1
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Oropeza-Rodriguez E, Clifton BD, Ranz JM. On the genetic basis of the effect of Spiroplasma on the male reproductive fitness of Glossina fuscipes fuscipes. PLoS Pathog 2022; 18:e1010442. [PMID: 35377922 PMCID: PMC8979428 DOI: 10.1371/journal.ppat.1010442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Edward Oropeza-Rodriguez
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Bryan D. Clifton
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Morgan JL, Yeager A, Estelle AB, Gsponer J, Barbar E. Transient Tertiary Structures of Disordered Dynein Intermediate Chain Regulate its Interactions with Multiple Partners. J Mol Biol 2021; 433:167152. [PMID: 34273400 DOI: 10.1016/j.jmb.2021.167152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022]
Abstract
The N-terminal domain of dynein intermediate chain (N-IC) is central to the cytoplasmic dynein 'cargo attachment subcomplex' and regulation of motor activity. It is a prototypical intrinsically disordered protein (IDP), serving as a primarily disordered polybivalent molecular scaffold for numerous binding partners, including three dimeric dynein light chains and coiled coil domains of dynein partners dynactin p150Glued and NudE. At the very N-terminus, a 40 amino acid single alpha helix (SAH) forms the major binding site for both p150Glued and NudE, while a shorter nascent helix (H2) separated from SAH by a disordered linker, is necessary for tight binding to dynactin p150Glued but not to NudE. Here we demonstrate that transient tertiary interactions in this highly dynamic protein underlie the differences in its interactions with p150Glued and NudE. NMR paramagnetic relaxation enhancement experiments and restrained molecular dynamics simulations identify interactions between the two non-contiguous SAH and H2 helical regions, the extent of which correlates with the length and stability of H2, showing clearly that tertiary and secondary structure formation are coupled in IDPs. These interactions are significantly attenuated when N-IC is bound to NudE, suggesting that NudE binding shifts the conformational ensemble to one that is more extended and with less structure in H2. While the intrinsic disorder and flexibility in N-IC modulate its ability to serve as a binding platform for numerous partners, deviations of this protein from random-coil behavior provide a process for regulating these binding interactions and potentially the dynein motor.
Collapse
Affiliation(s)
- Jessica L Morgan
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Andrew Yeager
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aidan B Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
4
|
Clifton BD, Librado P, Yeh SD, Solares ES, Real DA, Jayasekera SU, Zhang W, Shi M, Park RV, Magie RD, Ma HC, Xia XQ, Marco A, Rozas J, Ranz JM. Rapid Functional and Sequence Differentiation of a Tandemly Repeated Species-Specific Multigene Family in Drosophila. Mol Biol Evol 2016; 34:51-65. [PMID: 27702774 DOI: 10.1093/molbev/msw212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection.
Collapse
Affiliation(s)
- Bryan D Clifton
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Shu-Dan Yeh
- Department of Life Sciences, National Central University, Taoyuan City, Zhongli District, Taiwan
| | - Edwin S Solares
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Daphne A Real
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Suvini U Jayasekera
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Ronni V Park
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Robert D Magie
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Hsiu-Ching Ma
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Antonio Marco
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadistica, and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
5
|
Pfister KK. Distinct functional roles of cytoplasmic dynein defined by the intermediate chain isoforms. Exp Cell Res 2015; 334:54-60. [PMID: 25576383 DOI: 10.1016/j.yexcr.2014.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 12/26/2014] [Indexed: 02/01/2023]
Abstract
The motor protein, cytoplasmic dynein is responsible for the movement of a variety of cargoes toward microtubule minus ends in cells. Little is understood about how dynein is regulated to specifically transport its various cargoes. In vertebrates, the dynein motor domain (DYNC1H) is encoded by a single gene; while there are two genes for the five smaller subunits that comprise the cargo binding domain of the dynein complex. The isoforms of the intermediate chain (DYNC1I) provide a good model system with which to study the roles the different isoforms of the cargo domain subunits have in designating specific dynein functions. The intermediate chains (DYNC1I) play a key scaffold role in the dynein complex. In neurons, dynein complexes with different intermediate chain isoforms have distinct roles, including cargo binding and transport. Some of the phospho-isoforms of the intermediate chain also specify binding to specific cargo. These data support the model that cytoplasmic dynein can be specifically regulated through the different isoforms of the subunits.
Collapse
Affiliation(s)
- K Kevin Pfister
- Cell Biology Department School of Medicine University of Virginia, PO Box 800732, Charlottesville, VA 22908, United States.
| |
Collapse
|
6
|
Hain D, Langlands A, Sonnenberg HC, Bailey C, Bullock SL, Müller HAJ. The Drosophila MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport. Development 2014; 141:2119-30. [PMID: 24803657 PMCID: PMC4011086 DOI: 10.1242/dev.104711] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cellularisation of the Drosophila syncytial blastoderm embryo into the polarised blastoderm epithelium provides an excellent model with which to determine how cortical plasma membrane asymmetry is generated during development. Many components of the molecular machinery driving cellularisation have been identified, but cell signalling events acting at the onset of membrane asymmetry are poorly understood. Here we show that mutations in drop out (dop) disturb the segregation of membrane cortical compartments and the clustering of E-cadherin into basal adherens junctions in early cellularisation. dop is required for normal furrow formation and controls the tight localisation of furrow canal proteins and the formation of F-actin foci at the incipient furrows. We show that dop encodes the single Drosophila homologue of microtubule-associated Ser/Thr (MAST) kinases. dop interacts genetically with components of the dynein/dynactin complex and promotes dynein-dependent transport in the embryo. Loss of dop function reduces phosphorylation of Dynein intermediate chain, suggesting that dop is involved in regulating cytoplasmic dynein activity through direct or indirect mechanisms. These data suggest that Dop impinges upon the initiation of furrow formation through developmental regulation of cytoplasmic dynein.
Collapse
Affiliation(s)
- Daniel Hain
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
7
|
Toledo MAS, Favaro MTP, Alves RF, Santos CA, Beloti LL, Crucello A, Santiago AS, Mendes JS, Horta MAC, Aparicio R, Souza AP, Azzoni AR. Characterization of the human dynein light chain Rp3 and its use as a non-viral gene delivery vector. Appl Microbiol Biotechnol 2013; 98:3591-602. [PMID: 24077724 DOI: 10.1007/s00253-013-5239-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 12/01/2022]
Abstract
Dynein light chains mediate the interaction between the cargo and the dynein motor complex during retrograde microtubule-mediated transport in eukaryotic cells. In this study, we expressed and characterized the recombinant human dynein light chain Rp3 and developed a modified variant harboring an N-terminal DNA-binding domain (Rp3-Db). Our approach aimed to explore the retrograde cell machinery based on dynein to enhance plasmid DNA (pDNA) traffic along the cytosol toward the nucleus. In the context of non-viral gene delivery, Rp3-Db is expected to simultaneously interact with DNA and dynein, thereby enabling a more rapid and efficient transport of the genetic material across the cytoplasm. We successfully purified recombinant Rp3 and obtained a low-resolution structural model using small-angle X-ray scattering. Additionally, we observed that Rp3 is a homodimer under reducing conditions and remains stable over a broad pH range. The ability of Rp3 to interact with the dynein intermediate chain in vitro was also observed, indicating that the recombinant Rp3 is correctly folded and functional. Finally, Rp3-Db was successfully expressed and purified and exhibited the ability to interact with pDNA and mediate the transfection of cultured HeLa cells. Rp3-Db was also capable of interacting in vitro with dynein intermediate chains, indicating that the addition of the N-terminal DNA-binding domain does not compromise its function. The transfection level observed for Rp3-Db is far superior than that reported for protamine and is comparable to that of the cationic lipid Lipofectamine™. This report presents an initial characterization of a non-viral delivery vector based on the dynein light chain Rp3 and demonstrates the potential use of modified human light chains as gene delivery vectors.
Collapse
|
8
|
Epidermal growth factor stimulates extracellular-signal regulated kinase phosphorylation of a novel site on cytoplasmic Dynein intermediate chain 2. Int J Mol Sci 2013; 14:3595-620. [PMID: 23434660 PMCID: PMC3588060 DOI: 10.3390/ijms14023595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022] Open
Abstract
Extracellular-signal regulated kinase (ERK) signaling is required for a multitude of physiological and patho-physiological processes. However, the identities of the proteins that ERK phosphorylates to elicit these responses are incompletely known. Using an affinity purification methodology of general utility, here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2, IC-2) as a novel substrate for ERK following epidermal growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a minus-end directed motor protein necessary for transport of diverse cargos along microtubules. Emerging data support the hypothesis that post-translational modification regulates dynein but the signaling mechanisms used are currently unknown. We find that ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 regulates dynein function through mechanisms other than its interaction with dynactin.
