1
|
Eberhard S, Valuchova S, Ravat J, Fulneček J, Jolivet P, Bujaldon S, Lemaire SD, Wollman FA, Teixeira MT, Riha K, Xu Z. Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants. Life Sci Alliance 2019; 2:2/3/e201900315. [PMID: 31160377 PMCID: PMC6549138 DOI: 10.26508/lsa.201900315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
This study characterizes the sequence, end structure, and length distribution of Chlamydomonas reinhardtii telomeres and shows that telomerase mutants are defective in telomere maintenance. Telomeres are repeated sequences found at the end of the linear chromosomes of most eukaryotes and are required for chromosome integrity. Expression of the reverse-transcriptase telomerase allows for extension of telomeric repeats to counteract natural telomere shortening. Although Chlamydomonas reinhardtii, a photosynthetic unicellular green alga, is widely used as a model organism in photosynthesis and flagella research, and for biotechnological applications, the biology of its telomeres has not been investigated in depth. Here, we show that the C. reinhardtii (TTTTAGGG)n telomeric repeats are mostly nondegenerate and that the telomeres form a protective structure, with a subset ending with a 3′ overhang and another subset presenting a blunt end. Although telomere size and length distributions are stable under various standard growth conditions, they vary substantially between 12 genetically close reference strains. Finally, we identify CrTERT, the gene encoding the catalytic subunit of telomerase and show that telomeres shorten progressively in mutants of this gene. Telomerase mutants eventually enter replicative senescence, demonstrating that telomerase is required for long-term maintenance of telomeres in C. reinhardtii.
Collapse
Affiliation(s)
- Stephan Eberhard
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Sona Valuchova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julie Ravat
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Jaroslav Fulneček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pascale Jolivet
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Sandrine Bujaldon
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Stéphane D Lemaire
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Francis-André Wollman
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zhou Xu
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France .,Sorbonne Université, CNRS, UMR 7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| |
Collapse
|
2
|
Calvo E, Wasserman L. M. PfGBP: una proteína de unión al telómero de Plasmodium falciparum. REVISTA COLOMBIANA DE QUÍMICA 2016. [DOI: 10.15446/rev.colomb.quim.v44n1.53977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los telómeros son estructuras complejas de ADN y proteína localizadas en el extremo de los cromosomas eucariotes. Su principal función es proteger el extremo cromosomal de ser reconocido y procesado como ADNs fracturado, evitando así eventos de recombinación y fusión que conducen a inestabilidad cromosomal. El ADN telomérico consta de secuencias cortas, repetidas una tras otra, ricas en guanina; la cadena rica en guanina se extiende formando una región de cadena sencilla denominada extremo 3´ protuberante. Las proteínas por su parte, se pueden clasificar en: dsBPs, o proteínas de unión a la cadena doble, GBPs aquellas que reconocen específicamente el extremo protuberante y, proteínas que las interconectan mediante interacciones proteína-proteína. El gen PF3D7_1006800 de <em>Plasmodium falciparum</em> codifica para una proteína putativa similar a una GBP de <em>Criptosporidium parvum</em>, con el fin de establecer si esta proteína de <em>P. falciparum</em> presenta la capacidad de unión al ADN telomérico del parásito, se produjo una proteína recombinante a partir de la región codificante del gen, se purificó y se utilizó en ensayos de unión a ADN, y en la generación de anticuerpos policlonales específicos contra PfGBP. Nuestros resultados indican que la proteína de <em>P. falciparum</em> es una proteína nuclear con capacidad de unión al ADN telomérico <em>in vitro, </em>por lo<em> </em>que podría ser<em> </em>parte del complejo proteico encargado de proteger y/o mantener el telómero <em>in vivo</em>.
