1
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
2
|
Target-binding behavior of IDPs via pre-structured motifs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:187-247. [PMID: 34656329 DOI: 10.1016/bs.pmbts.2021.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pre-Structured Motifs (PreSMos) are transient secondary structures observed in many intrinsically disordered proteins (IDPs) and serve as protein target-binding hot spots. The prefix "pre" highlights that PreSMos exist a priori in the target-unbound state of IDPs as the active pockets of globular proteins pre-exist before target binding. Therefore, a PreSMo is an "active site" of an IDP; it is not a spatial pocket, but rather a secondary structural motif. The classical and perhaps the most effective approach to understand the function of a protein has been to determine and investigate its structure. Ironically or by definition IDPs do not possess structure (here structure refers to tertiary structure only). Are IDPs then entirely structureless? The PreSMos provide us with an atomic-resolution answer to this question. For target binding, IDPs do not rely on the spatial pockets afforded by tertiary or higher structures. Instead, they utilize the PreSMos possessing particular conformations that highly presage the target-bound conformations. PreSMos are recognized or captured by targets via conformational selection (CS) before their conformations eventually become stabilized via structural induction into more ordered bound structures. Using PreSMos, a number of, if not all, IDPs can bind targets following a sequential pathway of CS followed by an induced fit (IF). This chapter presents several important PreSMos implicated in cancers, neurodegenerative diseases, and other diseases along with discussions on their conformational details that mediate target binding, a structural rationale for unstructured proteins.
Collapse
|
3
|
Woo ARE, Sze SK, Chung HH, Lin VCL. Delineation of critical amino acids in activation function 1 of progesterone receptor for recruitment of transcription coregulators. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:522-533. [DOI: 10.1016/j.bbagrm.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
|
4
|
Kim DH, Wright A, Han KH. An NMR study on the intrinsically disordered core transactivation domain of human glucocorticoid receptor. BMB Rep 2018; 50:522-527. [PMID: 28946939 PMCID: PMC5683822 DOI: 10.5483/bmbrep.2017.50.10.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 01/30/2023] Open
Abstract
A large number of transcriptional activation domains (TADs) are intrinsically unstructured, meaning they are devoid of a three-dimensional structure. The fact that these TADs are transcriptionally active without forming a 3-D structure raises the question of what features in these domains enable them to function. One of two TADs in human glucocorticoid receptor (hGR) is located at its N-terminus and is responsible for ~70% of the transcriptional activity of hGR. This 58-residue intrinsically-disordered TAD, named tau1c in an earlier study, was shown to form three helices under trifluoroethanol, which might be important for its activity. We carried out heteronuclear multi-dimensional NMR experiments on hGR tau1c in a more physiological aqueous buffer solution and found that it forms three helices that are ~30% pre-populated. Since pre-populated helices in several TADs were shown to be key elements for transcriptional activity, the three pre-formed helices in hGR tau1c delineated in this study should be critical determinants of the transcriptional activity of hGR. The presence of pre-structured helices in hGR tau1c strongly suggests that the existence of pre-structured motifs in target-unbound TADs is a very broad phenomenon.
Collapse
Affiliation(s)
- Do-Hyoung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Anthony Wright
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kyou-Hoon Han
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Nano and Bioinformatics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
5
|
Salamanova E, Costeira-Paulo J, Han KH, Kim DH, Nilsson L, Wright APH. A subset of functional adaptation mutations alter propensity for α-helical conformation in the intrinsically disordered glucocorticoid receptor tau1core activation domain. Biochim Biophys Acta Gen Subj 2018; 1862:1452-1461. [PMID: 29550429 DOI: 10.1016/j.bbagen.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Adaptive mutations that alter protein functionality are enriched within intrinsically disordered protein regions (IDRs), thus conformational flexibility correlates with evolvability. Pre-structured motifs (PreSMos) with transient propensity for secondary structure conformation are believed to be important for IDR function. The glucocorticoid receptor tau1core transcriptional activation domain (GR tau1core) domain contains three α-helical PreSMos in physiological buffer conditions. METHODS Sixty change-of-function mutants affecting the intrinsically disordered 58-residue GR tau1core were studied using disorder prediction and molecular dynamics simulations. RESULTS Change-of-function mutations were partitioned into seven clusters based on their effect on IDR predictions and gene activation activity. Some mutations selected from clusters characterized by mutations altering the IDR prediction score, altered the apparent stability of the α-helical form of one of the PreSMos in molecular dynamics simulations, suggesting PreSMo stabilization or destabilization as strategies for functional adaptation. Indeed all tested gain-of-function mutations affecting this PreSMo were associated with increased stability of the α-helical PreSMo conformation, suggesting that PreSMo stabilization may be the main mechanism by which adaptive mutations can increase the activity of this IDR type. Some mutations did not appear to affect PreSMo stability. CONCLUSIONS Changes in PreSMo stability account for the effects of a subset of change-of-function mutants affecting the GR tau1core IDR. GENERAL SIGNIFICANCE Long IDRs occur in about 50% of human proteins. They are poorly characterized despite much recent attention. Our results suggest the importance of a subtle balance between PreSMo stability and IDR activity, which may provide a novel target for future pharmaceutical intervention.
Collapse
Affiliation(s)
- Evdokiya Salamanova
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, TTI, SE-141 83 Huddinge, Sweden
| | - Joana Costeira-Paulo
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, TTI, SE-141 83 Huddinge, Sweden.
| | - Kyou-Hoon Han
- Genome Editing Research Center, Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Nano and Bioinformatics, University of Science and Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 305-333, Republic of Korea.
| | - Do-Hyoung Kim
- Genome Editing Research Center, Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, TTI, SE-141 83 Huddinge, Sweden.
| | - Anthony P H Wright
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, NOVUM Level 5, Hälsovägen 7, SE-141 57 Huddinge, Sweden.
| |
Collapse
|
6
|
Site-specific phosphorylation regulates the structure and function of an intrinsically disordered domain of the glucocorticoid receptor. Sci Rep 2017; 7:15440. [PMID: 29133811 PMCID: PMC5684351 DOI: 10.1038/s41598-017-15549-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered (ID) regions of the transcription factor proteins have much larger frequency of phosphorylation sites than ordered regions, suggesting an important role in their regulatory capacity. Consistent with this phenomenon, most of the functionally known phosphorylation sites in the steroid receptor family of transcription factors are located in the ID N-terminal domain that contains a powerful activation function (AF1) region. In this study, we determined the structural and functional consequences of functionally known phosphorylation residues (Ser203, 211, and 226) located in the human glucocorticoid receptor’s (GR’s) ID AF1 domain. We report the relative importance of each phosphorylation site in inducing a functionally active ordered conformation in GR’s ID AF1 domain. Our data demonstrate a mechanism through which ID domain of the steroid receptors and other similar transcription factors may adopt a functionally active conformation under physiological conditions.
Collapse
|
7
|
Mikuni S, Yamamoto J, Horio T, Kinjo M. Negative Correlation between the Diffusion Coefficient and Transcriptional Activity of the Glucocorticoid Receptor. Int J Mol Sci 2017; 18:ijms18091855. [PMID: 28841150 PMCID: PMC5618504 DOI: 10.3390/ijms18091855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.
Collapse
Affiliation(s)
- Shintaro Mikuni
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 0010021, Japan.
| | - Johtaro Yamamoto
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 0010021, Japan.
| | - Takashi Horio
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 0010021, Japan.
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 0010021, Japan.
| |
Collapse
|
8
|
Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J 2017; 474:2509-2532. [DOI: 10.1042/bcj20160631] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from ‘negative noodles’ to ID regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions. It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms and structural analysis of ID in the context of full-length TFs and suggests future directions for research in TF ID.
