1
|
Repolês BM, Rodrigues Ferreira WR, de Assis AV, Mendes IC, Morini FS, Gonçalves CS, Costa Catta-Preta CM, Kelley SO, Franco GR, Macedo AM, Mottram JC, Motta MCM, Fragoso SP, Machado CR. Transcription coupled repair occurrence in Trypanosoma cruzi mitochondria. Mitochondrion 2025; 83:102009. [PMID: 39993491 DOI: 10.1016/j.mito.2025.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Although several proteins involved in DNA repair systems have been identified in the T. cruzi mitochondrion, limited information is available regarding the specific DNA repair mechanisms responsible for kinetoplast DNA (kDNA) maintenance. The kDNA, contained within a single mitochondrion, exhibits a highly complex replication mechanism compared to the mitochondrial DNA of other eukaryotes. The absence of additional mitochondria makes the proper maintenance of this single mitochondrion essential for parasite viability. Trypanosomatids possess a distinct set of proteins dedicated to kDNA organization and metabolism, known as kinetoplast-associated proteins (KAPs). Despite studies identifying the localization of these proteins, their functions remain largely unclear. Here, we demonstrate that TcKAP7 is involved in the repair of kDNA lesions induced by UV radiation and cisplatin. TcKAP7 mutant cells exhibited phenotypes similar to those observed in Angomonas deanei following the deletion of this gene. This monoxenic trypanosomatid colonizes the gastrointestinal tract of insects and possesses a kinetoplast with a distinct shape and kDNA topology compared to T. cruzi, making it a suitable comparative model in this study. Additionally, we observed that DNA damage can trigger distinct signaling pathways leading to cell death. Furthermore, we elucidated the involvement of CSB in this response, suggesting a potential interaction between TcKAP7 and CSB proteins in transcription-coupled DNA repair. The results presented here describe, for the first time, the mechanism of mitochondrial DNA repair in trypanosomatids following exposure to UV radiation and cisplatin.
Collapse
Affiliation(s)
- Bruno Marçal Repolês
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Wesley Roger Rodrigues Ferreira
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Antônio Vinicius de Assis
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Isabela Cecília Mendes
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Flávia Souza Morini
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Rio de Janeiro, RJ, Brazil
| | | | - Shana O Kelley
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Glória Regina Franco
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Andrea Mara Macedo
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Jeremy C Mottram
- Department of Biology, York Biomedical Research Institute, University of York, Wentworth Way, Heslington YorkYO10 5DD, UK
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Rio de Janeiro, RJ, Brazil
| | - Stênio Perdigão Fragoso
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - Carlos Renato Machado
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil.
| |
Collapse
|
2
|
Kodavati M, Wang H, Guo W, Mitra J, Hegde PM, Provasek V, Rao VHM, Vedula I, Zhang A, Mitra S, Tomkinson AE, Hamilton DJ, Van Den Bosch L, Hegde ML. FUS unveiled in mitochondrial DNA repair and targeted ligase-1 expression rescues repair-defects in FUS-linked motor neuron disease. Nat Commun 2024; 15:2156. [PMID: 38461154 PMCID: PMC10925063 DOI: 10.1038/s41467-024-45978-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/08/2024] [Indexed: 03/11/2024] Open
Abstract
This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated motor neuron disease.
Collapse
Affiliation(s)
- Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Haibo Wang
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenting Guo
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- INSERM, UMR-S1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, CRBS, Strasbourg, France
| | - Joy Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Pavana M Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Vincent Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- College of Medicine, Texas A&M University, College Station, TX, USA
| | - Vikas H Maloji Rao
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Indira Vedula
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine affiliate, Houston, TX, USA
| | - Sankar Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Alan E Tomkinson
- Departments of Internal Medicine, and Molecular Genetics and Microbiology and University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine affiliate, Houston, TX, USA
| | - Ludo Van Den Bosch
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Muralidhar L Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
4
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
5
|
Allkanjari K, Baldock RA. Beyond base excision repair: an evolving picture of mitochondrial DNA repair. Biosci Rep 2021; 41:BSR20211320. [PMID: 34608928 PMCID: PMC8527207 DOI: 10.1042/bsr20211320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function - deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria. Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kathrin Allkanjari
- Formerly: Solent University Southampton, East Park Terrace, Southampton, SO14 0YN, UK
| | - Robert A. Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| |
Collapse
|
6
|
McCann E, O'Sullivan J, Marcone S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl Oncol 2021; 14:100905. [PMID: 33069104 PMCID: PMC7562988 DOI: 10.1016/j.tranon.2020.100905] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a regimen that uses ionising radiation (IR) to treat cancer. Despite the availability of several therapeutic options, cancer remains difficult to treat and only a minor percentage of patients receiving radiotherapy show a complete response to the treatment due to development of resistance to IR (radioresistance). Therefore, radioresistance is a major clinical problem and is defined as an adaptive response of the tumour to radiation-induced damage by altering several cellular processes which sustain tumour growth including DNA damage repair, cell cycle arrest, alterations of oncogenes and tumour suppressor genes, autophagy, tumour metabolism and altered reactive oxygen species. Cellular organelles, in particular mitochondria, are key players in mediating the radiation response in tumour, as they regulate many of the cellular processes involved in radioresistance. In this article has been reviewed the recent findings describing the cellular and molecular mechanism by which cancer rewires the function of the mitochondria and cellular metabolism to enhance radioresistance, and the role that drugs targeting cellular bioenergetics have in enhancing radiation response in cancer patients.
Collapse
Affiliation(s)
- Emma McCann
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; M.Sc. in Translational Oncology, Trinity College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Bazzani V, Barchiesi A, Radecka D, Pravisani R, Guadagno A, Di Loreto C, Baccarani U, Vascotto C. Mitochondrial apurinic/apyrimidinic endonuclease 1 enhances mtDNA repair contributing to cell proliferation and mitochondrial integrity in early stages of hepatocellular carcinoma. BMC Cancer 2020; 20:969. [PMID: 33028238 PMCID: PMC7542375 DOI: 10.1186/s12885-020-07258-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of primary liver cancers. Surveillance of individuals at specific risk of developing HCC, early diagnostic markers, and new therapeutic approaches are essential to obtain a reduction in disease-related mortality. Apurinic/apyrimidinic endonuclease 1 (APE1) expression levels and its cytoplasmic localization have been reported to correlate with a lower degree of differentiation and shorter survival rate. The aim of this study is to fully investigate, for the first time, the role of the mitochondrial form of APE1 in HCC. METHODS As a study model, we analyzed samples from a cohort of patients diagnosed with HCC who underwent surgical resection. Mitochondrial APE1 content, expression levels of the mitochondrial import protein Mia40, and mtDNA damage of tumor tissue and distal non-tumor liver of each patient were analyzed. In parallel, we generated a stable HeLa clone for inducible silencing of endogenous APE1 and re-expression of the recombinant shRNA resistant mitochondrially targeted APE1 form (MTS-APE1). We evaluated mtDNA damage, cell growth, and mitochondrial respiration. RESULTS APE1's cytoplasmic positivity in Grades 1 and 2 HCC patients showed a significantly higher expression of mitochondrial APE1, which accounted for lower levels of mtDNA damage observed in the tumor tissue with respect to the distal area. In the contrast, the cytoplasmic positivity in Grade 3 was not associated with APE1's mitochondrial accumulation even when accounting for the higher number of mtDNA lesions measured. Loss of APE1 expression negatively affected mitochondrial respiration, cell viability, and proliferation as well as levels of mtDNA damage. Remarkably, the phenotype was efficiently rescued in MTS-APE1 clone, where APE1 is present only within the mitochondrial matrix. CONCLUSIONS Our study confirms the prominent role of the mitochondrial form of APE1 in the early stages of HCC development and the relevance of the non-nuclear fraction of APE1 in the disease progression. We have also confirmed overexpression of Mia40 and the role of the MIA pathway in the APE1 import process. Based on our data, inhibition of the APE1 transport by blocking the MIA pathway could represent a new therapeutic approach for reducing mitochondrial metabolism by preventing the efficient repair of mtDNA.