Collapse
|
3
|
Díaz de la Guardia R, Catalina P, Panero J, Elosua C, Pulgarin A, López MB, Ayllón V, Ligero G, Slavutsky I, Leone PE. Expression profile of telomere-associated genes in multiple myeloma. J Cell Mol Med 2014; 16:3009-21. [PMID: 22947336 PMCID: PMC4393729 DOI: 10.1111/j.1582-4934.2012.01628.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
To further contribute to the understanding of multiple myeloma, we have focused our research interests on the mechanisms by which tumour plasma cells have a higher survival rate than normal plasma cells. In this article, we study the expression profile of genes involved in the regulation and protection of telomere length, telomerase activity and apoptosis in samples from patients with monoclonal gammopathy of undetermined significance, smouldering multiple myeloma, multiple myeloma (MM) and plasma cell leukaemia (PCL), as well as several human myeloma cell lines (HMCLs). Using conventional cytogenetic and fluorescence in situ hybridization studies, we identified a high number of telomeric associations (TAs). Moreover, telomere length measurements by terminal restriction fragment (TRF) assay showed a shorter mean TRF peak value, with a consistent correlation with the number of TAs. Using gene expression arrays and quantitative PCR we identified the hTERT gene together with 16 other genes directly involved in telomere length maintenance: HSPA9, KRAS, RB1, members of the Small nucleolar ribonucleoproteins family, A/B subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins, and 14-3-3 family. The expression levels of these genes were even higher than those in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), which have unlimited proliferation capacity. In conclusion, the gene signature suggests that MM tumour cells are able to maintain stable short telomere lengths without exceeding the short critical length, allowing cell divisions to continue. We propose that this could be a mechanism contributing to MM tumour cells expansion in the bone marrow (BM).
Collapse
Affiliation(s)
- Rafael Díaz de la Guardia
- Andalusian Public Health System Biobank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, Granada, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I. Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. THE PLANT CELL 2012; 24:1860-75. [PMID: 22634764 PMCID: PMC3442574 DOI: 10.1105/tpc.111.093435] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/02/2012] [Accepted: 05/06/2012] [Indexed: 05/19/2023]
Abstract
A CO(2)-concentrating mechanism (CCM) is essential for the growth of most eukaryotic algae under ambient (392 ppm) and very low (<100 ppm) CO(2) concentrations. In this study, we used replicated deep mRNA sequencing and regulatory network reconstruction to capture a remarkable scope of changes in gene expression that occurs when Chlamydomonas reinhardtii cells are shifted from high to very low levels of CO(2) (≤100 ppm). CCM induction 30 to 180 min post-CO(2) deprivation coincides with statistically significant changes in the expression of an astonishing 38% (5884) of the 15,501 nonoverlapping C. reinhardtii genes. Of these genes, 1088 genes were induced and 3828 genes were downregulated by a log(2) factor of 2. The latter indicate a global reduction in photosynthesis, protein synthesis, and energy-related biochemical pathways. The magnitude of transcriptional rearrangement and its major patterns are robust as analyzed by three different statistical methods. De novo DNA motif discovery revealed new putative binding sites for Myeloid oncogene family transcription factors potentially involved in activating low CO(2)-induced genes. The (CA)(n) repeat (9 ≤ n ≤ 25) is present in 29% of upregulated genes but almost absent from promoters of downregulated genes. These discoveries open many avenues for new research.
Collapse
Affiliation(s)
- Andrew J. Brueggeman
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0665
| | | | - Matyas F. Cserhati
- Department of Statistics, University of Nebraska, Lincoln, Nebraska 68588-0665
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Donald P. Weeks
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0665
| | - Istvan Ladunga
- Department of Statistics, University of Nebraska, Lincoln, Nebraska 68588-0665
- Address correspondence to
| |
Collapse
|
5
|
Seitz SB, Voytsekh O, Mohan KM, Mittag M. The role of an E-box element: multiple frunctions and interacting partners. PLANT SIGNALING & BEHAVIOR 2010; 5:1077-80. [PMID: 20818183 PMCID: PMC3115072 DOI: 10.4161/psb.5.9.12564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circadian clocks can be entrained by light-dark or temperature cycles. In the green alga Chlamydomonas reinhardtii, 12h changes in temperature between 18°C and 28°C synchronize its clock. Both subunits of the circadian RNA-binding protein CHLAMY1, named C1 and C3, are able to integrate temperature information. C1 gets hyper-phosphorylated in cells grown at 18°C and the level of C3 is up-regulated at this temperature. In the long period mutant per1, where temperature entrainment is disturbed, the temperature-dependent regulation of C1 and C3 is altered. Up-regulation of C3 at the low temperature is mediated predominantly by an E-box element situated in its promoter region. This cis-acting element is also relevant for circadian expression of c3 as well as of its up-regulation in cells, where C1 is overexpressed. Among the few identified factors interacting with the E-box region, C3 is also present, suggesting that it feedbacks on its own transcription.
