1
|
Huang W, Ruyechan MC, Ralston KS. Work with me here: variations in genome content and emerging genetic tools in Entamoeba histolytica. Trends Parasitol 2025; 41:401-415. [PMID: 40251060 DOI: 10.1016/j.pt.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/20/2025]
Abstract
Entamoeba histolytica is the causative agent of amoebiasis, a significant source of morbidity and mortality in developing nations. Despite this, E. histolytica is understudied, leading to few treatment options and a poor understanding of pathogenesis. Genetic tools have historically been limited. By applying modern approaches, it was recently revealed that the genome is aneuploid. Interestingly, gene expression levels do not correlate with ploidy, potentially highlighting the importance of RNAi in gene regulation. Characterization of the RNAi pathway has led to potent tools for targeted gene knockdown, and the advent of RNAi-based forward genetics. CRISPR/Cas tools for editing the endogenous genome are an exciting possibility on the horizon. We celebrate the gains that have made E. histolytica tractable and anticipate continued advances.
Collapse
Affiliation(s)
- Wesley Huang
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Maura C Ruyechan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Bhattacharya S. Episomal and chromosomal DNA replication and recombination in Entamoeba histolytica. Front Mol Biosci 2023; 10:1212082. [PMID: 37363402 PMCID: PMC10285105 DOI: 10.3389/fmolb.2023.1212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amoebiasis. DNA replication studies in E. histolytica first started with the ribosomal RNA genes located on episomal circles. Unlike most plasmids, Entamoeba histolytica rDNA circles lacked a fixed origin. Replication initiated from multiple sites on the episome, and these were preferentially used under different growth conditions. In synchronized cells the early origins mapped within the rDNA transcription unit, while at later times an origin in the promoter-proximal upstream intergenic spacer was activated. This is reminiscent of eukaryotic chromosomal replication where multiple potential origins are used. Biochemical studies on replication and recombination proteins in Entamoeba histolytica picked up momentum once the genome sequence was available. Sequence search revealed homologs of DNA replication and recombination proteins, including meiotic genes. The replicative DNA polymerases identified included the α, δ, ε of polymerase family B; lesion repair polymerases Rev1 and Rev3; a translesion repair polymerase of family A, and five families of polymerases related to family B2. Biochemical analysis of EhDNApolA confirmed its polymerase activity with expected kinetic constants. It could perform strand displacement, and translesion synthesis. The purified EhDNApolB2 had polymerase and exonuclease activities, and could efficiently bypass some types of DNA lesions. The single DNA ligase (EhDNAligI) was similar to eukaryotic DNA ligase I. It was a high-fidelity DNA ligase, likely involved in both replication and repair. Its interaction with EhPCNA was also demonstrated. The recombination-related proteins biochemically characterized were EhRad51 and EhDmc1. Both shared the canonical properties of a recombinase and could catalyse strand exchange over long DNA stretches. Presence of Dmc1 indicates the likelihood of meiosis in this parasite. Direct evidence of recombination in Entamoeba histolytica was provided by use of inverted repeat sequences located on plasmids or chromosomes. In response to a variety of stress conditions, and during encystation in Entamoeba invadens, recombination-related genes were upregulated and homologous recombination was enhanced. These data suggest that homologous recombination could have critical roles in trophozoite growth and stage conversion. Availability of biochemically characterized replication and recombination proteins is an important resource for exploration of novel anti-amoebic drug targets.
Collapse
|
3
|
Abstract
In most organisms, the nuclear ribosomal RNA (rRNA) genes are highly repetitive and arranged as tandem repeats on one or more chromosomes. In Entamoeba, however, these genes are located almost exclusively on extrachromosomal circular DNA molecules with no clear evidence so far of a chromosomal copy. Such an uncommon location of rRNA genes may be a direct consequence of cellular physiology, as suggested by studies with Saccharomyces cerevisiae mutants in which the rDNA is extrachromosomal. In this review, Sudha Bhattacharya, Indrani Som and Alok Bhattacharya summarize current knowledge on the structural organization and replication of the Entamoeba rDNA plasmids. Other than the rRNAs encoded by these molecules, no protein-coding genes (including ribosomal protein genes) are found on any of them. They are unique among plasmids in that they do not initiate replication from a fixed origin but use multiple sites dispersed throughout the molecule. Further studies should establish the unique biochemical features of Entamoeba that lead to extrachromosomal rDNA.