Collapse
|
9
|
Oka K, Hoang A, Okada D, Iguchi T, Baker ME, Katsu Y. Allosteric role of the amino-terminal A/B domain on corticosteroid transactivation of gar and human glucocorticoid receptors. J Steroid Biochem Mol Biol 2015; 154:112-9. [PMID: 26247481 DOI: 10.1016/j.jsbmb.2015.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/23/2015] [Accepted: 07/31/2015] [Indexed: 02/03/2023]
Abstract
We studied the role of the A/B domain at the amino terminus of gar (Atractosterus tropicus) and human glucocorticoid receptors (GRs) on transcriptional activation by various glucocorticoids. In transient transfection assays, dexamethasone [DEX] and cortisol had a lower half-maximal response (EC50) for transcriptional activation of full length gar GR than of human GR. Both GRs had similar responses to corticosterone, while 11-deoxycortisol had a lower EC50 for gar GR than for human GR. In contrast, constructs of gar GR and human GR consisting of their hinge (D domain), ligand binding domain (LBD) (E domain) fused to a GAL4 DNA-binding domain (DBD) had a higher EC50 (weaker response) for all glucocorticoids. To study the role of the A/B domain, which contains an intrinsically disordered region, we investigated steroid activation of chimeric gar GR and human GR, in which their A/B domains were exchanged. Replacement of human A/B domains with the gar A/B domains yielded a chimeric GR with a lower EC50 for DEX and cortisol, while the EC50 increased for these steroids for the human A/B-gar C/E chimera, indicating that gar A/B domains contributes to the lower EC50 of gar GR for glucocorticoids. Our data suggests that allosteric signaling between the A/B domains and LBD influences transcriptional activation of human and gar GR by different steroids, and this allosteric mechanism evolved over 400 million years before gar and mammals separated from a common ancestor.
Collapse
Affiliation(s)
- Kaori Oka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Andree Hoang
- Department of Biology, University of California, San Diego, CA, USA
| | - Daijiro Okada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | | | - Michael E Baker
- Department of Medicine, University of California, San Diego, CA, USA.
| | - Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Department of Biological Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Carruthers CW, Suh JH, Gustafsson JA, Webb P. Phosphorylation of glucocorticoid receptor tau1c transactivation domain enhances binding to CREB binding protein (CBP) TAZ2. Biochem Biophys Res Commun 2015; 457:119-23. [DOI: 10.1016/j.bbrc.2014.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 11/26/2022]
|
11
|
A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc Natl Acad Sci U S A 2014; 111:E3506-13. [PMID: 25122681 DOI: 10.1073/pnas.1412088111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although many transcription activators contact the same set of coactivator complexes, the mechanism and specificity of these interactions have been unclear. For example, do intrinsically disordered transcription activation domains (ADs) use sequence-specific motifs, or do ADs of seemingly different sequence have common properties that encode activation function? We find that the central activation domain (cAD) of the yeast activator Gcn4 functions through a short, conserved sequence-specific motif. Optimizing the residues surrounding this short motif by inserting additional hydrophobic residues creates very powerful ADs that bind the Mediator subunit Gal11/Med15 with high affinity via a "fuzzy" protein interface. In contrast to Gcn4, the activity of these synthetic ADs is not strongly dependent on any one residue of the AD, and this redundancy is similar to that of some natural ADs in which few if any sequence-specific residues have been identified. The additional hydrophobic residues in the synthetic ADs likely allow multiple faces of the AD helix to interact with the Gal11 activator-binding domain, effectively forming a fuzzier interface than that of the wild-type cAD.
Collapse
|
12
|
Panagiotakopoulos L, Neigh GN. Development of the HPA axis: where and when do sex differences manifest? Front Neuroendocrinol 2014; 35:285-302. [PMID: 24631756 DOI: 10.1016/j.yfrne.2014.03.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/22/2014] [Accepted: 03/04/2014] [Indexed: 01/21/2023]
Abstract
Sex differences in the response to stress contribute to sex differences in somatic, neurological, and psychiatric diseases. Despite a growing literature on the mechanisms that mediate sex differences in the stress response, the ontogeny of these differences has not been comprehensively reviewed. This review focuses on the development of the hypothalamic-pituitary-adrenal (HPA) axis, a key component of the body's response to stress, and examines the critical points of divergence during development between males and females. Insight gained from animal models and clinical studies are presented to fully illustrate the current state of knowledge regarding sex differences in response to stress over development. An appreciation for the developmental timelines of the components of the HPA axis will provide a foundation for future areas of study by highlighting both what is known and calling attention to areas in which sex differences in the development of the HPA axis have been understudied.
Collapse
Affiliation(s)
| | - Gretchen N Neigh
- Emory University, Department of Physiology, United States; Emory University, Department of Psychiatry & Behavioral Sciences, United States.
| |
Collapse
|
13
|
Bender IK, Cao Y, Lu NZ. Determinants of the heightened activity of glucocorticoid receptor translational isoforms. Mol Endocrinol 2013; 27:1577-87. [PMID: 23820903 DOI: 10.1210/me.2013-1009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Translational isoforms of the glucocorticoid receptor α (GR-A, -B, -C1, -C2, -C3, -D1, -D2, and -D3) have distinct tissue distribution patterns and unique gene targets. The GR-C3 isoform-expressing cells are more sensitive to glucocorticoid killing than cells expressing other GRα isoforms and the GR-D isoform-expressing cells are resistant to glucocorticoid killing. Whereas a lack of activation function 1 (AF1) may underlie the reduced activity of the GR-D isoforms, it is not clear how the GR-C3 isoform has heightened activity. Mutation analyses and N-terminal tagging demonstrated that steric hindrance is probably the mechanism for the GR-A, -B, -C1, and -C2 isoforms to have lower activity than the GR-C3 isoform. In addition, truncation scanning analyses revealed that residues 98 to 115 are critical in the hyperactivity of the human GR-C3 isoform. Chimera constructs linking this critical fragment with the GAL4 DNA-binding domain showed that GR residues 98 to 115 do not contain any independent transactivation activity. Mutations at residues Asp101 or Gln106 and Gln107 all reduced the activity of the GR-C3 isoform. In addition, functional studies indicated that Asp101 is crucial for the GR-C3 isoform to recruit coregulators and to mediate glucocorticoid-induced apoptosis. Thus, charged and polar residues are essential components of an N-terminal motif that enhances the activity of AF1 and the GR-C3 isoform. These studies, together with the observations that GR isoforms have cell-specific expression patterns, provide a molecular basis for the tissue-specific functions of GR translational isoforms.
Collapse
Affiliation(s)
- Ingrid K Bender
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
14
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Senthilkumar B, Sailo S, Guruswami G, Nachimuthu S. Prot-Prop: J-tool to predict the subcellular location of proteins based on physiochemical characterization. Interdiscip Sci 2013; 4:296-301. [PMID: 23354819 DOI: 10.1007/s12539-012-0143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/28/2012] [Accepted: 06/07/2012] [Indexed: 10/27/2022]
Abstract
PROT-PROP is a computational tool to characterize 27 physicochemical properties of a protein along with its subcellular location (intra or extra) in a single-window application. Other significant features of this software include calculation of numerical values for hydrophobicity, hydrophilicity; composition of small and large amino acids; net hydrophobic content in terms of low/high; and Navie's algorithm to calculate theoretical pI. PROT-PROP is an easy-to-install platform independent implementation of JAVA under a user-friendly interface. It is a standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 and higher versions, and downloadable from the web http://www.mzu.edu.in/schools/biotechnology.html . PROT-PROP can run under Windows and Macintosh Operating Systems. PROT-PROP is distributed with its source code so that it may be adapted or customized, if desired.
Collapse
Affiliation(s)
- Brindha Senthilkumar
- Bioinformatics Infrastructure Facility, Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India
| | | | | | | |
Collapse
|
16
|
Parua PK, Ryan PM, Trang K, Young ET. Pichia pastoris 14-3-3 regulates transcriptional activity of the methanol inducible transcription factor Mxr1 by direct interaction. Mol Microbiol 2012; 85:282-98. [PMID: 22625429 DOI: 10.1111/j.1365-2958.2012.08112.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The zinc-finger transcription factor, Mxr1 activates methanol utilization and peroxisome biogenesis genes in the methylotrophic yeast, Pichia pastoris. Expression of Mxr1-dependent genes is regulated in response to various carbon sources by an unknown mechanism. We show here that this mechanism involves the highly conserved 14-3-3 proteins. 14-3-3 proteins participate in many biological processes in different eukaryotes. We have characterized a putative 14-3-3 binding region at Mxr1 residues 212-225 and mapped the major activation domain of Mxr1 to residues 246-280, and showed that phenylalanine residues in this region are critical for its function. Furthermore, we report that a unique and previously uncharacterized 14-3-3 family protein in P. pastoris complements Saccharomyces cerevisiae 14-3-3 functions and interacts with Mxr1 through its 14-3-3 binding region via phosphorylation of Ser215 in a carbon source-dependent manner. Indeed, our in vivo results suggest a carbon source-dependent regulation of expression of Mxr1-activated genes by 14-3-3 in P. pastoris. Interestingly, we observed 14-3-3-independent binding of Mxr1 to the promoters, suggesting a post-DNA binding function of 14-3-3 in regulating transcription. We provide the first molecular explanation of carbon source-mediated regulation of Mxr1 activity, whose mechanism involves a post-DNA binding role of 14-3-3.