Collapse
Affiliation(s)
- Veronica Bazzani
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy
| | - Arianna Barchiesi
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy
| | - Dorota Radecka
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy
| | - Riccardo Pravisani
- Department of Medicine, General Surgery and Transplantation, Academic Hospital (ASUIUD), University of Udine, Udine, Italy
| | - Antonio Guadagno
- Department of Medicine, Institute of Pathology, University of Udine, Udine, Italy.,Pathology Unit, IRCCS Ospedale Policlinico "San Martino", Genoa, Italy
| | - Carla Di Loreto
- Department of Medicine, Institute of Pathology, University of Udine, Udine, Italy
| | - Umberto Baccarani
- Department of Medicine, General Surgery and Transplantation, Academic Hospital (ASUIUD), University of Udine, Udine, Italy
| | - Carlo Vascotto
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
8
|
de Ory A, Carabaña C, de Vega M. Bacterial Ligase D preternary-precatalytic complex performs efficient abasic sites processing at double strand breaks during nonhomologous end joining. Nucleic Acids Res 2019; 47:5276-5292. [PMID: 30976810 PMCID: PMC6547435 DOI: 10.1093/nar/gkz265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
Abasic (AP) sites, the most common DNA lesions are frequently associated with double strand breaks (DSBs) and can pose a block to the final ligation. In many prokaryotes, nonhomologous end joining (NHEJ) repair of DSBs relies on a two-component machinery constituted by the ring-shaped DNA-binding Ku that recruits the multicatalytic protein Ligase D (LigD) to the ends. By using its polymerization and ligase activities, LigD fills the gaps that arise after realignment of the ends and seals the resulting nicks. Here, we show the presence of a robust AP lyase activity in the polymerization domain of Bacillus subtilis LigD (BsuLigD) that cleaves AP sites preferentially when they are proximal to recessive 5'-ends. Such a reaction depends on both, metal ions and the formation of a Watson-Crick base pair between the incoming nucleotide and the templating one opposite the AP site. Only after processing the AP site, and in the presence of the Ku protein, BsuLigD catalyzes both, the in-trans addition of the nucleotide to the 3'-end of an incoming primer and the ligation of both ends. These results imply that formation of a preternary-precatalytic complex ensures the coupling of AP sites cleavage to the end-joining reaction by the bacterial LigD.
Collapse
Affiliation(s)
- Ana de Ory
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Claudia Carabaña
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
9
|
Guha M, Srinivasan S, Johnson FB, Ruthel G, Guja K, Garcia-Diaz M, Kaufman BA, Glineburg MR, Fang J, Nakagawa H, Basha J, Kundu T, Avadhani NG. hnRNPA2 mediated acetylation reduces telomere length in response to mitochondrial dysfunction. PLoS One 2018; 13:e0206897. [PMID: 30427907 PMCID: PMC6241121 DOI: 10.1371/journal.pone.0206897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 10/22/2018] [Indexed: 11/19/2022] Open
Abstract
Telomeres protect against chromosomal damage. Accelerated telomere loss has been associated with premature aging syndromes such as Werner's syndrome and Dyskeratosis Congenita, while, progressive telomere loss activates a DNA damage response leading to chromosomal instability, typically observed in cancer cells and senescent cells. Therefore, identifying mechanisms of telomere length maintenance is critical for understanding human pathologies. In this paper we demonstrate that mitochondrial dysfunction plays a causal role in telomere shortening. Furthermore, hnRNPA2, a mitochondrial stress responsive lysine acetyltransferase (KAT) acetylates telomere histone H4at lysine 8 of (H4K8) and this acetylation is associated with telomere attrition. Cells containing dysfunctional mitochondria have higher telomere H4K8 acetylation and shorter telomeres independent of cell proliferation rates. Ectopic expression of KAT mutant hnRNPA2 rescued telomere length possibly due to impaired H4K8 acetylation coupled with inability to activate telomerase expression. The phenotypic outcome of telomere shortening in immortalized cells included chromosomal instability (end-fusions) and telomerase activation, typical of an oncogenic transformation; while in non-telomerase expressing fibroblasts, mitochondrial dysfunction induced-telomere attrition resulted in senescence. Our findings provide a mechanistic association between dysfunctional mitochondria and telomere loss and therefore describe a novel epigenetic signal for telomere length maintenance.
Collapse
Affiliation(s)
- Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - F. Bradley Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gordon Ruthel
- Penn Vet Imaging Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kip Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Brett A. Kaufman
- Vascular Medicine Institute, University of Pittsburg, Pittsburgh, PA United States of America
| | - M. Rebecca Glineburg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - JiKang Fang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Hiroshi Nakagawa
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jeelan Basha
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tapas Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Narayan G. Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wang L, Lv H, Ji P, Zhu X, Yuan H, Jin G, Dai J, Hu Z, Su Y, Ma H. Mitochondrial DNA copy number is associated with risk of head and neck squamous cell carcinoma in Chinese population. Cancer Med 2018; 7:2776-2782. [PMID: 29673117 PMCID: PMC6010846 DOI: 10.1002/cam4.1452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria show the special role in cellular bioenergy and many essential physiological activities. Previous researches have suggested that variations of mitochondrial DNA copy number contribute to development of different types of carcinomas. However, the relationship of mtDNA copy number in peripheral blood leukocytes (PBLs) with the risk of head and neck squamous cell carcinoma (HNSCC) is still inconclusive. We investigated the association of mtDNA with HNSCC risk through a case-control study including 570 HNSCC cases and 597 cancer-free controls. mtDNA copy number in PBLs was measured by real-time qPCR. Logistic regression was performed to estimate the association between the mtDNA copy number in PBLs and HNSCC risk. A U-shaped relation between the mtDNA copy number and HNSCC risk was found. Compared with those in the second quartile group, the adjusted odds ratios (ORs) and 95% confidence interval (CI) for those in the first and the forth quartile groups were 1.95 (1.37-2.76) and 2.16 (1.53-3.04), respectively. Using restricted cubic spline analysis, we confirmed such a significant U-shaped relation. Furthermore, the U-shaped association remained significant in different subgroups stratified by age, gender, tobacco smoking, and alcohol consumption. Both extremely low and high mtDNA copy numbers had significant associations with the increased HNSCC risk.
Collapse
Affiliation(s)
- Lihua Wang
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Hong Lv
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Pei Ji
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Xun Zhu
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjing210029China
| | - Guangfu Jin
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Juncheng Dai
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Zhibin Hu
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Yuxiong Su
- Oral and Maxillofacial SurgeryFaculty of DentistryThe University of Hong KongHong Kong
| | - Hongxia Ma
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjing211166China
| |
Collapse
|
11
|
Çaglayan M, Prasad R, Krasich R, Longley MJ, Kadoda K, Tsuda M, Sasanuma H, Takeda S, Tano K, Copeland WC, Wilson SH. Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts. Nucleic Acids Res 2017; 45:10079-10088. [PMID: 28973450 PMCID: PMC5622373 DOI: 10.1093/nar/gkx654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/15/2017] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial aprataxin (APTX) protects the mitochondrial genome from the consequence of ligase failure by removing the abortive ligation product, i.e. the 5′-adenylate (5′-AMP) group, during DNA replication and repair. In the absence of APTX activity, blocked base excision repair (BER) intermediates containing the 5′-AMP or 5′-adenylated-deoxyribose phosphate (5′-AMP-dRP) lesions may accumulate. In the current study, we examined DNA polymerase (pol) γ and pol β as possible complementing enzymes in the case of APTX deficiency. The activities of pol β lyase and FEN1 nucleotide excision were able to remove the 5′-AMP-dRP group in mitochondrial extracts from APTX−/− cells. However, the lyase activity of purified pol γ was weak against the 5′-AMP-dRP block in a model BER substrate, and this activity was not able to complement APTX deficiency in mitochondrial extracts from APTX−/−Pol β−/− cells. FEN1 also failed to provide excision of the 5′-adenylated BER intermediate in mitochondrial extracts. These results illustrate the potential role of pol β in complementing APTX deficiency in mitochondria.