Collapse
Affiliation(s)
- S Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | | | | |
Collapse
|
4
|
Singh N, Ojha S, Bhattacharya A, Bhattacharya S. Stable transfection and continuous expression of heterologous genes in Entamoeba invadens. Mol Biochem Parasitol 2012; 184:9-12. [PMID: 22426570 DOI: 10.1016/j.molbiopara.2012.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 11/30/2022]
Abstract
Amoebiasis is spread by the ingestion of dormant Entamoeba histolytica cysts. Intervention of encystation could break the transmission cycle, thereby reducing disease burden. The model system used to study trophozoite to cyst differentiation is Entamoeba invadens. Here we describe an electroporation-based method for stable transfection of E. invadens with a plasmid pEiNEO-LUC containing the neomycin phosphotransferase gene under the control of E. invadens ribosomal protein gene S10 promoter. The plasmid also contains luciferase reporter gene expressed from the promoter of ribosomal protein gene L3. After electroporation, cells receiving the plasmid were selected by growth in 10μgml(-1) G418 and stable lines were obtained in four to five weeks. The plasmid was replicated episomally to ∼10 copies per haploid genome. In the absence of drug selection 50% of the plasmid copies were lost in 9-10 days. In cells growing under drug selection the reporter gene was continuously expressed throughout the differentiation process from trophozoite to cyst and back, making this system suitable for analysis of genes involved in differentiation.
Collapse
Affiliation(s)
- Nishant Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
5
|
Affiliation(s)
- Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | | | | |
Collapse
|
6
|
Ghosh S, Satish S, Tyagi S, Bhattacharya A, Bhattacharya S. Differential use of multiple replication origins in the ribosomal DNA episome of the protozoan parasite Entamoeba histolytica. Nucleic Acids Res 2003; 31:2035-44. [PMID: 12682354 PMCID: PMC153748 DOI: 10.1093/nar/gkg320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The factors that control the initiation of eukaryotic DNA replication from defined origins (oris) on the chromosome remain incompletely resolved. Here we show that the circular rDNA episome of the human pathogen Entamoeba histolytica contains multiple potential oris, which are utilized in a differential manner. The primary ori in exponentially growing cells was mapped close to the promoter of rRNA genes in the upstream intergenic spacer (IGS) by two-dimensional gel electrophoresis. Replication initiated predominantly from the upstream IGS and terminated in the downstream IGS. However, when serum-starved cells were allowed to resume growth, the early oris which became activated were located in other parts of the molecule. Later the ori in the upstream IGS became activated, with concomitant silencing of the early oris. When the upstream IGS was located ectopically in an artificial plasmid, it again lost ori activity, while other parts of the rDNA episome could function as oris in this system. Therefore, the activation or silencing of the ori in this episome is context dependent, as is also the case with many eukaryotic replicons. This is the first replication origin to be mapped in this primitive protozoan and will provide an opportunity to define the factors involved in differential ori activity, and their comparison with metazoans.
