1
|
Gupta SV, Campos L, Schmidt KH. Mitochondrial superoxide dismutase Sod2 suppresses nuclear genome instability during oxidative stress. Genetics 2023; 225:iyad147. [PMID: 37638880 PMCID: PMC10550321 DOI: 10.1093/genetics/iyad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Oxidative stress can damage DNA and thereby contribute to genome instability. To avoid an imbalance or overaccumulation of reactive oxygen species (ROS), cells are equipped with antioxidant enzymes that scavenge excess ROS. Cells lacking the RecQ-family DNA helicase Sgs1, which contributes to homology-dependent DNA break repair and chromosome stability, are known to accumulate ROS, but the origin and consequences of this oxidative stress phenotype are not fully understood. Here, we show that the sgs1 mutant exhibits elevated mitochondrial superoxide, increased mitochondrial mass, and accumulation of recombinogenic DNA lesions that can be suppressed by antioxidants. Increased mitochondrial mass in the sgs1Δ mutant is accompanied by increased mitochondrial branching, which was also inducible in wildtype cells by replication stress. Superoxide dismutase Sod2 genetically interacts with Sgs1 in the suppression of nuclear chromosomal rearrangements under paraquat (PQ)-induced oxidative stress. PQ-induced chromosome rearrangements in the absence of Sod2 are promoted by Rad51 recombinase and the polymerase subunit Pol32. Finally, the dependence of chromosomal rearrangements on the Rev1/Pol ζ mutasome suggests that under oxidative stress successful DNA synthesis during DNA break repair depends on translesion DNA synthesis.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Lillian Campos
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Kristina Hildegard Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A. Genetic, parental and lifestyle factors influence telomere length. Commun Biol 2022; 5:565. [PMID: 35681050 PMCID: PMC9184499 DOI: 10.1038/s42003-022-03521-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022] Open
Abstract
The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, 197101, Russia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Carmen Cenit
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Microbial Ecology, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna-Valencia, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands.
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Liu J, Hong X, Liang CY, Liu JP. Simultaneous visualisation of the complete sets of telomeres from the MmeI generated terminal restriction fragments in yeasts. Yeast 2020; 37:585-595. [PMID: 32776370 DOI: 10.1002/yea.3517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022] Open
Abstract
Telomere length is measured using Southern blotting of the chromosomal terminal restriction fragments (TRFs) released by endonuclease digestion in cells from yeast to human. In the budding yeast Saccharomyces cerevisiae, XhoI or PstI is applied to cut the subtelomere Y' element and release TRFs from the 17 subtelomeres. However, telomeres from other 15 X-element-only subtelomeres are omitted from analysis. Here, we report a method for measuring all 32 telomeres in S. cerevisiae using the endonuclease MmeI. Based on analyses of the endonuclease cleavage sites, we found that the TRFs generated by MmeI displayed two distinguishable bands in the sizes of ~500 and ~700 bp comprising telomeres (300 bp) and subtelomeres (200-400 bp). The modified MmeI-restricted TRF (mTRF) method recapitulated telomere shortening and lengthening caused by deficiencies of YKu and Rif1 respectively in S. cerevisiae. Furthermore, we found that mTRF was also applicable to telomere length analysis in S. paradoxus strains. These results demonstrate a useful tool for simultaneous detection of telomeres from all chromosomal ends with both X-element-only and Y'-element subtelomeres in S. cerevisiae species.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaojing Hong
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chao-Ya Liang
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Faculty of Medicine, Monash University, Prahran, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Conklin QA, King BG, Zanesco AP, Lin J, Hamidi AB, Pokorny JJ, Álvarez-López MJ, Cosín-Tomás M, Huang C, Kaliman P, Epel ES, Saron CD. Insight meditation and telomere biology: The effects of intensive retreat and the moderating role of personality. Brain Behav Immun 2018. [PMID: 29518528 DOI: 10.1016/j.bbi.2018.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A growing body of evidence suggests that meditation training may have a range of salubrious effects, including improved telomere regulation. Telomeres and the enzyme telomerase interact with a variety of molecular components to regulate cell-cycle signaling cascades, and are implicated in pathways linking psychological stress to disease. We investigated the effects of intensive meditation practice on these biomarkers by measuring changes in telomere length (TL), telomerase activity (TA), and telomere-related gene (TRG) expression during a 1-month residential Insight meditation retreat. Multilevel analyses revealed an apparent TL increase in the retreat group, compared to a group of experienced meditators, similarly comprised in age and gender, who were not on retreat. Moreover, personality traits predicted changes in TL, such that retreat participants highest in neuroticism and lowest in agreeableness demonstrated the greatest increases in TL. Changes observed in TRGs further suggest retreat-related improvements in telomere maintenance, including increases in Gar1 and HnRNPA1, which encode proteins that bind telomerase RNA and telomeric DNA. Although no group-level changes were observed in TA, retreat participants' TA levels at post-assessment were inversely related to several indices of retreat engagement and prior meditation experience. Neuroticism also predicted variation in TA across retreat. These findings suggest that meditation training in a retreat setting may have positive effects on telomere regulation, which are moderated by individual differences in personality and meditation experience. (ClinicalTrials.gov #NCT03056105).
Collapse
Affiliation(s)
- Quinn A Conklin
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Department of Psychology, University of California, Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Brandon G King
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Department of Psychology, University of California, Davis, 135 Young Hall, Davis, CA 95616, United States
| | - Anthony P Zanesco
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Department of Psychology, University of California, Davis, 135 Young Hall, Davis, CA 95616, United States
| | - Jue Lin
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St, San Francisco, CA 94158, United States
| | - Anahita B Hamidi
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States
| | - Jennifer J Pokorny
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States
| | | | - Marta Cosín-Tomás
- Unit of Pharmacology, Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Colin Huang
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St, San Francisco, CA 94158, United States
| | - Perla Kaliman
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; Unit of Pharmacology, Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Elissa S Epel
- Department of Psychiatry, University of California, San Francisco, 401 Parnassus Ave, San Francisco, CA 94131, United States
| | - Clifford D Saron
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, United States; MIND Institute, University of California, Davis Medical Center, 2825 50th St, Sacramento, CA 95817, United States
| |
Collapse
|
5
|
Gupta P, Li YR. Upf proteins: highly conserved factors involved in nonsense mRNA mediated decay. Mol Biol Rep 2017; 45:39-55. [PMID: 29282598 DOI: 10.1007/s11033-017-4139-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Over 10% of genetic diseases are caused by mutations that introduce a premature termination codon in protein-coding mRNA. Nonsense-mediated mRNA decay (NMD) is an essential cellular pathway that degrades these mRNAs to prevent the accumulation of harmful partial protein products. NMD machinery is also increasingly appreciated to play a role in other essential cellular functions, including telomere homeostasis and the regulation of normal mRNA turnover, and is misregulated in numerous cancers. Hence, understanding and designing therapeutics targeting NMD is an important goal in biomedical science. The central regulator of NMD, the Upf1 protein, interacts with translation termination factors and contextual factors to initiate NMD specifically on mRNAs containing PTCs. The molecular details of how these contextual factors affect Upf1 function remain poorly understood. Here, we review plausible models for the NMD pathway and the evidence for the variety of roles NMD machinery may play in different cellular processes.
Collapse
Affiliation(s)
- Puneet Gupta
- Harvard College, Harvard University, Cambridge, MA, 02138, USA.,School of Arts and Sciences, St. Bonaventure University, St. Bonaventure, NY, 14778, USA
| | - Yan-Ruide Li
- Harvard Medical School, Harvard University, Boston, MA, 02115, USA. .,College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Causier B, Li Z, De Smet R, Lloyd JPB, Van de Peer Y, Davies B. Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution. Sci Rep 2017; 7:16692. [PMID: 29192227 PMCID: PMC5709506 DOI: 10.1038/s41598-017-16942-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa. We used comparative genomics to determine the conservation of the NMD pathway across eukaryotic evolution. We show that SURF components are present in all major eukaryotic lineages, including fungi, suggesting that in addition to UPF1 and SMG1, SMG8 and SMG9 also existed in the last eukaryotic common ancestor, 1.8 billion years ago. However, despite the ancient origins of the SURF complex, we also found that SURF factors have been independently lost across the Eukarya, pointing to genetic buffering within the essential NMD pathway. We infer an ancient role for SURF in regulating UPF1, and the intriguing possibility of undiscovered NMD regulatory pathways.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - Riet De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium.,Department of Genetics, Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
7
|
Cesena D, Cassani C, Rizzo E, Lisby M, Bonetti D, Longhese MP. Regulation of telomere metabolism by the RNA processing protein Xrn1. Nucleic Acids Res 2017; 45:3860-3874. [PMID: 28160602 PMCID: PMC5397203 DOI: 10.1093/nar/gkx072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Telomeric DNA consists of repetitive G-rich sequences that terminate with a 3΄-ended single stranded overhang (G-tail), which is important for telomere extension by telomerase. Several proteins, including the CST complex, are necessary to maintain telomere structure and length in both yeast and mammals. Emerging evidence indicates that RNA processing factors play critical, yet poorly understood, roles in telomere metabolism. Here, we show that the lack of the RNA processing proteins Xrn1 or Rrp6 partially bypasses the requirement for the CST component Cdc13 in telomere protection by attenuating the activation of the DNA damage checkpoint. Xrn1 is necessary for checkpoint activation upon telomere uncapping because it promotes the generation of single-stranded DNA. Moreover, Xrn1 maintains telomere length by promoting the association of Cdc13 to telomeres independently of ssDNA generation and exerts this function by downregulating the transcript encoding the telomerase inhibitor Rif1. These findings reveal novel roles for RNA processing proteins in the regulation of telomere metabolism with implications for genome stability in eukaryotes.