Collapse
Affiliation(s)
- Melike Çaglayan
- Genome Integrity and Structural Biology Laboratory, DNA Repair and Nucleic Acid Enzymology Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, DNA Repair and Nucleic Acid Enzymology Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Rachel Krasich
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Kei Kadoda
- Division of Radiation Life Science, Research Reactor Institute, Kyoto University, Asashiro-Nishi, Kumatori, Osaka 590-0494 Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Keizo Tano
- Division of Radiation Life Science, Research Reactor Institute, Kyoto University, Asashiro-Nishi, Kumatori, Osaka 590-0494 Japan
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, DNA Repair and Nucleic Acid Enzymology Group, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Admiraal SJ, O'Brien PJ. Reactivity and Cross-Linking of 5'-Terminal Abasic Sites within DNA. Chem Res Toxicol 2017; 30:1317-1326. [PMID: 28485930 DOI: 10.1021/acs.chemrestox.7b00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nicking of the DNA strand immediately upstream of an internal abasic (AP) site produces 5'-terminal abasic (dRp) DNA. Both the intact and the nicked abasic species are reactive intermediates along the DNA base excision repair (BER) pathway and can be derailed by side reactions. Aberrant accumulation of the 5'-terminal abasic intermediate has been proposed to lead to cell death, so we explored its reactivity and compared it to the reactivity of the better-characterized internal abasic intermediate. We find that the 5'-terminal abasic group cross-links with the exocyclic amine of a nucleotide on the opposing strand to form an interstrand DNA-DNA cross-link (ICL). This cross-linking reaction has the same kinetic constants and follows the same pH dependence as the corresponding cross-linking reaction of intact abasic DNA, despite the changes in charge and flexibility engendered by the nick. However, the ICL that traps nicked abasic DNA has a shorter lifetime at physiological pH than the otherwise analogous ICL of intact abasic DNA due to the reversibility of the cross-linking reaction coupled with faster breakdown of the 5'-terminal abasic species via β-elimination. Unlike internal abasic DNA, 5'-terminal abasic DNA can also react with exocyclic amines of unpaired nucleotides at the 3'-end of the nick, thereby bridging the nick by connecting DNA strands of the same orientation. The discovery and characterization of cross-links between 5'-terminal abasic sites and exocyclic amines of both opposing and adjacent nucleotides add to our knowledge of DNA damage with the potential to disrupt DNA transactions.
Collapse
Affiliation(s)
- Suzanne J Admiraal
- Department of Biological Chemistry, University of Michigan Medical School , 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5606, United States
| | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan Medical School , 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5606, United States
| |
Collapse
|
13
|
Chen H, Wang J, Liu Z, Yang H, Zhu Y, Zhao M, Liu Y, Yan M. Mitochondrial DNA depletion causes decreased ROS production and resistance to apoptosis. Int J Mol Med 2016; 38:1039-46. [PMID: 27499009 PMCID: PMC5029958 DOI: 10.3892/ijmm.2016.2697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 06/14/2016] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) depletion occurs frequently in many diseases including cancer. The present study was designed in order to examine the hypothesis that mtDNA‑depleted cells are resistant to apoptosis and to explore the possible mechanisms responsible for this effect. Parental human osteosarcoma 143B cells and mtDNA‑deficient (Rho˚ or ρ˚) 206 cells (derived from 143B cells) were exposed to different doses of solar-simulated ultraviolet (UV) radiation. The effects of solar irradiation on cell morphology were observed under both light and fluorescence microscopes. Furthermore, apoptosis, mitochondrial membrane potential (MMP) disruption and reactive oxygen species (ROS) production were detected and measured by flow cytometry. In both cell lines, apoptosis and ROS production were clearly increased, whereas MMP was slightly decreased. However, apoptosis and ROS production were reduced in the Rho˚206 cells compared with the 143B cells. We also performed western blot analysis and demonstrated the increased release of cytosolic Cyt c from mitochondria in the 143B cells compared with that in the Rho˚206 cells. Thus, we concluded that Rho˚206 cells exhibit more resistance to solar‑simulated UV radiation‑induced apoptosis at certain doses than 143B cells and this is possibly due to decreased ROS production.
Collapse
Affiliation(s)
- Hulin Chen
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Junling Wang
- Gynecologic Department of Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China
| | - Zhongrong Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Huilan Yang
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Yingjie Zhu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Minling Zhao
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Yan Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Miaomiao Yan
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
14
|
de Ory A, Nagler K, Carrasco B, Raguse M, Zafra O, Moeller R, de Vega M. Identification of a conserved 5'-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair. Nucleic Acids Res 2016; 44:1833-44. [PMID: 26826709 PMCID: PMC4770248 DOI: 10.1093/nar/gkw054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/14/2022] Open
Abstract
Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5'-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2'-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs.
Collapse
Affiliation(s)
- Ana de Ory
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Katja Nagler
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, D-51147 Cologne, Germany
| | - Begoña Carrasco
- Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Darwin 3, 28049 Madrid, Spain
| | - Marina Raguse
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, D-51147 Cologne, Germany
| | - Olga Zafra
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, D-51147 Cologne, Germany
| | - Miguel de Vega
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
15
|
Xie M, Doetsch PW, Deng X. Bcl2 inhibition of mitochondrial DNA repair. BMC Cancer 2015; 15:586. [PMID: 26268226 PMCID: PMC4535531 DOI: 10.1186/s12885-015-1594-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 08/06/2015] [Indexed: 01/11/2023] Open
Abstract
Background Accumulation of mitochondrial DNA (mtDNA) damage could enhance the frequency of mitochondrial mutations and promote a variety of mitochondria-related diseases, including cancer. However, the mechanism(s) involved are not fully understood. Methods Quantitative extended length PCR was used to compare mtDNA and nDNA damage in human lung H1299 cells expressing WT Bcl2 or vector-only control. mtAPE1 endonuclease activity was analyzed by AP oligonucleotide assay. mtDNA mutation was measured by single molecule PCR. Subcellular localization of Bcl2 and APE1 was analyzed by subcellular fractionation. Results Bcl2, an anti-apoptotic molecule and oncoprotein, effectively inhibits the endonuclease activity of mitochondrial APE1 (mtAPE1), leading to significant retardation of mtDNA repair and enhanced frequency of mtDNA mutations following exposure of cells to hydrogen peroxide (H2O2) or nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, a carcinogen in cigarette smoke). Inversely, depletion of endogenous Bcl2 by RNA interference increases mtAPE1 endonuclease activity leading to accelerated mtDNA repair and decreased mtDNA mutation. Higher levels of mtAPE1 were observed in human lung cancer cells than in normal human bronchial epithelial cells (i.e. BEAS-2B). Bcl2 partially co-localizes with APE1 in the mitochondria of human lung cancer cells. Bcl2 directly interacts with mtAPE1 via its BH domains. Removal of any of the BH domains from Bcl2 abolishes Bcl2’s capacity to interact with mtAPE1 as well as its inhibitory effects on mtAPE1 activity and mtDNA repair. Conclusions Based our findings, we propose that Bcl2 suppression of mtDNA repair occurs through direct interaction with mtAPE1 and inhibition of its endonuclease activity in mitochondria, which may contribute to enhanced mtDNA mutations and carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1594-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maohua Xie
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Paul W Doetsch
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA. .,Biochemistry, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Xingming Deng
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Peripheral blood mitochondrial DNA copy number is associated with prostate cancer risk and tumor burden. PLoS One 2014; 9:e109470. [PMID: 25279731 PMCID: PMC4184876 DOI: 10.1371/journal.pone.0109470] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/22/2014] [Indexed: 02/05/2023] Open
Abstract
Alterations of mitochondrial DNA (mtDNA) have been associated with the risk of a number of human cancers; however, the relationship between mtDNA copy number in peripheral blood leukocytes (PBLs) and the risk of prostate cancer (PCa) has not been investigated. In a case-control study of 196 PCa patients and 196 age-paired healthy controls in a Chinese Han population, the association between mtDNA copy number in PBLs and PCa risk was evaluated. The relative mtDNA copy number was measured using quantitative real-time PCR; samples from three cases and two controls could not be assayed, leaving 193 cases and 194 controls for analysis. PCa patients had significantly higher mtDNA copy numbers than controls (medians 0.91 and 0.82, respectively; P<0.001). Dichotomized at the median value of mtDNA copy number in the controls, high mtDNA copy number was significantly associated with an increased risk of PCa (adjusted odds ratio = 1.85, 95% confidence interval: 1.21–2.83). A significant dose-response relationship was observed between mtDNA copy number and risk of PCa in quartile analysis (Ptrend = 0.011). Clinicopathological analysis showed that high mtDNA copy numbers in PCa patients were significantly associated with high Gleason score and advanced tumor stage, but not serum prostate-specific antigen level (P = 0.002, 0.012 and 0.544, respectively). These findings of the present study indicate that increased mtDNA copy number in PBLs is significantly associated with an increased risk of PCa and may be a reflection of tumor burden.
