1
|
Sun S, Zhong B, Zeng X, Li J, Chen Q. Transcription factor E4F1 as a regulator of cell life and disease progression. SCIENCE ADVANCES 2023; 9:eadh1991. [PMID: 37774036 PMCID: PMC10541018 DOI: 10.1126/sciadv.adh1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
E4F transcription factor 1 (E4F1), a member of the GLI-Kruppel family of zinc finger proteins, is now widely recognized as a transcription factor. It plays a critical role in regulating various cell processes, including cell growth, proliferation, differentiation, apoptosis and necrosis, DNA damage response, and cell metabolism. These processes involve intricate molecular regulatory networks, making E4F1 an important mediator in cell biology. Moreover, E4F1 has also been implicated in the pathogenesis of a range of human diseases. In this review, we provide an overview of the major advances in E4F1 research, from its first report to the present, including studies on its protein domains, molecular mechanisms of transcriptional regulation and biological functions, and implications for human diseases. We also address unresolved questions and potential research directions in this field. This review provides insights into the essential roles of E4F1 in human health and disease and may pave the way for facilitating E4F1 from basic research to clinical applications.
Collapse
Affiliation(s)
- Silu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Zhong
- Upper Airways Research Laboratory, Department of Otolaryngology–Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Lacroix M, Linares LK, Rueda-Rincon N, Bloch K, Di Michele M, De Blasio C, Fau C, Gayte L, Blanchet E, Mairal A, Derua R, Cardona F, Beuzelin D, Annicotte JS, Pirot N, Torro A, Tinahones FJ, Bernex F, Bertrand-Michel J, Langin D, Fajas L, Swinnen JV, Le Cam L. The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes. Nat Commun 2021; 12:7037. [PMID: 34857760 PMCID: PMC8639890 DOI: 10.1038/s41467-021-27307-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/12/2021] [Indexed: 01/20/2023] Open
Abstract
Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking E4F1 activate a p53-dependent transcriptional program involved in lipid metabolism. The direct interaction between E4F1 and p53 and their co-recruitment to the Steaoryl-CoA Desaturase-1 locus play an important role to regulate monounsaturated fatty acids synthesis in adipocytes. Consistent with the role of this E4F1-p53-Steaoryl-CoA Desaturase-1 axis in adipocytes, p53 inactivation or diet complementation with oleate partly restore adiposity and improve insulin sensitivity in E4F1-deficient mice. Altogether, our findings identify a crosstalk between E4F1 and p53 in the control of lipid metabolism in adipocytes that is relevant to obesity and insulin resistance.
Collapse
Affiliation(s)
- Matthieu Lacroix
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Natalia Rueda-Rincon
- KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Katarzyna Bloch
- KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Michela Di Michele
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Carlo De Blasio
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Caroline Fau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Laurie Gayte
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Emilie Blanchet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Aline Mairal
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Rita Derua
- KU Leuven-University of Leuven, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Fernando Cardona
- Department of Surgical Specialties, Biochemistry and Immunology School of Medicine, University of Malaga, Malaga, Spain
| | - Diane Beuzelin
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jean-Sebastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, Lille, France
| | - Nelly Pirot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Adeline Torro
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Francisco J Tinahones
- CIBER of Physiopathology, Obesity and Nutrition (CIBEROBN), Málaga, Spain; Unidad de Gestion Clinica de Endocrinologia y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clinico Virgen de la Victoria, Málaga, Spain
| | - Florence Bernex
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Justine Bertrand-Michel
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Dominique Langin
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.,Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Johannes V Swinnen
- KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France. .,Equipe labélisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
3
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
E4 Transcription Factor 1 (E4F1) Regulates Sertoli Cell Proliferation and Fertility in Mice. Animals (Basel) 2020; 10:ani10091691. [PMID: 32962114 PMCID: PMC7552733 DOI: 10.3390/ani10091691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Male fertility relies on the generation of functional sperm in seminiferous tubules of the testis. In mammals, Sertoli cells are the only somatic cells that directly interact with spermatogenic cells. Compelling evidences suggest that the number of Sertoli cells determines testis size and sperm output, however, molecular mechanisms regulating Sertoli cell proliferation and maturation are not well-understood. Using a Sertoli cell specific loss-of-function approach, here we showed that transcription factor E4F1 played an important role in murine Sertoli cell proliferation. Compared with their littermate control, E4f1 conditional knockout male mice sired a significantly low number of pups. E4f1 deletion resulted in reduced Sertoli cell number and testis size. Further analyses revealed that E4f1 deletion affected Sertoli cell proliferation in the neonatal testis and caused an increase in apoptosis of spermatogenic cells without affecting normal development of spermatogonia, meiotic and post-meiotic germ cells. These findings have shed new light on molecular controlling of spermatogenesis in mice and a similar mechanism likely exists in other animals. Abstract In the mammalian testes, Sertoli cells are the only somatic cells in the seminiferous tubules that provide structural, nutritional and regulatory support for developing spermatogenic cells. Sertoli cells only proliferate during the fetal and neonatal periods and enter a quiescent state after puberty. Functional evidences suggest that the size of Sertoli cell population determines sperm production and fertility. However, factors that direct Sertoli cell proliferation and maturation are not fully understood. Transcription factor E4F1 is a multifunctional protein that serves essential roles in cell fate decisions and because it interacts with pRB, a master regulator of Sertoli cell function, we hypothesized that E4F1 may have a functional role in Sertoli cells. E4f1 mRNA was present in murine testis and immunohistochemical staining confirmed that E4F1 was enriched in mature Sertoli cells. We generated a conditional knockout mouse model using Amh-cre and E4f1flox/flox lines to study E4F1 fucntion in Sertoli cells and the results showed that E4f1 deletion caused a significant reduction in testis size and fertility. Further analyses revealed that meiosis progression and spermiogenesis were normal, however, Sertoli cell proliferation was impaired and germ cell apoptosis was elevated in the testis of E4f1 conditional knockout mice. On the basis of these findings, we concluded that E4F1 was expressed in murine Sertoli cells and served important functions in regulating Sertoli cell proliferation and fertility.