Collapse
Affiliation(s)
- Daniele Cesena
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Emanuela Rizzo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
8
|
Jones SH, Wilkinson M. RNA decay, evolution, and the testis. RNA Biol 2017; 14:146-155. [PMID: 27911186 PMCID: PMC5324745 DOI: 10.1080/15476286.2016.1265199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 01/23/2023] Open
Abstract
NMD is a highly conserved pathway that degrades specific subsets of RNAs. There is increasing evidence for roles of NMD in development. In this commentary, we focus on spermatogenesis, a process dramatically impeded upon loss or disruption of NMD. NMD requires strict regulation for normal spermatogenesis, as loss of a newly discovered NMD repressor, UPF3A, also causes spermatogenic defects, most prominently during meiosis. We discuss the unusual evolution of UPF3A, whose paralog, UPF3B, has the opposite biochemical function and acts in brain development. We also discuss the regulation of NMD during germ cell development, including in chromatoid bodies, which are specifically found in haploid germ cells. The ability of NMD to coordinately degrade batteries of RNAs in a regulated fashion during development is akin to the action of transcriptional pathways, yet has the advantage of driving rapid changes in gene expression.
Collapse
Affiliation(s)
- Samantha H. Jones
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miles Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Lustig AJ. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins. Front Genet 2016; 7:10. [PMID: 26904098 PMCID: PMC4748036 DOI: 10.3389/fgene.2016.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.
Collapse
Affiliation(s)
- Arthur J Lustig
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans LA, USA
| |
Collapse
|
10
|
Belew AT, Dinman JD. Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle 2015; 14:172-8. [PMID: 25584829 PMCID: PMC4615106 DOI: 10.4161/15384101.2014.989123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Like most basic molecular mechanisms, programmed –1 ribosomal frameshifting (−1 PRF) was first identified in viruses. Early observations that global dysregulation of −1 PRF had deleterious effects on yeast cell growth suggested that −1 PRF may be used to control cellular gene expression, and the cell cycle in particular. Collection of sufficient numbers of viral −1 PRF signals coupled with advances in computer sciences enabled 2 complementary computational approaches to identify −1 PRF signals in free living organisms. The unexpected observation that almost all −1 PRF events on eukaryotic mRNAs direct ribosomes to premature termination codons engendered the hypothesis that −1 PRF signals post-transcriptionally regulate gene expression by functioning as mRNA destabilizing elements. Emerging research suggests that some human diseases are associated with global defects in −1 PRF. The recent discovery of −1 PRF signal-specific trans-acting regulators may provide insight into novel therapeutic strategies aimed at treating diseases caused by changes in gene expression patterns.
Collapse
Affiliation(s)
- Ashton T Belew
- a Department of Cell Biology and Molecular Genetics ; University of Maryland ; College Park , MD USA
| | | |
Collapse
|
11
|
Zou D, McSweeney C, Sebastian A, Reynolds DJ, Dong F, Zhou Y, Deng D, Wang Y, Liu L, Zhu J, Zou J, Shi Y, Albert I, Mao Y. A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors. Neural Dev 2015; 10:18. [PMID: 26094033 PMCID: PMC4479087 DOI: 10.1186/s13064-015-0045-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/17/2015] [Indexed: 02/04/2023] Open
Abstract
Background Nonsense mediated mRNA decay (NMD) is an RNA surveillance mechanism that controls RNA stability and ensures the speedy degradation of erroneous and unnecessary transcripts. This mechanism depends on several core factors in the exon junction complex (EJC), eIF4A3, RBM8a, Magoh, and BTZ, as well as peripheral factors to distinguish premature stop codons (PTCs) from normal stop codons in transcripts. Recently, emerging evidence has indicated that NMD factors are associated with neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). However, the mechanism in which these factors control embryonic brain development is not clear. Result We found that RBM8a is critical for proliferation and differentiation in cortical neural progenitor cells (NPCs). RBM8a is highly expressed in the subventricular zone (SVZ) of the early embryonic cortex, suggesting that RBM8a may play a role in regulating NPCs. RBM8a overexpression stimulates embryonic NPC proliferation and suppresses neuronal differentiation. Conversely, knockdown of RBM8a in the neocortex reduces NPC proliferation and promotes premature neuronal differentiation. Moreover, overexpression of RBM8a suppresses cell cycle exit and keeps cortical NPCs in a proliferative state. To uncover the underlying mechanisms of this phenotype, genome-wide RNAseq was used to identify potential downstream genes of RBM8a in the brain, which have been implicated in autism and neurodevelopmental disorders. Interestingly, autism and schizophrenia risk genes are highly represented in downstream transcripts of RBM8a. In addition, RBM8a regulates multiple alternative splicing genes and NMD targets that are implicated in ASD. Taken together, this data suggests a novel role of RBM8a in the regulation of neurodevelopment. Conclusions Our studies provide some insight into causes of mental illnesses and will facilitate the development of new therapeutic strategies for neurodevelopmental illnesses. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0045-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donghua Zou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China. .,Department of Geriatrics, The 303 Hospital of Chinese People's Liberation Army, Nanning, Guangxi Province, 530021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Derrick James Reynolds
- Department of Microbiology & Molecular Genetics School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Dazhi Deng
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Emergency, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi Province, 530021, China.
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Long Liu
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| | - Jizhong Zou
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| | - Yongsheng Shi
- Department of Microbiology & Molecular Genetics School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yingwei Mao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
12
|
Tummala H, Walne A, Collopy L, Cardoso S, de la Fuente J, Lawson S, Powell J, Cooper N, Foster A, Mohammed S, Plagnol V, Vulliamy T, Dokal I. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest 2015; 125:2151-60. [PMID: 25893599 DOI: 10.1172/jci78963] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.
Collapse
|
13
|
Holstein EM, Clark KRM, Lydall D. Interplay between nonsense-mediated mRNA decay and DNA damage response pathways reveals that Stn1 and Ten1 are the key CST telomere-cap components. Cell Rep 2014; 7:1259-69. [PMID: 24835988 PMCID: PMC4518466 DOI: 10.1016/j.celrep.2014.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/20/2014] [Accepted: 04/10/2014] [Indexed: 11/30/2022] Open
Abstract
A large and diverse set of proteins, including CST complex, nonsense mediated decay (NMD), and DNA damage response (DDR) proteins, play important roles at the telomere in mammals and yeast. Here, we report that NMD, like the DDR, affects single-stranded DNA (ssDNA) production at uncapped telomeres. Remarkably, we find that the requirement for Cdc13, one of the components of CST, can be efficiently bypassed when aspects of DDR and NMD pathways are inactivated. However, identical genetic interventions do not bypass the need for Stn1 and Ten1, the partners of Cdc13. We show that disabling NMD alters the stoichiometry of CST components at telomeres and permits Stn1 to bind telomeres in the absence of Cdc13. Our data support a model that Stn1 and Ten1 can function in a Cdc13-independent manner and have implications for the function of CST components across eukaryotes.