Collapse
Affiliation(s)
- Soma Ghosh
- School of Life Sciences, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | | | |
Collapse
|
7
|
Greenwood SJ, Schnare MN, Cook JR, Gray MW. Analysis of intergenic spacer transcripts suggests 'read-around' transcription of the extrachromosomal circular rDNA in Euglena gracilis. Nucleic Acids Res 2001; 29:2191-8. [PMID: 11353089 PMCID: PMC55454 DOI: 10.1093/nar/29.10.2191] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2001] [Accepted: 03/21/2001] [Indexed: 11/14/2022] Open
Abstract
We report here the sequence of the 1743 bp intergenic spacer (IGS) that separates the 3'-end of the large subunit ribosomal RNA (rRNA) gene from the 5'-end of the small subunit (SSU) rRNA gene in the circular, extrachromosomal ribosomal DNA (rDNA) of Euglena gracilis. The IGS contains a 277 nt stretch of sequence that is related to a sequence found in ITS 1, an internal transcribed spacer between the SSU and 5.8S rRNA genes. Primer extension analysis of IGS transcripts identified three abundant reverse transcriptase stops that may be analogous to the transcription initiation site (TIS) and two processing sites (A' and A0) that are found in this region in other eukaryotes. Features that could influence processing at these sites include an imperfect palindrome near site A0 and a sequence near site A' that could potentially base pair with U3 small nucleolar RNA. Our identification of the TIS (verified by mung bean nuclease analysis) is considered tentative because we also detected low-abundance transcripts upstream of this site throughout the entire IGS. This result suggests the possibility of 'read-around' transcription, i.e. transcription that proceeds multiple times around the rDNA circle without termination.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Conserved Sequence/genetics
- DNA, Circular/genetics
- DNA, Intergenic/genetics
- DNA, Ribosomal/genetics
- Euglena/genetics
- Molecular Sequence Data
- Nuclease Protection Assays
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Single-Strand Specific DNA and RNA Endonucleases/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- S J Greenwood
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
8
|
Abstract
Although plasmids containing rRNA genes (rDNA) are commonly found in fungi, they have not been reported in Candida. We discovered that the yeast opportunistic pathogen Candida albicans contains two types of rDNA plasmids which differ in their structure and number of rDNA repeats. A large circular plasmid of unknown size consists of multiple rDNA repeats, each of which includes an associated autonomously replicating sequence (ARS). In contrast, a linear plasmid, which is represented by a series of molecules with a spread of sizes ranging from 50-150 kbp, carries a limited number of rDNA units and associated ARSs, as well as telomeres. The number of linear plasmids per cell is growth cycle-dependent, accumulating in abundance in actively growing cells. We suggest that the total copy number of rDNA is better controlled when a portion of copies are on a linear extrachromosomal plasmid, thus allowing a rapid shift in the number of corresponding genes and, as a result, better adaptation to the environment. This is the first report of a linear rDNA plasmid in yeast, as well as of the coexistence of circular and linear plasmids. In addition, this is a first report of naturally occurring plasmids in C. albicans.
Collapse
MESH Headings
- Blotting, Southern
- Candida albicans/chemistry
- Candida albicans/genetics
- Candida albicans/growth & development
- Chromosomes, Fungal/chemistry
- Chromosomes, Fungal/genetics
- DNA Probes/chemistry
- DNA, Circular/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Electrophoresis, Gel, Pulsed-Field
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/isolation & purification
Collapse
Affiliation(s)
- D Huber
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642, USA
| | | |
Collapse
|
9
|
Abstract
The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently been investigated using laboratory-induced resistant isolates. Instead of downregulation of the pyruvate:ferredoxin oxidoreductase and ferredoxin pathway as seen in G. duodenalis and T. vaginalis, E. histolytica induces oxidative stress mechanisms, including superoxide dismutase and peroxiredoxin. The review examines the value of investigating both clinical and laboratory-induced syngeneic drug-resistant isolates and dissection of the complementary data obtained. Comparison of resistance mechanisms in anaerobic bacteria and the parasitic protozoa is discussed as well as the value of studies of the epidemiology of resistance.
Collapse
Affiliation(s)
- P Upcroft
- Queensland Institute of Medical Research and The Tropical Health Program, Australian Centre for International and Tropical Health and Nutrition, The University of Queensland, The Bancroft Centre, Brisbane, Queensland 4029, Australia.
| | | |
Collapse
|
10
|
Abstract
Plasmid DNA incubated in interphase Xenopus egg extracts is normally assembled into chromatin and then into synthetic nuclei which undergo one round of regulated replication. During a study of restriction endonuclease cut plasmid replication intermediates (RIs) by the Brewer-Fangman 2D gel electrophoresis technique, we have observed the formation of a strong spike of X-shaped DNA molecules in extracts that otherwise yield very little or no RIs. Formation of these joint molecules is also efficiently induced in replication-competent extracts upon inhibition of replication fork progression by aphidicolin. Although their electrophoretic properties are quite similar to those of Holliday junctions, 2D gels of doubly cut plasmids show that these junctions can link two plasmid molecules at any pair of DNA sequences, with no regard for sequence homology at the branch points. Neutral-neutral-alkaline 3D gels show that the junctions only contain single strands of parental size and no recombinant strands. A hemicatenane, in which one strand of a duplex is wound around one strand of another duplex, is the most likely structure to account for these observations. The mechanism of formation of these novel joint DNA molecules and their biological implications are discussed.