Collapse
|
9
|
Yeh SD, Do T, Abbassi M, Ranz JM. Functional relevance of the newly evolved sperm dynein intermediate chain multigene family in Drosophila melanogaster males. Commun Integr Biol 2012. [PMID: 23181161 PMCID: PMC3502208 DOI: 10.4161/cib.21136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In many animal species, traits associated with male fitness evolve rapidly. Intersexual conflict and male-male competition have been suggested to drive this rapid evolution. These fast evolutionary dynamics result in elevated rates of amino acid replacement and modification of gene expression attributes. Gene acquisition is another mechanism that might contribute to fitness differences among males. However, empirical evidence of fitness effects associated with newly evolved genes is scarce. The Sdic multigene family originated within the last 5.4 myr in the lineage that leads to D. melanogaster and encodes a sperm dynein intermediate chain presumably involved in sperm motility. The silencing of the Sdic multigene family, followed by the screening of relevant phenotypes, supports the role of the Sdic multigene family in sperm competition. The case of the Sdic multigene family illustrates the flexibility of genetic networks in incorporating lineage-specific gene novelties that can trigger an evolutionary arms race between males.
Collapse
Affiliation(s)
- Shu-Dan Yeh
- Department of Ecology and Evolutionary Biology; University of California; Irvine, CA USA
| | | | | | | |
Collapse
|
10
|
Novel genes from formation to function. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:821645. [PMID: 22811949 PMCID: PMC3395120 DOI: 10.1155/2012/821645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
The study of the evolution of novel genes generally focuses on the formation of new coding sequences. However, equally important in the evolution of novel functional genes are the formation of regulatory regions that allow the expression of the genes and the effects of the new genes in the organism as well. Herein, we discuss the current knowledge on the evolution of novel functional genes, and we examine in more detail the youngest genes discovered. We examine the existing data on a very recent and rapidly evolving cluster of duplicated genes, the Sdic gene cluster. This cluster of genes is an excellent model for the evolution of novel genes, as it is very recent and may still be in the process of evolving.
Collapse
|
11
|
Drosophila Dynein intermediate chain gene, Dic61B, is required for spermatogenesis. PLoS One 2011; 6:e27822. [PMID: 22145020 PMCID: PMC3228723 DOI: 10.1371/journal.pone.0027822] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
This study reports the identification and characterization of a novel gene, Dic61B, required for male fertility in Drosophila. Complementation mapping of a novel male sterile mutation, ms21, isolated in our lab revealed it to be allelic to CG7051 at 61B1 cytogenetic region, since two piggyBac insertion alleles, CG7051(c05439) and CG7051(f07138) failed to complement. CG7051 putatively encodes a Dynein intermediate chain. All three mutants, ms21, CG7051(c05439) and CG7051(f07138), exhibited absolute recessive male sterility with abnormally coiled sperm axonemes causing faulty sperm individualization as revealed by Phalloidin staining in Don Juan-GFP background. Sequencing of PCR amplicons uncovered two point mutations in ms21 allele and confirmed the piggyBac insertions in CG7051(c05439) and CG7051(f07138) alleles to be in 5'UTR and 4(th) exon of CG7051 respectively, excision of which reverted the male sterility. In situ hybridization to polytene chromosomes demonstrated CG7051 to be a single copy gene. RT-PCR of testis RNA revealed defective splicing of the CG7051 transcripts in mutants. Interestingly, expression of cytoplasmic dynein intermediate chain, α, β, γ tubulins and α-spectrin was normal in mutants while ultra structural studies revealed defects in the assembly of sperm axonemes. Bioinformatics further highlighted the homology of CG7051 to axonemal dynein intermediate chain of various organisms, including DNAI1 of humans, mutations in which lead to male sterility due to immotile sperms. Based on these observations we conclude that CG7051 encodes a novel axonemal dynein intermediate chain essential for male fertility in Drosophila and rename it as Dic61B. This is the first axonemal Dic gene of Drosophila to be characterized at molecular level and shown to be required for spermatogenesis.
Collapse
|
12
|
Zhan Z, Ding Y, Zhao R, Zhang Y, Yu H, Zhou Q, Yang S, Xiang H, Wang W. Rapid functional divergence of a newly evolved polyubiquitin gene in Drosophila and its role in the trade-off between male fecundity and lifespan. Mol Biol Evol 2011; 29:1407-16. [PMID: 22135190 DOI: 10.1093/molbev/msr299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cost of reproduction is a pivotal trade-off with various biological processes during the evolution of organisms. However, the genes and molecular mechanisms underlying the evolution of balancing reproductive capacity and its cost are still largely unknown. Here, we present a comprehensive study on the evolution, expression, and biological functions of a newly evolved pair of X-linked polyubiquitin tandemly duplicated genes, CG32744 and CG11700, of which the duplication event occurred in Drosophila melanogaster lineage after the split from D. simulans clade. We found that CG32744 retains conserved polyubiquitin-coding sequences across Drosophila species and is ubiquitously expressed, whereas CG11700 has accumulated numerous amino acid changes and shows a male-specific expression pattern. Null mutants of CG11700 have a higher male fecundity but shorter lifespan, whereas its overexpression decreases male fecundity. In contrast, the null mutants of the peptide-conserved CG32744 do not exhibit such phenotypes. These results suggest that CG11700 might have experienced neofunctionalization and evolved important functions in the trade-off between male fecundity and lifespan and that CG32744 likely has retained the ancestral function.
Collapse
Affiliation(s)
- Zubing Zhan
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
MA FEI, ZHUANG YONGLONG, CHEN LIMING, LIN LUPING, LI YANDA, XU XIAOFENG, CHEN XUEPING. COMPARING SYNONYMOUS CODON USAGE OF ALTERNATIVELY SPLICED GENES WITH NON-ALTERNATIVELY SPLICED GENES IN HUMAN GENOME. J BIOL SYST 2011. [DOI: 10.1142/s021833900400104x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is becoming clear that alternative splicing plays an important role in expanding protein diversity. However, the previous studies on codons usage did not distinguish alternative splicing from non-alternative splicing. Do codon usage patterns hold distinctions between them? Thus, we attempted to systematically compare the differences of synonymous codon usage patterns between alternatively and non-alternatively spliced genes by analyzing the large datasets from human genome. The results indicated:(1) There are highly significant differences in the average Nc values between non-alternatively spliced genes and the longer isoform genes as well as the shorter isoform genes, and the level of codon usage bias of non-alternatively spliced genes is to some extent higher than that in alternatively spliced genes.(2) Very extensive heterogeneity of G+C content in silent third codon position (GC3s) was evident among these genes, and it could be also shown there are highly significant differences in the average GC3s values between non-alternatively spliced genes and the longer isoform genes as well as the shorter isoform genes.(3) The Nc-plots and correspondence analysis reveal that codon usage bias are mainly dominated by mutation bias, and no correlation between gene expression level and synonymous codon biased usage is found in human genes.(4) Overall codon usage data analysis indicated that the C-ending codons usage has a highly significant differences between the longer isoform genes and non-alternatively spliced genes as well as the shorter isoform genes, it further found out that there is no significant differences of C-ending codons usage between the shorter isoform genes and non-alternatively spliced genes.Finally, our results seem to imply that alternative splicing gene may originate from non-alternative splicing gene, and may be created by DNA mutation or gene fusion, and be retained through nature selection and adaptive evolution.