Collapse
Affiliation(s)
- Eva-Maria Holstein
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Kate R M Clark
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
14
|
Advani VM, Belew AT, Dinman JD. Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway. ACTA ACUST UNITED AC 2014; 1:e24418. [PMID: 24563826 PMCID: PMC3908577 DOI: 10.4161/trla.24418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
Abstract
We have previously shown that ~10% of all eukaryotic mRNAs contain potential programmed -1 ribosomal frameshifting (-1 PRF) signals and that some function as mRNA destabilizing elements through the Nonsense-Mediated mRNA Decay (NMD) pathway by directing translating ribosomes to premature termination codons. Here, the connection between -1 PRF, NMD and telomere end maintenance are explored. Functional -1 PRF signals were identified in the mRNAs encoding two components of yeast telomerase, EST1 and EST2, and in mRNAs encoding proteins involved in recruiting telomerase to chromosome ends, STN1 and CDC13. All of these elements responded to mutants and drugs previously known to stimulate or inhibit -1 PRF, further supporting the hypothesis that they promote -1 PRF through the canonical mechanism. All affected the steady-state abundance of a reporter mRNA and the wide range of -1 PRF efficiencies promoted by these elements enabled the determination of an inverse logarithmic relationship between -1 PRF efficiency and mRNA accumulation. Steady-state abundances of the endogenous EST1, EST2, STN1 and CDC13 mRNAs were similarly inversely proportional to changes in -1 PRF efficiency promoted by mutants and drugs, supporting the hypothesis that expression of these genes is post-transcriptionally controlled by -1 PRF under native conditions. Overexpression of EST2 by ablation of -1 PRF signals or inhibition of NMD promoted formation of shorter telomeres and accumulation of large budded cells at the G2/M boundary. A model is presented describing how limitation and maintenance of correct stoichiometries of telomerase components by -1 PRF is used to maintain yeast telomere length.
Collapse
Affiliation(s)
- Vivek M Advani
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park MD, USA
| | - Ashton T Belew
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park MD, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park MD, USA
| |
Collapse
|
15
|
Drechsel G, Kahles A, Kesarwani AK, Stauffer E, Behr J, Drewe P, Rätsch G, Wachter A. Nonsense-mediated decay of alternative precursor mRNA splicing variants is a major determinant of the Arabidopsis steady state transcriptome. THE PLANT CELL 2013; 25:3726-42. [PMID: 24163313 PMCID: PMC3877825 DOI: 10.1105/tpc.113.115485] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 05/18/2023]
Abstract
The nonsense-mediated decay (NMD) surveillance pathway can recognize erroneous transcripts and physiological mRNAs, such as precursor mRNA alternative splicing (AS) variants. Currently, information on the global extent of coupled AS and NMD remains scarce and even absent for any plant species. To address this, we conducted transcriptome-wide splicing studies using Arabidopsis thaliana mutants in the NMD factor homologs UP FRAMESHIFT1 (UPF1) and UPF3 as well as wild-type samples treated with the translation inhibitor cycloheximide. Our analyses revealed that at least 17.4% of all multi-exon, protein-coding genes produce splicing variants that are targeted by NMD. Moreover, we provide evidence that UPF1 and UPF3 act in a translation-independent mRNA decay pathway. Importantly, 92.3% of the NMD-responsive mRNAs exhibit classical NMD-eliciting features, supporting their authenticity as direct targets. Genes generating NMD-sensitive AS variants function in diverse biological processes, including signaling and protein modification, for which NaCl stress-modulated AS-NMD was found. Besides mRNAs, numerous noncoding RNAs and transcripts derived from intergenic regions were shown to be NMD responsive. In summary, we provide evidence for a major function of AS-coupled NMD in shaping the Arabidopsis transcriptome, having fundamental implications in gene regulation and quality control of transcript processing.
Collapse
Affiliation(s)
- Gabriele Drechsel
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
| | - André Kahles
- Computational Biology Center, Sloan-Kettering Institute, New York, New York 10065
| | - Anil K. Kesarwani
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
| | - Eva Stauffer
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
| | - Jonas Behr
- Computational Biology Center, Sloan-Kettering Institute, New York, New York 10065
| | - Philipp Drewe
- Computational Biology Center, Sloan-Kettering Institute, New York, New York 10065
| | - Gunnar Rätsch
- Computational Biology Center, Sloan-Kettering Institute, New York, New York 10065
| | - Andreas Wachter
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
- Address correspondence to
| |
Collapse
|
16
|
Environmental stresses disrupt telomere length homeostasis. PLoS Genet 2013; 9:e1003721. [PMID: 24039592 PMCID: PMC3764183 DOI: 10.1371/journal.pgen.1003721] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/29/2013] [Indexed: 12/15/2022] Open
Abstract
Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues. Over 70 years ago, Barbara McClintock described telomeres and hypothesized about their role in protecting the integrity of chromosomes. Since then, scientists have shown that telomere length is highly regulated and associated with cell senescence and longevity, as well as with age-related disorders and cancer. Here, we show that despite their importance, the tight, highly complex regulation of telomeres may be disrupted by environmental cues, leading to changes in telomere length. We have introduced yeast cells to 13 different environmental stresses to show that some stresses directly alter telomere length. Our results indicate that alcohol and acetic acid elongate telomeres, while caffeine and high temperatures shorten telomeres. Using expression data, bioinformatics tools, and a large genetic screen, we explored the mechanisms responsible for the alterations of telomere length under several stress conditions. We identify Rap1 and Rif1, central players in telomere length maintenance, as the central proteins directly affected by external cues that respond by altering telomere length. Because many human diseases are related to alterations in telomere length that fuel the disease's pathology, controlling telomere length by manipulating simple stressing agents may point the way to effective treatment, and will supply scientists with an additional tool to study the machinery responsible for telomere length homeostasis.
Collapse
|
17
|
Wang X, Okonkwo O, Kebaara BW. Physiological basis of copper tolerance ofSaccharomyces cerevisiaenonsense-mediated mRNA decay mutants. Yeast 2013; 30:179-90. [DOI: 10.1002/yea.2950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xuya Wang
- Department of Biology; Baylor University; Waco; TX; 76798; USA
| | - Obi Okonkwo
- Department of Biology; Baylor University; Waco; TX; 76798; USA
| | | |
Collapse
|
18
|
Abstract
UPF1 (up-frameshift 1) is a protein conserved in all eukaryotes that is necessary for NMD (nonsense-mediated mRNA decay). UPF1 mainly localizes to the cytoplasm and, via mechanisms that are linked to translation termination but not yet well understood, stimulates rapid destruction of mRNAs carrying a PTC (premature translation termination codon). However, some studies have indicated that in human cells UPF1 has additional roles, possibly unrelated to NMD, which are carried out in the nucleus. These might involve telomere maintenance, cell cycle progression and DNA replication. In the present paper, we review the available experimental evidence implicating UPF1 in nuclear functions. The unexpected view that emerges from this literature is that the nuclear functions primarily stem from UPF1 having an important role in DNA replication, rather than NMD affecting the expression of proteins involved in these processes. Our bioinformatics survey of the interaction network of UPF1 with other human proteins, however, highlights that UPF1 also interacts with proteins associated with nuclear RNA degradation and transcription termination; therefore suggesting involvement in processes that could also impinge on DNA replication indirectly.
Collapse
|
19
|
Copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants. Curr Genet 2011; 57:421-30. [PMID: 21918884 DOI: 10.1007/s00294-011-0356-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/23/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
The eukaryotic nonsense-mediated mRNA (NMD) is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons, and importantly some natural mRNAs as well. Natural mRNAs with atypically long 3'-untranslated regions (UTRs) are degraded by NMD in Saccharomyces cerevisiae. A number of S. cerevisiae mRNAs undergo alternative 3'-end processing producing mRNA isoforms that differ in their 3'-UTR lengths. Some of these alternatively 3'-end processed mRNA isoforms have atypically long 3'-UTRs and would be likely targets for NMD-mediated degradation. Here, we investigated the role NMD plays in the regulation of expression of CTR2, which encodes a vacuolar membrane copper transporter. CTR2 pre-mRNA undergoes alternative 3'-end processing to produce two mRNA isoforms with 300-nt and 2-kb 3'-UTRs. We show that both CTR2 mRNA isoforms are differentially regulated by NMD. The regulation of CTR2 mRNA by NMD has physiological consequences, since nmd mutants are more tolerant to toxic levels of copper relative to wild-type yeast cells and the copper tolerance of nmd mutants is dependent on the presence of CTR2.
Collapse
|
20
|
Cosnier B, Kwapisz M, Hatin I, Namy O, Denmat SHL, Morillon A, Rousset JP, Fabret C. A viable hypomorphic allele of the essential IMP3 gene reveals novel protein functions in Saccharomyces cerevisiae. PLoS One 2011; 6:e19500. [PMID: 21559332 PMCID: PMC3084874 DOI: 10.1371/journal.pone.0019500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/06/2011] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, the essential IMP3 gene encodes a component of the SSU processome, a large ribonucleoprotein complex required for processing of small ribosomal subunit RNA precursors. Mutation of the IMP3 termination codon to a sense codon resulted in a viable mutant allele producing a C-terminal elongated form of the Imp3 protein. A strain expressing the mutant allele displayed ribosome biogenesis defects equivalent to IMP3 depletion. This hypomorphic allele represented a unique opportunity to investigate and better understand the Imp3p functions. We demonstrated that the +1 frameshifting was increased in the mutant strain. Further characterizations revealed involvement of the Imp3 protein in DNA repair and telomere length control, pointing to a functional relationship between both pathways and ribosome biogenesis.