Collapse
Affiliation(s)
| | | | | | - Maria Mittag
- Institut für Allgemeine Botanik und Pflanzenphysiologie; Friedrich-Schiller-Universität Jena; Jena, Germany
| |
Collapse
|
6
|
Seitz SB, Weisheit W, Mittag M. Multiple roles and interaction factors of an E-box element in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2010; 152:2243-57. [PMID: 20154097 PMCID: PMC2850036 DOI: 10.1104/pp.109.149195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/08/2010] [Indexed: 05/23/2023]
Abstract
The two subunits of the circadian RNA-binding protein CHLAMY1 from Chlamydomonas reinhardtii are involved in maintaining period (C1 subunit) and phase (C3 subunit) of the circadian clock. C1 coregulates the level of C3. Overexpression of C1 causes a parallel increase in C3. Both subunits can also integrate temperature information, resulting in hyperphosphorylation of C1 and up-regulation of C3 at low temperature. Temperature-dependent up-regulation of C3 is mediated predominantly by an E-box element and only partially by two DREB1A-boxes that are situated within the C3 promoter. The E-box element is also involved in circadian C3 expression. Here, we show that the C3 promoter region drives C3 coregulation by C1. We also found that replacement of the E-box prevents the coregulation of C3 in strains overexpressing C1. In contrast, replacement of any of the two DREB1A-boxes does not influence either the coregulation of C3 by increased levels of C1 or circadian C3 expression. Thus, the E-box has multiple key roles, including temperature-dependent up-regulation of C3, its circadian expression, and its coregulation by C1. Using mobility shift assays and DNA-affinity chromatography along with mass spectrometry, we characterized proteins binding specifically to the E-box region and identified five of them. By immunoblotting, we could further show that C3 that was detected in nuclear extracts can be found in the E-box-binding protein complex. Our data indicate a complex transcriptional mechanism of C3 up-regulation and a positive feedback of C3 on its own promoter region.
Collapse
Affiliation(s)
| | | | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
7
|
Characterization of a Cryptosporidium parvum protein that binds single-stranded G-strand telomeric DNA. Mol Biochem Parasitol 2009; 165:132-41. [PMID: 19428660 DOI: 10.1016/j.molbiopara.2009.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 11/21/2022]
Abstract
We have initiated a project to characterize telomere-associated proteins of Cryptosporidium parvum. Searching public databases with C. parvum expressed sequence tag (EST) sequences revealed one EST sequence that is highly similar to Gbp1p of Chlamydomonas reinhardtii (Cr Gbp1p), a protein that binds single-stranded telomeric DNA. This EST was used to clone a gene encoding a 198 amino acids long protein (CpGbp). Sequence analysis suggested that CpGbp contains two RNA recognition motif (RRMs) domains linked with a short hinge region. RT-PCR analysis showed that the mRNA expression of CpGbp was up- and down-regulated significantly comparing to that of CpDNAPol, suggesting a potential role of CpGbp playing in the parasite's life cycle. In Western blot analysis, monoclonal antibody against recombinant CpGbp identified one band (approximately 23kDa) specifically from cell extracts of C. parvum sporozoites. Confocal microscopy analysis with anti-CpGbp antibody localized CpGbp proteins to the nucleus, consistent with its potential role in telomere length regulation. In electrophoretic mobility shift assays (EMSAs), recombinant CpGbp bound oligonucleotide TG3 that bears three copies of C. parvum telomeric DNA G-strand repeat "TTTAGG", but not C-strand or double-stranded telomeric DNA sequences. To map the binding domain and to define the binding site of CpGbp, we constructed four CpGbp deletion mutants and synthesized ten TG3 mutants and tested their binding affinities by EMSAs. We found that only the RRM domain at N-terminus has oligonucleotide-binding ability in vitro. And the minimal sequence necessary for CpGbp's binding is "GTTTAGGTTTAG". These data support the notion that CpGbp represents a C. parvum single-stranded telomeric DNA binding protein.