Collapse
Affiliation(s)
- FEI MA
- School of Life Science, Xiamen University, Xiamen 361005, China
- Institute of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - YONGLONG ZHUANG
- Institute of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - LIMING CHEN
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - LUPING LIN
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - YANDA LI
- Institute of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - XIAOFENG XU
- Life Science College, Nanjing Normal University, Nanjing 210097, China
| | - XUEPING CHEN
- College of Economics and Technology, University of Science and Technology of China, Hefei 230052, China
| |
Collapse
|
14
|
Morgan JL, Song Y, Barbar E. Structural dynamics and multiregion interactions in dynein-dynactin recognition. J Biol Chem 2011; 286:39349-59. [PMID: 21931160 PMCID: PMC3234759 DOI: 10.1074/jbc.m111.296277] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 09/19/2011] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic dynein is a 1.2-MDa multisubunit motor protein complex that, together with its activator dynactin, is responsible for the majority of minus end microtubule-based motility. Dynactin targets dynein to specific cellular locations, links dynein to cargo, and increases dynein processivity. These two macromolecular complexes are connected by a direct interaction between dynactin's largest subunit, p150(Glued), and dynein intermediate chain (IC) subunit. Here, we demonstrate using NMR spectroscopy and isothermal titration calorimetry that the binding footprint of p150(Glued) on IC involves two noncontiguous recognition regions, and both are required for full binding affinity. In apo-IC, the helical structure of region 1, the nascent helix of region 2, and the disorder in the rest of the chain are determined from coupling constants, amide-amide sequential NOEs, secondary chemical shifts, and various dynamics measurements. When bound to p150(Glued), different patterns of spectral exchange broadening suggest that region 1 forms a coiled-coil and region 2 a packed stable helix, with the intervening residues remaining disordered. In the 150-kDa complex of p150(Glued), IC, and two light chains, the noninterface segments remain disordered. The multiregion IC binding interface, the partial disorder of region 2 and its potential for post-translational modification, and the modulation of the length of the longer linker by alternative splicing may provide a basis for elegant and multifaceted regulation of binding between IC and p150(Glued). The long disordered linker between the p150(Glued) binding segments and the dynein light chain consensus sequences could also provide an attractive recognition platform for diverse cargoes.
Collapse
Affiliation(s)
- Jessica L. Morgan
- From the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Yujuan Song
- From the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Elisar Barbar
- From the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
15
|
Dorus S, Wilkin EC, Karr TL. Expansion and functional diversification of a leucyl aminopeptidase family that encodes the major protein constituents of Drosophila sperm. BMC Genomics 2011; 12:177. [PMID: 21466698 PMCID: PMC3078892 DOI: 10.1186/1471-2164-12-177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/05/2011] [Indexed: 11/12/2022] Open
Abstract
Background The evolutionary diversification of gene families through gene creation (and loss) is a dynamic process believed to be critical to the evolution of functional novelty. Previous identification of a closely related family of eight annotated metalloprotease genes of the M17 Merops family in the Drosophila sperm proteome (termed, Sperm-LeucylAminoPeptidases, S-LAPs 1-8) led us to hypothesize that this gene family may have experienced such a diversification during insect evolution. Results To assess putative functional activities of S-LAPs, we (i) demonstrated that all S-LAPs are specifically expressed in the testis, (ii) confirmed their presence in sperm by two-dimensional gel electrophoresis and mass spectrometry, (iii) determined that they represent a major portion of the total protein in sperm and (iv) identified aminopeptidase enzymatic activity in sperm extracts using LAP-specific substrates. Functionally significant divergence at the canonical M17 active site indicates that the largest phylogenetic group of S-LAPs lost catalytic activity and likely acquired novel, as yet undetermined, functions in sperm prior to the expansion of the gene family. Conclusions Comparative genomic and phylogenetic analyses revealed the dramatic expansion of the S-LAP gene family during Drosophila evolution and copy number heterogeneity in the genomes of related insects. This finding, in conjunction with the loss of catalytic activity and potential neofunctionalization amongst some family members, extends empirical support for pervasive "revolving door" turnover in the evolution of reproductive gene family composition and function.
Collapse
Affiliation(s)
- Steve Dorus
- Centers for Evolutionary Medicine and Informatics and Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA.
| | | | | |
Collapse
|
16
|
Nyarko A, Barbar E. Light chain-dependent self-association of dynein intermediate chain. J Biol Chem 2011; 286:1556-66. [PMID: 20974845 PMCID: PMC3020764 DOI: 10.1074/jbc.m110.171686] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/15/2010] [Indexed: 11/06/2022] Open
Abstract
Dynein light chains are bivalent dimers that bind two copies of dynein intermediate chain IC to form a cargo attachment subcomplex. The interaction of light chain LC8 with the natively disordered N-terminal domain of IC induces helix formation at distant IC sites in or near a region predicted to form a coiled-coil. This fostered the hypothesis that LC8 binding promotes IC self-association to form a coiled-coil or other interchain helical structure. However, recent studies show that the predicted coiled-coil sequence partially overlaps the light chain LC7 recognition sequence on IC, raising questions about the apparently contradictory effects of LC8 and LC7. Here, we use NMR and fluorescence quenching to localize IC self-association to residues within the predicted coiled-coil that also correspond to helix 1 of the LC7 recognition sequence. LC8 binding promotes IC self-association of helix 1 from each of two IC chains, whereas LC7 binding reverses self-association by incorporating the same residues into two symmetrical, but distant, helices of the LC7-IC complex. Isothermal titration experiments confirm the distinction of LC8 enhancement of IC self-association and LC7 binding effects. When all three light chains are bound, IC self-association is shifted to another region. Such flexibility in association modes may function in maintaining a stable and versatile light chain-intermediate chain assembly under changing cellular conditions.
Collapse
Affiliation(s)
- Afua Nyarko
- From the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Elisar Barbar
- From the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
17
|
Zhan Z, Ren J, Zhang Y, Zhao R, Yang S, Wang W. Evolution of alternative splicing in newly evolved genes of Drosophila. Gene 2011; 470:1-6. [DOI: 10.1016/j.gene.2010.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 08/18/2010] [Accepted: 09/02/2010] [Indexed: 12/25/2022]
|
18
|
Kuta A, Deng W, Morsi El-Kadi A, Banks GT, Hafezparast M, Pfister KK, Fisher EMC. Mouse cytoplasmic dynein intermediate chains: identification of new isoforms, alternative splicing and tissue distribution of transcripts. PLoS One 2010; 5:e11682. [PMID: 20657784 PMCID: PMC2908135 DOI: 10.1371/journal.pone.0011682] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 06/20/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Intracellular transport of cargoes including organelles, vesicles, signalling molecules, protein complexes, and RNAs, is essential for normal function of eukaryotic cells. The cytoplasmic dynein complex is an important motor that moves cargos along microtubule tracks within the cell. In mammals this multiprotein complex includes dynein intermediate chains 1 and 2 which are encoded by two genes, Dync1i1 and Dync1i2. These proteins are involved in dynein cargo binding and dynein complexes with different intermediate chains bind to specific cargoes, although the mechanisms to achieve this are not known. The DYNC1I1 and DYNC1I2 proteins are translated from different splice isoforms, and specific forms of each protein are essential for the function of different dynein complexes in neurons. METHODOLOGY/PRINCIPAL FINDINGS Here we have undertaken a systematic survey of the dynein intermediate chain splice isoforms in mouse, basing our study on mRNA expression patterns in a range of tissues, and on bioinformatics analysis of mouse, rat and human genomic and cDNA sequences. We found a complex pattern of alternative splicing of both dynein intermediate chain genes, with maximum complexity in the embryonic and adult nervous system. We have found novel transcripts, including some with orthologues in human and rat, and a new promoter and alternative non-coding exon 1 for Dync1i2. CONCLUSIONS/SIGNIFICANCE These data, including the cloned isoforms will be essential for understanding the role of intermediate chains in the cytoplasmic dynein complex, particularly their role in cargo binding within individual tissues including different brain regions.
Collapse
Affiliation(s)
- Anna Kuta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Wenhan Deng
- Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Ali Morsi El-Kadi
- Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Gareth T. Banks
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Majid Hafezparast
- Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Elizabeth M. C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
19
|
Hall J, Song Y, Karplus PA, Barbar E. The crystal structure of dynein intermediate chain-light chain roadblock complex gives new insights into dynein assembly. J Biol Chem 2010; 285:22566-75. [PMID: 20472935 DOI: 10.1074/jbc.m110.103861] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roadblock/LC7 dynein light chain is a ubiquitous component of all dyneins and is essential for many diverse processes including proper axonal transport and dendrite growth. In addition, LC7 functions in non-dynein transcriptional activation of the transforming growth factor-beta complex. Crystal structures of Drosophila melanogaster LC7 in the apo form and in complex with a segment of the disordered N-terminal domain of dynein intermediate chain (IC) provide the first definitive identification of the IC sequence recognized by LC7. The site, confirmed by isothermal titration calorimetry studies, overlaps the IC sequence considered in the literature to be an IC self-association domain. The IC peptide binds as two amphipathic helices that lie along an extensive hydrophobic cleft on LC7 and ends with a polar side-chain interaction network that includes conserved residues from both proteins. The LC7 recognition sequence on IC and its interface with LC7 are well conserved and are, thus, likely representative of all IC x LC7 structures. Interestingly, the position of bound IC in the IC x LC7 complex mimics a helix that is integrated into the primary structure in distantly related LC7 homologs. The IC x LC7 structure further shows that the naturally occurring robl(Z) deletion mutation contains the majority of the IC binding site and suggests that promotion of IC binding by phosphorylation of LC7 is an indirect effect.