Collapse
Affiliation(s)
- Bruno Cosnier
- IGM, CNRS, UMR 8621, Orsay, France
- Université Paris-Sud, Orsay, France
| | | | - Isabelle Hatin
- IGM, CNRS, UMR 8621, Orsay, France
- Université Paris-Sud, Orsay, France
| | - Olivier Namy
- IGM, CNRS, UMR 8621, Orsay, France
- Université Paris-Sud, Orsay, France
| | | | | | | | - Céline Fabret
- IGM, CNRS, UMR 8621, Orsay, France
- Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
21
|
Isken O, Maquat LE. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat Rev Genet 2011; 9:699-712. [PMID: 18679436 DOI: 10.1038/nrg2402] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) largely functions to ensure the quality of gene expression. However, NMD is also crucial to regulating appropriate expression levels for certain genes and for maintaining genome stability. Furthermore, just as NMD serves cells in multiple ways, so do its constituent proteins. Recent studies have clarified that UPF and SMG proteins, which were originally discovered to function in NMD, also have roles in other pathways, including specialized pathways of mRNA decay, DNA synthesis and cell-cycle progression, and the maintenance of telomeres. These findings suggest a delicate balance of metabolic events - some not obviously related to NMD - that can be influenced by the cellular abundance, location and activity of NMD factors and their binding partners.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| | | |
Collapse
|
22
|
Vicente-Crespo M, Palacios IM. Nonsense-mediated mRNA decay and development: shoot the messenger to survive? Biochem Soc Trans 2010; 38:1500-5. [PMID: 21118115 PMCID: PMC3432441 DOI: 10.1042/bst0381500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
NMD (nonsense-mediated mRNA decay) is a surveillance mechanism that degrades transcripts containing nonsense mutations, preventing the translation of potentially harmful truncated proteins. Although the mechanistic details of NMD are gradually being understood, the physiological role of this RNA surveillance pathway still remains largely unknown. The core NMD genes Upf1 (up-frameshift suppressor 1) and Upf2 are essential for animal viability in the fruitfly, mouse and zebrafish. These findings may reflect an important role for NMD during animal development. Alternatively, the lethal phenotypes of upf1 and upf2 mutants might be due to their function in NMD-independent processes. In the present paper, we describe the phenotypes observed when the NMD factors are mutated in various organisms, and discuss findings that might shed light on the function of NMD in cellular growth and development of an organism.
Collapse
Affiliation(s)
- Marta Vicente-Crespo
- Division of Biology, University of California San Diego, 9500 Gilman Drive, Bonner Hall 3230, La Jolla, CA 92093-0322, U.S.A
| | - Isabel M. Palacios
- Zoology Department, University of Cambridge, Downing Street, Cambridge CB2 3EJ, U.K
| |
Collapse
|
23
|
De Amicis A, Piane M, Ferrari F, Fanciulli M, Delia D, Chessa L. Role of senataxin in DNA damage and telomeric stability. DNA Repair (Amst) 2010; 10:199-209. [PMID: 21112256 DOI: 10.1016/j.dnarep.2010.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/28/2010] [Accepted: 10/30/2010] [Indexed: 11/15/2022]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia and oculomotor apraxia. The gene mutated in AOA2, SETX, encodes senataxin (SETX), a putative DNA/RNA helicase. The presence of the helicase domain led us to investigate whether SETX might play a role in DNA damage repair and telomere stability. We analyzed the response of AOA2 lymphocytes and lymphoblasts after treatment with camptothecin (CPT), mitomycin C (MMC), H₂O₂ and X-rays by cytogenetic and Q-FISH (quantitative-FISH) assays. The rate of chromosomal aberrations was normal in AOA2 cells after treatment with CPT, MMC, H₂O₂ and X-rays. Conversely, Q-FISH analysis showed constitutively reduced telomere length in AOA2 lymphocytes, compared to age-matched controls. Furthermore, CPT- or X-ray-induced telomere shortening was more marked in AOA2 than in control cells. The partial co-localization of SETX with telomeric DNA, demonstrated by combined immunofluorescence-Q-FISH and chromatin immunoprecipitation, suggests a possible involvement of SETX in telomere stability.
Collapse
Affiliation(s)
- Andrea De Amicis
- II School of Medicine, Department of Clinical and Molecular Medicine, University La Sapienza, Roma, Italy. andrea.deamicis@unirom
| | | | | | | | | | | |
Collapse
|
24
|
Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci 2010; 67:677-700. [PMID: 19859661 PMCID: PMC11115722 DOI: 10.1007/s00018-009-0177-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/16/2009] [Accepted: 10/06/2009] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated decay is well known by the lucid definition of being a RNA surveillance mechanism that ensures the speedy degradation of mRNAs containing premature translation termination codons. However, as we review here, NMD is far from being a simple quality control mechanism; it also regulates the stability of many wild-type transcripts. We summarise the abundance of research that has characterised each of the NMD factors and present a unified model for the recognition of NMD substrates. The contentious issue of how and where NMD occurs is also discussed, particularly with regard to P-bodies and SMG6-driven endonucleolytic degradation. In recent years, the discovery of additional functions played by several of the NMD factors has further complicated the picture. Therefore, we also review the reported roles of UPF1, SMG1 and SMG6 in other cellular processes.
Collapse
Affiliation(s)
- Pamela Nicholson
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Hasmik Yepiskoposyan
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Stefanie Metze
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Rodolfo Zamudio Orozco
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Nicole Kleinschmidt
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Oliver Mühlemann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| |
Collapse
|
25
|
Santos Macedo E, Cardoso HG, Hernández A, Peixe AA, Polidoros A, Ferreira A, Cordeiro A, Arnholdt-Schmitt B. Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. PHYSIOLOGIA PLANTARUM 2009; 137:532-52. [PMID: 19941624 DOI: 10.1111/j.1399-3054.2009.01302.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Olive (Olea europaea L.) trees are mainly propagated by adventitious rooting of semi-hardwood cuttings. However, efficient commercial propagation of valuable olive tree cultivars or landraces by semi-hardwood cuttings can often be restricted by a low rooting capacity. We hypothesize that root induction is a plant cell reaction linked to oxidative stress and that activity of stress-induced alternative oxidase (AOX) is importantly involved in adventitious rooting. To identify AOX as a source for potential functional marker sequences that may assist tree breeding, genetic variability has to be demonstrated that can affect gene regulation. The paper presents an applied, multidisciplinary research approach demonstrating first indications of an important relationship between AOX activity and differential adventitious rooting in semi-hardwood cuttings. Root induction in the easy-to-root Portuguese cultivar 'Cobrançosa' could be significantly reduced by treatment with salicyl-hydroxamic acid, an inhibitor of AOX activity. On the contrary, treatment with H2O2 or pyruvate, both known to induce AOX activity, increased the degree of rooting. Recently, identification of several O. europaea (Oe) AOX gene sequences has been reported from our group. Here we present for the first time partial sequences of OeAOX2. To search for polymorphisms inside of OeAOX genes, partial OeAOX2 sequences from the cultivars 'Galega vulgar', 'Cobrançosa' and 'Picual' were cloned from genomic DNA and cDNA, including exon, intron and 3'-untranslated regions (3'-UTRs) sequences. The data revealed polymorphic sites in several regions of OeAOX2. The 3'-UTR was the most important source for polymorphisms showing 5.7% of variability. Variability in the exon region accounted 3.4 and 2% in the intron. Further, analysis performed at the cDNA from microshoots of 'Galega vulgar' revealed transcript length variation for the 3'-UTR of OeAOX2 ranging between 76 and 301 bp. The identified polymorphisms and 3'-UTR length variation can be explored in future studies for effects on gene regulation and a potential linkage to olive rooting phenotypes in view of marker-assisted plant selection.