Collapse
|
8
|
Hierarchical mechanisms build the DNA-binding specificity of FUSE binding protein. Proc Natl Acad Sci U S A 2008; 105:18296-301. [PMID: 19015535 DOI: 10.1073/pnas.0803279105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The far upstream element (FUSE) binding protein (FBP), a single-stranded nucleic acid binding protein, is recruited to the c-myc promoter after melting of FUSE by transcriptionally generated dynamic supercoils. Via interactions with TFIIH and FBP-interacting repressor (FIR), FBP modulates c-myc transcription. Here, we investigate the contributions of FBP's 4 K Homology (KH) domains to sequence selectivity. EMSA and missing contact point analysis revealed that FBP contacts 4 separate patches spanning a large segment of FUSE. A SELEX procedure using paired KH-domains defined the preferred subsequences for each KH domain. Unexpectedly, there was also a strong selection for the noncontacted residues between these subsequences, showing that the contact points must be optimally presented in a backbone that minimizes secondary structure. Strategic mutation of contact points defined in this study disabled FUSE activity in vivo. Because the biological specificity of FBP is tuned at several layers: (i) accessibility of the site; (ii) supercoil-driven melting; (iii) presentation of unhindered bases for recognition; and (iv) modular interaction of KH-domains with cognate bases, the FBP-FIR system and sequence-specific, single-strand DNA binding proteins in general are likely to prove versatile tools for adjusting gene expression.
Collapse
|
9
|
Heterogeneous nuclear ribonucleoprotein G, nitric oxide, and oral carcinogenesis. Nitric Oxide 2008; 19:125-32. [DOI: 10.1016/j.niox.2008.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/12/2008] [Accepted: 04/16/2008] [Indexed: 11/23/2022]
|
10
|
Messaoudi L, Yang YG, Kinomura A, Stavreva DA, Yan G, Bortolin-Cavaillé ML, Arakawa H, Buerstedde JM, Hainaut P, Cavaillé J, Takata M, Van Dyck E. Subcellular distribution of human RDM1 protein isoforms and their nucleolar accumulation in response to heat shock and proteotoxic stress. Nucleic Acids Res 2007; 35:6571-87. [PMID: 17905820 PMCID: PMC2095821 DOI: 10.1093/nar/gkm753] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/28/2007] [Accepted: 09/11/2007] [Indexed: 12/11/2022] Open
Abstract
The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.
Collapse
Affiliation(s)
- Lydia Messaoudi
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Yun-Gui Yang
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Aiko Kinomura
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Diana A. Stavreva
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Gonghong Yan
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Marie-Line Bortolin-Cavaillé
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Hiroshi Arakawa
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Jean-Marie Buerstedde
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Pierre Hainaut
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Jérome Cavaillé
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Minoru Takata
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| | - Eric Van Dyck
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France, Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan 734-8553, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA, Laboratoire de Biologie Moléculaire des Eucaryotes, LBME-CNRS UMR 5099 - IFR 109, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France and Institute for Molecular Radiobiology, GSF, Ingolstaedter Landstrasse 1, D-85764 Neuherberg-Munich, Germany
| |
Collapse
|
11
|
Tanaka E, Fukuda H, Nakashima K, Tsuchiya N, Seimiya H, Nakagama H. HnRNP A3 binds to and protects mammalian telomeric repeats in vitro. Biochem Biophys Res Commun 2007; 358:608-14. [PMID: 17502110 DOI: 10.1016/j.bbrc.2007.04.177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
The biological function of hnRNP family proteins is widely diverse and involved in pre-mRNA processing, transcriptional regulation, recombination, and telomere maintenance. In the course of our study on the elucidation of biological functions of minisatellite DNA, we isolated several nuclear proteins that bind to the mouse minisatellite Pc-1, which consists of a tandem array of d(GGCAG) repeats, from NIH3T3 cells. One of the minisatellite binding proteins, MNBP-A, which binds to a single-stranded G-rich strand of the Pc-1 repeat, was proven identical to the hnRNP A3. Recombinant hnRNP A3 was demonstrated to bind to the single-stranded telomeric d(TTAGGG) repeat with much higher affinity than the d(GGCAG) repeat. Binding of hnRNP A3 to the single-stranded telomeric repeat protected the repeat from nuclease attack, and inhibited both telomerase reaction and DNA synthesis in vitro. These results suggest a possible biological role of hnRNP A3 in the stable maintenance of telomere repeats.