Collapse
Affiliation(s)
- Pabitra K Parua
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
17
|
Kumar R, McEwan IJ. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev 2012; 33:271-99. [PMID: 22433123 PMCID: PMC3596562 DOI: 10.1210/er.2011-1033] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Steroid hormones are synthesized from cholesterol primarily in the adrenal gland and the gonads and play vital roles in normal physiology, the control of development, differentiation, metabolic homeostasis, and reproduction. The actions of these small lipophilic molecules are mediated by intracellular receptor proteins. It is just over 25 yr since the first cDNA for steroid receptors were cloned, a development that led to the birth of a superfamily of ligand-activated transcription factors: the nuclear receptors. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains but possess distinct N-terminal domains and hinge regions that are intrinsically disordered. Since the original cloning experiments, considerable progress has been made in our understanding of the structure, mechanisms of action, and biology of this important class of ligand-activated transcription factors. In recent years, there has been interest in the structural plasticity and function of the N-terminal domain of steroid hormone receptors and in the allosteric regulation of protein folding and function in response to hormone, DNA response element architecture, and coregulatory protein binding partners. The N-terminal domain can exist as an ensemble of conformers, having more or less structure, which prime this region of the receptor to rapidly respond to changes in the intracellular environment through hormone binding and posttranslation modifications. In this review, we address the question of receptor structure and function dynamics with particular emphasis on the structurally flexible N-terminal domain, intra- and interdomain communications, and the allosteric regulation of receptor action.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania 18510, USA
| | | |
Collapse
|
18
|
Kumar R, Thompson EB. Folding of the glucocorticoid receptor N-terminal transactivation function: dynamics and regulation. Mol Cell Endocrinol 2012; 348:450-6. [PMID: 21501657 DOI: 10.1016/j.mce.2011.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/14/2011] [Accepted: 03/31/2011] [Indexed: 11/25/2022]
Abstract
The glucocorticoid receptor (GR) mediates biological effects of glucocorticoids at the level of gene regulation, and plays important roles in many aspects of physiology. In recent years, it has become quite evident that GR behaves very dynamically, controlled by its reversible interactions with a variety of coregulatory proteins at various DNA and non-DNA sites. The N-terminal activation function domain (AF1) of the GR exists in an intrinsically disordered (ID) state, which promotes molecular recognition by providing surfaces capable of binding specific target molecules. Several studies suggest that when in action, the GR AF1 gains structure. Thus, it is hypothesized that the GR AF1 domain may be structured in vivo, at least when directly involved in transcriptional activation. Our recent work supports this conclusion. We propose that by allowing AF1 to rapidly and reversibly adopt various configurations through structural arrangements, AF1 can create protein surfaces that are readily available for selective binding to coregulatory proteins, resulting in GR-mediated transcriptional regulation of target genes.
Collapse
Affiliation(s)
- R Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA-18510, USA.
| | | |
Collapse
|
19
|
Kino T, Charmandari E, Chrousos GP. Glucocorticoid receptor: implications for rheumatic diseases. Clin Exp Rheumatol 2011; 29:S32-S41. [PMID: 22018181 PMCID: PMC3630375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
The glucocorticoid receptor (GR), a member of the nuclear receptor superfamily, mediates most of the known biologic effects of glucocorticoids. The human GR gene consists of 9 exons and expresses 2 alternative splicing isoforms, the GRα and GRβ. GRα is the classic receptor that binds to glucocorticoids and mediates most of the known actions of glucocorticoids, while GRβ does not bind to these hormones and exerts a dominant negative effect upon the GRα-induced transcriptional activity. Each of the two GR splice isoforms has 8 translational variants with specific transcriptional activity and tissue distribution. GRα consists of three subdomains, translocates from the cytoplasm into the nucleus upon binding to glucocorticoids, and regulates the transcriptional activity of numerous glucocorticoid-responsive genes either by binding to its cognate DNA sequences or by interacting with other transcription factors. In addition to these genomic actions, the GR also exerts rapid, non-genomic effects, which are possibly mediated by membrane-localised receptors or by translocation into the mitochondria. All these actions of the GR appear to play an important role in the regulation of the immune system. Specifically, the splicing variant GRβ may be involved in the pathogenesis of rheumatic diseases, while the circadian regulation of the GR activity via acetylation by the Clock transcription factor may have therapeutic implications for the preferential timing of glucocorticoid administration in autoimmune inflammatory disorders.
Collapse
Affiliation(s)
- T Kino
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
20
|
Molecular Mechanisms and Genome-Wide Aspects of PPAR Subtype Specific Transactivation. PPAR Res 2010; 2010. [PMID: 20862367 PMCID: PMC2938449 DOI: 10.1155/2010/169506] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/27/2010] [Indexed: 12/13/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are central regulators of fat metabolism, energy homeostasis, proliferation, and inflammation. The three PPAR subtypes, PPARα, β/δ, and γ activate overlapping but also very different target gene programs. This review summarizes the insights into PPAR subtype-specific transactivation provided by genome-wide studies and discusses the recent advances in the understanding of the molecular mechanisms underlying PPAR subtype specificity with special focus on the regulatory role of AF-1.
Collapse
|
21
|
Abstract
The glucocorticoid receptor regulates the expression of a large number of genes in mammalian cells. The interaction of this receptor with regulatory elements has been discovered to be highly dynamic, with occupancy states measured in seconds, rather than minutes or hours. This finding has led to a paradigm shift in our understanding of receptor function throughout the genome. The mechanisms involved in these rapid exchange events, as well as the implications for receptor function, are discussed.
Collapse
Affiliation(s)
- Simon C Biddie
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA
| | | |
Collapse
|
22
|
Functional conservation of the glutamine-rich domains of yeast Gal11 and human SRC-1 in the transactivation of glucocorticoid receptor Tau 1 in Saccharomyces cerevisiae. Mol Cell Biol 2007; 28:913-25. [PMID: 18070925 DOI: 10.1128/mcb.01140-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Gal11 protein, a component of the Mediator complex, is required for the transcriptional activation of many class II genes as a physiological target of various activator proteins in vivo. In this study, we identified the yeast (Saccharomyces cerevisiae) Mediator complex as a novel coactivator of the transcriptional activity of the glucocorticoid receptor (GR) tau 1 (tau1), the major transcriptional activation domain of the GR. GR tau1 directly interacted with the Mediator complex in vivo and in vitro in a Gal11 module-dependent manner, and the Gal11p subunit interacted directly with GR tau1. Specific amino acid residues within the glutamine-rich (Qr) domain of Gal11p (residues 116 to 277) were essential for its interaction with GR tau1 and GR tau1 transactivity in yeast, as demonstrated by mutational analysis of the Gal11 Qr domain, which is highly conserved among human steroid receptor coactivator (SRC) proteins. A Gal11p variant, mini-Gal11p, comprised of the Mediator association and Qr domains of Gal11p or chimeric mini-Gal11p containing the Qr domain of SRC-1 could potentiate the GR tau1 transactivity in a gal11Delta yeast strain. These results suggest that there is functional conservation between Qr domains of yeast Gal11p and mammalian SRC proteins as direct targets of activator proteins in yeast.
