA polymerase specificity is an intrinsic property of the PSE sequence itself. The alteration of two or three base pairs near the 3'-end of the U1 and U6 PSEs was sufficient to switch the RNA polymerase specificity of Drosophila snRNA promoters in vitro. These findings reveal a novel mechanism for achieving RNA polymerase specificity at insect snRNA promoters.
Collapse
Affiliation(s)
- R C Jensen
- Department of Chemistry and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-1030, USA
| | | | | | | |
Collapse
|
11
|
Luo H, Bellofatto V. Characterization of two protein activities that interact at the promoter of the trypanosomatid spliced leader RNA. J Biol Chem 1997; 272:33344-52. [PMID: 9407127 DOI: 10.1074/jbc.272.52.33344] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All trypanosome mRNAs have a spliced leader (SL). The SL RNA gene in Leptomonas seymouri is a member of the small nuclear RNA gene family. However, the SL RNA is required in stoichiometric amounts for trans-splicing during mRNA formation. Expression of the SL RNA gene requires sequence elements at bp -60 to -70 and bp -30 to -40 upstream from the transcription initiation site. Using conventional and affinity chromatography, we have identified and characterized an approximately 122-kDa protein, promoter-binding protein (PBP) -1, that binds to double-strand DNA. The PBP-1-binding site is within the bp -60 to -70 element determined by DNase I footprinting. Therefore, PBP-1 is the first characterized double-strand DNA binding activity that interacts with a trypanosome gene promoter. A second protein, PBP-2, interacts with the PBP-1:DNA complex and its DNase I footprint extends to include the second promoter element (bp -30 to -40). An alteration of the spacing between the two promoter elements or mutation of the second element decreases PBP-2/PBP-1:DNA stability. Taken together, these data suggest that PBP-1 and PBP-2 are components of a transcription initiation complex that assembles within the SL RNA gene promoter.
Collapse
Affiliation(s)
- H Luo
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
12
|
Su Y, Song Y, Wang Y, Jessop L, Zhan L, Stumph WE. Characterization of a Drosophila proximal-sequence-element-binding protein involved in transcription of small nuclear RNA genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:231-7. [PMID: 9310383 DOI: 10.1111/j.1432-1033.1997.t01-1-00231.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In a wide variety of eukaryotic organisms, transcription of small nuclear RNA (snRNA) genes is dependent upon a proximal sequence element (PSE) located upstream of position -40 relative to the transcription start site. There is little or no existent knowledge concerning the PSE-binding proteins of organisms other than human. Here, we report the purification of a fraction enriched in the Drosophila melanogaster PSE-binding protein (DmPBP). DmPBP forms a highly specific complex with the PSE. The protein stimulates transcription from the U1 gene promoter by RNA polymerase II and from the U6 gene promoter by RNA polymerase III in Drosophila nuclear extracts, and activation is dependent upon the presence of a PSE. The molecular mass of native DmPBP as measured by gel-filtration chromatography is 375 kDa. Two polypeptides (apparent molecular masses 59 kDa and 61 kDa) appear to be in close contact with the DNA in that they can be very efficiently and specifically crosslinked to the PSE sequence by ultraviolet irradiation.
Collapse
Affiliation(s)
- Y Su
- Department of Chemistry and Molecular Biology Institute, San Diego State University, CA 92182-1030, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Trans-splicing generates the mature 5' ends of certain mRNAs through the addition of a small spliced leader (SL) exon to pre-mRNAs. To search for novel flatworm spliced leaders, degenerate oligonucleotides and 5' RACE [corrected was used to isolate and characterize the 5' terminal sequences of enolase mRNAs in diverse flatworms. Several new spliced leaders and their SL RNA genes were identified, characterized, and compared. All parasitic trematodes examined trans-splice enolase. A primitive polyclad turbellarian, Stylochus zebra, also contains a trans-spliced enolase mRNA. The S. zebra SL is the longest SL yet identified, 51 nucleotides. Comparison of flatworm SLs indicates that they vary significantly in sequence and length. This suggests that neither spliced leader exon sequence nor size is likely to be essential for trans-splicing in flatworms. Flatworm SL RNAs have unusual Sm binding sites with characteristics distinct from other known flatworm snRNA Sm binding sites. Predicted flatworm SL RNA secondary structures show variation exhibiting 2-4 stem loops. Although limited in sequence similarity, phylogenetically conserved regions within the diverse flatworm SL RNAs suggest that they are likely to be derived from a common ancestor and provide information on potentially important SL RNA elements. The identification of a SL in a primitive flatworm suggests that trans-splicing may have been an ancestral feature in the phylum. Representative species of other early and more recent clades within the phylum, however, do not trans-splice enolase, nor do they or representatives of several other flatworm groups, have an SL RNA with a phylogenetically conserved region identified in the current study.
Collapse
Affiliation(s)
- R E Davis
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| |
Collapse
|