Collapse
|
5
|
Rooney RJ. Multiple domains in the 50 kDa form of E4F1 regulate promoter-specific repression and E1A trans-activation. Gene 2020; 754:144882. [PMID: 32535047 DOI: 10.1016/j.gene.2020.144882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 11/28/2022]
Abstract
The 50 kDa N-terminal product of the cellular transcription factor E4F1 (p50E4F1) mediates E1A289R trans-activation of the adenovirus E4 gene, and suppresses E1A-mediated transformation by sensitizing cells to cell death. This report shows that while both E1A289R and E1A243R stimulate p50E4F1 DNA binding activity, E1A289R trans-activation, as measured using GAL-p50E4F1 fusion proteins, involves a p50E4F1 transcription regulatory (TR) region that must be promoter-bound and is dependent upon E1A CR3, CR1 and N-terminal domains. Trans-activation is promoter-specific, as GAL-p50E4F1 did not stimulate commonly used artificial promoters and was strongly repressive when competing against GAL-VP16. p50E4F1 and E1A289R stably associate in vivo using the p50E4F1 TR region and E1A CR3, although their association in vitro is indirect and paradoxically disrupted by MAP kinase phosphorylation of E1A289R, which stimulates E4 trans-activation in vivo. Multiple cellular proteins, including TBP, bind the p50E4F1 TR region in vitro. The mechanistic implications for p50E4F1 function are discussed.
Collapse
Affiliation(s)
- Robert J Rooney
- Department of Genetics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
6
|
Hatchi E, Rodier G, Lacroix M, Caramel J, Kirsh O, Jacquet C, Schrepfer E, Lagarrigue S, Linares LK, Lledo G, Tondeur S, Dubus P, Sardet C, Le Cam L. E4F1 deficiency results in oxidative stress-mediated cell death of leukemic cells. ACTA ACUST UNITED AC 2011; 208:1403-17. [PMID: 21708927 PMCID: PMC3135361 DOI: 10.1084/jem.20101995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The multifunctional E4F1 protein was originally discovered as a target of the E1A viral oncoprotein. Growing evidence indicates that E4F1 is involved in key signaling pathways commonly deregulated during cell transformation. In this study, we investigate the influence of E4F1 on tumorigenesis. Wild-type mice injected with fetal liver cells from mice lacking CDKN2A, the gene encoding Ink4a/Arf, developed histiocytic sarcomas (HSs), a tumor originating from the monocytic/macrophagic lineage. Cre-mediated deletion of E4F1 resulted in the death of HS cells and tumor regression in vivo and extended the lifespan of recipient animals. In murine and human HS cell lines, E4F1 inactivation resulted in mitochondrial defects and increased production of reactive oxygen species (ROS) that triggered massive cell death. Notably, these defects of E4F1 depletion were observed in HS cells but not healthy primary macrophages. Short hairpin RNA-mediated depletion of E4F1 induced mitochondrial defects and ROS-mediated death in several human myeloid leukemia cell lines. E4F1 protein is overexpressed in a large subset of human acute myeloid leukemia samples. Together, these data reveal a role for E4F1 in the survival of myeloid leukemic cells and support the notion that targeting E4F1 activities might have therapeutic interest.