Collapse
|
17
|
Zhang J, Li D, Qu F, Chen Y, Li G, Jiang H, Huang X, Yang H, Xing J. Association of leukocyte mitochondrial DNA content with glioma risk: evidence from a Chinese case-control study. BMC Cancer 2014; 14:680. [PMID: 25234800 PMCID: PMC4177174 DOI: 10.1186/1471-2407-14-680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/17/2014] [Indexed: 12/19/2022] Open
Abstract
Background Increasing evidence suggests that alterations in mitochondrial DNA (mtDNA) content may be implicated in the tumorigenesis of several malignancies. However, the association between mtDNA content in peripheral blood lymphocytes (PBLs) and glioma risk has not been investigated. Methods Real-time PCR was used to examine the mtDNA content in PBLs of 414 glioma patients and 414 matched controls in a hospital-based case–control study. The association between mtDNA content and glioma risk was evaluated using an unconditional multivariate logistic regression model. Results We found that glioma patients exhibited a significantly higher median mtDNA content than healthy controls (0.99 vs. 0.71, P < 0.001). Unconditional multivariate logistic regression analysis adjusting for age, gender, smoking status, and family cancer history showed that there was an S-shaped association between mtDNA content and glioma risk. Higher mtDNA content was significantly associated with an elevated risk of glioma. Compared with the first quartile, the odds ratio (95% confidence interval) for subjects in the second, third, and fourth quartiles of mtDNA content were 0.90 (0.52-1.53), 3.38 (2.15-5.31), and 5.81 (3.74-9.03), respectively (P for nonlinearity = 0.009). Stratified analysis showed that the association between mtDNA content and glioma risk was not modulated by major host characteristics. Conclusions Our findings demonstrate for the first time that a higher mtDNA content in PBLs is associated with an elevated risk of glioma, which warrants further investigation in larger populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinliang Xing
- State Key Laboratory of Cancer Biology & Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
18
|
Shi W, Miao XG, Kong XY. A novel model of double replications and random loss accounts for rearrangements in the Mitogenome of Samariscus latus (Teleostei: Pleuronectiformes). BMC Genomics 2014; 15:352. [PMID: 24885702 PMCID: PMC4035078 DOI: 10.1186/1471-2164-15-352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although more than one thousand complete mitochondrial DNA (mtDNA) sequences have been determined in teleostean fishes, only a few gene rearrangements have been observed, and genome-scale rearrangements are even rarer. However, flatfishes (Pleuronectiformes) have been identified as having diverse types of mitochondrial gene rearrangements. It has been reported that tongue soles and the blue flounder mitogenomes exhibit different types of large-scale gene rearrangements. RESULTS In the present study, the complete mitochondrial genome of another flatfish, Samariscus latus, was sequenced, and genome-scale rearrangements were observed. The genomic features of this flounder are different from those of any other studied vertebrates, including flatfish species too. The mitogenome of S. latus is characterized by the duplication and translocation of the control region (CR). The genes located between the two CRs are divided into two clusters in which their relative orders are maintained. CONCLUSIONS We propose a "Double Replications and Random Loss" model to explain the rearrangement events in S. latus mitogenome. This model consists of the following steps. First, the CR was duplicated and translocated. Subsequently, double replications of the mitogenome were successively initiated from the two CRs, leading to the duplication of the genes between the two CRs. Finally, one of each pair of duplicated genes was lost in a random event.
Collapse
Affiliation(s)
| | | | - Xiao-Yu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China.
| |
Collapse
|
19
|
A comprehensive approach to determining BER capacities and their change with aging inDrosophila melanogastermitochondria by oligonucleotide microarray. FEBS Lett 2014; 588:1673-9. [DOI: 10.1016/j.febslet.2014.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/24/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
|
20
|
He Q, Shumate CK, White MA, Molineux IJ, Yin YW. Exonuclease of human DNA polymerase gamma disengages its strand displacement function. Mitochondrion 2013; 13:592-601. [PMID: 23993955 PMCID: PMC5017585 DOI: 10.1016/j.mito.2013.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/15/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022]
Abstract
Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo(-) (3'-5' exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo(-), is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB.
Collapse
Affiliation(s)
- Quan He
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Christie K. Shumate
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - Mark A White
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Ian J. Molineux
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Y. Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
21
|
Szczesny B, Olah G, Walker DK, Volpi E, Rasmussen BB, Szabo C, Mitra S. Deficiency in repair of the mitochondrial genome sensitizes proliferating myoblasts to oxidative damage. PLoS One 2013; 8:e75201. [PMID: 24066171 PMCID: PMC3774773 DOI: 10.1371/journal.pone.0075201] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS), generated as a by-product of mitochondrial oxidative phosphorylation, are particularly damaging to the genome of skeletal muscle because of their high oxygen consumption. Proliferating myoblasts play a key role during muscle regeneration by undergoing myogenic differentiation to fuse and restore damaged muscle. This process is severely impaired during aging and in muscular dystrophies. In this study, we investigated the role of oxidatively damaged DNA and its repair in the mitochondrial genome of proliferating skeletal muscle progenitor myoblasts cells and their terminally differentiated product, myotubes. Using the C2C12 cell line as a well-established model for skeletal muscle differentiation, we show that myoblasts are highly sensitive to ROS-mediated DNA damage, particularly in the mitochondrial genome, due to deficiency in 5’ end processing at the DNA strand breaks. Ectopic expression of the mitochondrial-specific 5’ exonuclease, EXOG, a key DNA base excision/single strand break repair (BER/SSBR) enzyme, in myoblasts but not in myotubes, improves the cell’s resistance to oxidative challenge. We linked loss of myoblast viability by activation of apoptosis with deficiency in the repair of the mitochondrial genome. Moreover, the process of myoblast differentiation increases mitochondrial biogenesis and the level of total glutathione. We speculate that our data may provide a mechanistic explanation for depletion of proliferating muscle precursor cells during the development of sarcopenia, and skeletal muscle dystrophies.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dillon K. Walker
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Elena Volpi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Blake B. Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
22
|
Abstract
Protection from reactive oxygen species (ROS) and from mitochondrial oxidative damage is well known to be necessary to longevity. The relevance of mitochondrial DNA (mtDNA) to aging is suggested by the fact that the two most commonly measured forms of mtDNA damage, deletions and the oxidatively induced lesion 8-oxo-dG, increase with age. The rate of increase is species-specific and correlates with maximum lifespan. It is less clear that failure or inadequacies in the protection from reactive oxygen species (ROS) and from mitochondrial oxidative damage are sufficient to explain senescence. DNA containing 8-oxo-dG is repaired by mitochondria, and the high ratio of mitochondrial to nuclear levels of 8-oxo-dG previously reported are now suspected to be due to methodological difficulties. Furthermore, MnSOD -/+ mice incur higher than wild type levels of oxidative damage, but do not display an aging phenotype. Together, these findings suggest that oxidative damage to mitochondria is lower than previously thought, and that higher levels can be tolerated without physiological consequence. A great deal of work remains before it will be known whether mitochondrial oxidative damage is a "clock" which controls the rate of aging. The increased level of 8-oxo-dG seen with age in isolated mitochondria needs explanation. It could be that a subset of cells lose the ability to protect or repair mitochondria, resulting in their incurring disproportionate levels of damage. Such an uneven distribution could exceed the reserve capacity of these cells and have serious physiological consequences. Measurements of damage need to focus more on distribution, both within tissues and within cells. In addition, study must be given to the incidence and repair of other DNA lesions, and to the possibility that repair varies from species to species, tissue to tissue, and young to old.
Collapse
Affiliation(s)
- R M Anson
- Laboratory of Molecular Genetics, National Institute on Aging, Baltimore, MD
| | | |
Collapse
|
23
|
Siddiqui A, Rivera-Sánchez S, del R. Castro M, Acevedo-Torres K, Rane A, Torres-Ramos CA, Nicholls DG, Andersen JK, Ayala-Torres S. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease. Free Radic Biol Med 2012; 53:1478-88. [PMID: 22709585 PMCID: PMC3846402 DOI: 10.1016/j.freeradbiomed.2012.06.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/25/2022]
Abstract
Oxidative stress and mitochondrial dysfunction have been implicated in the pathology of HD; however, the precise mechanisms by which mutant huntingtin modulates levels of oxidative damage in turn resulting in mitochondrial dysfunction are not known. We hypothesize that mutant huntingtin increases oxidative mtDNA damage leading to mitochondrial dysfunction. We measured nuclear and mitochondrial DNA lesions and mitochondrial bioenergetics in the STHdhQ7 and STHdhQ111 in vitro striatal model of HD. Striatal cells expressing mutant huntingtin show higher basal levels of mitochondrial-generated ROS and mtDNA lesions and a lower spare respiratory capacity. Silencing of APE1, the major mammalian apurinic/apyrimidinic (AP) endonuclease that participates in the base excision repair (BER) pathway, caused further reductions of spare respiratory capacity in the mutant huntingtin-expressing cells. Localization experiments show that APE1 increases in the mitochondria of wild-type Q7 cells but not in the mutant huntingtin Q111 cells after treatment with hydrogen peroxide. Moreover, these results are recapitulated in human HD striata and HD skin fibroblasts that show significant mtDNA damage (increased lesion frequency and mtDNA depletion) and significant decreases in spare respiratory capacity, respectively. These data suggest that mtDNA is a major target of mutant huntingtin-associated oxidative stress and may contribute to subsequent mitochondrial dysfunction and that APE1 (and, by extension, BER) is an important target in the maintenance of mitochondrial function in HD.