Collapse
|
23
|
Hasenbrink G, Sievernich A, Wildt L, Ludwig J, Lichtenberg-Fraté H. Estrogenic effects of natural and synthetic compounds including tibolone assessed in Saccharomyces cerevisiae expressing the human estrogen alpha and beta receptors. FASEB J 2006; 20:1552-4. [PMID: 16720731 DOI: 10.1096/fj.05-5413fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human estrogen receptors (hER)alpha and hERbeta, differentially expressed and localized in various tissues and cell types, mediate transcriptional activation of target genes. These encode a variety of physiological reproductive and nonreproductive functions involved in energy metabolism, salt balance, immune system, development, and differentiation. As a step toward developing a screening assay for the use in applications where significant numbers of compounds or complex matrices need to be tested for (anti) estrogenic bioactivity, hERalpha and hERbeta were expressed in a genetically modified Saccharomyces cerevisiae strain, devoid of three endogenous xenobiotic transporters (PDR5, SNQ2, and YOR1). By using receptor-mediated transcriptional activation of the green fluorescent protein optimized for expression in yeast (yEGFP) as reporter 17 natural, comprising estrogens and phytoestrogens or synthetic compounds among which tibolone with its metabolites, gestagens, and antiestrogens were investigated. The reporter assay deployed a simple and robust protocol for the rapid detection of estrogenic effects within a 96-well microplate format. Results were expressed as effective concentrations (EC50) and correlated to other yeast based and cell line assays. Tibolone and its metabolites exerted clear estrogenic effects, though considerably less potent than all other natural and synthetic compounds. For the blood serum of two volunteers, considerable higher total estrogenic bioactivity than single estradiol concentrations as determined by immunoassay was found. Visualization of a hERalpha/GFP fusion protein in yeast revealed a sub cellular cytosolic localization. This study demonstrates the versatility of (anti) estrogenic bioactivity determination using sensitized S. cerevisiae cells to assess estrogenic exposure and effects.
Collapse
Affiliation(s)
- Guido Hasenbrink
- IZMB, AG Molekulare Bioenergetik, Universität Bonn, Kirschallee 1, Bonn 53115, Germany
| | | | | | | | | |
Collapse
|
24
|
Copik AJ, Webb MS, Miller AL, Wang Y, Kumar R, Thompson EB. Activation function 1 of glucocorticoid receptor binds TATA-binding protein in vitro and in vivo. Mol Endocrinol 2006; 20:1218-30. [PMID: 16469772 DOI: 10.1210/me.2005-0257] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanism through which the glucocorticoid receptor (GR) stimulates transcription is still unclear, although it is clear that the GR affects assembly of the transcriptional machinery. The binding of the TATA-binding protein (TBP) to the TATA-box is accepted as essential in this process. It is known that the GR can interact in vitro with TBP, but the direct interaction of TBP with GR has not been previously characterized quantitatively and has not been appreciated as an important step in assembling the transcriptional complex. Herein, we demonstrate that the TBP-GR interaction is functionally significant by characterizing the association of TBP and GR in vitro by a combination of techniques and confirming the role of this interaction in vivo. Combined analysis, using native gel electrophoresis, sedimentation equilibrium, and isothermal microcalorimetry titrations, characterize the stoichiometry, affinity, and thermodynamics of the TBP-GR interaction. TBP binds recombinant GR activation function 1 (AF1) with a 1:2 stoichiometry and a dissociation constant in the nanomolar range. In vivo fluorescence resonance energy transfer experiments, using fluorescently labeled TBP and various GR constructs, transiently transfected into CV-1 cells, show GR-TBP interactions, dependent on AF1. AF1-deletion variants showed fluorescence resonance energy transfer efficiencies on the level of coexpressed cyan fluorescent protein and yellow fluorescent protein, indicating that the interaction is dependent on AF1 domain. To demonstrate the functional role of the in vivo GR-TBP interaction, increased amounts of TBP expressed in vivo stimulated expression of GR-driven reporters and endogenous genes, and the effect was also specifically dependent on AF1.
Collapse
Affiliation(s)
- Alicja J Copik
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1068, USA
| | | | | | | | | | | |
Collapse
|
25
|
Lavery D, Mcewan I. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 2006; 391:449-64. [PMID: 16238547 PMCID: PMC1276946 DOI: 10.1042/bj20050872] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Steroid hormones are important endocrine signalling molecules controlling reproduction, development, metabolism, salt balance and specialized cellular responses, such as inflammation and immunity. They are lipophilic in character and act by binding to intracellular receptor proteins. These receptors function as ligand-activated transcription factors, switching on or off networks of genes in response to a specific hormone signal. The receptor proteins have a conserved domain organization, comprising a C-terminal LBD (ligand-binding domain), a hinge region, a central DBD (DNA-binding domain) and a highly variable NTD (N-terminal domain). The NTD is structurally flexible and contains surfaces for both activation and repression of gene transcription, and the strength of the transactivation response has been correlated with protein length. Recent evidence supports a structural and functional model for the NTD that involves induced folding, possibly involving alpha-helix structure, in response to protein-protein interactions and structure-stabilizing solutes.
Collapse
Affiliation(s)
- Derek N. Lavery
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
| | - Iain J. Mcewan
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
26
|
Båvner A, Matthews J, Sanyal S, Gustafsson JA, Treuter E. EID3 is a novel EID family member and an inhibitor of CBP-dependent co-activation. Nucleic Acids Res 2005; 33:3561-9. [PMID: 15987788 PMCID: PMC1159117 DOI: 10.1093/nar/gki667] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
EID1 (E1A-like inhibitor of differentiation 1) functions as an inhibitor of nuclear receptor-dependent gene transcription by directly binding to co-regulators. Alternative targets include the co-repressor small heterodimer partner (SHP, NR0B2) and the co-activators CBP/p300, indicating that EID1 utilizes different inhibitory strategies. Recently, EID2 was characterized as an inhibitor of muscle differentiation and as an antagonist of both CBP/p300 and HDACs. Here, we describe a third family member designated EID3 that is highly expressed in testis and shows homology to a region of EID1 implicated in binding to CBP/p300. We demonstrate that EID3 acts as a potent inhibitor of nuclear receptor transcriptional activity by a mechanism that is independent of direct interactions with nuclear receptors, including SHP. Furthermore, EID3 directly binds to and blocks the SRC-1 interacting domain of CBP, which has been implicated to act as the interaction surface for nuclear receptor co-activators. Consistent with this idea, EID3 prevents recruitment of CBP to a natural nuclear receptor-regulated promoter. Our study suggests that EID-family members EID3 and EID1 act as inhibitors of CBP/p300-dependent transcription in a tissue-specific manner.
Collapse
Affiliation(s)
- Ann Båvner
- Department of Biosciences at Novum, Karolinska Institutet S-14157 Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Ferreira ME, Hermann S, Prochasson P, Workman JL, Berndt KD, Wright APH. Mechanism of Transcription Factor Recruitment by Acidic Activators. J Biol Chem 2005; 280:21779-84. [PMID: 15826952 DOI: 10.1074/jbc.m502627200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many transcriptional activators are intrinsically unstructured yet display unique, defined conformations when bound to target proteins. Target-induced folding provides a mechanism by which activators could form specific interactions with an array of structurally unrelated target proteins. Evidence for such a binding mechanism has been reported previously in the context of the interaction between the cancer-related c-Myc protein and the TATA-binding protein, which can be modeled as a two-step process in which a rapidly forming, low affinity complex slowly converts to a more stable form, consistent with a coupled binding and folding reaction. To test the generality of the target-induced folding model, we investigated the binding of two widely studied acidic activators, Gal4 and VP16, to a set of target proteins, including TATA-binding protein and the Swi1 and Snf5 subunits of the Swi/Snf chromatin remodeling complex. Using surface plasmon resonance, we show that these activator-target combinations also display bi-phasic kinetics suggesting two distinct steps. A fast initial binding phase that is inhibited by high ionic strength is followed by a slow phase that is favored by increased temperature. In all cases, overall affinity increases with temperature and, in most cases, with increased ionic strength. These results are consistent with a general mechanism for recruitment of transcriptional components to promoters by naturally occurring acidic activators, by which the initial contact is mediated predominantly through electrostatic interactions, whereas subsequent target-induced folding of the activator results in a stable complex.