Collapse
Affiliation(s)
- Elodie Hatchi
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut Fédératif de Recherche 122, Université de Montpellier, Montpellier 34293, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Role of Polycomb-group genes in sustaining activities of normal and malignant stem cells. Int J Hematol 2007; 87:25-34. [DOI: 10.1007/s12185-007-0006-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 08/18/2007] [Indexed: 01/17/2023]
|
8
|
Salinthone S, Ba M, Hanson L, Martin JL, Halayko AJ, Gerthoffer WT. Overexpression of human Hsp27 inhibits serum-induced proliferation in airway smooth muscle myocytes and confers resistance to hydrogen peroxide cytotoxicity. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1194-207. [PMID: 17720870 DOI: 10.1152/ajplung.00453.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway smooth muscle (ASM) hypertrophy and hyperplasia are characteristics of asthma that lead to thickening of the airway wall and obstruction of airflow. Very little is known about mechanisms underlying ASM remodeling, but in vascular smooth muscle, it is known that progression of atherosclerosis depends on the balance of myocyte proliferation and cell death. Small heat shock protein 27 (Hsp27) is antiapoptotic in nonmuscle cells, but its role in ASM cell survival is unknown. Our hypothesis was that phosphorylation of Hsp27 may regulate airway remodeling by modifying proliferation, cell survival, or both. To test this hypothesis, adenoviral vectors were used to overexpress human Hsp27 in ASM cells. Cells were infected with empty vector (Ad5) or wild-type Hsp27 (AdHsp27 WT), and proliferation and death were assessed. Overexpressing Hsp27 WT caused a 50% reduction in serum-induced proliferation and increased cell survival after exposure to 100 microM hydrogen peroxide (H(2)O(2)) compared with mock-infected controls. Overexpression studies utilizing an S15A, S78A, and S82A non-phosphorylation mutant (AdHsp27 3A) and an S15D, S78D, and S82D pseudo-phosphorylation mutant (AdHsp27 3D) showed phosphorylation of Hsp27 was necessary for regulation of ASM proliferation, but not survival. Hsp27 provided protection against H(2)O(2)-induced cytotoxicity by upregulating cellular glutathione levels and preventing necrotic cell death, but not apoptotic cell death. The results support the notion that ASM cells can be stimulated to undergo proliferation and death and that Hsp27 may regulate these processes, thereby contributing to airway remodeling in asthmatics.
Collapse
Affiliation(s)
- Sonemany Salinthone
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | | | | | | | | | | |
Collapse
|
9
|
Fu D, Richardson DR. Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion. Blood 2007; 110:752-61. [PMID: 17429006 DOI: 10.1182/blood-2007-03-076737] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Iron (Fe) plays a critical role in proliferation, and Fe deficiency results in G(1)/S arrest and apoptosis. However, the precise role of Fe in cell-cycle control remains unclear. We observed that Fe depletion increased the mRNA of the universal cyclin-dependent kinase inhibitor, p21(CIP1/WAF1), while its protein level was not elevated. This observation is unique to the G(1)/S arrest seen after Fe deprivation, as increased p21(CIP1/WAF1) mRNA and protein are usually found when arrest is induced by other stimuli. In this study, we examined the posttranscriptional regulation of p21(CIP1/WAF1) after Fe depletion and demonstrated that its down-regulation was due to 2 mechanisms: (1) inhibited translocation of p21(CIP1/WAF1) mRNA from the nucleus to cytosolic translational machinery; and (2) induction of ubiquitin-independent proteasomal degradation. Iron chelation significantly (P < .01) decreased p21(CIP1/WAF1) protein half-life from 61 (+/- 4 minutes; n = 3) to 28 (+/- 9 minutes, n = 3). Proteasomal inhibitors rescued the chelator-mediated decrease in p21(CIP1/WAF1) protein, while lysosomotropic agents were not effective. In Fe-replete cells, p21(CIP1/WAF1) was degraded in an ubiquitin-dependent manner, while after Fe depletion, ubiquitin-independent proteasomal degradation occurred. These results are important for considering the mechanism of Fe depletion-mediated cell-cycle arrest and apoptosis and the efficacy of chelators as antitumor agents.
Collapse
Affiliation(s)
- Dong Fu
- Iron Metabolism and Chelation Program, Department of Pathology, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
10
|
Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E, Triboulet R, Bossis G, Shmueli A, Rodriguez MS, Coux O, Sardet C. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 2006; 127:775-88. [PMID: 17110336 DOI: 10.1016/j.cell.2006.09.031] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 06/14/2006] [Accepted: 09/07/2006] [Indexed: 11/17/2022]
Abstract
p53 is regulated by multiple posttranslational modifications, including Hdm2-mediated ubiquitylation that drives its proteasomal degradation. Here, we identify the p53-associated factor E4F1, a ubiquitously expressed zinc-finger protein first identified as a cellular target of the viral oncoprotein E1A, as an atypical ubiquitin E3 ligase for p53 that modulates its effector functions without promoting proteolysis. E4F1 stimulates oligo-ubiquitylation in the hinge region of p53 on lysine residues distinct from those targeted by Hdm2 and previously described to be acetylated by the acetyltransferase PCAF. E4F1 and PCAF mediate mutually exclusive posttranslational modifications of p53. E4F1-dependent Ub-p53 conjugates are associated with chromatin, and their stimulation coincides with the induction of a p53-dependent transcriptional program specifically involved in cell cycle arrest, and not apoptosis. Collectively, our data reveal that E4F1 is a key posttranslational regulator of p53, which modulates its effector functions involved in alternative cell fates: growth arrest or apoptosis.