Collapse
Affiliation(s)
| | - Sulay Rivera-Sánchez
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - María del R. Castro
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Karina Acevedo-Torres
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Anand Rane
- Buck Institute for Age Research, Novato, CA
| | - Carlos A. Torres-Ramos
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | | | | | - Sylvette Ayala-Torres
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| |
Collapse
|
24
|
Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 2012; 13:659-71. [PMID: 22992591 DOI: 10.1038/nrm3439] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) faces the universal challenges of genome maintenance: the accurate replication, transmission and preservation of its integrity throughout the life of the organism. Although mtDNA was originally thought to lack DNA repair activity, four decades of research on mitochondria have revealed multiple mtDNA repair pathways, including base excision repair, single-strand break repair, mismatch repair and possibly homologous recombination. These mtDNA repair pathways are mediated by enzymes that are similar in activity to those operating in the nucleus, and in all cases identified so far in mammals, they are encoded by nuclear genes.
Collapse
|
25
|
Tann AW, Boldogh I, Meiss G, Qian W, Van Houten B, Mitra S, Szczesny B. Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5'-EXO/endonuclease) in their repair. J Biol Chem 2011; 286:31975-83. [PMID: 21768646 DOI: 10.1074/jbc.m110.215715] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS), continuously generated as by-products of respiration, inflict more damage on the mitochondrial (mt) than on the nuclear genome because of the nonchromatinized nature and proximity to the ROS source of the mitochondrial genome. Such damage, particularly single-strand breaks (SSBs) with 5'-blocking deoxyribose products generated directly or as repair intermediates for oxidized bases, is repaired via the base excision/SSB repair pathway in both nuclear and mt genomes. Here, we show that EXOG, a 5'-exo/endonuclease and unique to the mitochondria unlike FEN1 or DNA2, which, like EXOG, has been implicated in the removal of the 5'-blocking residue, is required for repairing endogenous SSBs in the mt genome. EXOG depletion induces persistent SSBs in the mtDNA, enhances ROS levels, and causes apoptosis in normal cells but not in mt genome-deficient rho0 cells. Thus, these data show for the first time that persistent SSBs in the mt genome alone could provide the initial trigger for apoptotic signaling in mammalian cells.
Collapse
Affiliation(s)
- Anne W Tann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1079, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.
Collapse
Affiliation(s)
- Sachin Katyal
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN USA
| | | |
Collapse
|
27
|
Zhao S, Yang Y, Liu J, Liu H, Ge N, Yang H, Zhang H, Xing J. Association of mitochondrial DNA content in peripheral blood leukocyte with hepatitis B virus-related hepatocellular carcinoma in a Chinese Han population. Cancer Sci 2011; 102:1553-8. [PMID: 21521418 DOI: 10.1111/j.1349-7006.2011.01968.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Increasing epidemiological evidence has indicated that inherited variations of mtDNA content could affect the genetic susceptibility of many malignancies in a tumor-specific manner. However, the association between mtDNA content and hepatocellular carcinoma (HCC) remains undetermined. In this study, mtDNA content of peripheral blood leukocytes was determined using quantitative real-time PCR in a case-control study consisting of 274 HCC cases, 126 non-cancer patient controls with chronic liver diseases (CLD), and 258 healthy controls. We found that HCC cases had a significant lower mtDNA content than CLD controls (median [range]: 0.77 [0.17-2.30] vs 0.84 [0.32-3.37]; P = 0.012) and healthy controls (0.77 [0.17-2.30] vs 0.84 [0.35-3.44]; P = 0.035). There was no difference in mtDNA content between CLD and healthy controls (0.84 [0.32-3.37] vs 0.84 [0.35-3.44]; P = 0.261). We further assessed the association between mtDNA content and HCC and found that, compared to individuals with high mtDNA content, those with low mtDNA content had a significantly increased risk of HCC when health controls (adjusted odds ratio [aOR] = 1.64, 95% confidence interval [CI] = 1.06-2.55), CLD controls (aOR = 1.57, 95% CI = 1.10-2.25) or combined controls (aOR = 1.55, 95% CI = 1.12-2.14) were used as reference. In addition, stratified analyses showed that the significant association was only evident in younger individuals, male individuals, ever-smokers, and never-drinkers. Collectively, our findings provided the first epidemiological evidence that mtDNA content in peripheral blood leukocytes is significantly associated with HCC, which warrants further validation in prospective studies.
Collapse
Affiliation(s)
- Siyuan Zhao
- Department of Interventional Radiology, Tangdu Hospital State Key Laboratory of Cancer Biology and Department of Cell Biology and Cell Engineering Research Center, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair. Nature 2011; 471:240-4. [PMID: 21390131 PMCID: PMC3079429 DOI: 10.1038/nature09773] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 12/22/2010] [Indexed: 01/20/2023]
Abstract
DNA replication and repair in mammalian cells involves three distinct DNA ligases; ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4)1. Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway2,3. Lig3 is also present in the mitochondria where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc14. However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality5. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss6, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair.
Collapse
|
29
|
Qu F, Liu X, Zhou F, Yang H, Bao G, He X, Xing J. Association between mitochondrial DNA content in leukocytes and colorectal cancer risk: a case-control analysis. Cancer 2011; 117:3148-55. [PMID: 21246538 DOI: 10.1002/cncr.25906] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Compelling epidemiological evidence indicated that alterations of mitochondrial DNA (mtDNA), including mutations and abnormal content of mtDNA, were implicated in the tumorigenesis of several malignancies in a tumor-specific manner, such as lung cancer, breast cancer, and non-Hodgkin lymphoma. This study was undertaken to investigate whether mtDNA content in peripheral blood lymphocytes (PBLs) could be used as a risk predictor for colorectal cancer (CRC). METHODS The mtDNA content was measured by using quantitative real-time polymerase chain reaction in PBLs from 320 CRC patients and 320 matched controls. RESULTS The authors found that CRC patients exhibited statistically significantly higher mtDNA content than matched controls (median, 1.03 vs .86; P < .001). They further assessed the association between mtDNA content and CRC risk using multivariate logistic regression. By using the median value in controls as the cutoff point, they found that, compared with low mtDNA content, high mtDNA content was associated with a significantly increased CRC risk (adjusted odds ratio, 2.03; 95% confidence interval, 1.41-2.81). In a trend analysis, they found a statistically significant dose-response relationship between higher mtDNA content and increased CRC risk (P for trend <.001). Stratified analysis showed that the association between mtDNA content and CRC risk was not modulated by major host characteristics. CONCLUSIONS These findings provide the first epidemiological evidence linking the high mtDNA content in PBLs to elevated CRC risk.
Collapse
Affiliation(s)
- Falin Qu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Human tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond at a DNA 3'-end linked to a tyrosyl moiety and has been implicated in the repair of topoisomerase I (Top1)-DNA covalent complexes. TDP1 can also hydrolyze other 3'-end DNA alterations including 3'-phosphoglycolate and 3'-abasic sites, and exhibits 3'-nucleosidase activity indicating it may function as a general 3'-end-processing DNA repair enzyme. Here, using laser confocal microscopy, subcellular fractionation and biochemical analyses we demonstrate that a fraction of the TDP1 encoded by the nuclear TDP1 gene localizes to mitochondria. We also show that mitochondrial base excision repair depends on TDP1 activity and provide evidence that TDP1 is required for efficient repair of oxidative damage in mitochondrial DNA. Together, our findings provide evidence for TDP1 as a novel mitochondrial enzyme.
Collapse
|
31
|
Tell G, Fantini D, Quadrifoglio F. Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment. Cell Mol Life Sci 2010; 67:3589-608. [PMID: 20706766 PMCID: PMC11115856 DOI: 10.1007/s00018-010-0486-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/27/2022]
Abstract
The apurinic endonuclease 1/redox factor-1 (APE1) has a crucial function in DNA repair and in redox signaling in mammals, and recent studies identify it as an excellent target for sensitizing tumor cells to chemotherapy. APE1 is an essential enzyme in the base excision repair pathway of DNA lesions caused by oxidation and alkylation. As importantly, APE1 also functions as a redox agent maintaining transcription factors involved in cancer promotion and progression in an active reduced state. Very recently, a new unsuspected function of APE1 in RNA metabolism was discovered, opening new perspectives for this multifunctional protein. These observations underline the necessity to understand the molecular mechanisms responsible for fine-tuning its different biological functions. This survey intends to give an overview of the multifunctional roles of APE1 and their regulation in the context of considering this protein a promising tool for anticancer therapy.