Collapse
Affiliation(s)
- Monica E Ferreira
- Department of Life Sciences, Södertörns Högskola, S-141 89 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
28
|
Wärnmark A, Treuter E, Wright APH, Gustafsson JA. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol 2003; 17:1901-9. [PMID: 12893880 DOI: 10.1210/me.2002-0384] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear receptors (NRs) comprise a family of ligand inducible transcription factors. To achieve transcriptional activation of target genes, DNA-bound NRs directly recruit general transcription factors (GTFs) to the preinitiation complex or bind intermediary factors, so-called coactivators. These coactivators often constitute subunits of larger multiprotein complexes that act at several functional levels, such as chromatin remodeling, enzymatic modification of histone tails, or modulation of the preinitiation complex via interactions with RNA polymerase II and GTFs. The binding of NR to coactivators is often mediated through one of its activation domains. Many NRs have at least two activation domains, the ligand-independent activation function (AF)-1, which resides in the N-terminal domain, and the ligand-dependent AF-2, which is localized in the C-terminal domain. In this review, we summarize and discuss current knowledge regarding the molecular mechanisms of AF-1- and AF-2-mediated gene activation, focusing on AF-1 and AF-2 conformation and coactivator binding.
Collapse
Affiliation(s)
- Anette Wärnmark
- Department of Biosciences, Novum, Karolinska Institutet, SE-141 57 Huddinge, Sweden.
| | | | | | | |
Collapse
|
29
|
Oma Y, Nishimori K, Harata M. The brain-specific actin-related protein ArpN alpha interacts with the transcriptional co-repressor CtBP. Biochem Biophys Res Commun 2003; 301:521-8. [PMID: 12565893 DOI: 10.1016/s0006-291x(02)03073-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Actin-related protein (Arp) is found in many chromatin remodeling and histone acetyltransferase complexes. We previously identified ArpN alpha as an isoform of ArpN beta/BAF53, which is included in mammalian SWI/SNF chromatin remodeling complex, and showed that ArpN alpha is a potential component of the complex. Although it has a structure highly similar to ArpN beta/BAF53, ArpN alpha is expressed exclusively in brain and in neural differentiated embryonal carcinoma cells. Since ArpN alpha possesses a region that shows low similarity to ArpN beta/BAF53, we hypothesized that proteins interacting with this region contribute to the ArpN alpha-specific function in brain. Here we showed that ArpN alpha, but not ArpN beta/BAF53, interacts with the transcriptional co-repressor CtBP (C-terminal binding protein). Transactivation by the SWI/SNF complex and glucocorticoid receptor was repressed by the CtBP in the presence of ArpN alpha. These findings suggest that SWI/SNF complex containing ArpN alpha might regulate certain genes involved in brain development and/or its function differently from SWI/SNF complex containing ArpN beta/BAF53.
Collapse
Affiliation(s)
- Yukako Oma
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | |
Collapse
|
30
|
Kumar R, Thompson EB. Transactivation functions of the N-terminal domains of nuclear hormone receptors: protein folding and coactivator interactions. Mol Endocrinol 2003; 17:1-10. [PMID: 12511601 DOI: 10.1210/me.2002-0258] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The N-terminal domains (NTDs) of many members of the nuclear hormone receptor (NHR) family contain potent transcription-activating functions (AFs). Knowledge of the mechanisms of action of the NTD AFs has lagged, compared with that concerning other important domains of the NHRs. In part, this is because the NTD AFs appear to be unfolded when expressed as recombinant proteins. Recent studies have begun to shed light on the structure and function of the NTD AFs. Recombinant NTD AFs can be made to fold by application of certain osmolytes or when expressed in conjunction with a DNA-binding domain by binding that DNA-binding domain to a DNA response element. The sequence of the DNA binding site may affect the functional state of the AFs domain. If properly folded, NTD AFs can bind certain cofactors and primary transcription factors. Through these, and/or by direct interactions, the NTD AFs may interact with the AF2 domain in the ligand binding, carboxy-terminal portion of the NHRs. We propose models for the folding of the NTD AFs and their protein-protein interactions.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Human Biological Chemistry & Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | |
Collapse
|
31
|
Borgius LJ, Steffensen KR, Gustafsson JA, Treuter E. Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. J Biol Chem 2002; 277:49761-6. [PMID: 12324453 DOI: 10.1074/jbc.m205641200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP (NROB2) is an atypical orphan nuclear receptor that lacks a DNA-binding domain but contains a putative ligand-binding domain. Previous studies have revealed that SHP interacts with a variety of nuclear receptors and inhibits their transcriptional activity, thereby acting as a corepressor. In this report we identify the glucocorticoid receptor (GR) as a novel downstream target receptor for SHP inhibition. SHP potently inhibits dexamethasone-induced transcriptional GR activity in mammalian cells, and the inhibition involves a functional second NR-box within SHP. Interestingly, this motif shows a high homology with the NR-box in the glucocorticoid and cAMP-inducible GR coactivator PGC-1, indicating similar binding specificity and shared target receptors. We show that SHP antagonizes PGC-1 coactivation and, in addition, we identify the PGC- 1-regulated phospho(enol)pyruvate carboxykinase (PEPCK) promoter as a novel target promoter for SHP inhibition. This implies a physiologically relevant role for SHP in modulating hepatic glucocorticoid action. Furthermore, when coexpressing green fluorescent protein-tagged GR together with SHP, an intranuclear redistribution of GR was observed. As inhibition-deficient SHP mutants were unable to induce this redistribution, intranuclear tethering of target receptors may represent yet another, previously uncovered, aspect of SHP inhibition.
Collapse
|
32
|
Reid J, Murray I, Watt K, Betney R, McEwan IJ. The androgen receptor interacts with multiple regions of the large subunit of general transcription factor TFIIF. J Biol Chem 2002; 277:41247-53. [PMID: 12181312 DOI: 10.1074/jbc.m205220200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that regulates genes important for male development and reproductive function. The main determinants for the transactivation function lie within the structurally distinct amino-terminal domain. Previously we identified an interaction between the AR-transactivation domain (amino acids 142-485) and the general transcription factor TFIIF (McEwan, I. J., and Gustafsson, J.-A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8485-8490). We have now mapped the binding sites for the AR-transactivation domain within the RAP74 subunit of TFIIF. Both the amino-terminal 136 amino acids and the carboxyl-terminal 155 amino acids of RAP74 interacted with the AR-transactivation domain and were able to rescue basal transcription after squelching by the AR polypeptide. Competition experiments demonstrated that the AR could interact with the holo-TFIIF protein and that the carboxyl terminus of RAP74 represented the principal receptor-binding site. Point mutations within AR-transactivation domain distinguished the binding sites for RAP74 and the p160 coactivator SRC-1a and identified a single copy of a six amino acid repeat motif as being important for RAP74 binding. These data indicate that the AR-transactivation domain can potentially make multiple protein-protein interactions with coactivators and components of the general transcriptional machinery in order to regulate target gene expression.
Collapse
Affiliation(s)
- James Reid
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | | | | | |
Collapse
|
33
|
Keeton EK, Fletcher TM, Baumann CT, Hager GL, Smith CL. Glucocorticoid receptor domain requirements for chromatin remodeling and transcriptional activation of the mouse mammary tumor virus promoter in different nucleoprotein contexts. J Biol Chem 2002; 277:28247-55. [PMID: 12029095 DOI: 10.1074/jbc.m203898200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucocorticoid receptor (GR) contains several activation domains, tau1 (AF-1), tau2, and AF-2, which were initially defined using transiently transfected reporter constructs. Using domain mutations in the context of full-length GR, this study defines those domains required for activation of the mouse mammary tumor virus (MMTV) promoter in two distinct nucleoprotein configurations. A transiently transfected MMTV template with a disorganized, accessible chromatin structure was largely dependent on the AF-2 domain for activation. In contrast, activation of an MMTV template in organized, replicated chromatin requires both domains but has a relatively larger dependence on the tau1 domain. Domain requirements for GR-induced chromatin remodeling of the latter template were also investigated. Mutation of the AF-2 helix 12 domain partially inhibits the induction of nuclease hypersensitivity, but the inhibition was relieved in the absence of tau1, suggesting the occurrence of an important interaction between the two domains. Further mutational analysis indicates that GR-induced chromatin remodeling requires the ligand-binding domain in the region of helix 3. Our study shows that the GR activation surfaces required for transcriptional modulation of a target promoter were determined in part by its chromatin structure. Within a particular cellular environment the GR appears to possess a significant degree of versatility in the mechanism by which it activates a target promoter.