Collapse
Affiliation(s)
- Laurent Le Cam
- Institut de Génétique Moléculaire CNRS-UMII UMR5535, IFR122, Montpellier 34293, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chagraoui J, Niessen SL, Lessard J, Girard S, Coulombe P, Sauvageau M, Meloche S, Sauvageau G. E4F1: a novel candidate factor for mediating BMI1 function in primitive hematopoietic cells. Genes Dev 2006; 20:2110-20. [PMID: 16882984 PMCID: PMC1536061 DOI: 10.1101/gad.1453406] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Polycomb group gene Bmi1 is essential for the proliferation of neural and hematopoietic stem cells. Much remains to be learned about the pathways involved in the severe hematopoietic phenotype observed in Bmi1 homozygous mutant mice except for the fact that loss of p53 or concomitant loss of p16(Ink4a) and p19(Arf) functions achieves only a partial rescue. Here we report the identification of E4F1, an inhibitor of cellular proliferation, as a novel BMI1-interacting partner in hematopoietic cells. We provide evidence that Bmi1 and E4f1 genetically interact in the hematopoietic compartment to regulate cellular proliferation. Most importantly, we demonstrate that reduction of E4f1 levels through RNA interference mediated knockdown is sufficient to rescue the clonogenic and repopulating ability of Bmi1(-/-) hematopoietic cells up to 3 mo post-transplantation. Using cell lines and MEF, we also demonstrate that INK4A/ARF and p53 are not essential for functional interaction between Bmi1 and E4f1. Together, these findings identify E4F1 as a key modulator of BMI1 activity in primitive hematopoietic cells.
Collapse
Affiliation(s)
- Jalila Chagraoui
- Laboratory of Molecular Genetics of Hematopoietic Stem Cells, Institut de Recherche en Immunologie et Cancérologie (IRIC), CP 6128 succursale Centre-Ville, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Paul C, Lacroix M, Iankova I, Julien E, Schäfer BW, Labalette C, Wei Y, Le Cam A, Le Cam L, Sardet C. The LIM-only protein FHL2 is a negative regulator of E4F1. Oncogene 2006; 25:5475-84. [PMID: 16652157 DOI: 10.1038/sj.onc.1209567] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The E1A-targeted transcription factor E4F1 is a key player in the control of mammalian embryonic and somatic cell proliferation and survival. Mouse embryos lacking E4F die at an early developmental stage, whereas enforced expression of E4F1 in various cell lines inhibits cell cycle progression. E4F1-antiproliferative effects have been shown to depend on its capacity to repress transcription and to interact with pRb and p53. Here we show that full-length E4F1 protein (p120(E4F1)) but not its E1A-activated and truncated form (p50(E4F1)), interacts directly in vitro and in vivo with the LIM-only protein FHL2, the product of the p53-responsive gene FHL2/DRAL (downregulated in rhabdomyosarcoma Lim protein). This E4F1-FHL2 association occurs in the nuclear compartment and inhibits the capacity of E4F1 to block cell proliferation. Consistent with this effect, ectopic expression of FHL2 inhibits E4F1 repressive effects on transcription and correlates with a reduction of nuclear E4F1-p53 complexes. Overall, these results suggest that FHL2/DRAL is an inhibitor of E4F1 activity. Finally, we show that endogenous E4F1-FHL2 complexes form in U2OS cells upon UV-light-induced nuclear accumulation of FHL2.
Collapse
Affiliation(s)
- C Paul
- Institut de Génétique Moleculaire, UMR 5535/IFR122, CNRS, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rui E, Moura PR, Gonçalves KA, Rooney RJ, Kobarg J. Interaction of the hepatitis B virus protein HBx with the human transcription regulatory protein p120E4F in vitro. Virus Res 2005; 115:31-42. [PMID: 16112766 DOI: 10.1016/j.virusres.2005.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 11/24/2022]
Abstract
Infection with the hepatitis B virus has been identified as one of the major causes of liver cancer. A large body of experimental work points to a central role for the virally encoded protein HBx in this form of carcinogenesis. HBx is expressed in HBV-infected liver cells and interacts with a wide range of cellular proteins, thereby interfering in cellular processes including cell signaling, cycle regulation and apoptosis. In order to identify possible new targets of the HBx protein, we performed a yeast two-hybrid screen using a truncated protein mini-HBx(18-142) as the bait. In addition to known interacting partners, such as RXR and UVDDB1, we identified several new candidates including the human transcriptional regulatory protein p120E4F, which has been implicated in the regulation of mitosis and the cell cycle. In vitro pull down experiments confirmed the interaction and transcription activation assays in the yeast demonstrated that HBx protein was able to repress GAL4AD-p120E4F-dependent activation of a reporter gene under the control of E4F binding sites found in the adenovirus E4 promoter and the HBV enhancer II region. We also showed that the cysteine residues in HBx are necessary for its interaction with UVDDB1 but not for the interaction with RXR or p120E4F. The possible functional relevance of the interaction between HBx and E4F proteins is discussed in the contexts of cellular transformation and host-virus co-evolution.