Collapse
Affiliation(s)
- Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy.
| | | | | |
Collapse
|
32
|
Maynard S, de Souza-Pinto NC, Scheibye-Knudsen M, Bohr VA. Mitochondrial base excision repair assays. Methods 2010; 51:416-25. [PMID: 20188838 PMCID: PMC2916069 DOI: 10.1016/j.ymeth.2010.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 12/12/2022] Open
Abstract
The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur. Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene-specific repair assays, chromatographic techniques as well as current optimizations for detecting 8-oxoG lesions in cells by immunofluorescence. Throughout the assay descriptions we will include methodological considerations that may help optimize the assays in terms of resolution and repeatability.
Collapse
Affiliation(s)
- Scott Maynard
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21236, USA
| | | | | | | |
Collapse
|
33
|
Szczesny B, Tann AW, Mitra S. Age- and tissue-specific changes in mitochondrial and nuclear DNA base excision repair activity in mice: Susceptibility of skeletal muscles to oxidative injury. Mech Ageing Dev 2010; 131:330-7. [PMID: 20363243 DOI: 10.1016/j.mad.2010.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 12/25/2022]
Abstract
In this study, we investigated age- and tissue-dependent changes in the DNA base excision repair (BER) of oxidative lesions in mitochondrial and nuclear extracts by measuring single-nucleotide (SN)- and long-patch (LP)-BER activities in five tissues isolated from 4-, 10- and 20-month-old mice. Age-dependent SN-BER and LP-BER activity was increased in the mitochondria of liver, kidney and heart, but generally decreased in skeletal muscles. In contrast, no significant changes in repair activity were observed in nuclear extracts of the same tissues, except for quadriceps, where the SN-BER activity was higher in the old animals. Moreover, the BER activities in both the nucleus and the mitochondria were significantly lower in skeletal muscles compared to liver or kidney of the same mice. The protein level of three antioxidant enzymes, Mn and Cu/Zn superoxide dismutases (SOD) and catalase, was also significantly lower in skeletal muscle compared to liver or kidney. In addition, we found higher levels of protein carbonylation in the mitochondria of skeletal muscle relative to other tissues. Thus, it appears likely that mouse skeletal muscle is highly susceptible to oxidative stress due to deficiency in both repair of oxidative DNA damage and antioxidant enzymes, contributing to age-dependent muscle loss.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1079, USA.
| | | | | |
Collapse
|
34
|
Machado AMD, Figueiredo C, Seruca R, Rasmussen LJ. Helicobacter pylori infection generates genetic instability in gastric cells. Biochim Biophys Acta Rev Cancer 2010; 1806:58-65. [PMID: 20122996 DOI: 10.1016/j.bbcan.2010.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/16/2010] [Accepted: 01/24/2010] [Indexed: 01/02/2023]
Abstract
The discovery that Helicobacter pylori is associated with gastric cancer has led to numerous studies that investigate the mechanisms by which H. pylori induces carcinogenesis. Gastric cancer shows genetic instability both in nuclear and mitochondrial DNA, besides impairment of important DNA repair pathways. As such, this review highlights the consequences of H. pylori infection on the integrity of DNA in the host cells. By down-regulating major DNA repair pathways, H. pylori infection has the potential to generate mutations. In addition, H. pylori infection can induce direct changes on the DNA of the host, such as oxidative damage, methylation, chromosomal instability, microsatellite instability, and mutations. Interestingly, H. pylori infection generates genetic instability in nuclear and mitochondrial DNA. Based on the reviewed literature we conclude that H. pylori infection promotes gastric carcinogenesis by at least three different mechanisms: (1) a combination of increased endogenous DNA damage and decreased repair activities, (2) induction of mutations in the mitochondrial DNA, and (3) generation of a transient mutator phenotype that induces mutations in the nuclear genome.
Collapse
|
35
|
Abstract
Mitochondrial DNA (mtDNA) is in relatively close proximity to reactive oxygen species (ROS) arising from spontaneous superoxide formation during respiration. As a result, it sustains oxidative damage that may include base modifications, base loss, and strand breaks. mtDNA replication past sites of oxidative damage can result in the introduction of mutations. mtDNA mutations are associated with various human diseases and can manifest as loss of bioenergetic function. DNA repair processes exist in mitochondria from apparently all metazoans. A fully functional DNA base excision repair (BER) pathway is present in mitochondria of vertebrates. This pathway is catalyzed by a number of DNA glycosylases, an AP endonuclease, polymerase gamma, and a DNA ligase. This chapter outlines the step-by-step protocols for isolating mitochondrial fractions, from a number of different model organisms, of sufficient purity to allow mtDNA repair activities to be measured. It details in vitro assays for the measurement of BER enzyme activities in lysates prepared from isolated mitochondria.
Collapse
|
36
|
Todorov IN, Todorov GI. Multifactorial nature of high frequency of mitochondrial DNA mutations in somatic mammalian cells. BIOCHEMISTRY (MOSCOW) 2009; 74:962-70. [DOI: 10.1134/s000629790909003x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Acevedo-Torres K, Fonseca-Williams S, Ayala-Torres S, Torres-Ramos CA. Requirement of the Saccharomyces cerevisiae APN1 gene for the repair of mitochondrial DNA alkylation damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:317-327. [PMID: 19197988 PMCID: PMC2858446 DOI: 10.1002/em.20462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Saccharomyces cerevisiae APN1 gene that participates in base excision repair has been localized both in the nucleus and the mitochondria. APN1 deficient cells (apn1 Delta) show increased mutation frequencies in mitochondrial DNA (mtDNA) suggesting that APN1 is also important for mtDNA stability. To understand APN1-dependent mtDNA repair processes we studied the formation and repair of mtDNA lesions in cells exposed to methyl methanesulfonate (MMS). We show that MMS induces mtDNA damage in a dose-dependent fashion and that deletion of the APN1 gene enhances the susceptibility of mtDNA to MMS. Repair kinetic experiments demonstrate that in wild-type cells (WT) it takes 4 hr to repair the damage induced by 0.1% MMS, whereas in the apn1 Delta strain there is a lag in mtDNA repair that results in significant differences in the repair capacity between the two yeast strains. Analysis of lesions in nuclear DNA (nDNA) after treatment with 0.1% MMS shows a significant difference in the amount of nDNA lesions between WT and apn1 Delta cells. Interestingly, comparisons between nDNA and mtDNA damage show that nDNA is more sensitive to the effects of MMS treatment. However, both strains are able to repair the nDNA lesions, contrary to mtDNA repair, which is compromised in the apn1 Delta mutant strain. Therefore, although nDNA is more sensitive than mtDNA to the effects of MMS, deletion of APN1 has a stronger phenotype in mtDNA repair than in nDNA. These results highlight the prominent role of APN1 in the repair of environmentally induced mtDNA damage.
Collapse
Affiliation(s)
- Karina Acevedo-Torres
- Department of Physiology and Biophysics, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Sharon Fonseca-Williams
- Department of Physiology and Biophysics, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Sylvette Ayala-Torres
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Carlos A. Torres-Ramos
- Department of Physiology and Biophysics, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
38
|
Facucho-Oliveira JM, St John JC. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 2009; 5:140-58. [PMID: 19521804 DOI: 10.1007/s12015-009-9058-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/04/2009] [Indexed: 01/01/2023]
Abstract
Pluripotent blastomeres of mammalian pre-implantation embryos and embryonic stem cells (ESCs) are characterized by limited oxidative capacity and great reliance on anaerobic respiration. Early pre-implantation embryos and undifferentiated ESCs possess small and immature mitochondria located around the nucleus, have low oxygen consumption and express high levels of glycolytic enzymes. However, as embryonic cells and ESCs lose pluripotency and commit to a specific cell fate, the expression of mtDNA transcription and replication factors is upregulated and the number of mitochondria and mtDNA copies/cell increases. Moreover, upon cellular differentiation, mitochondria acquire an elongated morphology with swollen cristae and dense matrices, migrate into wider cytoplasmic areas and increase the levels of oxygen consumption and ATP production as a result of the activation of the more efficient, aerobic metabolism. Since pluripotency seems to be associated with anaerobic metabolism and a poorly developed mitochondrial network and differentiation leads to activation of mitochondrial biogenesis according to the metabolic requirements of the specific cell type, it is hypothesized that reprogramming of somatic cells towards a pluripotent state, by somatic cell nuclear transfer (SCNT), transcription-induced pluripotency or creation of pluripotent cell hybrids, requires acquisition of mitochondrial properties characteristic of pluripotent blastomeres and ESCs.