Collapse
Affiliation(s)
- Justin Hall
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
20
|
Abstract
NMR is a powerful tool for quantitative measurement of the thermodynamic properties of biological systems. In this review, we discuss the role NMR has played in understanding the various coupled equilibria in dimerization of dynein light chain LC8 and in its interactions with its ligands. LC8, a very highly conserved 89-residue homodimer also known as DYNLL, is an essential component of the dynein and Myosin V molecular motors and is also found in various other complexes. LC8 binds to disordered segments of its partners, promoting them to dimerize and form more ordered structures, often coiled coils. The monomer-dimer equilibrium is controlled by electrostatic interactions at the dimer interface, such as by phosphorylation of residue Ser88, which is a regulatory mechanism for LC8 in vivo. NMR experiments have uncovered several subtle interactions--weak dimerization of a phosphomimetic mutant, and allosteric interaction between the LC8 binding sites--that have been overlooked by other methods. NMR has also provided a residue-specific view of the titration of histidine residues at the LC8 dimer interface, and of a nascent helix in one of the binding partners, the primarily disordered dynein intermediate chain IC74. We give special attention to methods for quantitative interpretation of NMR spectra, an important consideration when using NMR to measure equilibria.
Collapse
|
21
|
Myers KR, Lo KWH, Lye RJ, Kogoy JM, Soura V, Hafezparast M, Pfister KK. Intermediate chain subunit as a probe for cytoplasmic dynein function: biochemical analyses and live cell imaging in PC12 cells. J Neurosci Res 2008; 85:2640-7. [PMID: 17279546 DOI: 10.1002/jnr.21213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytoplasmic dynein 1 is a multi-subunit motor protein responsible for microtubule minus end-directed transport in axons. The cytoplasmic dynein intermediate chain subunit has a scaffold-like role in the dynein complex; it directly binds to four of the other five subunits, the heavy chain and the three light chains. The intermediate chain also binds the p150 subunit of dynactin, a protein that is essential for many dynein functions. We reexamined the generation of rat cytoplasmic dynein intermediate chain isoforms by the alternative splicing of the two genes that encode this subunit and identified an additional splicing site in intermediate chain gene 1. We reinvestigated the expression of the intermediate chain 1 isoforms in cultured cells and tissues. The Loa mouse, which is homozygote lethal, contains a missense mutation in the region of the cytoplasmic dynein heavy chain gene that binds the intermediate chain. Protein binding studies showed that all six intermediate chains were able to bind to the mutated heavy chain. GFP-tagged intermediate chains were constructed and PC12 cell lines with stable expression of the fusion proteins were established. Live cell imaging and comparative immunocytochemical analyses show that dynein is enriched in the actin rich region of growth cones.
Collapse
Affiliation(s)
- Kenneth R Myers
- Cell Biology Department, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lo KWH, Kogoy JM, Rasoul BA, King SM, Pfister KK. Interaction of the DYNLT (TCTEX1/RP3) light chains and the intermediate chains reveals novel intersubunit regulation during assembly of the dynein complex. J Biol Chem 2007; 282:36871-8. [PMID: 17965411 DOI: 10.1074/jbc.m705991200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic dynein 1 cargo binding domain is formed by five subunits including the intermediate chain and the DYNLT, DYNLL, and DYNLRB light chain families. Six isoforms of the intermediate chain and two isoforms of each of the light chain families have been identified in mammals. There is evidence that different subunit isoforms are involved in regulating dynein function, in particular linking dynein to different cargoes. However, it is unclear how the subunit isoforms are assembled or if there is any specificity to their interactions. Co-immunoprecipitation using DYNLT-specific antibodies reveals that dynein complexes with DYNLT light chains also contain the DYNLL and DYNLRB light chains. The DYNLT light chains, but not DYNLL light chains, associate exclusively with the dynein complex. Yeast two-hybrid and co-immunoprecipitation assays demonstrate that both members of the DYNLT family are capable of forming homodimers and heterodimers. In addition, both homodimers of the DYNLT family bind all six intermediate chain isoforms. However, DYNLT heterodimers do not bind to the intermediate chain. Thus, whereas all combinations of DYNLT light chain dimers can be made, not all of the possible combinations of the isoforms are utilized during the assembly of the dynein complex.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
23
|
Ponce R, Hartl DL. The evolution of the novel Sdic gene cluster in Drosophila melanogaster. Gene 2006; 376:174-83. [PMID: 16765537 DOI: 10.1016/j.gene.2006.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 02/14/2006] [Accepted: 02/16/2006] [Indexed: 11/17/2022]
Abstract
The origin of new genes and of new functions for existing genes are fundamental processes in molecular evolution. Sdic is a newly evolved gene that arose recently in the D. melanogaster lineage. The gene encodes a novel sperm motility protein. It is a chimeric gene formed by duplication of two other genes followed by multiple deletions and other sequence rearrangements. The Sdic gene exists in several copies in the X chromosome, and is presumed to have undergone several duplications to form a tandemly arrayed gene cluster. Given the very recent origin of the gene and the gene cluster, the analysis of the composition of this gene cluster represents an excellent opportunity to study the origin and evolution of new gene functions and the fate of gene duplications. We have analyzed the nucleotide sequence of this region and reconstructed the evolutionary history of this gene cluster. We found that the cluster is composed by four tandem copies of Sdic; these duplicates are very similar but can be distinguished by the unique pattern of insertions, deletions, and point mutations in each copy. The oldest gene copy in the array has a 3' exon that has undergone accelerated diversification, and also shows divergent regulatory sequences. Moreover, there is evidence that this might be the only gene copy in the tandem array that is transcribed at a significant level, expressing a novel sperm-specific protein. There is also a retrotransposon located at the 3' end of each Sdic gene copy. We argue that this gene cluster was formed in the last two million years by at least three tandem duplications and one retrotransposition event.
Collapse
MESH Headings
- 3' Untranslated Regions
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Axonemal Dyneins
- Base Sequence
- DNA, Intergenic/chemistry
- Drosophila Proteins/chemistry
- Drosophila Proteins/genetics
- Drosophila melanogaster/genetics
- Dyneins/chemistry
- Dyneins/genetics
- Evolution, Molecular
- Exons
- Gene Deletion
- Gene Dosage
- Gene Duplication
- Gene Rearrangement
- Genes, Insect
- Genes, X-Linked
- Genetic Variation
- Molecular Sequence Data
- Multigene Family
- Mutagenesis, Insertional
- Phylogeny
- Point Mutation
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Regulatory Sequences, Nucleic Acid
- Retroelements
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- Rita Ponce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
24
|
Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EMC. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2006; 2:e1. [PMID: 16440056 PMCID: PMC1331979 DOI: 10.1371/journal.pgen.0020001] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.
Collapse
Affiliation(s)
- K Kevin Pfister
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Upon infection, virions or subviral nucleoprotein complexes are transported from the cell surface to the site of viral transcription and replication. During viral egress, particles containing viral proteins and nucleic acids again move from the site of their synthesis to that of virus assembly and further to the plasma membrane. Because free diffusion of molecules larger than 500 kDa is restricted in the cytoplasm, viruses as well as cellular organelles employ active, energy-consuming enzymes for directed transport. This is particularly evident in the case of neurotropic viruses that travel long distances in the axon during retrograde or anterograde transport. Viruses use two strategies for intracellular transport: Viral components either hijack the cytoplasmic membrane traffic or they interact directly with the cytoskeletal transport machinery. In this review we describe how viruses--particularly members of the Herpesviridae, Adenoviridae, Parvoviridae, Poxviridae, and Baculoviridae--make use of the microtubule and the actin cytoskeleton. Analysing the underlying principles of viral cytosolic transport will be helpful in the design of viral vectors to be used in research as well as human gene therapy, and in the identification of new antiviral target molecules.