Collapse
|
26
|
Gontijo AM, Aubert S, Roelens I, Lakowski B. Mutations in genes involved in nonsense mediated decay ameliorate the phenotype of sel-12 mutants with amber stop mutations in Caenorhabditis elegans. BMC Genet 2009; 10:14. [PMID: 19302704 PMCID: PMC2678165 DOI: 10.1186/1471-2156-10-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 03/20/2009] [Indexed: 11/29/2022] Open
Abstract
Background Presenilin proteins are part of a complex of proteins that can cleave many type I transmembrane proteins, including Notch Receptors and the Amyloid Precursor Protein, in the middle of the transmembrane domain. Dominant mutations in the human presenilin genes PS1 and PS2 lead to Familial Alzheimer's disease. Mutations in the Caenorhabditis elegans sel-12 presenilin gene cause a highly penetrant egg-laying defect due to reduction of signalling through the lin-12/Notch receptor. Mutations in six spr genes (for suppressor of presenilin) are known to strongly suppress sel-12. Mutations in most strong spr genes suppress sel-12 by de-repressing the transcription of the largely functionally equivalent hop-1 presenilin gene. However, how mutations in the spr-2 gene suppress sel-12 is unknown. Results We show that spr-2 mutations increase the levels of sel-12 transcripts with Premature translation Termination Codons (PTCs) in embryos and L1 larvae. mRNA transcripts from sel-12 alleles with PTCs undergo degradation by a process known as Nonsense Mediated Decay (NMD). However, spr-2 mutations do not appear to affect NMD. Mutations in the smg genes, which are required for NMD, can restore sel-12(PTC) transcript levels and ameliorate the phenotype of sel-12 mutants with amber PTCs. However, the phenotypic suppression of sel-12 by smg genes is nowhere near as strong as the effect of previously characterized spr mutations including spr-2. Consistent with this, we have identified only two mutations in smg genes among the more than 100 spr mutations recovered in genetic screens. Conclusion spr-2 mutations do not suppress sel-12 by affecting NMD of sel-12(PTC) transcripts and appear to have a novel mechanism of suppression. The fact that mutations in smg genes can ameliorate the phenotype of sel-12 alleles with amber PTCs suggests that some read-through of sel-12(amber) alleles occurs in smg backgrounds.
Collapse
|
27
|
Kebaara BW, Atkin AL. Long 3'-UTRs target wild-type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Nucleic Acids Res 2009; 37:2771-8. [PMID: 19270062 PMCID: PMC2685090 DOI: 10.1093/nar/gkp146] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway, present in most eukaryotic cells, is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons and, importantly, some wild-type mRNAs. Earlier studies demonstrated that aberrant mRNAs with artificially extended 3′-untranslated regions (3′-UTRs) are degraded by NMD. However, the extent to which wild-type mRNAs with long 3′-UTRs are degraded by NMD is not known. We used a global approach to identify wild-type mRNAs in Saccharomyces cerevisiae that have longer than expected 3′-UTRs, and of these mRNAs tested, 91% were degraded by NMD. We demonstrate for the first time that replacement of the natural, long 3′-UTR from wild-type PGA1 mRNA, which encodes a protein that is important for cell wall biosynthesis, with a short 3′-UTR renders it immune to NMD. The natural PGA1 3′-UTR is sufficient to target a NMD insensitive mRNA for decay by the NMD pathway. Finally, we show that nmd mutants are sensitive to Calcofluor White, which suggests that the regulation of PGA1 and other cell wall biosynthesis proteins by NMD is physiologically significant.
Collapse
Affiliation(s)
- Bessie W Kebaara
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | |
Collapse
|
28
|
Chavez A, Tsou AM, Johnson FB. Telomeres do the (un)twist: helicase actions at chromosome termini. Biochim Biophys Acta Mol Basis Dis 2009; 1792:329-40. [PMID: 19245831 DOI: 10.1016/j.bbadis.2009.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Telomeres play critical roles in protecting genome stability, and their dysfunction contributes to cancer and age-related degenerative diseases. The precise architecture of telomeres, including their single-stranded 3' overhangs, bound proteins, and ability to form unusual secondary structures such as t-loops, is central to their function and thus requires careful processing by diverse factors. Furthermore, telomeres provide unique challenges to the DNA replication and recombination machinery, and are particularly suited for extension by the telomerase reverse transcriptase. Helicases use the energy from NTP hydrolysis to track along DNA and disrupt base pairing. Here we review current findings concerning how helicases modulate several aspects of telomere form and function.
Collapse
Affiliation(s)
- Alejandro Chavez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
29
|
Neu-Yilik G, Kulozik AE. NMD: multitasking between mRNA surveillance and modulation of gene expression. ADVANCES IN GENETICS 2008; 62:185-243. [PMID: 19010255 DOI: 10.1016/s0065-2660(08)00604-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression is a highly specific and regulated multilayer process with a plethora of interconnections as well as safeguard and feedback mechanisms. Messenger RNA, long neglected as a mere subcarrier of genetic information, is more recently recognized as a linchpin of regulation and control of gene expression. Moreover, the awareness of not only proteins but also mRNA as a modulator of genetic disorders has vastly increased in recent years. Nonsense-mediated mRNA decay (NMD) is a posttranscriptional surveillance mechanism that uses an intricate network of nuclear and cytoplasmic processes to eliminate mRNAs, containing premature termination codons. It thus helps limit the synthesis of potentially harmful truncated proteins. However, recent results suggest functions of NMD that go far beyond this role and affect the expression of wild-type genes and the modulation of whole pathways. In both respects--the elimination of faulty transcripts and the regulation of error-free mRNAs--NMD has many medical implications. Therefore, it has earned increasing interest from researchers of all fields of the life sciences. In the following text, we (1) present current knowledge about the NMD mechanism and its targets, (2) define its relevance in the regulation of important biochemical pathways, (3) explore its medical significance and the prospects of therapeutic interventions, and (4) discuss additional functions of NMD effectors, some of which may be networked to NMD. The main focus of this chapter lies on mammalian NMD and resorts to the features and factors of NMD in other organisms if these help to complete or illuminate the picture.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas E Kulozik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Association of yeast Upf1p with direct substrates of the NMD pathway. Proc Natl Acad Sci U S A 2007; 104:20872-7. [PMID: 18087042 DOI: 10.1073/pnas.0709257105] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that detects and degrades transcripts containing premature translation termination codons. Gene expression profiling experiments have shown that inactivation of the NMD pathway leads to the accumulation of both aberrant, nonsense-containing mRNAs, and many apparently wild-type transcripts. Such increases in transcript steady-state levels could arise from direct changes in the respective mRNA half-lives, or indirectly, as a consequence of the stabilization of transcripts encoding specific regulatory proteins. Here, we distinguished direct from indirect substrates by virtue of their association with the Saccharomyces cerevisiae Upf1 protein. Analyses of this dataset, and its comparison to the sets of transcripts that respectively increase or decrease in abundance when NMD is either inactivated or reactivated, indicate that the number of direct NMD substrates is larger than previously thought and that low abundance, alternatively transcribed mRNAs, i.e., mRNAs whose 5' ends are derived from previously unannotated 5' flanking sequences, comprise a significant class of direct substrates. Using thiamine metabolism as an example, we also show that apparent NMD-regulated cellular pathways may actually reflect the detection of low-abundance alternative transcripts under conditions where a pathway is repressed.
Collapse
|
31
|
Luke B, Azzalin CM, Hug N, Deplazes A, Peter M, Lingner J. Saccharomyces cerevisiae Ebs1p is a putative ortholog of human Smg7 and promotes nonsense-mediated mRNA decay. Nucleic Acids Res 2007; 35:7688-97. [PMID: 17984081 PMCID: PMC2190716 DOI: 10.1093/nar/gkm912] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Smg proteins Smg5, Smg6 and Smg7 are involved in nonsense-mediated RNA decay (NMD) in metazoans, but no orthologs have been found in the budding yeast Saccharomyces cerevisiae. Sequence alignments reveal that yeast Ebs1p is similar in structure to the human Smg5-7, with highest homology to Smg7. We demonstrate here that Ebs1p is involved in NMD and behaves similarly to human Smg proteins. Indeed, both loss and overexpression of Ebs1p results in stabilization of NMD targets. However, Ebs1-loss in yeast or Smg7-depletion in human cells only partially disrupts NMD and in the latter, Smg7-depletion is partially compensated for by Smg6. Ebs1p physically interacts with the NMD helicase Upf1p and overexpressed Ebs1p leads to recruitment of Upf1p into cytoplasmic P-bodies. Furthermore, Ebs1p localizes to P-bodies upon glucose starvation along with Upf1p. Overall our findings suggest that NMD is more conserved in evolution than previously thought, and that at least one of the Smg5-7 proteins is conserved in budding yeast.