Collapse
Affiliation(s)
- J M Facucho-Oliveira
- The Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Warwick CV2 2DX, UK
| | | |
Collapse
|
39
|
Griffiths LM, Doudican NA, Shadel GS, Doetsch PW. Mitochondrial DNA oxidative damage and mutagenesis in Saccharomyces cerevisiae. Methods Mol Biol 2009; 554:267-86. [PMID: 19513680 DOI: 10.1007/978-1-59745-521-3_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutation of human mitochondrial DNA (mtDNA) has been linked to maternally inherited neuromuscular disorders and is implicated in more common diseases such as cancer, diabetes, and Parkinson's disease. Mutations in mtDNA also accumulate with age and are therefore believed to contribute to aging and age-related pathology. Housed within the mitochondrial matrix, mtDNA encodes several of the proteins involved in the production of ATP via the process of oxidative phosphorylation, which involves the flow of high-energy electrons through the electron transport chain (ETC). Because of its proximity to the ETC, mtDNA is highly vulnerable to oxidative damage mediated by reactive oxygen species (ROS) such as hydrogen peroxide, superoxide, and hydroxyl radicals that are constantly produced by this system. Therefore, it is important to be able to measure oxidative mtDNA damage under normal physiologic conditions and during environmental or disease-associated stress. The budding yeast, Saccharomyces cerevisiae, is a facile and informative model system in which to study such mtDNA oxidative damage because it is a unicellular eukaryotic facultative anaerobe that is conditionally dependent on mitochondrial oxidative phosphorylation for viability. Here, we describe methods for quantifying oxidative mtDNA damage and mutagenesis in S. cerevisiae, several of which could be applied to the development of similar assays in mammalian cells and tissues. These methods include measuring the number of point mutations that occur in mtDNA with the erythromycin resistance assay, quantifying the amount of oxidative DNA damage utilizing a modified Southern blot assay, and measuring mtDNA integrity with the "petite induction" assay.
Collapse
|
40
|
Zheng L, Zhou M, Guo Z, Lu H, Qian L, Dai H, Qiu J, Yakubovskaya E, Bogenhagen DF, Demple B, Shen B. Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol Cell 2008; 32:325-36. [PMID: 18995831 DOI: 10.1016/j.molcel.2008.09.024] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/30/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
DNA2, a helicase/nuclease family member, plays versatile roles in processing DNA intermediates during DNA replication and repair. Yeast Dna2 (yDna2) is essential in RNA primer removal during nuclear DNA replication and is important in repairing UV damage, base damage, and double-strand breaks. Our data demonstrate that, surprisingly, human DNA2 (hDNA2) does not localize to nuclei, as it lacks a nuclear localization signal equivalent to that present in yDna2. Instead, hDNA2 migrates to the mitochondria, interacts with mitochondrial DNA polymerase gamma, and significantly stimulates polymerase activity. We further demonstrate that hDNA2 and flap endonuclease 1 synergistically process intermediate 5' flap structures occurring in DNA replication and long-patch base excision repair (LP-BER) in mitochondria. Depletion of hDNA2 from a mitochondrial extract reduces its efficiency in RNA primer removal and LP-BER. Taken together, our studies illustrate an evolutionarily diversified role of hDNA2 in mitochondrial DNA replication and repair in a mammalian system.
Collapse
Affiliation(s)
- Li Zheng
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Acevedo-Torres K, Berríos L, Rosario N, Dufault V, Skatchkov S, Eaton MJ, Torres-Ramos CA, Ayala-Torres S. Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington's disease. DNA Repair (Amst) 2008; 8:126-36. [PMID: 18935984 DOI: 10.1016/j.dnarep.2008.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Many forms of neurodegeneration are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage, however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are primary events in the delayed onset observed in Huntington's disease (HD). We hypothesize that an age-dependent increase in mtDNA damage contributes to mitochondrial dysfunction in HD. Two HD mouse models were studied, the 3-nitropropionic acid (3-NPA) chemically induced model and the HD transgenic mice of the R6/2 strain containing 115-150 CAG repeats in the huntingtin gene. The mitochondrial toxin 3-NPA inhibits complex II of the electron transport system and causes neurodegeneration that resembles HD in the striatum of human and experimental animals. We measured nuclear and mtDNA damage by quantitative PCR (QPCR) in striatum of 5- and 24-month-old untreated and 3-NPA treated C57BL/6 mice. Aging caused an increase in damage in both nuclear and mitochondrial genomes. 3-NPA induced 4-6 more damage in mtDNA than nuclear DNA in 5-month-old mice, and this damage was repaired by 48h in the mtDNA. In 24-month-old mice 3NPA caused equal amounts of nuclear and mitochondrial damage and this damage persistent in both genomes for 48h. QPCR analysis showed a progressive increase in the levels of mtDNA damage in the striatum and cerebral cortex of 7-12-week-old R6/2 mice. Striatum exhibited eight-fold more damage to the mtDNA compared with a nuclear gene. These data suggest that mtDNA damage is an early biomarker for HD-associated neurodegeneration and supports the hypothesis that mtDNA lesions may contribute to the pathogenesis observed in HD.
Collapse
Affiliation(s)
- Karina Acevedo-Torres
- University of Puerto Rico, Medical Sciences Campus, Department of Physiology and Biophysics, San Juan, PR, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2008; 30:2-10. [PMID: 18978338 DOI: 10.1093/carcin/bgn250] [Citation(s) in RCA: 464] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging has been associated with damage accumulation in the genome and with increased cancer incidence. Reactive oxygen species (ROS) are produced from endogenous sources, most notably the oxidative metabolism in the mitochondria, and from exogenous sources, such as ionizing radiation. ROS attack DNA readily, generating a variety of DNA lesions, such as oxidized bases and strand breaks. If not properly removed, DNA damage can be potentially devastating to normal cell physiology, leading to mutagenesis and/or cell death, especially in the case of cytotoxic lesions that block the progression of DNA/RNA polymerases. Damage-induced mutagenesis has been linked to various malignancies. The major mechanism that cells use to repair oxidative damage lesions, such as 8-hydroxyguanine, formamidopyrimidines, and 5-hydroxyuracil, is base excision repair (BER). The BER pathway in the nucleus is well elucidated. More recently, BER was shown to also exist in the mitochondria. Here, we review the association of BER of oxidative DNA damage with aging, cancer and other diseases.
Collapse
Affiliation(s)
- Scott Maynard
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
43
|
Allen D, Herbert DC, McMahan CA, Rotrekl V, Sobol RW, Wilson SH, Walter CA. Mutagenesis is elevated in male germ cells obtained from DNA polymerase-beta heterozygous mice. Biol Reprod 2008; 79:824-31. [PMID: 18650495 DOI: 10.1095/biolreprod.108.069104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Gametes carry the DNA that will direct the development of the next generation. By compromising genetic integrity, DNA damage and mutagenesis threaten the ability of gametes to fulfill their biological function. DNA repair pathways function in germ cells and serve to ameliorate much DNA damage and prevent mutagenesis. High base excision repair (BER) activity is documented for spermatogenic cells. DNA polymerase-beta (POLB) is required for the short-patch BER pathway. Because mice homozygous null for the Polb gene die soon after birth, mice heterozygous for Polb were used to examine the extent to which POLB contributes to maintaining spermatogenic genomic integrity in vivo. POLB protein levels were reduced only in mixed spermatogenic cells. In vitro short-patch BER activity assays revealed that spermatogenic cell nuclear extracts obtained from Polb heterozygous mice had one third the BER activity of age-matched control mice. Polb heterozygosity had no effect on the BER activities of somatic tissues tested. The Polb heterozygous mouse line was crossed with the lacI transgenic Big Blue mouse line to assess mutant frequency. The spontaneous mutant frequency for mixed spermatogenic cells prepared from Polb heterozygous mice was 2-fold greater than that of wild-type controls, but no significant effect was found among the somatic tissues tested. These results demonstrate that normal POLB abundance is necessary for normal BER activity, which is critical in maintaining a low germline mutant frequency. Notably, spermatogenic cells respond differently than somatic cells to Polb haploinsufficiency.