Collapse
Affiliation(s)
- K Döhner
- Department of Virology, Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany
| | | |
Collapse
|
26
|
Guo Y, Jangi S, Welte MA. Organelle-specific control of intracellular transport: distinctly targeted isoforms of the regulator Klar. Mol Biol Cell 2005; 16:1406-16. [PMID: 15647372 PMCID: PMC551502 DOI: 10.1091/mbc.e04-10-0920] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/22/2004] [Accepted: 12/30/2004] [Indexed: 01/22/2023] Open
Abstract
Microtubule-based transport in cells is powered by a small set of distinct motors, yet timing and destination of transport can be controlled in a cargo-specific manner. The mechanistic basis for this specificity is not understood. To address this question, we analyzed the Drosophila Klarsicht (Klar) protein that regulates distinct microtubule-based transport processes. We find that localization of Klar to its cargoes is crucial for Klar function. Using mutations, we identify functionally important regions of Klar that confer distinct cargo specificity. In ovaries, Klar is present on the nuclear envelope, a localization that requires the C-terminal KASH domain. In early embryos, Klar is attached to lipid droplets, a localization mediated by a novel C-terminal domain encoded by an alternatively spliced exon. In cultured cells, these two domains are sufficient for targeting to the correct intracellular location. Our analysis disentangles Klar's modular organization: we propose that a core region integral to motor regulation is attached to variable domains so that the cell can target regulators with overlapping, yet distinct functions to specific cargoes. Such isoform variation may be a general strategy for adapting a common regulatory mechanism to specifically control motion and positioning of multiple organelles.
Collapse
Affiliation(s)
- Yi Guo
- Rosenstiel Biomedical Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
27
|
Lee WL, Kaiser MA, Cooper JA. The offloading model for dynein function: differential function of motor subunits. ACTA ACUST UNITED AC 2005; 168:201-7. [PMID: 15642746 PMCID: PMC2171595 DOI: 10.1083/jcb.200407036] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During mitosis in budding yeast, dynein moves the mitotic spindle into the mother-bud neck. We have proposed an offloading model to explain how dynein works. Dynein is targeted to the dynamic plus end of a cytoplasmic microtubule, offloads to the cortex, becomes anchored and activated, and then pulls on the microtubule. Here, we perform functional studies of dynein intermediate chain (IC) and light intermediate chain (LIC). IC/Pac11 and LIC/Dyn3 are both essential for dynein function, similar to the heavy chain (HC/Dyn1). IC and LIC are targeted to the distal plus ends of dynamic cytoplasmic microtubules, as is HC, and their targeting depends on HC. Targeting of HC to the plus end depends on IC, but not LIC. IC also localizes as stationary dots at the cell cortex, the presumed result of offloading in our model, as does HC, but not LIC. Localization of HC to cortical dots depends on both IC and LIC. Thus, the IC and LIC accessory chains have different but essential roles in dynein function, providing new insight into the offloading model.
Collapse
Affiliation(s)
- Wei-Lih Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
28
|
Offman MN, Nurtdinov RN, Gelfand MS, Frishman D. No statistical support for correlation between the positions of protein interaction sites and alternatively spliced regions. BMC Bioinformatics 2004; 5:41. [PMID: 15096275 PMCID: PMC419334 DOI: 10.1186/1471-2105-5-41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 04/19/2004] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Alternative splicing is an efficient mechanism for increasing the variety of functions fulfilled by proteins in a living cell. It has been previously demonstrated that alternatively spliced regions often comprise functionally important and conserved sequence motifs. The objective of this work was to test the hypothesis that alternative splicing is correlated with contact regions of protein-protein interactions. RESULTS Protein sequence spans involved in contacts with an interaction partner were delineated from atomic structures of transient interaction complexes and juxtaposed with the location of alternatively spliced regions detected by comparative genome analysis and spliced alignment. The total of 42 alternatively spliced isoforms were identified in 21 amino acid chains involved in biomolecular interactions. Using this limited dataset and a variety of sophisticated counting procedures we were not able to establish a statistically significant correlation between the positions of protein interaction sites and alternatively spliced regions. CONCLUSIONS This finding contradicts a naïve hypothesis that alternatively spliced regions would correlate with points of contact. One possible explanation for that could be that all alternative splicing events change the spatial structure of the interacting domain to a sufficient degree to preclude interaction. This is indirectly supported by the observed lack of difference in the behaviour of relatively short regions affected by alternative splicing and cases when large portions of proteins are removed. More structural data on complexes of interacting proteins, including structures of alternative isoforms, are needed to test this conjecture.
Collapse
Affiliation(s)
- Marc N Offman
- Department of Genome Oriented Bioinformatics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85350 Freising, Germany
| | - Ramil N Nurtdinov
- Department of Bioengineering and Bioinformatics, Moscow State University, Lab. Bldg. B, Leninskie Gory 1-73, Moscow, 119992, Russia
| | - Mikhail S Gelfand
- Institute for Problems of Information Transmission, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow, 127994, Russia
- State Scientific Center GosNIIGenetika, 1st Dorozhny pr. 1, Moscow 117545, Russia
| | - Dmitrij Frishman
- Department of Genome Oriented Bioinformatics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85350 Freising, Germany
| |
Collapse
|
29
|
Barbar E, Hare M. Characterization of the Cargo Attachment Complex of Cytoplasmic Dynein Using NMR and Mass Spectrometry. Methods Enzymol 2004; 380:219-41. [PMID: 15051340 DOI: 10.1016/s0076-6879(04)80011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Elisar Barbar
- Department of Chemistry and Biochemistry, Ohio University, Athens 45701, USA
| | | |
Collapse
|
30
|
Byers HR, Maheshwary S, Amodeo DM, Dykstra SG. Role of cytoplasmic dynein in perinuclear aggregation of phagocytosed melanosomes and supranuclear melanin cap formation in human keratinocytes. J Invest Dermatol 2003; 121:813-20. [PMID: 14632200 DOI: 10.1046/j.1523-1747.2003.12481.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytoplasmic dynein is a microtubule-associated motor molecule involved in the retrograde transport of membrane-bound organelles. To determine whether the supranuclear melanin cap of transferred, phagocytosed melanosomes in keratinocytes is associated with cytoplasmic dynein, we performed immunofluorescent confocal microscopy on human keratinocytes in situ. We identified the intermediate chain of cytoplasmic dynein by immunoblotting and examined its distribution by confocal microscopy in relation to microtubules and melano-phagolysosomes in vitro. We also used antisense and sense oligonucleotides of the cytoplasmic dynein heavy chain 1 (Dyh1) and time-lapse and microscopy. The intermediate chain of cytoplasmic dynein was identified in extracts of human foreskin epidermis and in isolated human keratinocytes. The intermediate chain localized with the perinuclear melano-phagolysosomal aggregates in vitro and the supranuclear melanin cap in situ. Antisense oligonucleotides directed towards Dyh1 resulted in dispersal of the keratinocyte perinuclear melano-phagolysosomal aggregates after 24 to 48 h, whereas cells treated with diluent or sense oligonucleotides maintained tight perinuclear aggregates. Taken together, these findings indicate that in human keratinocytes, the retrograde microtubule motor cytoplasmic dynein mediates the perinuclear aggregation of phagocytosed melanosomes, participates in the formation of the supranuclear melanin cap or "microparasol" and serves as a mechanism to help protect the nucleus from ultraviolet-induced DNA damage.
Collapse
Affiliation(s)
- H Randolph Byers
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
31
|
Reilein AR, Serpinskaya AS, Karcher RL, Dujardin DL, Vallee RB, Gelfand VI. Differential regulation of dynein-driven melanosome movement. Biochem Biophys Res Commun 2003; 309:652-8. [PMID: 12963040 DOI: 10.1016/j.bbrc.2003.08.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytoplasmic dyneins are multisubunit minus-end-directed microtubule motors. Different isoforms of dynein are thought to provide a means for independent movement of different organelles. We investigated the differential regulation of dynein-driven transport of pigment organelles (melanosomes) in Xenopus melanophores. Aggregation of melanosomes to the cell center does not change the localization of mitochondria, nor does dispersion of melanosomes cause a change in the perinuclear localization of the Golgi complex, indicating that melanosomes bear a dedicated form of dynein. We examined the subcellular fractionation behavior of dynein light intermediate chains (LIC) and identified at least three forms immunologically, only one of which fractionated with melanosomes. Melanosome aggregation was specifically blocked after injection of an antibody recognizing this LIC. Our data indicate that melanosome-associated dynein is regulated independently of bulk cytoplasmic dynein and involves a subfraction of dynein with a distinct subunit composition.
Collapse
Affiliation(s)
- Amy R Reilein
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
32
|
Westbroek W, Lambert J, Bahadoran P, Busca R, Herteleer MC, Smit N, Mommaas M, Ballotti R, Naeyaert JM. Interactions of human Myosin Va isoforms, endogenously expressed in human melanocytes, are tightly regulated by the tail domain. J Invest Dermatol 2003; 120:465-75. [PMID: 12603861 DOI: 10.1046/j.1523-1747.2003.12068.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary human epidermal melanocytes express six endogenous isoforms of the human actin-associated myosin Va motor protein, involved in organelle transport. As isoforms containing exon F are most abundant in melanocytes, we hypothesized that these isoforms probably have a melanocyte-specific function. To uncover the biologic role of the six isoforms we introduced enhanced green fluorescent protein (eGFP)-myosin Va tail constructs in human melanocytes. We found that the medial tail, undergoing alternative splicing, has to be expressed in combination with the globular tail in order to obtain clear colocalization with organelles. Our data show that isoforms lacking exon F but containing exon D are associated with vesicles near the Golgi area. Myosin Va isoforms containing exon F are able to colocalize with and influence melanosome distribution by indirect interaction with rab27a and direct interaction with melanophilin. These results indicate that the myosin Va medial tail domain provides the globular tail domain with organelle-interacting specificity.