Collapse
MESH Headings
- Alanine
- Amino Acid Substitution
- Animals
- Base Sequence
- Binding Sites
- Chromatin/physiology
- Chromatin/ultrastructure
- Cloning, Molecular
- Dexamethasone/pharmacology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Models, Molecular
- Mutagenesis, Site-Directed
- Nuclear Proteins/metabolism
- Nucleoproteins/metabolism
- Oligodeoxyribonucleotides
- Promoter Regions, Genetic
- Protein Structure, Secondary
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Interferon/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Serine
- Templates, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
|
34
|
Abstract
Following exposure to stress, cortisol is secreted from the adrenal cortex under the control of the hypothalamic-pituitary-adrenal axis (HPA-axis). Central in the regulation of the HPA-axis is a two tied corticosteroid-receptor system, comprised of high and low affinity receptors, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), respectively. In addition, these corticosteroid receptors mediate the effects of cortisol during stress on both central and peripheral targets. Cortisol modulates gene-expression of corticosteroid-responsive genes, with the effect lasting from hours to days. Mutations in the GR-gene are being associated with corticosteroid resistance and haematological malignancies, although these mutations are relatively rare and probably not a common cause of these diseases. However, several GR-gene variants and single nucleotide polymorphisms (SNP) in the GR-gene have been identified which are relatively common in the human population. The GRbeta-variant, for example, has been proposed to influence corticosteroid-sensitivity and most evidence has been derived from the immune system and in particular asthma. With respect to polymorphisms, a BclI restriction fragment polymorphism and a Asp363Ser have been described, which not only influence the regulation of the HPA-axis, but are also associated with changes in metabolism and cardiovascular control. These associations of a GR-gene polymorphism with metabolism and cardivascular control, and also with the regulation of the HPA-axis, indicates an important underlying role of cortisol in the etiology of these complex disorders. Therefore, we propose that a common underlying defect in these complex disorders is a disregulation of the HPA-axis, especially during stress. The clinical implication is that the regulation of the HPA-axis should be envisioned as a primary target of new drugs for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- R H DeRijk
- Department of Psychiatry, Rijngeestgroep LUMC, Psychiatric Hospital, Endegeesterstraatweg 5, 2342 AJ, Oesgstsgeest, The Netherlands.
| | | | | |
Collapse
|
35
|
Kennedy BK. Mammalian transcription factors in yeast: strangers in a familiar land. Nat Rev Mol Cell Biol 2002; 3:41-9. [PMID: 11823797 DOI: 10.1038/nrm704] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many transcription factors in human cells have functional orthologues in yeast, and a common experimental theme has been to define the function of the yeast protein and then test whether the mammalian version behaves similarly. Although, at first glance, this approach does not seem feasible for factors that do not have yeast counterparts, mammalian transcriptional activators or repressors can be expressed directly in yeast. Often, the mammalian factor retains function in yeast, and this allows investigators to exploit the experimental tractability of yeast to ask a diverse set of questions.
Collapse
Affiliation(s)
- Brian K Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
36
|
Abstract
The product of the proto-oncogene c-myc influences many cellular processes through the regulation of specific target genes. Through its transactivation domain (TAD), c-Myc protein interacts with several transcription factors, including TATA-binding protein (TBP). We present data that suggest that in contrast to some other transcriptional activators, an extended length of the c-Myc TAD is required for its binding to TBP. Our data also show that this interaction is a multistep process, in which a rapidly forming low affinity complex slowly converts to a more stable form. The initial complex formation results from ionic or polar interactions, whereas the slow conversion to a more stable form is hydrophobic in nature. Based on our results, we suggest two alternative models for activation domain/target protein interactions, which together provide a single universal paradigm for understanding activator-target factor interactions.
Collapse
Affiliation(s)
- S Hermann
- Department of Natural Sciences, Södertörns högskola, Box 4101, S-14104 Huddinge, Sweden.
| | | | | |
Collapse
|
37
|
Tung L, Shen T, Abel MG, Powell RL, Takimoto GS, Sartorius CA, Horwitz KB. Mapping the unique activation function 3 in the progesterone B-receptor upstream segment. Two LXXLL motifs and a tryptophan residue are required for activity. J Biol Chem 2001; 276:39843-51. [PMID: 11546784 DOI: 10.1074/jbc.m106843200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Progesterone receptors (PR) contain three activation functions (AFs) that together define the extent to which they regulate transcription. AF1 and AF2 are common to the two isoforms of PR, PR-A and PR-B, whereas AF3 lies within the N-terminal 164 amino acids unique to PR-B, termed the "B-upstream segment" (BUS). To define the BUS regions that contribute to AF3 function, we generated a series of deletion and amino acid substitution mutants and tested them in three backgrounds as follows: BUS alone fused to the PR DNA binding domain (BUS-DBD), the entire PR-B N terminus linked to its DBD (NT-B), and full-length PR-B. Analyses of these mutants identified two regions in BUS whose loss reduces AF3 activity by more than 90%. These are associated with amino acids 54-90 (R1) and 120-154 (R2). R1 contains a consensus (55)LXXLL(59) motif (L1) identical to ones found in nuclear receptor co-activators. R2 is adjacent to a second nuclear receptor box (L2) at (115)LXXLL(119) and contains a conserved tryptophan (Trp-140). Their mutation completely disrupts AF3 activity in a promoter and cell type-independent manner. Critical mutations elicited similar effects on all three B-receptor backgrounds. This underscores the probability that these mutations alter a process linking BUS structure to the function of full-length PR-B in a fundamental way.
Collapse
Affiliation(s)
- L Tung
- Department of Medicine, Division of Endocrinology, University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Aratani S, Fujii R, Oishi T, Fujita H, Amano T, Ohshima T, Hagiwara M, Fukamizu A, Nakajima T. Dual roles of RNA helicase A in CREB-dependent transcription. Mol Cell Biol 2001; 21:4460-9. [PMID: 11416126 PMCID: PMC87106 DOI: 10.1128/mcb.21.14.4460-4469.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA helicase A (RHA) is a member of an ATPase/DNA and RNA helicase family and is a homologue of Drosophila maleless protein (MLE), which regulates X-linked gene expression. RHA is also a component of holo-RNA polymerase II (Pol II) complexes and recruits Pol II to the CREB binding protein (CBP). The ATPase and/or helicase activity of RHA is required for CREB-dependent transcription. To further understand the role of RHA on gene expression, we have identified a 50-amino-acid transactivation domain that interacts with Pol II and termed it the minimal transactivation domain (MTAD). The protein sequence of this region contains six hydrophobic residues and is unique to RHA homologues and well conserved. A mutant with this region deleted from full-length RHA decreased transcriptional activity in CREB-dependent transcription. In addition, mutational analyses revealed that several tryptophan residues in MTAD are important for the interaction with Pol II and transactivation. These mutants had ATP binding and ATPase activities comparable to those of wild-type RHA. A mutant lacking ATP binding activity was still able to interact with Pol II. In CREB-dependent transcription, the transcriptional activity of each of these mutants was less than that of wild-type RHA. The activity of the double mutant lacking both functions was significantly lower than that of each mutant alone, and the double mutant had a dominant negative effect. These results suggest that RHA could independently regulate CREB-dependent transcription either through recruitment of Pol II or by ATP-dependent mechanisms.
Collapse
Affiliation(s)
- S Aratani
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McEwan IJ. Bakers yeast rises to the challenge: reconstitution of mammalian steroid receptor signalling in S. cerevisiae. Trends Genet 2001; 17:239-43. [PMID: 11335020 DOI: 10.1016/s0168-9525(01)02273-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Steroid hormones are an important class of signalling molecule, regulating a diverse range of processes in metazoan eukaryotes. The actions of these hormones are mediated by intracellular receptor proteins that act as ligand-activated transcription factors. The ability to reconstitute steroid receptor signalling in the budding yeast, Saccharomyces cerevisiae, provides a genetically tractable model system in which to investigate steroid receptor structure and function. Through targeted disruption and genetic screening, an increasing number of genes have been identified that are likely to have a role in steroid receptor action.