Collapse
Affiliation(s)
- Edmilson Rui
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro 10.000, C.P. 6192, 13084-971 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
14
|
Nakamura Y, Igarashi K, Suzuki T, Kanno J, Inoue T, Tazawa C, Saruta M, Ando T, Moriyama N, Furukawa T, Ono M, Moriya T, Ito K, Saito H, Ishibashi T, Takahashi S, Yamada S, Sasano H. E4F1, a novel estrogen-responsive gene in possible atheroprotection, revealed by microarray analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 165:2019-31. [PMID: 15579445 PMCID: PMC1618705 DOI: 10.1016/s0002-9440(10)63253-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Estrogen has been postulated to be involved in inhibition of vascular smooth muscle cell (VSMC) proliferation mainly via estrogen receptor (ER), but the detailed mechanism has remained primarily unknown. Therefore, in this study, microarray analysis was used in two types of cultured human VSMCs: one positive for ER alpha, and the other for ER beta, which were treated by estrogens to detect the estrogen-responsive genes. We also used quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) to evaluate mRNA levels of selective target gene (TG) in these cells. We further studied whether the TG product was involved in inhibition of proliferation using small interfering RNA (siRNA) of the TG transfection. We subsequently used quantitative RT-PCR and in situ hybridization analysis to evaluate the expression of these gene products in human aorta. E4F1, a possible inducer of cell growth arrest, was markedly increased only in ER alpha-positive VSMCs by estrogens in both microarray and RT-PCR analyses. Blocking of E4F1 using siRNA suppressed estrogenic inhibition of ER alpha-positive VSMC proliferation. E4F1 mRNA was abundant in premenopausal female aorta with mild atherosclerotic changes. E4F1 is therefore considered one of the estrogen-responsive genes involving ER alpha-mediated inhibition of VSMC proliferation and may play an important role in estrogen-related atheroprotection of human aorta.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Department of Pathology, Tohoku University School of Medicine, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Borah S, Verma SC, Robertson ES. ORF73 of herpesvirus saimiri, a viral homolog of Kaposi's sarcoma-associated herpesvirus, modulates the two cellular tumor suppressor proteins p53 and pRb. J Virol 2004; 78:10336-47. [PMID: 15367600 PMCID: PMC516388 DOI: 10.1128/jvi.78.19.10336-10347.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
All known DNA tumor viruses are known to target and inactivate two main cell cycle regulatory proteins, retinoblastoma protein (pRb) and p53. Inactivation of pRb promotes host cell cycle progression into S phase, and inactivation of p53 promotes cell immortalization. The DNA tumor virus Kaposi's sarcoma associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) was shown to target and inactivate pRb as well as p53. In this report we provide evidence that these functions are conserved in the homologous protein encoded by the related gammaherpesvirus herpesvirus saimiri (HVS). ORF73, the HVS homologue of LANA, is shown to bind both p53 and pRb in vitro and in vivo, to colocalize with p53 in human T cells infected with HVS, and in cells overexpressing both ORF73 and p53, as well as to adversely influence pRB/E2F and p53 transcriptional regulation. The C terminus of LANA, the region most highly conserved in ORF73, is shown to be responsible for both pRb and p53 interactions, supporting the hypothesis that these functions are conserved in both homologues. Finally, the region of p53 targeted by LANA (and ORF73) maps to the domain required for tetramerization. However, preliminary cross-linking studies do not detect disruption of p53 tetramerization by either LANA or HVS-encoded ORF73, suggesting that p53 inactivation may be by a mechanism independent of tetramer disruption.
Collapse
Affiliation(s)
- Sumit Borah
- Department of Microbiology and Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
16
|
Le Cam L, Lacroix M, Ciemerych MA, Sardet C, Sicinski P. The E4F protein is required for mitotic progression during embryonic cell cycles. Mol Cell Biol 2004; 24:6467-75. [PMID: 15226446 PMCID: PMC434264 DOI: 10.1128/mcb.24.14.6467-6475.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitously expressed E4F protein was originally identified as an E1A-regulated cellular transcription factor required for adenovirus replication. The function of this protein in normal cell physiology remains largely unknown. To address this issue, we generated E4F knockout mice by gene targeting. Embryos lacking E4F die at the peri-implantation stage, while in vitro-cultured E4F(-/-) blastocysts exhibit defects in mitotic progression, chromosomal missegregation, and increased apoptosis. Consistent with these observations, we found that E4F localizes to the mitotic spindle during the M phase of early embryos. Our results establish a crucial role for E4F during early embryonic cell cycles and reveal an unexpected function for E4F in mitosis.