Collapse
Affiliation(s)
- Etsuko Tanaka
- Biochemistry Division, National Cancer Center Research Institute, Tsukiji 5, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Hamimes S, Bourgeon D, Stasiak AZ, Stasiak A, Van Dyck E. Nucleic acid-binding properties of the RRM-containing protein RDM1. Biochem Biophys Res Commun 2006; 344:87-94. [PMID: 16630539 DOI: 10.1016/j.bbrc.2006.03.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 03/21/2006] [Indexed: 11/30/2022]
Abstract
RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L119GF --> AAA mutation affects the mode of RDM1 binding to single-stranded DNA.
Collapse
Affiliation(s)
- Samia Hamimes
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | | | | | | | | |
Collapse
|
13
|
Suswam EA, Li YY, Mahtani H, King PH. Novel DNA-binding properties of the RNA-binding protein TIAR. Nucleic Acids Res 2005; 33:4507-18. [PMID: 16091628 PMCID: PMC1184220 DOI: 10.1093/nar/gki763] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
TIA-1 related protein binds avidly to uridine-rich elements in mRNA and pre-mRNAs of a wide range of genes, including interleukin (IL)-8 and vascular endothelial growth factor (VEGF). The protein has diverse regulatory roles, which in part depend on the locus of binding within the transcript, including translational control, splicing and apoptosis. Here, we observed selective and potent inhibition of TIAR–RNP complex formation with IL-8 and VEGF 3′-untranslated regions (3′-UTRs) using thymidine-rich deoxyoligonucleotide (ODN) sequences derived from the VEFG 3′-UTR. We show by ultraviolet crosslinking and electrophoretic mobility shift assays that TIAR can bind directly to single-stranded, thymidine-rich ODNs but not to double-stranded ODNs containing the same sequence. TIAR had a nearly 6-fold greater affinity for DNA than RNA (Kdapp=1.6×10−9M versus 9.4 × 10−9 M). Truncation of TIAR indicated that the high affinity DNA-binding site overlaps with the RNA-binding site involving RNA recognition motif 2 (RRM2). However, RRM1 alone could also bind to DNA. Finally, we show that TIAR can be displaced from single-stranded DNA by active transcription through the binding site. These results provide a potential mechanism by which TIAR can shuttle between RNA and DNA ligands.
Collapse
Affiliation(s)
- Esther A. Suswam
- Department of Neurology, University of AlabamaBirmingham, AL 35295, USA
- Birmingham Veterans Affairs Medical CenterBirmingham, AL 35295, USA
| | - Yan Yan Li
- Department of Neurology, University of AlabamaBirmingham, AL 35295, USA
- Birmingham Veterans Affairs Medical CenterBirmingham, AL 35295, USA
| | - Harry Mahtani
- Department of Neurology, University of AlabamaBirmingham, AL 35295, USA
- Birmingham Veterans Affairs Medical CenterBirmingham, AL 35295, USA
| | - Peter H. King
- Department of Neurology, University of AlabamaBirmingham, AL 35295, USA
- Department of Physiology and Biophysics, University of AlabamaBirmingham, AL 35295, USA
- Birmingham Veterans Affairs Medical CenterBirmingham, AL 35295, USA
- To whom correspondence should be addressed. Tel: +1 205 975 8116; Fax: +1 205 934 0928;
| |
Collapse
|
14
|
Drabløs F, Feyzi E, Aas PA, Vaagbø CB, Kavli B, Bratlie MS, Peña-Diaz J, Otterlei M, Slupphaug G, Krokan HE. Alkylation damage in DNA and RNA--repair mechanisms and medical significance. DNA Repair (Amst) 2005; 3:1389-407. [PMID: 15380096 DOI: 10.1016/j.dnarep.2004.05.004] [Citation(s) in RCA: 462] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 12/13/2022]
Abstract
Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase (MGMT or AGT) that repairs the base in one step. However, the genotoxicity and cytotoxicity of O(6)-meG is mainly due to recognition of O(6)-meG/T (or C) mispairs by the mismatch repair system (MMR) and induction of futile repair cycles, eventually resulting in cytotoxic double-strand breaks. Therefore, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents are complex and require complex repair mechanisms. Thus, primary chloroethyl adducts at O(6)-G are repaired by AGT, while the secondary highly cytotoxic interstrand cross-links (ICLs) require nucleotide excision repair factors (e.g. XPF-ERCC1) for incision and homologous recombination to complete repair. Recently, Escherichia coli protein AlkB and human homologues were shown to be oxidative demethylases that repair cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues. Numerous AlkB homologues are found in viruses, bacteria and eukaryotes, including eight human homologues (hABH1-8). These have distinct locations in subcellular compartments and their functions are only starting to become understood. Surprisingly, AlkB and hABH3 also repair RNA. An evaluation of the biological effects of environmental mutagens, as well as understanding the mechanism of action and resistance to alkylating drugs require a detailed understanding of DNA repair processes.
Collapse
Affiliation(s)
- Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fernández MF, Castellari RR, Conte FF, Gozzo FC, Sabino AA, Pinheiro H, Novello JC, Eberlin MN, Cano MIN. Identification of three proteins that associate in vitro with the Leishmania (Leishmania) amazonensis G-rich telomeric strand. ACTA ACUST UNITED AC 2004; 271:3050-63. [PMID: 15233802 DOI: 10.1111/j.1432-1033.2004.04237.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chromosomal ends of Leishmania (Leishmania) amazonensis contain conserved 5'-TTAGGG-3' telomeric repeats. Protein complexes that associate in vitro with these DNA sequences, Leishmania amazonensis G-strand telomeric protein (LaGT1-3), were identified and characterized by electrophoretic mobility shift assays and UV cross-linking using protein fractions purified from S100 and nuclear extracts. The three complexes did not form (a) with double-stranded DNA and the C-rich telomeric strand, (b) in competition assays using specific telomeric DNA oligonucleotides, or (c) after pretreatment with proteinase K. LaGT1 was the most specific and did not bind a Tetrahymena telomeric sequence. All three LaGTs associated with an RNA sequence cognate to the telomeric G-rich strand and a complex similar to LaGT1 is formed with a double-stranded DNA bearing a 3' G-overhang tail. The protein components of LaGT2 and LaGT3 were purified by affinity chromatography and identified, after renaturation, as approximately 35 and approximately 52 kDa bands, respectively. The <or= 15 kDa protein component of LaGT1 was gel-purified as a UV cross-linked complex of approximately 18-20 kDa. Peptides generated from trypsin digestion of the affinity and gel-purified protein bands were analysed by matrix-assisted laser desorption/ionization-time of flight and electrospray ionization tandem mass spectrometry. The fingerprint and amino acid sequence analysis showed that the protein components of LaGT2 and of LaGT3 were, respectively, similar to the kinetoplastid Rbp38p and to the putative subunit 1 of replication protein A of Leishmania spp., whereas the <or= 15 kDa protein component of LaGT1 was probably a novel Leishmania protein.