Collapse
Affiliation(s)
- Brian Luke
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Chabelskaya S, Gryzina V, Moskalenko S, Le Goff C, Zhouravleva G. Inactivation of NMD increases viability of sup45 nonsense mutants in Saccharomyces cerevisiae. BMC Mol Biol 2007; 8:71. [PMID: 17705828 PMCID: PMC2039749 DOI: 10.1186/1471-2199-8-71] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 08/16/2007] [Indexed: 11/10/2022] Open
Abstract
Background The nonsense-mediated mRNA decay (NMD) pathway promotes the rapid degradation of mRNAs containing premature termination codons (PTCs). In yeast Saccharomyces cerevisiae, the activity of the NMD pathway depends on the recognition of the PTC by the translational machinery. Translation termination factors eRF1 (Sup45) and eRF3 (Sup35) participate not only in the last step of protein synthesis but also in mRNA degradation and translation initiation via interaction with such proteins as Pab1, Upf1, Upf2 and Upf3. Results In this work we have used previously isolated sup45 mutants of S. cerevisiae to characterize degradation of aberrant mRNA in conditions when translation termination is impaired. We have sequenced his7-1, lys9-A21 and trp1-289 alleles which are frequently used for analysis of nonsense suppression. We have established that sup45 nonsense and missense mutations lead to accumulation of his7-1 mRNA and CYH2 pre-mRNA. Remarkably, deletion of the UPF1 gene suppresses some sup45 phenotypes. In particular, sup45-n upf1Δ double mutants were less temperature sensitive, and more resistant to paromomycin than sup45 single mutants. In addition, deletion of either UPF2 or UPF3 restored viability of sup45-n double mutants. Conclusion This is the first demonstration that sup45 mutations do not only change translation fidelity but also acts by causing a change in mRNA stability.
Collapse
Affiliation(s)
- Svetlana Chabelskaya
- Department of Genetics and Breeding, St Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR 140, Faculté de Médecine, 2 av. Pr. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Valentina Gryzina
- Department of Genetics and Breeding, St Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Svetlana Moskalenko
- Department of Genetics and Breeding, St Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR 140, Faculté de Médecine, 2 av. Pr. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Catherine Le Goff
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR 140, Faculté de Médecine, 2 av. Pr. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Galina Zhouravleva
- Department of Genetics and Breeding, St Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR 140, Faculté de Médecine, 2 av. Pr. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| |
Collapse
|
33
|
Behm-Ansmant I, Kashima I, Rehwinkel J, Saulière J, Wittkopp N, Izaurralde E. mRNA quality control: An ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett 2007; 581:2845-53. [PMID: 17531985 DOI: 10.1016/j.febslet.2007.05.027] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/11/2007] [Indexed: 11/18/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway which ensures the rapid degradation of mRNAs containing premature translation termination codons (PTCs or nonsense codons), thereby preventing the accumulation of truncated and potentially harmful proteins. In this way, the NMD pathway contributes to suppressing or exacerbating the clinical manifestations of specific human genetic disorders. Studies in model organisms have led to the identification of the effectors of the NMD pathway, and illuminated the mechanisms by which premature stops are discriminated from natural stops, so that only the former trigger rapid mRNA degradation. These studies are providing important insights that will aid the development of new treatments for at least some human genetic diseases.
Collapse
|
34
|
Schrader R, Young C, Kozian D, Hoffmann R, Lottspeich F. Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway. J Biol Chem 2006; 281:35336-46. [PMID: 16987817 DOI: 10.1074/jbc.m601460200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved protein eIF5A found in Archaea and all eukaryotes uniquely contains the posttranslationally formed amino acid hypusine. Despite being essential the functions of this protein and its modification remain unclear. To gain more insight into these functions temperature-sensitive mutants of the human EIF5A1 were characterized in the yeast Saccharomyces cerevisiae. Expression of the point mutated form V81G in a DeltaeIF5A strain of yeast led to a strongly temperature-sensitive phenotype and to a significantly reduced protein level at restrictive temperature. The mutant showed accumulation of a subset of mRNAs that was also observed in nonsense-mediated decay (NMD)-deficient yeast strains. After short incubation at restrictive temperature the mutant exhibited increased half-lives of the intron containing CYH2 pre-mRNA and mature transcripts of NMD-dependent genes. Reduced telomere silencing and shortening was detected in the V81G mutant further supporting similarities to NMD-deficient strains. Our data suggest that eIF5A mediates important cellular processes like cell viability and senescence through its effects on the stability of certain mRNAs.
Collapse
Affiliation(s)
- Rainer Schrader
- Department for Protein Analytics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | |
Collapse
|
35
|
Guan Q, Zheng W, Tang S, Liu X, Zinkel RA, Tsui KW, Yandell BS, Culbertson MR. Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast. PLoS Genet 2006; 2:e203. [PMID: 17166056 PMCID: PMC1657058 DOI: 10.1371/journal.pgen.0020203] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/18/2006] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic mechanism of RNA surveillance that selectively eliminates aberrant transcripts coding for potentially deleterious proteins. NMD also functions in the normal repertoire of gene expression. In Saccharomyces cerevisiae, hundreds of endogenous RNA Polymerase II transcripts achieve steady-state levels that depend on NMD. For some, the decay rate is directly influenced by NMD (direct targets). For others, abundance is NMD-sensitive but without any effect on the decay rate (indirect targets). To distinguish between direct and indirect targets, total RNA from wild-type (Nmd+) and mutant (Nmd−) strains was probed with high-density arrays across a 1-h time window following transcription inhibition. Statistical models were developed to describe the kinetics of RNA decay. 45% ± 5% of RNAs targeted by NMD were predicted to be direct targets with altered decay rates in Nmd− strains. Parallel experiments using conventional methods were conducted to empirically test predictions from the global experiment. The results show that the global assay reliably distinguished direct versus indirect targets. Different types of targets were investigated, including transcripts containing adjacent, disabled open reading frames, upstream open reading frames, and those prone to out-of-frame initiation of translation. Known targeting mechanisms fail to account for all of the direct targets of NMD, suggesting that additional targeting mechanisms remain to be elucidated. 30% of the protein-coding targets of NMD fell into two broadly defined functional themes: those affecting chromosome structure and behavior and those affecting cell surface dynamics. Overall, the results provide a preview for how expression profiles in multi-cellular eukaryotes might be impacted by NMD. Furthermore, the methods for analyzing decay rates on a global scale offer a blueprint for new ways to study mRNA decay pathways in any organism where cultured cell lines are available. Genes determine the structure of proteins through transcription and translation in which an RNA copy of the gene is made (mRNA) and then translated to make the protein. Cellular protein levels reflect the relative rates of mRNA synthesis and degradation, which are subject to multiple layers of controls. Mechanisms also exist to ensure the quality of each mRNA. One quality control mechanism called nonsense-mediated mRNA decay (NMD) triggers the rapid degradation of mRNAs containing coding errors that would otherwise lead to the production of non-functional or potentially deleterious proteins. NMD occurs in yeasts, plants, flies, worms, mice, and humans. In humans, NMD affects the etiology of genetic disorders by affecting the expression of genes that carry disease-causing mutations. Besides quality assurance, NMD plays another role in gene expression by controlling the abundance of hundreds of normal mRNAs that are devoid of coding errors. In this paper, the authors used DNA arrays to monitor the relative decay rates of all mRNAs in budding yeast and found a subset where decay rates were dependent on NMD. Many of the corresponding proteins perform related functional roles affecting both the structure and behavior of chromosomes and the structure and integrity of the cell surface.
Collapse
Affiliation(s)
- Qiaoning Guan
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Wei Zheng
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shijie Tang
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xiaosong Liu
- Department of Physics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Robert A Zinkel
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kam-Wah Tsui
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael R Culbertson
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Rehwinkel J, Raes J, Izaurralde E. Nonsense-mediated mRNA decay: Target genes and functional diversification of effectors. Trends Biochem Sci 2006; 31:639-46. [PMID: 17010613 DOI: 10.1016/j.tibs.2006.09.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/14/2006] [Accepted: 09/18/2006] [Indexed: 01/08/2023]
Abstract
Recent genome-wide identification of nonsense-mediated mRNA decay (NMD) targets in yeast, fruitfly and human cells has provided insight into the biological functions and evolution of this mRNA quality control mechanism, revealing that NMD post-transcriptionally regulates an important fraction of the transcriptome. NMD targets are associated with a broad range of biological processes, but most of these targets are not encoded by orthologous genes across different species. Yeast and fruitfly NMD effectors regulate common targets in concert, but parallel pathways have evolved in humans, whereby NMD effectors have acquired additional functions. Thus, the phenotypic differences observed across species after inhibition of NMD are driven not only by the functional diversification of NMD effectors but also by changes in the repertoire of regulated genes.