Collapse
Affiliation(s)
- Laurent Le Cam
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
17
|
Fenton SL, Dallol A, Agathanggelou A, Hesson L, Ahmed-Choudhury J, Baksh S, Sardet C, Dammann R, Minna JD, Downward J, Maher ER, Latif F. Identification of the E1A-regulated transcription factor p120 E4F as an interacting partner of the RASSF1A candidate tumor suppressor gene. Cancer Res 2004; 64:102-7. [PMID: 14729613 DOI: 10.1158/0008-5472.can-03-2622] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic inactivation of the candidate tumor suppressor gene RASSF1A is a frequent and critical event in the pathogenesis of many human cancers. The RASSF1A protein contains a Ras association domain, suggesting a role in Ras-like signaling pathways, and has also been implicated in cell cycle progression. However, the preliminary data suggests that the RASSF1A gene product is likely to have multiple functions. To identify novel RASSF1A functions, we have sought to identify interacting proteins by yeast two-hybrid analysis in a human brain cDNA library. We identified the E1A-regulated transcription factor p120(E4F) as a RASSF1A interacting partner in yeast and mammalian cells, and demonstrated that RASSF1A protein and p120(E4F) form a complex in vivo. The interaction between RASSF1A and p120(E4F) was confirmed by both in vitro and in vivo pull downs and coimmunoprecipitation assays. In addition, specific inactivation of RASSF1A by short interfering RNA disrupts binding of RASSF1A to p120(E4F) in coimmunoprecipitation assays. In addition, we demonstrated enhanced G(1) cell cycle arrest and S phase inhibition by propidium iodide staining of p120(E4F) in the presence of RASSF1A. As p120(E4F) has been reported previously to interact with p14ARF, retinoblastoma, and p53, these findings provide an important link between the function of RASSF1A and other major human tumor suppressor genes.
Collapse
Affiliation(s)
- Sarah L Fenton
- Section of Medical and Molecular Genetics, Department of Reproductive and Child Health, University of Birmingham, The Medical School, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tessari MA, Gostissa M, Altamura S, Sgarra R, Rustighi A, Salvagno C, Caretti G, Imbriano C, Mantovani R, Del Sal G, Giancotti V, Manfioletti G. Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell Biol 2004; 23:9104-16. [PMID: 14645522 PMCID: PMC309667 DOI: 10.1128/mcb.23.24.9104-9116.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The HMGA2 protein belongs to the HMGA family of architectural transcription factors, which play an important role in chromatin organization. HMGA proteins are overexpressed in several experimental and human tumors and have been implicated in the process of neoplastic transformation. Hmga2 knockout results in the pygmy phenotype in mice and in a decreased growth rate of embryonic fibroblasts, thus indicating a role for HMGA2 in cell proliferation. Here we show that HMGA2 associates with the E1A-regulated transcriptional repressor p120(E4F), interfering with p120(E4F) binding to the cyclin A promoter. Ectopic expression of HMGA2 results in the activation of the cyclin A promoter and induction of the endogenous cyclin A gene. In addition, chromatin immunoprecipitation experiments show that HMGA2 associates with the cyclin A promoter only when the gene is transcriptionally activated. These data identify the cyclin A gene as a cellular target for HMGA2 and, for the first time, suggest a mechanism for HMGA2-dependent cell cycle regulation.
Collapse
Affiliation(s)
- Michela A Tessari
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole. Centre of Excellence in Biocristallography, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Colombo R, Draetta GF, Chiocca S. Modulation of p120E4F transcriptional activity by the Gam1 adenoviral early protein. Oncogene 2003; 22:2541-7. [PMID: 12730668 DOI: 10.1038/sj.onc.1206379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gam1, an early adenoviral CELO protein, is required for viral replication. Consistent with its ability to inhibit histone deacetylation by HDAC1, Gam1 activates transcription. In this report, we identify the cellular transcription factor p120(E4F) as a Gam1 interaction partner. p120(E4F) is a low-abundance transcription factor that represses the adenovirus E4 promoter. Here we demonstrate that p120(E4F) interacts with HDAC1 in vivo and in vitro, and that E4F-mediated transcriptional repression is alleviated by the HDAC inhibitor trichostatin A or by overexpressing Gam1. A mutant E4 promoter unresponsive to E4F-mediated transcriptional repression is also not stimulated by Gam1. Moreover, our cofractionation experiments demonstrate that p120(E4F), HDAC1 and Gam1 may be concomitantly present in protein complexes. We conclude that Gam1 activates E4-dependent transcription possibly by inactivating HDAC1.