Collapse
Affiliation(s)
- Wendy Westbroek
- Department of Dermatology, Ghent University Hospital, B-Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boylan KLM, Hays TS. The gene for the intermediate chain subunit of cytoplasmic dynein is essential in Drosophila. Genetics 2002; 162:1211-20. [PMID: 12454067 PMCID: PMC1462348 DOI: 10.1093/genetics/162.3.1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microtubule motor cytoplasmic dynein powers a variety of intracellular transport events that are essential for cellular and developmental processes. A current hypothesis is that the accessory subunits of the dynein complex are important for the specialization of cytoplasmic dynein function. In a genetic approach to understanding the range of dynein functions and the contribution of the different subunits to dynein motor function and regulation, we have identified mutations in the gene for the cytoplasmic dynein intermediate chain, Dic19C. We used a functional Dic transgene in a genetic screen to recover X-linked lethal mutations that require this transgene for viability. Three Dic mutations were identified and characterized. All three Dic alleles result in larval lethality, demonstrating that the intermediate chain serves an essential function in Drosophila. Like a deficiency that removes Dic19C, the Dic mutations dominantly enhance the rough eye phenotype of Glued(1), a dominant mutation in the gene for the p150 subunit of the dynactin complex, a dynein activator. Additionally, we used complementation analysis to identify an existing mutation, shortwing (sw), as an allele of the dynein intermediate chain gene. Unlike the Dic alleles isolated de novo, shortwing is homozygous viable and exhibits recessive and temperature-sensitive defects in eye and wing development. These phenotypes are rescued by the wild-type Dic transgene, indicating that shortwing is a viable allele of the dynein intermediate chain gene and revealing a novel role for dynein function during wing development.
Collapse
Affiliation(s)
- Kristin L M Boylan
- University of Minnesota, Department of Genetics, Cell Biology and Development, Minneapolis 55455, USA
| | | |
Collapse
|
34
|
Abstract
Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain-binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo.
Collapse
Affiliation(s)
- Stephen J King
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
35
|
Zhang J, Han G, Xiang X. Cytoplasmic dynein intermediate chain and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans. Mol Microbiol 2002; 44:381-92. [PMID: 11972777 DOI: 10.1046/j.1365-2958.2002.02900.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The multisubunit microtubule motor, cytoplasmic dynein, targets to various subcellular locations in eukaryotic cells for various functions. The cytoplasmic dynein heavy chain (HC) contains the microtubule binding and ATP binding sites for motor function, whereas the intermediate chain (IC) is implicated in the in vivo targeting of the HC. Concerning any targeting event, it is not known whether the IC has to form a complex with the HC for targeting or whether the IC can target to a site independently of the HC. In the filamentous fungus Aspergillus nidulans, the dynein HC is localized to the ends of microtubules near the hyphal tip. In this study, we demonstrate that our newly identified dynein IC in A. nidulans is also localized to microtubule ends and is required for HC's localization to microtubule ends in living cells. With the combination of two reagents, an HC loss-of function mutant and the green fluorescent protein (GFP)-fused IC that retains its function, we show that the IC's localization to microtubule ends also requires HC, suggesting that cytoplasmic dynein HC-IC complex formation is important for microtubule end targeting. In addition, we show that the HC localization is not apparently altered in the deletion mutant of NUDF, a LIS1-like protein that interacts directly with the ATP-binding domain of the HC. Our study suggests that, although HC-IC association is important for the targeting of dynein to microtubule ends, other essential components, such as NUDF, may interact with the targeted dynein complex to produce full motor activities in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, USUHS, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
36
|
Lozovsky ER, Nurminsky D, Wimmer EA, Hartl DL. Unexpected stability of mariner transgenes in Drosophila. Genetics 2002; 160:527-35. [PMID: 11861559 PMCID: PMC1461967 DOI: 10.1093/genetics/160.2.527] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A number of mariner transformation vectors based on the mauritiana subfamily of transposable elements were introduced into the genome of Drosophila melanogaster and examined for their ability to be mobilized by the mariner transposase. Simple insertion vectors were constructed from single mariner elements into which exogenous DNA ranging in size from 1.3 to 4.5 kb had been inserted; composite vectors were constructed with partial or complete duplications of mariner flanking the exogenous DNA. All of the simple insertion vectors showed levels of somatic and germline excision that were at least 100-fold lower than the baseline level of uninterrupted mariner elements. Although composite vectors with inverted duplications were unable to be mobilized at detectable frequencies, vectors with large direct duplications of mariner could be mobilized. A vector consisting of two virtually complete elements flanking exogenous DNA yielded a frequency of somatic eye-color mosaicism of approximately 10% and a frequency of germline excision of 0.04%. These values are far smaller than those observed for uninterrupted elements. The results imply that efficient mobilization of mariner in vivo requires the presence and proper spacing of sequences internal to the element as well as the inverted repeats.
Collapse
Affiliation(s)
- Elena R Lozovsky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
37
|
Yoder JH, Han M. Cytoplasmic dynein light intermediate chain is required for discrete aspects of mitosis in Caenorhabditis elegans. Mol Biol Cell 2001; 12:2921-33. [PMID: 11598181 PMCID: PMC60145 DOI: 10.1091/mbc.12.10.2921] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We describe phenotypic characterization of dli-1, the Caenorhabditis elegans homolog of cytoplasmic dynein light intermediate chain (LIC), a subunit of the cytoplasmic dynein motor complex. Animals homozygous for loss-of-function mutations in dli-1 exhibit stochastic failed divisions in late larval cell lineages, resulting in zygotic sterility. dli-1 is required for dynein function during mitosis. Depletion of the dli-1 gene product through RNA-mediated gene interference (RNAi) reveals an early embryonic requirement. One-cell dli-1(RNAi) embryos exhibit failed cell division attempts, resulting from a variety of mitotic defects. Specifically, pronuclear migration, centrosome separation, and centrosome association with the male pronuclear envelope are defective in dli-1(RNAi) embryos. Meiotic spindle formation, however, is not affected in these embryos. DLI-1, like its vertebrate homologs, contains a putative nucleotide-binding domain similar to those found in the ATP-binding cassette transporter family of ATPases as well as other nucleotide-binding and -hydrolyzing proteins. Amino acid substitutions in a conserved lysine residue, known to be required for nucleotide binding, confers complete rescue in a dli-1 mutant background, indicating this is not an essential domain for DLI-1 function.
Collapse
Affiliation(s)
- J H Yoder
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institution, University of Colorado, Boulder, 80303-0347, USA
| | | |
Collapse
|
38
|
Reilein AR, Rogers SL, Tuma MC, Gelfand VI. Regulation of molecular motor proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 204:179-238. [PMID: 11243595 DOI: 10.1016/s0074-7696(01)04005-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Motor proteins in the kinesin, dynein, and myosin superfamilies are tightly regulated to perform multiple functions in the cell requiring force generation. Although motor proteins within families are diverse in sequence and structure, there are general mechanisms by which they are regulated. We first discuss the regulation of the subset of kinesin family members for which such information exists, and then address general mechanisms of kinesin family regulation. We review what is known about the regulation of axonemal and cytoplasmic dyneins. Recent work on cytoplasmic dynein has revealed the existence of multiple isoforms for each dynein chain, making the study of dynein regulation more complicated than previously realized. Finally, we discuss the regulation of myosins known to be involved in membrane trafficking. Myosins and kinesins may be evolutionarily related, and there are common themes of regulation between these two classes of motors.