Collapse
Affiliation(s)
- I J McEwan
- Dept of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK AB25 2RS.
| |
Collapse
|
40
|
Wallberg AE, Wright A, Gustafsson JA. Chromatin-remodeling complexes involved in gene activation by the glucocorticoid receptor. VITAMINS AND HORMONES 2001; 60:75-122. [PMID: 11037622 DOI: 10.1016/s0083-6729(00)60017-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- A E Wallberg
- Karolinska Institute, Department of Biosciences, NOVUM, Huddinge, Sweden
| | | | | |
Collapse
|
41
|
Edwards DP. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J Mammary Gland Biol Neoplasia 2000; 5:307-24. [PMID: 14973393 DOI: 10.1023/a:1009503029176] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Steroid hormone receptors are members of a superfamily of ligand-dependent transcription factors. As such they have a DNA binding domain that recognizes specific target gene sequences along with separate transcriptional activation domains. What sets steroid hormone receptors (and other nuclear hormone receptors) apart from other families of sequence specific transcriptional activators is the presence of a ligand binding domain (LBD) that acts as a molecular switch to turn on transcriptional activity when a hormonal ligand induces a conformational change in the receptor. Upon binding hormone, steroid receptors recruit a novel coactivator protein complex with an essential role in receptor-mediated transcriptional activation. Coactivators function as adaptors in a signaling pathway that transmits transcriptional responses from the DNA bound receptor to the basal transcriptional machinery. Hormone agonists induce a conformational change in the carboxyl-terminal transcriptional activation domain, AF-2, that creates a new protein interaction site on the surface of the LBD that is recognized by LXXLL motifs in the p160 family of coactivators. In contrast, steroid antagonists such as the antiestrogen tamoxifen for the estrogen receptor induce an alternate conformation in AF-2 that occludes the coactivator binding site and recruits corepressors that can actively silence steroid responsive genes. Thus, the cellular availability of coactivators and corepressors is an important determinant in the biological response to both steroid hormone agonists and antagonists. This paper provides an update on the properties and mechanism of action of nuclear receptor coactivators, the nature of the coactivator-binding site, and the structural and mechanistic basis for ligand-dependent binding of coactivators to receptors.
Collapse
Affiliation(s)
- D P Edwards
- University of Colorado Health Sciences Center, Department of Pathology, Denver 80262, USA.
| |
Collapse
|
42
|
Wärnmark A, Gustafsson JA, Wright AP. Architectural principles for the structure and function of the glucocorticoid receptor tau 1 core activation domain. J Biol Chem 2000; 275:15014-8. [PMID: 10747977 DOI: 10.1074/jbc.m001007200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 58-amino acid region mediates the core transactivation activity of the glucocorticoid receptor tau1 activation domain. This tau1 core domain is unstructured in aqueous buffers, but in the presence of trifluoroethanol three alpha-helical segments are induced. Two of these putative structural modules have been tested in different combinations with regard to transactivation potential in vivo and binding capacity to the coactivators in vitro. The results show that whereas single modules are not transcriptionally active, any combination of two or three modules is sufficient, with trimodular constructs having the highest activity. However, proteins containing one, two, or three segments bind Ada2 and cAMP-response element-binding protein with similar affinity. A single segment is thus able to bind a target factor but cannot transactivate target genes significantly. The results are consistent with models in which activation domains are comprised of short activation modules that allow multiple interactions with coactivators. Our results also suggest that an increased number of modules may not result in correspondingly higher affinity but instead that the concentration of binding sites is increased, which gives rise to a higher association rate. This is consistent with a model where the association rate for activator-target factor interactions rather than the equilibrium constant is the most relevant measure of activator potency.
Collapse
Affiliation(s)
- A Wärnmark
- Department of Biosciences, Karolinska Institutet, Novum, Huddinge S-141 57, Sweden.
| | | | | |
Collapse
|
43
|
Wallberg AE, Neely KE, Hassan AH, Gustafsson JA, Workman JL, Wright AP. Recruitment of the SWI-SNF chromatin remodeling complex as a mechanism of gene activation by the glucocorticoid receptor tau1 activation domain. Mol Cell Biol 2000; 20:2004-13. [PMID: 10688647 PMCID: PMC110817 DOI: 10.1128/mcb.20.6.2004-2013.2000] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1999] [Accepted: 12/20/1999] [Indexed: 11/20/2022] Open
Abstract
The SWI-SNF complex has been shown to alter nucleosome conformation in an ATP-dependent manner, leading to increased accessibility of nucleosomal DNA to transcription factors. In this study, we show that the SWI-SNF complex can potentiate the activity of the glucocorticoid receptor (GR) through the N-terminal transactivation domain, tau1, in both yeast and mammalian cells. GR-tau1 can directly interact with purified SWI-SNF complex, and mutations in tau1 that affect the transactivation activity in vivo also directly affect tau1 interaction with SWI-SNF. Furthermore, the SWI-SNF complex can stimulate tau1-driven transcription from chromatin templates in vitro. Taken together, these results support a model in which the GR can directly recruit the SWI-SNF complex to target promoters during glucocorticoid-dependent gene activation. We also provide evidence that the SWI-SNF and SAGA complexes represent independent pathways of tau1-mediated activation but play overlapping roles that are able to compensate for one another under some conditions.
Collapse
Affiliation(s)
- A E Wallberg
- Karolinska Institute, Department of Biosciences, NOVUM, S-14157 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Wallberg AE, Neely KE, Gustafsson JA, Workman JL, Wright AP, Grant PA. Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain. Mol Cell Biol 1999; 19:5952-9. [PMID: 10454542 PMCID: PMC84458 DOI: 10.1128/mcb.19.9.5952] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/1999] [Accepted: 06/18/1999] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, tau1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-tau1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in tau1 that reduce tau1 transactivation activity in vivo lead to a reduced binding of tau1 to the SAGA complex and conversely, mutations increasing the transactivation activity of tau1 lead to an increased binding of tau1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with tau1. GAL4-tau1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity tau1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity tau1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-tau1 activation domain mediates transcriptional stimulation from chromatin templates.
Collapse
Affiliation(s)
- A E Wallberg
- Karolinska Institute, Department of Biosciences, NOVUM, S-14157 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
45
|
Kogerman P, Grimm T, Kogerman L, Krause D, Undén AB, Sandstedt B, Toftgård R, Zaphiropoulos PG. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1999; 1:312-9. [PMID: 10559945 DOI: 10.1038/13031] [Citation(s) in RCA: 373] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sonic hedgehog, Patched and Gli are components of a mammalian signalling pathway that has been conserved during evolution and which has a central role in the control of pattern formation and cellular proliferation during development. Here we identify the human Suppressor-of-Fused (SUFUH) complementary DNA and show that the gene product interacts physically with the transcriptional effector GLI-1, can sequester GLI-1 in the cytoplasm, but can also interact with GLI-1 on DNA. Functionally, SUFUH inhibits transcriptional activation by GLI-1, as well as osteogenic differentiation in response to signalling from Sonic hedgehog. Localization of GLI-1 is influenced by the presence of a nuclear-export signal, and GLI-1 becomes constitutively nuclear when this signal is mutated or nuclear export is inhibited. These results show that SUFUH is a conserved negative regulator of GLI-1 signalling that may affect nuclear-cytoplasmic shuttling of GLI-1 or the activity of GLI-1 in the nucleus and thereby modulate cellular responses.