Collapse
Affiliation(s)
- Riccardo Colombo
- Department of Experimental Oncology, European Institute of Oncology, via Ripamonti, 435, 20141 Milan, Italy
| | | | | |
Collapse
|
20
|
Kapoor GS, Golden C, Atkins B, Mehta KD. pp90RSK- and protein kinase C-dependent pathway regulates p42/44MAPK-induced LDL receptor transcription in HepG2 cells. J Lipid Res 2003; 44:584-93. [PMID: 12562867 DOI: 10.1194/jlr.m200302-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that different extracellular stimuli require signaling through the Raf/MEK/p42/44MAPK cascade to induce LDL receptor expression. The present studies were designed to delineate the molecular mechanisms underlying p42/44MAPK-induced LDL receptor transcription in HepG2-Delta Raf-1:ER cells, a modified HepG2 cell line in which the Raf-1/MEK/p42/44MAPK cascade can be specifically activated by anti-estradiol ICI182,780 in an agonist-specific manner. Using these cells, we show that: a) LDL receptor induction was reduced in reporter constructs containing mutation in either Sp1 or sterol-regulatory element-1 (SRE-1) sites, whereas inactivation of both sites abolished the induction; b) E1A, which inhibits CREB binding protein (CBP), a common activator of SRE-1 binding protein and Sp1, strongly repressed the induction; c) intracellular inhibition of the 90 kDa ribosomal S6 kinase (pp90RSK) cascade reduced LDL receptor induction; d) highly selective protein kinase C (PKC) inhibitors effectively abrogated the induction without affecting activation of pp90RSK; and e) overexpression of PKC beta significantly induced LDL receptor promoter activity. Taken together, these results demonstrate that pp90RSK and PKC beta are downstream effectors and Sp1, SRE-1 binding protein, and CBP are part of the transcriptional complex resulting in induction of LDL receptor expression in response to activation of the Raf/MEK/p42/44MAPK cascade. These findings identify for the first time a role for PKC beta in determining the specificity of p42/44MAPK signaling by participating with pp90RSK in regulating gene expression.
Collapse
Affiliation(s)
- Gurpreet S Kapoor
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine and Public Health, 464 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
21
|
Rizos H, Diefenbach E, Badhwar P, Woodruff S, Becker TM, Rooney RJ, Kefford RF. Association of p14ARF with the p120E4F transcriptional repressor enhances cell cycle inhibition. J Biol Chem 2003; 278:4981-9. [PMID: 12446718 DOI: 10.1074/jbc.m210978200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The p14(ARF) tumor suppressor is a key regulator of cellular proliferation and is frequently inactivated in human cancer. This tumor suppressor functions in the p53 and pRb cell cycle regulatory pathways and can effectively activate both pathways to induce growth arrest or cell death. We now report that p14(ARF) forms a complex with the E1A-regulated transcriptional repressor, p120(E4F). p120(E4F) contacts p14(ARF) and p53 to form a ternary complex in vivo and enhances p14(ARF)-induced G(2) cell cycle arrest in a p53-dependent manner. We suggest that the interaction of p14(ARF) and p120(E4F) forms an important link between the p14(ARF) and p53 tumor suppressor proteins, both of which exhibit enhanced cell cycle inhibitory activity in the presence of this transcriptional repressor.
Collapse
Affiliation(s)
- Helen Rizos
- Westmead Institute for Cancer Research, University of Sydney, Westmead Hospital, Westmead, New South Wales 2145, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ji JF, Zhang J, Jiao CY, Gu J, Tan LX, Zhang P, Li P. Post-transcriptional regulation of P21WAF1/CIP1 by P53. Chin J Cancer Res 2001. [DOI: 10.1007/s11670-001-0026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Fajas L, Paul C, Vié A, Estrach S, Medema R, Blanchard JM, Sardet C, Vignais ML. Cyclin A is a mediator of p120E4F-dependent cell cycle arrest in G1. Mol Cell Biol 2001; 21:2956-66. [PMID: 11283272 PMCID: PMC86923 DOI: 10.1128/mcb.21.8.2956-2966.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
E4F is a ubiquitously expressed GLI-Krüppel-related transcription factor which has been identified for its capacity to regulate transcription of the adenovirus E4 gene in response to E1A. However, cellular genes regulated by E4F are still unknown. Some of these genes are likely to be involved in cell cycle progression since ectopic p120E4F expression induces cell cycle arrest in G1. Although p21WAF1 stabilization was proposed to mediate E4F-dependent cell cycle arrest, we found that p120E4F can induce a G1 block in p21(-/-) cells, suggesting that other proteins are essential for the p120E4F-dependent block in G1. We show here that cyclin A promoter activity can be repressed by p120E4F and that this repression correlates with p120E4F binding to the cyclic AMP-responsive element site of the cyclin A promoter. In addition, enforced expression of cyclin A releases p120E4F-arrested cells from the G1 block. These data identify the cyclin A gene as a cellular target for p120E4F and suggest a mechanism for p120E4F-dependent cell cycle regulation.