Collapse
Affiliation(s)
- A R Reilein
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, Urbana 61801, USA
| | | | | | | |
Collapse
|
39
|
Pennarun G, Chapelin C, Escudier E, Bridoux AM, Dastot F, Cacheux V, Goossens M, Amselem S, Duriez B. The human dynein intermediate chain 2 gene (DNAI2): cloning, mapping, expression pattern, and evaluation as a candidate for primary ciliary dyskinesia. Hum Genet 2000; 107:642-9. [PMID: 11153919 DOI: 10.1007/s004390000427] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disease characterized by chronic sinusitis and bronchiectasis, and usually associated with hypofertility. Half of the patients present a situs inversus, defining the Kartagener's syndrome. This phenotype results from axonemal abnormalities of respiratory cilia and sperm flagella, i.e., mainly an absence of dynein arms. Recently, a candidate-gene approach, based on documented abnormalities of immotile strains of Chlamydomonas reinhardtii, allowed us to identify the first gene involved in PCD. Following the same strategy, we have characterized DNAI2, a human gene related to Chlamzydomonas IC69, and evaluated its possible involvement in a PCD population characterized by an absence of outer dynein arms. DNAI2, which is composed of 14 exons located at 17q25, is highly expressed in trachea and testis. No mutation was found in the DNAI2 coding sequence of the twelve patients investigated. However, ten intragenic polymorphic sites and an EcoRI RFLP have been identified, allowing the exclusion of DNAI2 in three consanguineous families.
Collapse
Affiliation(s)
- G Pennarun
- Institut National de la Santé et de la Recherche Médicale U468, H pital Henri Mondor, Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Boylan K, Serr M, Hays T. A molecular genetic analysis of the interaction between the cytoplasmic dynein intermediate chain and the glued (dynactin) complex. Mol Biol Cell 2000; 11:3791-803. [PMID: 11071907 PMCID: PMC15037 DOI: 10.1091/mbc.11.11.3791] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule motor cytoplasmic dynein performs multiple cellular functions; however, the regulation and targeting of the motor to different cargoes is not well understood. A biochemical interaction between the dynein intermediate chain subunit and the p150-Glued component of the dynein regulatory complex, dynactin, has supported the hypothesis that the intermediate chain is a key modulator of dynein attachment to cellular cargoes. In this report, we identify multiple intermediate chain polypeptides that cosediment with the 19S dynein complex and two differentially expressed transcripts derived from the single cytoplasmic dynein intermediate chain (Cdic) gene that differ in the 3' untranslated region sequence. These results support previous observations of multiple Cdic gene products that may contribute to the specialization of dynein function. Most significantly, we provide genetic evidence that the interaction between the dynein intermediate chain and p150-Glued is functionally relevant. We use a genomic Cdic transgene to show that extra copies of the dynein intermediate chain gene act to suppress the rough eye phenotype of the mutant Glued(1), a mutation in the p150-Glued subunit of dynactin. Furthermore, we show that the interaction between the dynein intermediate chain and p150-Glued is dependent on the dosage of the Cdic gene. This result suggests that the dynein intermediate chain may be a limiting component in the assembly of the dynein complex and that the regulation of the interaction between the dynein intermediate chain and dynactin is critical for dynein function.
Collapse
Affiliation(s)
- K Boylan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
41
|
Goldstein LS, Yang Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 2000; 23:39-71. [PMID: 10845058 DOI: 10.1146/annurev.neuro.23.1.39] [Citation(s) in RCA: 391] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The large size and extreme polarization of neurons is crucial to their ability to communicate at long distances and to form the complex cellular networks of the nervous system. The size, shape, and compartmentalization of these specialized cells must be generated and supported by the cytoskeletal systems of intracellular transport. One of the major systems is the microtubule-based transport system along which kinesin and dynein motor proteins generate force and drive the traffic of many cellular components. This review describes our current understanding of the functions of kinesins and dyneins and how these motor proteins may be harnessed to generate some of the unique properties of neuronal cells.
Collapse
Affiliation(s)
- L S Goldstein
- Howard Hughes Medical Institute, Department of Pharmacology, University of California at San Diego, La Jolla 92093-0683, USA.
| | | |
Collapse
|
42
|
Vancoillie G, Lambert J, Mulder A, Koerten HK, Mommaas AM, Van Oostveldt P, Naeyaert JM. Cytoplasmic dynein colocalizes with melanosomes in normal human melanocytes. Br J Dermatol 2000; 143:298-306. [PMID: 10951136 DOI: 10.1046/j.1365-2133.2000.03654.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Melanocytic dendrites consist of a central core of microtubules and a subcortical actin network. Several studies provide arguments supporting the hypothesis that actin-based and microtubule-based motor proteins co-operate in melanosome transport towards the dendrite tips. Melanosomes can move bidirectionally along microtubules in vitro, and in murine melanocytes, they move towards the cell periphery and back again. Microtubules have a fast-growing plus end and a slow-growing minus end. Microtubule-associated motor proteins move unidirectionally either towards the plus or towards the minus end. However, it is not known which motor protein is responsible for minus end-directed movement of melanosomes. OBJECTIVES We aimed to investigate the in vitro expression of the minus end-directed motor protein cytoplasmic dynein in normal human epidermal melanocytes, keratinocytes and dermal fibroblasts. METHODS Reverse transcription-polymerase chain reaction and Northern blot analysis were used. In addition, an attempt to obtain insight into the subcellular localization of cytoplasmic dynein, immunofluorescence studies and immunogold electron microscopic studies were performed. RESULTS The three different forms of cytoplasmic dynein heavy chain were expressed in all studied skin cells. Immunofluorescence staining showed similar punctate distributions for dynein heavy chain 1 and dynein heavy chain 2 in melanocytes, with accentuation in the perinuclear area and dendrite tips. Double labelling with a melanosome marker showed apparent co-localization of both dynein heavy chains 1 and 2 with melanosomes in the perinuclear area and dendrite tips. For the dynein intermediate chain of 74 kDa, again a punctate staining pattern was seen with intense centrosomal staining. A close association of dynein intermediate chain 74 and alpha-tubulin with the melanosome surface was detected using immunogold electron microscopy. CONCLUSIONS The colocalization of different subunits of the cytoplasmic dynein complex with melanosomes is consistent with the hypothesis that this motor protein supports minus end-directed melanosome movement along microtubules.
Collapse
Affiliation(s)
- G Vancoillie
- Department of Dermatology, University Hospital, De Pintelaan 185, 9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Susalka SJ, Hancock WO, Pfister KK. Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:76-88. [PMID: 10722878 DOI: 10.1016/s0167-4889(00)00010-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In neurons, cytoplasmic dynein is synthesized in the cell body, but its function is to move cargo from the axon back to the cell body. Dynein must therefore be delivered to the axon and its motor activity must be regulated during axonal transport. Cytoplasmic dynein is a large protein complex composed of a number of different subunits. The dynein heavy chains contain the motor domains and the intermediate chains are involved in binding the complex to cargo. Five different intermediate chain polypeptides, which are the result of the alternative splicing of the two intermediate chain genes, have been identified. We have characterized two distinct pools of dynein that are transported from the cell body along the axon by different mechanisms. One pool, which contains the ubiquitous intermediate chain, is associated with the membranous organelles transported by kinesin in the fast transport component. The other pool, which contains the other developmentally regulated intermediate chains, is transported in slow component b. The mechanism of dynein regulation will therefore depend on which pool of dynein is recruited to function as the retrograde motor. In addition, the properties of the large pool of dynein associated with actin in slow component b are consistent with the hypothesis that this dynein may be the motor for microtubule transport in the axon.
Collapse
Affiliation(s)
- S J Susalka
- Department of Cell Biology, Box 439, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
44
|
Gross SP, Welte MA, Block SM, Wieschaus EF. Dynein-mediated cargo transport in vivo. A switch controls travel distance. J Cell Biol 2000; 148:945-56. [PMID: 10704445 PMCID: PMC2174539 DOI: 10.1083/jcb.148.5.945] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1999] [Accepted: 02/03/2000] [Indexed: 12/05/2022] Open
Abstract
Cytoplasmic dynein is a microtubule-based motor with diverse cellular roles. Here, we use mutations in the dynein heavy chain gene to impair the motor's function, and employ biophysical measurements to demonstrate that cytoplasmic dynein is responsible for the minus end motion of bidirectionally moving lipid droplets in early Drosophila embryos. This analysis yields an estimate for the force that a single cytoplasmic dynein exerts in vivo (1.1 pN). It also allows us to quantitate dynein-mediated cargo motion in vivo, providing a framework for investigating how dynein's activity is controlled. We identify three distinct travel states whose general features also characterize plus end motion. These states are preserved in different developmental stages. We had previously provided evidence that for each travel direction, single droplets are moved by multiple motors of the same type (Welte et al. 1998). Droplet travel distances (runs) are much shorter than expected for multiple motors based on in vitro estimates of cytoplasmic dynein processivity. Therefore, we propose the existence of a process that ends runs before the motors fall off the microtubules. We find that this process acts with a constant probability per unit distance, and is typically coupled to a switch in travel direction. A process with similar properties governs plus end motion, and its regulation controls the net direction of transport.