Collapse
Affiliation(s)
- Jan Rehwinkel
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
37
|
Yoine M, Ohto MA, Onai K, Mita S, Nakamura K. The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:49-62. [PMID: 16740149 DOI: 10.1111/j.1365-313x.2006.02771.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The low-beta-amylase1 (lba1) mutant of Arabidopsis thaliana has reduced sugar-induced expression of Atbeta-Amy and shows pleiotropic phenotypes such as early flowering; short day-sensitive growth; and seed germination that is hypersensitive to glucose and abscisic acid and resistant to mannose. lba1 was a missense mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay (NMD), which eliminates mRNAs with premature termination codons (PTCs), and replaces highly conserved Gly851 of UPF1 with Glu. Expression of the wild-type UPF1 in lba1 rescued not only the reduced sugar-inducible gene expression, but also early flowering and altered seed-germination phenotypes. Sugar-inducible mRNAs were over-represented among transcripts decreased in sucrose-treated lba1 compared with Col plants, suggesting that UPF1 is involved in the expression of a subset of sugar-inducible genes. On the other hand, transcripts increased in lba1, which are likely to contain direct targets of NMD, included mRNAs for many transcription factors and metabolic enzymes that play diverse functions. Among these, the level of an alternatively spliced transcript of AtTFIIIA containing PTC was 17-fold higher in lba1 compared with Col plants, and it was reduced to the level in Col by expressing the wild-type UPF1. The lba1 mutant provides a good tool for studying NMD in plants.
Collapse
Affiliation(s)
- Masato Yoine
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
38
|
Gatbonton T, Imbesi M, Nelson M, Akey JM, Ruderfer DM, Kruglyak L, Simon JA, Bedalov A. Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2006; 2:e35. [PMID: 16552446 PMCID: PMC1401499 DOI: 10.1371/journal.pgen.0020035] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 01/27/2006] [Indexed: 01/30/2023] Open
Abstract
Telomere length-variation in deletion strains of Saccharomyces cerevisiae was used to identify genes and pathways that regulate telomere length. We found 72 genes that when deleted confer short telomeres, and 80 genes that confer long telomeres relative to those of wild-type yeast. Among identified genes, 88 have not been previously implicated in telomere length control. Genes that regulate telomere length span a variety of functions that can be broadly separated into telomerase-dependent and telomerase-independent pathways. We also found 39 genes that have an important role in telomere maintenance or cell proliferation in the absence of telomerase, including genes that participate in deoxyribonucleotide biosynthesis, sister chromatid cohesion, and vacuolar protein sorting. Given the large number of loci identified, we investigated telomere lengths in 13 wild yeast strains and found substantial natural variation in telomere length among the isolates. Furthermore, we crossed a wild isolate to a laboratory strain and analyzed telomere length in 122 progeny. Genome-wide linkage analysis among these segregants revealed two loci that account for 30%–35% of telomere length-variation between the strains. These findings support a general model of telomere length-variation in outbred populations that results from polymorphisms at a large number of loci. Furthermore, our results laid the foundation for studying genetic determinants of telomere length-variation and their roles in human disease. Telomere maintenance is of great importance to ensure genome stability in organisms with linear genomes. In humans, telomeres shorten as a function of age and serve as a marker of cell replication history. Understanding the genetic differences in telomere length-maintenance may help provide the insights into the basis for different rates of aging among individuals and differences in individuals' propensity for aging-associated diseases such as cancer. Studies in yeast and other model organisms have defined several pathways that ensure stability of chromosome ends. In order to capture full complement of genes that participate in telomere maintenance in yeast Saccharomyces cerevisiae, the authors undertook a comprehensive screen for genes that affect telomere length. Among 152 identified genes, the authors found 39 genes whose function is critical for telomere maintenance in the absence of telomerase. The authors extended their studies from laboratory yeast strains to outbred populations of yeast and discovered significant phenotypic variation in telomere length among the isolates. Telomere length-analysis of a cross between a wild yeast isolate and a laboratory strain support a general model of telomere length-variation in outbred populations that results from polymorphisms at a large number of loci. This finding provides a basis for genetic studies of telomere maintenance in human populations.
Collapse
Affiliation(s)
- Tonibelle Gatbonton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Maria Imbesi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Melisa Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Douglas M Ruderfer
- Lewis-Sigler Institute for Integrative Genomics and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Julian A Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Rehwinkel J, Letunic I, Raes J, Bork P, Izaurralde E. Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA (NEW YORK, N.Y.) 2005; 11:1530-44. [PMID: 16199763 PMCID: PMC1370837 DOI: 10.1261/rna.2160905] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that degrades mRNAs containing nonsense codons, and regulates the expression of naturally occurring transcripts. While NMD is not essential in yeast or nematodes, UPF1, a key NMD effector, is essential in mice. Here we show that NMD components are required for cell proliferation in Drosophila. This raises the question of whether NMD effectors diverged functionally during evolution. To address this question, we examined expression profiles in Drosophila cells depleted of all known metazoan NMD components. We show that UPF1, UPF2, UPF3, SMG1, SMG5, and SMG6 regulate in concert the expression of a cohort of genes with functions in a wide range of cellular activities, including cell cycle progression. Only a few transcripts were regulated exclusively by individual factors, suggesting that these proteins act mainly in the NMD pathway and their role in mRNA decay has not diverged substantially. Finally, the vast majority of NMD targets in Drosophila are not orthologs of targets previously identified in yeast or human cells. Thus phenotypic differences observed across species following inhibition of NMD can be largely attributed to changes in the repertoire of regulated genes.
Collapse
Affiliation(s)
- Jan Rehwinkel
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
40
|
Weischenfeldt J, Lykke-Andersen J, Porse B. Messenger RNA Surveillance: Neutralizing Natural Nonsense. Curr Biol 2005; 15:R559-62. [PMID: 16051166 DOI: 10.1016/j.cub.2005.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Messenger RNA transcripts that contain premature stop codons are degraded by a process termed nonsense-mediated mRNA decay (NMD). Although previously thought of as a pathway that rids the cell of non-functional mRNAs arising from mutations and processing errors, new research suggests a more general and evolutionarily important role for NMD in the control of gene expression.
Collapse
Affiliation(s)
- Joachim Weischenfeldt
- Section of Gene Therapy Research, Copenhagen University Hospital, Juliane Mariesvej 20 section 9322, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
41
|
Alonso CR. Nonsense-mediated RNA decay: a molecular system micromanaging individual gene activities and suppressing genomic noise. Bioessays 2005; 27:463-6. [PMID: 15832387 DOI: 10.1002/bies.20227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is an evolutionary conserved system of RNA surveillance that detects and degrades RNA transcripts containing nonsense mutations. Given that these mutations arise at a relatively low frequency, are there any as yet unknown substrates of NMD in a wild-type cell? With this question in mind, Mendell et al. have used a microarray assay to identify those human genes under NMD regulation. Their results show that, in human cells, NMD regulates hundreds of physiologic transcripts and not just those containing nonsense mutations. Among the NMD targets are a number of non-functional RNAs expressed from vestigial sequences derived from retroviral and transposable elements. These findings support the notion that NMD is a high profile post-transcriptional mechanism micromanaging the activity of multiple gene batteries and suppressing the expression of genetic remnants.
Collapse
Affiliation(s)
- Claudio R Alonso
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
42
|
Neu-Yilik G, Gehring NH, Hentze MW, Kulozik AE. Nonsense-mediated mRNA decay: from vacuum cleaner to Swiss army knife. Genome Biol 2004; 5:218. [PMID: 15059251 PMCID: PMC395777 DOI: 10.1186/gb-2004-5-4-218] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) downmodulates mRNAs that have in-frame premature termination codons and prevents translation of potentially harmful truncated proteins from aberrant mRNAs. Two new approaches have identified physiological NMD substrates, and suggest that NMD functions as a multipurpose tool in the modulation of gene expression.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
43
|
Enomoto S, Glowczewski L, Lew-Smith J, Berman JG. Telomere cap components influence the rate of senescence in telomerase-deficient yeast cells. Mol Cell Biol 2004; 24:837-45. [PMID: 14701754 PMCID: PMC343809 DOI: 10.1128/mcb.24.2.837-845.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells lacking telomerase undergo senescence, a progressive reduction in cell division that involves a cell cycle delay and culminates in "crisis," a period when most cells become inviable. In telomerase-deficient Saccharomyces cerevisiae cells lacking components of the nonsense-mediated mRNA decay (NMD) pathway (Upf1,Upf2, or Upf3 proteins), senescence is delayed, with crisis occurring approximately 10 to 25 population doublings later than in Upf+ cells. Delayed senescence is seen in upfDelta cells lacking the telomerase holoenzyme components Est2p and TLC1 RNA, as well as in cells lacking the telomerase regulators Est1p and Est3p. The delay of senescence in upfDelta cells is not due to an increased rate of survivor formation. Rather, it is caused by alterations in the telomere cap, composed of Cdc13p, Stn1p, and Ten1p. In upfDelta mutants, STN1 and TEN1 levels are increased. Increasing the levels of Stn1p and Ten1p in Upf+ cells is sufficient to delay senescence. In addition, cdc13-2 mutants exhibit delayed senescence rates similar to those of upfDelta cells. Thus, changes in the telomere cap structure are sufficient to affect the rate of senescence in the absence of telomerase. Furthermore, the NMD pathway affects the rate of senescence in telomerase-deficient cells by altering the stoichiometry of telomere cap components.