Collapse
Affiliation(s)
- L Fajas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, IFR 24, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fajas L, Paul C, Zugasti O, Le Cam L, Polanowska J, Fabbrizio E, Medema R, Vignais ML, Sardet C. pRB binds to and modulates the transrepressing activity of the E1A-regulated transcription factor p120E4F. Proc Natl Acad Sci U S A 2000; 97:7738-43. [PMID: 10869426 PMCID: PMC16614 DOI: 10.1073/pnas.130198397] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The retinoblastoma protein pRB is involved in the transcriptional control of genes essential for cell cycle progression and differentiation. pRB interacts with different transcription factors and thereby modulates their activity by sequestration, corepression, or activation. We report that pRB, but not p107 and p130, binds to and facilitates repression by p120(E4F), a ubiquitously expressed GLI-Kruppel-related protein identified as a cellular target of E1A. The interaction involves two distinct regions of p120(E4F) and the C-terminal part of pRB. In vivo pRB-p120(E4F) complexes can only be detected in growth-arrested cells, and accordingly contain the hypophosphorylated form of pRB. Repression of an E4F-responsive promoter is strongly increased by combined expression of p120(E4F) and pRB, which correlates with pRB-dependent enhancement of p120(E4F) binding activity. Elevated levels of p120(E4F) have been shown to block growth of mouse fibroblasts in G(1). We find this requires pRB, because RB(-/-) fibroblasts are significantly less sensitive to excess p120(E4F).
Collapse
Affiliation(s)
- L Fajas
- Institut de Génétique Moléculaire, Unité Mixte de Recherche 5535, IFR 24, Centre National de la Recherche Scientifique, 1919 Route de Mende, 34293, Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sandy P, Gostissa M, Fogal V, Cecco LD, Szalay K, Rooney RJ, Schneider C, Del Sal G. p53 is involved in the p120E4F-mediated growth arrest. Oncogene 2000; 19:188-99. [PMID: 10644996 DOI: 10.1038/sj.onc.1203250] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Control of cell growth and division by the p53 tumor suppressor protein requires its abilities to transactivate and repress specific target genes and to associate in complex with other proteins. Here we demonstrate that p53 binds to the E1A-regulated transcription factor p120E4F, a transcriptional repressor of the adenovirus E4 promoter. The interaction involves carboxy-terminal half of p120E4F and sequences located at the end of the sequence-specific DNA-binding domain of p53. Ectopic expression of p120E4F leads to a block of cell proliferation in several human and murine cell lines and this effect requires the association with wild-type (wt) p53. Although p120E4F can also bind to mutant p53, the growth suppression induced by overexpression of the protein is severely reduced in a cell line that contains mutant p53. These data suggest that p120E4F may represent an important element within the complex network of p53 checkpoint functions.
Collapse
Affiliation(s)
- P Sandy
- Laboratorio Nazionale, Consorzio Interuniversitario Biotecnologie, AREA Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fernandes ER, Rooney RJ. Suppression of E1A-mediated transformation by the p50E4F transcription factor. Mol Cell Biol 1999; 19:4739-49. [PMID: 10373523 PMCID: PMC84272 DOI: 10.1128/mcb.19.7.4739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The adenovirus E1A gene can act as an oncogene or a tumor suppressor, with the latter effect generally arising from the induction of apoptosis or the repression of genes that provide oncogenic growth stimuli (e.g., HER-2/c-erbB2/neu) or increased metastatic invasiveness (e.g., metalloproteases). In this study, coexpression of E1A and p50E4F, a cellular transcription factor whose DNA binding activity is stimulated by E1A, suppressed colony formation by NIH 3T3 cells and transformation of primary rat embryo fibroblasts but had no observed effect in the absence of E1A. Domains in p50E4F required for stimulation of the adenovirus E4 promoter were required for the suppressive effect, indicating a transcriptional mechanism. In serum-containing media, retroviral expression of p50E4F in E1A13S/ras-transformed NIH 3T3 fibroblasts had little effect on subconfluent cultures but accelerated a decline in viability after the cultures reached confluence. Cell death occurred by both apoptosis and necrosis, with the predominance of each process determined by culture conditions. In serum-free media, p50E4F accelerated E1A-induced apoptosis. The results suggest that p50E4F sensitizes cells to signals or conditions that cause cell death.
Collapse
Affiliation(s)
- E R Fernandes
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
27
|
Rooney RJ, Daniels RR, Jenkins NA, Gilbert DJ, Rothammer K, Morris SW, Higgs DR, Copeland NG. Chromosomal location and tissue expression of the gene encoding the adenovirus E1A-regulated transcription factor E4F in humans and mice. Mamm Genome 1998; 9:320-3. [PMID: 9530632 DOI: 10.1007/s003359900758] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R J Rooney
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|