Collapse
Affiliation(s)
- P Kogerman
- Karolinska Institutet, Department of Biosciences, Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rogatsky I, Hittelman AB, Pearce D, Garabedian MJ. Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol Cell Biol 1999; 19:5036-49. [PMID: 10373553 PMCID: PMC84339 DOI: 10.1128/mcb.19.7.5036] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1998] [Accepted: 04/01/1999] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids act through the glucocorticoid receptor (GR), which can function as a transcriptional activator or repressor, to elicit cytostatic and cytotoxic effects in a variety of cells. The molecular mechanisms regulating these events and the target genes affected by the activated receptor remain largely undefined. Using cultured human osteosarcoma cells as a model for the GR antiproliferative effect, we demonstrate that in U20S cells, GR activation leads to irreversible growth inhibition, apoptosis, and repression of Bcl2. This cytotoxic effect is mediated by GR's transcriptional repression function, since transactivation-deficient mutants and ligands still bring about apoptosis and Bcl2 down-regulation. In contrast, the antiproliferative effect of GR in SAOS2 cells is reversible, does not result in apoptosis or repression of Bcl2, and is a function of the receptor's ability to stimulate transcription. Thus, the cytotoxic versus cytostatic outcome of glucocorticoid treatment is cell context dependent. Interestingly, the cytostatic effect of glucocorticoids in SAOS2 cells involves multiple GR activation surfaces. GR mutants and ligands that disrupt individual transcriptional activation functions (activation function 1 [AF-1] and AF-2) or receptor dimerization fail to fully inhibit cellular proliferation and, remarkably, discriminate between the targets of GR's cytostatic action, the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1). Induction of p21(Cip1) is agonist dependent and requires AF-2 but not AF-1 or GR dimerization. In contrast, induction of p27(Kip1) is agonist independent, does not require AF-2 or AF-1, but depends on GR dimerization. Our findings indicate that multiple GR transcriptional regulatory mechanisms that employ distinct receptor surfaces are used to evoke either the cytostatic or cytotoxic response to glucocorticoids.
Collapse
Affiliation(s)
- I Rogatsky
- Department of Microbiology and the Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
47
|
McEwan IJ. Investigation of steroid receptor function in the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 1999; 176:1-9. [PMID: 10418126 DOI: 10.1111/j.1574-6968.1999.tb13634.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Steroid hormones are small lipophilic molecules that control a wide range of responses in both the developing and adult organism. The actions of these molecules are mediated by soluble receptor proteins that function as hormone-activated transcription factors. The first steroid receptors were expressed in the yeast Saccharomyces cerevisiae over 10 years ago, and to date virtually all the classical steroid receptors, together with a number of non-steroid members of the nuclear receptor superfamily, have been expressed in yeast. The ability to reconstitute steroid receptor signalling in yeast cells by co-expression of the receptor protein and a reporter gene driven by the appropriate hormone response element has presented researchers with a powerful model system for investigating receptor action. In this review, the use of yeast-based steroid receptor transactivation assays to investigate the roles of molecular chaperones, the mechanisms of DNA binding and gene activation, and the functional properties of hormone mimics will be discussed.
Collapse
Affiliation(s)
- I J McEwan
- Department of Molecular and Cell Biology, University of Aberdeen, Foresterhill, UK.
| |
Collapse
|
48
|
Baskakov IV, Kumar R, Srinivasan G, Ji YS, Bolen DW, Thompson EB. Trimethylamine N-oxide-induced cooperative folding of an intrinsically unfolded transcription-activating fragment of human glucocorticoid receptor. J Biol Chem 1999; 274:10693-6. [PMID: 10196139 DOI: 10.1074/jbc.274.16.10693] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A number of biologically important proteins or protein domains identified recently are fully or partially unstructured (unfolded). Methods that allow studies of the propensity of such proteins to fold naturally are valuable. The traditional biophysical approaches using alcohols to drive alpha-helix formation raise serious questions of the relevance of alcohol-induced structure to the biologically important conformations. Recently we illustrated the extraordinary capability of the naturally occurring solute, trimethylamine N-oxide (TMAO), to force two unfolded proteins to fold to native-like species with significant functional activity. In the present work we apply this technique to recombinant human glucocorticoid receptor fragments consisting of residues 1-500 and residues 77-262. CD and fluorescence spectroscopy showed that both were largely disordered in aqueous solution. TMAO induced a condensed structure in the large fragment, indicated by the substantial enhancement in intrinsic fluorescence and blue shift of fluorescent maxima. CD spectroscopy demonstrated that the TMAO-induced structure is different from the alpha-helix-rich conformation driven by trifluoroethanol (TFE). In contrast to TFE, the conformational transition of the 1-500 fragment induced by TMAO is cooperative, a condition characteristic of proteins with unique structures.
Collapse
Affiliation(s)
- I V Baskakov
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-0645, USA
| | | | | | | | | | | |
Collapse
|
49
|
Young ET, Saario J, Kacherovsky N, Chao A, Sloan JS, Dombek KM. Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. J Biol Chem 1998; 273:32080-7. [PMID: 9822683 DOI: 10.1074/jbc.273.48.32080] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional activator Adr1p controls expression of the glucose-repressible alcohol dehydrogenase gene (ADH2), genes involved in glycerol metabolism, and genes required for peroxisome biogenesis and function. Previous data suggested that promoter-specific activation domains might contribute to expression of the different types of ADR1-dependent genes. By using gene fusions encoding the Gal4p DNA binding domain and portions of Adr1p, we identified a single, strong acidic activation domain spanning amino acids 420-462 of Adr1p. Both acidic and hydrophobic amino acids within this activation domain were important for its function. The critical hydrophobic residues are in a motif previously identified in p53 and related acidic activators. A mini-Adr1 protein consisting of the DNA binding domain of Adr1p fused to this 42-residue activation domain carried out all of the known functions of wild-type ADR1. It conferred stringent glucose repression on the ADH2 locus and on UAS1-containing reporter genes. The putative inhibitory region of Adr1p encompassing the protein kinase A phosphorylation site at Ser-230 is thus not essential for glucose repression mediated by ADR1. Mini-ADR1 allowed efficient derepression of gene expression. In addition it complemented an ADR1-null allele for growth on glycerol and oleate media, indicating efficient activation of genes required for glycerol metabolism and peroxisome biogenesis. Thus, a single activation domain can activate all ADR1-dependent promoters.
Collapse
Affiliation(s)
- E T Young
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Green VJ, Kokkotou E, Ladias JA. Critical structural elements and multitarget protein interactions of the transcriptional activator AF-1 of hepatocyte nuclear factor 4. J Biol Chem 1998; 273:29950-7. [PMID: 9792714 DOI: 10.1074/jbc.273.45.29950] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nuclear receptor hepatocyte nuclear factor 4 (HNF-4) is an important regulator of several genes involved in diverse metabolic and developmental pathways. Mutations in the HNF-4A gene are responsible for the maturity-onset diabetes of the young type 1. Recently, we showed that the 24 N-terminal residues of HNF-4 function as an acidic transcriptional activator, termed AF-1 (Hadzopoulou-Cladaras, M., Kistanova, E., Evagelopoulou, C., Zeng, S. , Cladaras C., and Ladias, J. A. A. (1997) J. Biol. Chem. 272, 539-550). To identify the critical residues for this activator, we performed an extensive genetic analysis using site-directed mutagenesis. We showed that the aromatic and bulky hydrophobic residues Tyr6, Tyr14, Phe19, Lys10, and Lys17 are essential for AF-1 function. To a lesser degree, five acidic residues are also important for optimal activity. Positional changes of Tyr6 and Tyr14 reduced AF-1 activity, underscoring the importance of primary structure for this activator. Our analysis also indicated that AF-1 is bipartite, consisting of two modules that synergize to activate transcription. More important, AF-1 shares common structural motifs and molecular targets with the activators of the tumor suppressor protein p53 and NF-kappaB-p65, suggesting similar mechanisms of action. Remarkably, AF-1 interacted specifically with multiple transcriptional targets, including the TATA-binding protein; the TATA-binding protein-associated factors TAFII31 and TAFII80; transcription factor IIB; transcription factor IIH-p62; and the coactivators cAMP-responsive element-binding protein-binding protein, ADA2, and PC4. The interaction of AF-1 with proteins that regulate distinct steps of transcription may provide a mechanism for synergistic activation of gene expression by AF-1.
Collapse
Affiliation(s)
- V J Green
- Gene Regulation Laboratory and Macromolecular Crystallography Unit, Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|