Collapse
Affiliation(s)
- I Lucas
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | |
Collapse
|
11
|
Abstract
Estimation of genome size of Entamoeba histolytica by different methods has failed to give comparable values due to the inherent complexities of the organism, such as the uncertain level of ploidy, presence of multinucleated cells and a poorly demarcated cell division cycle. The genome of E. histolytica has a low G+C content (22.4%), and is composed of both linear chromosomes and a number of circular plasmid-like molecules. The rRNA genes are located exclusively on some of the circular DNAs. Karyotype analysis by pulsed field gel electrophoresis suggests the presence of 14 conserved linkage groups and an extensive size variation between homologous chromosomes from different isolates. Several repeat families have been identified, some of which have been shown to be present in all the electrophoretically separated chromosomes. The typical nucleosomal structure has not been demonstrated, though most of the histone genes have been identified. Most Entamoeba genes lack introns, have short 3' and 5' untranslated regions, and are tightly packed. Promoter analysis revealed the presence of three conserved motifs and several upstream regulatory elements. Unlike typical eukaryotes, the transcription of protein coding genes is alpha-amanitin resistant. Expressed Sequence Tag analysis has identified a group of highly abundant polyadenylated RNAs which are unlikely to be translated. The Expressed Sequence Tag approach has also helped identify several important genes which encode proteins that may be involved in different biochemical pathways, signal transduction mechanisms and organellar functions.
Collapse
Affiliation(s)
- A Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India.
| | | | | | | |
Collapse
|
12
|
Bagchi A, Bhattacharya A, Bhattacharya S. Lack of a chromosomal copy of the circular rDNA plasmid of Entamoeba histolytica. Int J Parasitol 1999; 29:1775-83. [PMID: 10616923 DOI: 10.1016/s0020-7519(99)00125-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A number of small circular DNAs constitute a part of the genome of Entamoeba histolytica. Among them, the 24.5 kb circular DNA encoding rRNA (EhR1) is the most abundant. Pulsed field gel electrophoresis was used to determine if a chromosomal copy of EhR1 exists and what fraction of the total genome is circular. The results show that the chromosomes of E. histolytica are linear, and that no copy of EhR1 could be detected in any of the linear chromosomes.
Collapse
Affiliation(s)
- A Bagchi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
13
|
Vernis L, Chasles M, Pasero P, Lepingle A, Gaillardin C, Fournier P. Short DNA fragments without sequence similarity are initiation sites for replication in the chromosome of the yeast Yarrowia lipolytica. Mol Biol Cell 1999; 10:757-69. [PMID: 10069816 PMCID: PMC25200 DOI: 10.1091/mbc.10.3.757] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.
Collapse
Affiliation(s)
- L Vernis
- Laboratoire de Génétique Moléculaire et Cellulaire, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, 78850 Thiverval-Grignon, France.