Collapse
Affiliation(s)
- Diwi Allen
- Departments of Cellular and Structural Biology and Pathology, and The Barshop Center for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S. Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 2008; 283:26349-56. [PMID: 18635552 DOI: 10.1074/jbc.m803491200] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mitochondrial genome is highly susceptible to damage by reactive oxygen species (ROS) generated endogenously as a byproduct of respiration. ROS-induced DNA lesions, including oxidized bases, abasic (AP) sites, and oxidized AP sites, cause DNA strand breaks and are repaired via the base excision repair (BER) pathway in both the nucleus and mitochondria. Repair of damaged bases and AP sites involving 1-nucleotide incorporation, named single nucleotide (SN)-BER, was observed with mitochondrial and nuclear extracts. During SN-BER, the 5'-phosphodeoxyribose (dRP) moiety, generated by AP-endonuclease (APE1), is removed by the lyase activity of DNA polymerase gamma (pol gamma) and polymerase beta in the mitochondria and nucleus, respectively. However, the repair of oxidized deoxyribose fragments at the 5' terminus after strand break would require 5'-exo/endonuclease activity that is provided by the flap endonuclease (FEN-1) in the nucleus, resulting in multinucleotide repair patch (long patch (LP)-BER). Here we show the presence of a 5'-exo/endonuclease in the mitochondrial extracts of mouse and human cells that is involved in the repair of a lyase-resistant AP site analog via multinucleotide incorporation, upstream and downstream to the lesion site. We conclude that LP-BER also occurs in the mitochondria requiring the 5'-exo/endonuclease and pol gamma with 3'-exonuclease activity. Although a FEN-1 antibody cross-reacting species was detected in the mitochondria, it was absent in the LP-BER-proficient APE1 immunocomplex isolated from the mitochondrial extract that contains APE1, pol gamma, and DNA ligase 3. The LP-BER activity was marginally affected in FEN-1-depleted mitochondrial extracts, further supporting the involvement of an unidentified 5'-exo/endonuclease in mitochondrial LP-BER.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
45
|
Druzhyna NM, Wilson GL, LeDoux SP. Mitochondrial DNA repair in aging and disease. Mech Ageing Dev 2008; 129:383-90. [PMID: 18417187 DOI: 10.1016/j.mad.2008.03.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/29/2008] [Accepted: 03/05/2008] [Indexed: 11/16/2022]
Abstract
Mitochondria are organelles which, according to the endosymbiosis theory, evolved from purpurbacteria approximately 1.5 billion years ago. One of the unique features of mitochondria is that they have their own genome. Mitochondria replicate and transcribe their DNA semiautonomously. Like nuclear DNA, mitochondrial DNA (mtDNA) is constantly exposed to DNA damaging agents. Regarding the repair of mtDNA, the prevailing concept for many years was that mtDNA molecules suffering an excess of damage would simply be degraded to be replaced by newly generated successors copied from undamaged genomes. However, evidence now clearly shows that mitochondria contain the machinery to repair the damage to their genomes caused by certain endogenous or exogenous damaging agents. The link between mtDNA damage and repair to aging, neurodegeneration, and carcinogenesis-associated processes is the subject of this review.
Collapse
Affiliation(s)
- Nadiya M Druzhyna
- Department of Cell Biology and Neuroscience, University of South Alabama, 307 University Boulevard, Mobile, AL 36688, USA
| | | | | |
Collapse
|
46
|
Akbari M, Visnes T, Krokan HE, Otterlei M. Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst) 2008; 7:605-16. [PMID: 18295553 DOI: 10.1016/j.dnarep.2008.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 01/28/2023]
Abstract
Base excision repair (BER) corrects a variety of small base lesions in DNA. The UNG gene encodes both the nuclear (UNG2) and the mitochondrial (UNG1) forms of the human uracil-DNA glycosylase (UDG). We prepared mitochondrial extracts free of nuclear BER proteins from human cell lines. Using these extracts we show that UNG is the only detectable UDG in mitochondria, and mitochondrial BER (mtBER) of uracil and AP sites occur by both single-nucleotide insertion and long-patch repair DNA synthesis. Importantly, extracts of mitochondria carry out repair of modified AP sites which in nuclei occurs through long-patch BER. Such lesions may be rather prevalent in mitochondrial DNA because of its proximity to the electron transport chain, the primary site of production of reactive oxygen species. Furthermore, mitochondrial extracts remove 5' protruding flaps from DNA which can be formed during long-patch BER, by a "flap endonuclease like" activity, although flap endonuclease (FEN1) is not present in mitochondria. In conclusion, combined short- and long-patch BER activities enable mitochondria to repair a broader range of lesions in mtDNA than previously known.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7006 Trondheim, Norway
| | | | | | | |
Collapse
|
47
|
Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 2008; 18:27-47. [PMID: 18166975 DOI: 10.1038/cr.2008.8] [Citation(s) in RCA: 480] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or alkylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3' OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA ligase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APE1, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E. coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3' phosphate termini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APE1. Different complexes may utilize distinct DNA polymerases and ligases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organelle targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | | | | |
Collapse
|
48
|
Tang KH, Niebuhr M, Aulabaugh A, Tsai MD. Solution structures of 2 : 1 and 1 : 1 DNA polymerase-DNA complexes probed by ultracentrifugation and small-angle X-ray scattering. Nucleic Acids Res 2007; 36:849-60. [PMID: 18084022 PMCID: PMC2241917 DOI: 10.1093/nar/gkm1101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase beta (Pol beta) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol beta-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol beta-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDa 5'-dRP lyase domain of the second Pol beta molecule with the active site of the 1 : 1 Pol beta-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5'-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5'-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol beta-DNA complex enhances the function of Pol beta.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Chemistry, the Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
49
|
Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 2007; 76:679-99. [PMID: 17408359 DOI: 10.1146/annurev.biochem.76.060305.152028] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mitochondrion was originally a free-living prokaryotic organism, which explains the presence of a compact mammalian mitochondrial DNA (mtDNA) in contemporary mammalian cells. The genome encodes for key subunits of the electron transport chain and RNA components needed for mitochondrial translation. Nuclear genes encode the enzyme systems responsible for mtDNA replication and transcription. Several of the key components of these systems are related to proteins replicating and transcribing DNA in bacteriophages. This observation has led to the proposition that some genes required for DNA replication and transcription were acquired together from a phage early in the evolution of the eukaryotic cell, already at the time of the mitochondrial endosymbiosis. Recent years have seen a rapid development in our molecular understanding of these machineries, but many aspects still remain unknown.
Collapse
Affiliation(s)
- Maria Falkenberg
- Division of Metabolic Diseases, Karolinska Institutet, Novum, SE-141 86 Stockholm.
| | | | | |
Collapse
|
50
|
Ambrose M, Goldstine JV, Gatti RA. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet 2007; 16:2154-64. [PMID: 17606465 DOI: 10.1093/hmg/ddm166] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
One of the characteristic features of cells from patients with ataxia telangiectasia (A-T) is that they are in a state of continuous oxidative stress and exhibit constitutive activation of pathways that normally respond to oxidative damage. In this report, we investigated whether the oxidative stress phenotype of A-T cells might be a reflection of an intrinsic mitochondrial dysfunction. Mitotracker Red staining showed that the structural organization of mitochondria in A-T cells was abnormal compared to wild-type. Moreover, A-T cells harbored a much larger population of mitochondria with decreased membrane potential (DeltaPsi) than control cells. In addition, the basal expression levels of several nuclear DNA-encoded oxidative damage responsive genes whose proteins are targeted to the mitochondria--polymerase gamma, mitochondrial topoisomerase I, peroxiredoxin 3 and manganese superoxide dismutase--are elevated in A-T cells. Consistent with these results, we found that overall mitochondrial respiratory activity was diminished in A-T compared to wild-type cells. Treating A-T cells with the antioxidant, alpha lipoic acid (ALA), restored mitochondrial respiration rates to levels approaching those of wild-type. When wild-type cells were transfected with ATM-targeted siRNA, we observed a small but significant reduction in the respiration rates of mitochondria. Moreover, mitochondria in A-T cells induced to stably express full-length ATM, exhibited respiration rates approaching those of wild-type cells. Taken together, our results provide evidence for an intrinsic mitochondrial dysfunction in A-T cells, and implicate a requirement for ATM in the regulation of mitochondrial function.
Collapse
Affiliation(s)
- Mark Ambrose
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095-1732, USA
| | | | | |
Collapse
|