Collapse
Affiliation(s)
- Shinichiro Enomoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-170 MCB Building, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
44
|
He F, Li X, Spatrick P, Casillo R, Dong S, Jacobson A. Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5' to 3' mRNA decay pathways in yeast. Mol Cell 2004; 12:1439-52. [PMID: 14690598 DOI: 10.1016/s1097-2765(03)00446-5] [Citation(s) in RCA: 328] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transcripts regulated by the yeast nonsense-mediated and 5' to 3' mRNA decay pathways were identified by expression profiling of wild-type, upf1Delta, nmd2Delta, upf3Delta, dcp1Delta, and xrn1Delta cells. This analysis revealed that inactivation of Upf1p, Nmd2p, or Upf3p has identical effects on global RNA accumulation; inactivation of Dcp1p or Xrn1p exhibits both common and unique effects on global RNA accumulation but causes upregulation of only a small fraction of transcripts; and the majority of transcripts upregulated in upf/nmd strains are also upregulated to similar extents in dcp1Delta and xrn1Delta strains. Our results define the core transcripts regulated by NMD, identify several novel structural classes of NMD substrates, demonstrate that nonsense-containing mRNAs are primarily degraded by the 5' to 3' decay pathway even in the absence of functional NMD, and indicate that 3' to 5' decay, not 5' to 3' decay, may be the major mRNA decay activity in yeast cells.
Collapse
Affiliation(s)
- Feng He
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
45
|
González CI, Wang W, Peltz SW. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae: a quality control mechanism that degrades transcripts harboring premature termination codons. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:321-8. [PMID: 12762034 DOI: 10.1101/sqb.2001.66.321] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C I González
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico 00931
| | | | | |
Collapse
|
46
|
Abstract
In eukaryotes, mRNAs are monitored for errors in gene expression by RNA surveillance where untranslatable mRNAs are selectively degraded by the nonsense-mediated mRNA decay (NMD) pathway. Depending on the organism, three to seven genes are required for NMD. Besides RNA surveillance, the genes required for NMD serve a second purpose by controlling the overall abundance of a substantial fraction of the transcriptome.
Collapse
Affiliation(s)
- Michael R Culbertson
- Robert M Bock Laboratories, 1525 Linden Drive, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
47
|
Dahlseid JN, Lew-Smith J, Lelivelt MJ, Enomoto S, Ford A, Desruisseaux M, McClellan M, Lue N, Culbertson MR, Berman J. mRNAs encoding telomerase components and regulators are controlled by UPF genes in Saccharomyces cerevisiae. EUKARYOTIC CELL 2003; 2:134-42. [PMID: 12582130 PMCID: PMC141172 DOI: 10.1128/ec.2.1.134-142.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Telomeres, the chromosome ends, are maintained by a balance of activities that erode and replace the terminal DNA sequences. Furthermore, telomere-proximal genes are often silenced in an epigenetic manner. In Saccharomyces cerevisiae, average telomere length and telomeric silencing are reduced by loss of function of UPF genes required in the nonsense-mediated mRNA decay (NMD) pathway. Because NMD controls the mRNA levels of several hundred wild-type genes, we tested the hypothesis that NMD affects the expression of genes important for telomere functions. In upf mutants, high-density oligonucleotide microarrays and Northern blots revealed that the levels of mRNAs were increased for genes encoding the telomerase catalytic subunit (Est2p), in vivo regulators of telomerase (Est1p, Est3p, Stn1p, and Ten1p), and proteins that affect telomeric chromatin structure (Sas2p and Orc5p). We investigated whether overexpressing these genes could mimic the telomere length and telomeric silencing phenotypes seen previously in upf mutant strains. Increased dosage of STN1, especially in combination with increased dosage of TEN1, resulted in reduced telomere length that was indistinguishable from that in upf mutants. Increased levels of STN1 together with EST2 resulted in reduced telomeric silencing like that of upf mutants. The half-life of STN1 mRNA was not altered in upf mutant strains, suggesting that an NMD-controlled transcription factor regulates the levels of STN1 mRNA. Together, these results suggest that NMD maintains the balance of gene products that control telomere length and telomeric silencing primarily by maintaining appropriate levels of STN1, TEN1, and EST2 mRNA.
Collapse
Affiliation(s)
- Jeffrey N Dahlseid
- Department of Chemistry, St Olaf College, Northfield, Minnesota 55057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bénard C, Hekimi S. Long-lived mutants, the rate of aging, telomeres and the germline in Caenorhabditis elegans. Mech Ageing Dev 2002; 123:869-80. [PMID: 12044935 DOI: 10.1016/s0047-6374(02)00024-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Claire Bénard
- Department of Biology, McGill University, 1205 Avenue Dr Penfield, Quebec, Montreal, Canada
| | | |
Collapse
|
49
|
Abstract
The emerging field of nuclear eIF research has yielded many surprises and led to the dissolution of some dogmatic/ideological viewpoints of the place of translation in the regulation of gene expression. Eukaryotic initiation factors (eIFs) are classically defined by their cytoplasmic location and ability to regulate the initiation phase of protein synthesis. For instance, in the cytoplasm, the m7G cap-binding protein eIF4E plays a distinct role in cap-dependent translation initiation. Disruption of eIF4E's regulatory function drastically effects cell growth and may lead to oncogenic transformation. A growing number of studies indicate that many eIFs, including a substantial fraction of eIF4E, are found in the nucleus. Indeed, nuclear eIF4E participates in a variety of important RNA-processing events including the nucleocytoplasmic transport of specific, growth regulatory mRNAs. Although unexpected, it is possible that some eIFs regulate protein synthesis within the nucleus. This review will focus on the novel, nuclear functions of eIF4E and how they contribute to eIF4E's growth-activating and oncogenic properties. Both the cytoplasmic and nuclear functions of eIF4E appear to be dependent on its intrinsic ability to bind to the 5' m7G cap of mRNA. For example, Promyelocytic Leukemia Protein (PML) potentially acts as a negative regulator of nuclear eIF4E function by decreasing eIF4E's affinity for the m7G cap. Therefore, eIF4E protein is flexible enough to utilize a common biochemical activity, such as m7G cap binding, to participate in divergent processes in different cellular compartments.
Collapse
Affiliation(s)
- Stephen Strudwick
- Structural Biology Program, Department of Physiology & Biophysics, Mount Sinai School of Medicine, New York University, One Gustave Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
50
|
Bénard C, McCright B, Zhang Y, Felkai S, Lakowski B, Hekimi S. TheC. elegansmaternal-effect geneclk-2is essential for embryonic development, encodes a protein homologous to yeast Tel2p and affects telomere length. Development 2001; 128:4045-55. [PMID: 11641227 DOI: 10.1242/dev.128.20.4045] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans maternal-effect clk genes are involved in the temporal control of development and behavior. We report the genetic and molecular characterization of clk-2. A temperature-sensitive mutation in the gene clk-2 affects embryonic and post-embryonic development, reproduction, and rhythmic behaviors. Yet, virtually all phenotypes are fully maternally rescued. Embryonic development strictly requires the activity of maternal clk-2 during a narrow time window between oocyte maturation and the two- to four-cell embryonic stage. Positional cloning of clk-2 reveals that it encodes a protein homologous to S. cerevisiae Tel2p. In yeast, the gene TEL2 regulates telomere length and participates in gene silencing at subtelomeric regions. In C. elegans, clk-2 mutants have elongated telomeres, and clk-2 overexpression can lead to telomere shortening. Tel2p has been reported to bind to telomeric DNA repeats in vitro. However, we find that a functional CLK-2::GFP fusion protein is cytoplasmic in worms. We discuss how the phenotype of clk-2 mutants could be the result of altered patterns of gene expression.
Collapse
Affiliation(s)
- C Bénard
- Department of Biology, McGill University, 1205 Avenue Dr Penfield, H3A 1B1, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|