| | | | | | | | | | | |
Collapse
|
14
|
Backert S, Kunnimalaiyaan M, Börner T, Nielsen BL. In vitro replication of mitochondrial plasmid mp1 from the higher plant Chenopodium album (L.): a remnant of bacterial rolling circle and conjugative plasmids? J Mol Biol 1998; 284:1005-15. [PMID: 9837722 DOI: 10.1006/jmbi.1998.2254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
According to the endosymbiotic theory, mitochondrial genomes evolved from the chromosome of an alpha-proteobacterium-like ancestor and developed during evolution an extraordinary variation in size, structure and replication. We studied in vitro DNA replication of the mitochondrial circular plasmid mp1 (1309 bp) from the higher plant Chenopodium album (L.) as a model system that replicates in a manner reminiscent of bacterial rolling circle plasmids. Several mp1 subclones were tested for their ability to support DNA replication using a newly developed in vitro system. Neutral/neutral two-dimensional gel electrophoresis of the in vitro products revealed typical simple Y patterns of intermediates consistent with a rolling circle type of replication. Replication activity was very high for a BamHI-restricted total plasmid DNA clone, a 464 bp BamHI/KpnI fragment and a 363 bp BamHI/SmaI fragment. Further subcloning of a 148 bp BamHI/EcoRI fragment resulted in the strongest in vitro DNA replication activity, while a 1161 bp-template outside of this region resulted in a substantial loss of activity. Electron microscopic studies of in vitro DNA replication products from the highly active clones also revealed sigma-shaped molecules. These results support our in vivo data for the presence of a predominant replication origin between positions 628 and 776 on the plasmid map. This sequence shares homology with double-stranded rolling circle origin (dso) or transfer origin (oriT) nicking motifs from bacterial plasmids. mp1 is the first described rolling circle plasmid in eukaryotes.
Collapse
MESH Headings
- Base Sequence
- Chenopodiaceae/genetics
- Chenopodiaceae/metabolism
- Conjugation, Genetic
- DNA Replication
- DNA, Bacterial/biosynthesis
- DNA, Circular/biosynthesis
- DNA, Mitochondrial/biosynthesis
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/ultrastructure
- DNA, Plant/biosynthesis
- DNA, Plant/genetics
- DNA, Plant/ultrastructure
- Microscopy, Electron
- Plasmids/biosynthesis
- Plasmids/genetics
- Plasmids/ultrastructure
- Replication Origin
- Restriction Mapping
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- S Backert
- Department of Botany and Microbiology, Auburn University, 101 Life Sciences Building, Auburn, AL, 36849, USA.
| | | | | | | |
Collapse
|
15
|
Dhar SK, Vines RR, Bhattacharya S, Petri WA. Ribosomal DNA fragments enhance the stability of transfected DNA in Entamoeba histolytica. J Eukaryot Microbiol 1998; 45:656-60. [PMID: 9864856 DOI: 10.1111/j.1550-7408.1998.tb04563.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic manipulation of Entamoeba histolytica is limited by the inability to express foreign genes at high levels. We tested whether sequences from the E. histolytica rDNA episome, present in 200 copies per cell, could act to stabilize the episomal transfection vector pTCV1. Ligation of the rDNA transcription unit, or sequences downstream of the rDNA transcription unit, increased pTCV1 copy number and stability and conferred additional zones of DNA replication. Sequences upstream of the rDNA transcription unit dramatically destabilized pTCV1. These experiments give additional insights into the mechanism of DNA replication and provide for E. histolytica a set of transfection vectors with unique properties.
Collapse
Affiliation(s)
- S K Dhar
- Department of Medicine, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
16
|
Phi-van L, Sellke C, von Bodenhausen A, Strätling WH. An initiation zone of chromosomal DNA replication at the chicken lysozyme gene locus. J Biol Chem 1998; 273:18300-7. [PMID: 9660795 DOI: 10.1074/jbc.273.29.18300] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chicken lysozyme gene domain is distinguished by a broad knowledge of how its expression is regulated. Here, we examined the in vivo replication of the lysozyme gene locus using polymerase chain reaction amplification and competitive polymerase chain reaction of size-fractionated, nascent DNA strands. We found that DNA replication initiates at multiple sites within a broad initiation zone spanning at least 20 kilobases, which includes most of the lysozyme gene domain. The 5' border of this zone is probably located downstream of the lysozyme 5' nuclear matrix attachment region. Preferred initiation occurs in a 3'-located subzone. The initiation zone at the lysozyme gene locus is also active in nonexpressing liver DU249 cells. Furthermore, examining the timing of DNA replication at the lysozyme gene locus revealed that the gene locus replicates early during S phase in both HD11 and DU249 cells, irrespective of its transcriptional activity.
Collapse
Affiliation(s)
- L Phi-van
- Institut für Tierzucht und Tierverhalten, Bundesforschungsanstalt für Landwirtschaft, Dörnbergstrasse 25-27, 29223 Celle, Germany.
| | | | | | | |
Collapse
|