Collapse
Affiliation(s)
- Steven P. Gross
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Michael A. Welte
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Steven M. Block
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
- Department of Biological Sciences, Stanford University, Stanford, California 94305
| | - Eric F. Wieschaus
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
45
|
Roghi C, Allan VJ. Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J Cell Sci 1999; 112 ( Pt 24):4673-85. [PMID: 10574715 DOI: 10.1242/jcs.112.24.4673] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Microtubule motors, such as the minus end-directed motor, cytoplasmic dynein, play an important role in maintaining the integrity, intracellular location, and function of the Golgi apparatus, as well as in the translocation of membrane between the endoplasmic reticulum and Golgi apparatus. We have immunolocalised conventional cytoplasmic dynein heavy chain to the Golgi apparatus in cultured vertebrate cells. In addition, we present evidence that cytoplasmic dynein heavy chain cycles constitutively between the endoplasmic reticulum and Golgi apparatus: it colocalises partially with the intermediate compartment, it is found on nocodazole-induced peripheral Golgi elements and, most strikingly, on Brefeldin A-induced tubules that are moving towards microtubule plus ends. The direction of movement of membrane between the endoplasmic reticulum and Golgi apparatus is therefore unlikely to be regulated by controlling motor-membrane interactions: rather, the motors probably remain bound throughout the whole cycle, with their activity being modulated instead. We also report that the overexpression of p50/dynamitin results in the loss of cytoplasmic dynein heavy chain from the membrane of peripheral Golgi elements. These results explain how dynamitin overexpression causes the inhibition of endoplasmic reticulum-to-Golgi transport complex movement towards the centrosomal region, and support the general model that an intact dynactin complex is required for cytoplasmic dynein binding to all cargoes.
Collapse
Affiliation(s)
- C Roghi
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
46
|
Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, Clément A, Goossens M, Amselem S, Duriez B. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 1999; 65:1508-19. [PMID: 10577904 PMCID: PMC1288361 DOI: 10.1086/302683] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a group of heterogeneous disorders of unknown origin, usually inherited as an autosomal recessive trait. Its phenotype is characterized by axonemal abnormalities of respiratory cilia and sperm tails leading to bronchiectasis and sinusitis, which are sometimes associated with situs inversus (Kartagener syndrome) and male sterility. The main ciliary defect in PCD is an absence of dynein arms. We have isolated the first gene involved in PCD, using a candidate-gene approach developed on the basis of documented abnormalities of immotile strains of Chlamydomonas reinhardtii, which carry axonemal ultrastructural defects reminiscent of PCD. Taking advantage of the evolutionary conservation of genes encoding axonemal proteins, we have isolated a human sequence (DNAI1) related to IC78, a C. reinhardtii gene encoding a dynein intermediate chain in which mutations are associated with the absence of outer dynein arms. DNAI1 is highly expressed in trachea and testis and is composed of 20 exons located at 9p13-p21. Two loss-of-function mutations of DNAI1 have been identified in a patient with PCD characterized by immotile respiratory cilia lacking outer dynein arms. In addition, we excluded linkage between this gene and similar PCD phenotypes in five other affected families, providing a clear demonstration of locus heterogeneity. These data reveal the critical role of DNAI1 in the development of human axonemal structures and open up new means for identification of additional genes involved in related developmental defects.
Collapse
Affiliation(s)
- Gaëlle Pennarun
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| | - Estelle Escudier
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| | - Catherine Chapelin
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| | - Anne-Marie Bridoux
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| | - Valère Cacheux
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| | - Gilles Roger
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| | - Annick Clément
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| | - Michel Goossens
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| | - Serge Amselem
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| | - Bénédicte Duriez
- Institut National de la Santé et de la Recherche
Médicale U468, Hôpital Henri-Mondor, Créteil,
France; Assistance Publique–Hôpitaux de Paris,
Service d'Histologie-Embryologie, Groupe Hospitalier
Pitié-Salpétrière, Assistance
Publique–Hôpitaux de Paris, Service
d'Oto-Rhino-Laryngologie, and Assistance
Publique–Hôpitaux de Paris, Service de Pneumologie
Pédiatrique, Hôpital
Armand-Trousseau, Paris
| |
Collapse
|
47
|
Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, Clément A, Goossens M, Amselem S, Duriez B. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 1999. [PMID: 10577904 DOI: 10.1086/302683.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a group of heterogeneous disorders of unknown origin, usually inherited as an autosomal recessive trait. Its phenotype is characterized by axonemal abnormalities of respiratory cilia and sperm tails leading to bronchiectasis and sinusitis, which are sometimes associated with situs inversus (Kartagener syndrome) and male sterility. The main ciliary defect in PCD is an absence of dynein arms. We have isolated the first gene involved in PCD, using a candidate-gene approach developed on the basis of documented abnormalities of immotile strains of Chlamydomonas reinhardtii, which carry axonemal ultrastructural defects reminiscent of PCD. Taking advantage of the evolutionary conservation of genes encoding axonemal proteins, we have isolated a human sequence (DNAI1) related to IC78, a C. reinhardtii gene encoding a dynein intermediate chain in which mutations are associated with the absence of outer dynein arms. DNAI1 is highly expressed in trachea and testis and is composed of 20 exons located at 9p13-p21. Two loss-of-function mutations of DNAI1 have been identified in a patient with PCD characterized by immotile respiratory cilia lacking outer dynein arms. In addition, we excluded linkage between this gene and similar PCD phenotypes in five other affected families, providing a clear demonstration of locus heterogeneity. These data reveal the critical role of DNAI1 in the development of human axonemal structures and open up new means for identification of additional genes involved in related developmental defects.
Collapse
Affiliation(s)
- G Pennarun
- Institut National de la Santé et de la Recherche Médicale U468, Hôpital Henri-Mondor, 94010 Créteil, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Habura A, Tikhonenko I, Chisholm RL, Koonce MP. Interaction mapping of a dynein heavy chain. Identification of dimerization and intermediate-chain binding domains. J Biol Chem 1999; 274:15447-53. [PMID: 10336435 DOI: 10.1074/jbc.274.22.15447] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic dynein is a multisubunit microtubule-based motor protein that is involved in several eukaryotic cell motilities. Two dynein heavy chains each form a motor domain that connects to a common cargo-binding tail. Although this tail domain is composed of multiple polypeptides, subunit organization within this region is poorly understood. Here we present an in vitro dissection of the tail-forming region of the dynein heavy chain from Dictyostelium. Our work identifies a sequence important for dimerization and for binding the dynein intermediate chain. The core of this motif localizes within an approximately 150-amino acid region that is strongly conserved among other cytoplasmic dyneins. This level of conservation does not extend to the axonemal dynein heavy chains, suggesting functional differences between the two. Dimerization appears to occur through a different mechanism than the heavy chain-intermediate chain interaction. We corroborate the in vitro interactions with in vivo expression of heavy chain fragments in Dictyostelium. Fragments lacking the interaction domain express well, without an obvious phenotype. On the other hand, the region crucial for both interactions appears to be lethal when overexpressed.
Collapse
Affiliation(s)
- A Habura
- Division of Molecular Medicine, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
49
|
Nurminsky DI, Nurminskaya MV, De Aguiar D, Hartl DL. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 1998; 396:572-5. [PMID: 9859991 DOI: 10.1038/25126] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pattern of genetic variation across the genome of Drosophila melanogaster is consistent with the occurrence of frequent 'selective sweeps', in which new favourable mutations become incorporated into the species so quickly that linked alleles can 'hitchhike' and also become fixed. Because of the hitchhiking of linked genes, it is generally difficult to identify the target of any putative selective sweep. Here, however, we identify a new gene in D. melanogaster that codes for a sperm-specific axonemal dynein subunit. The gene has a new testes-specific promoter derived from a protein-coding region in a gene encoding the cell-adhesion protein annexin X (AnnX), and it contains a new protein-coding exon derived from an intron in a gene encoding a cytoplasmic dynein intermediate chain (Cdic). The new transcription unit, designated Sdic (for sperm-specific dynein intermediate chain), has been duplicated about tenfold in a tandem array. Consistent with the selective sweep of this gene, the level of genetic polymorphism near Sdic is unusually low. The discovery of this gene supports other results that point to the rapid molecular evolution of male reproductive functions.
Collapse
Affiliation(s)
- D I Nurminsky
- Harvard University, Department of Organismic & Evolutionary Biology, Cambridge, Massachusetts 02138, USA.
| | | | | | | |
Collapse
|