Collapse
Affiliation(s)
- Maribel F Fernández
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Myojin R, Kuwahara S, Yasaki T, Matsunaga T, Sakurai T, Kimura M, Uesugi S, Kurihara Y. Expression and functional significance of mouse paraspeckle protein 1 on spermatogenesis. Biol Reprod 2004; 71:926-32. [PMID: 15140795 DOI: 10.1095/biolreprod.104.028159] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Paraspeckle protein 1 (PSP1) in humans is a recently identified component protein of a novel nuclear body, paraspeckle. The protein has a DBHS (Drosophila behavior, human splicing) motif that is found in PSF and p54(nrb)/NonO proteins. These DBHS-containing proteins have been reported to be involved in various nuclear events such as DNA replication, transcription, and mRNA processing. Here we show that mouse paraspeckle protein 1 (mPSP1; encoded by the Pspc1 gene) has two isoforms with different C-termini lengths. Abundant expression of the longer isoform (mPSP1-alpha) and the shorter one (mPSP1-beta) were observed in testis and kidney, respectively. Transiently expressed mPSP1-alpha was localized in nuclei, but mPSP1-beta was localized in both nuclei and cytoplasm. These observations suggest that alternative splicing regulates tissue distribution and subcellular localization. Like other DBHS-containing proteins, mPSP1 has RNA-binding activity. In mouse testis, mPSP1-alpha was found in the nuclear matrix fraction. Furthermore, by coimmunoprecipitation, we confirmed that mPSP1 interacts with other DBHS-containing proteins, PSF and p54(nrb)/NonO. Therefore, we conclude that mPSP1 may regulate multiple phases of important nuclear events during spermatogenesis.
Collapse
Affiliation(s)
- Reiko Myojin
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Yokohama National University, Yokohama 240-0851, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kennedy D, French J, Guitard E, Ru K, Tocque B, Mattick J. Characterization of G3BPs: tissue specific expression, chromosomal localisation and rasGAP(120) binding studies. J Cell Biochem 2002; 84:173-87. [PMID: 11746526 DOI: 10.1002/jcb.1277] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The G3BP (ras-GTPase-Activating Protein SH3-Domain-Binding Protein) family of proteins has been implicated in both signal transduction and RNA-metabolism. We have previously identified human G3BP-1, G3BP-2, and mouse G3BP-2. Here, we report the cloning of mouse G3BP-1, the discovery of two alternatively spliced isoforms of mouse, and human G3BP-2 (G3BP-2a and G3BP-2b), and the chromosomal localisation of human G3BP-1 and G3BP-2, which map to 5q14.2-5q33.3 and 4q12-4q24 respectively. We mapped the rasGAP(120) interactive region of the G3BP-2 isoforms and show that both G3BP-2a and G3BP-2b use an N-terminal NTF2-like domain for rasGAP(120) binding rather than several available proline-rich (PxxP) motifs found in members of the G3BPs. Furthermore, we have characterized the protein expression of both G3BP-1 and G3BP-2a/b in adult mouse tissues, and show them to be both tissue and isoform specific.
Collapse
Affiliation(s)
- D Kennedy
- The Institute for Molecular Bioscience and the Department of Biochemistry, University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Ford LP, Wright WE, Shay JW. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene 2002; 21:580-3. [PMID: 11850782 DOI: 10.1038/sj.onc.1205086] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a large family of nucleic acid binding proteins that are often found in, but not restricted to, the 40S-ribonucleoprotein particle. Subsets of hnRNPs are strictly nuclear while others shuttle between the nucleus and cytoplasm. Members of the hnRNP family have been implicated to have roles in many aspects of mRNA maturation/turnover and in telomere and telomerase regulation. Telomeres are repetitive DNA elements mainly found at the ends of human chromosomes. In most normal cells, telomeres shorten with each cell division. Telomere shortening can be compensated for by a ribonucleoprotein complex, called telomerase. Telomerase, consisting of an integral RNA and catalytic protein component as well as several auxiliary factors, extends the 3'-G-rich strand of the ends of the telomeres. Here we present new data and describe a model that implicates the telomerase bound hnRNPs in promoting telomere access by interacting with telomeres. Telomere bound hnRNPs include hnRNP A1, A2-B1, D and E and telomerase bound hnRNPs including hnRNPA1 C1/C2 and D. The telomere and telomerase bound hnRNPs may prove to be good targets for regulating telomere length.
Collapse
Affiliation(s)
- Lance P Ford
- Ambion, Inc., 2130 Woodward Street, Austin, Texas, TX 78744-1832, USA
| | | | | |
Collapse
|
19
|
Cano MIN, Blake JJ, Blackburn EH, Agabian N. A Trypanosoma brucei protein complex that binds G-overhangs and co-purifies with telomerase activity. J Biol Chem 2002; 277:896-906. [PMID: 11673453 DOI: 10.1074/jbc.m104111200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The chromosomal ends of Trypanosoma brucei, like those of most eukaryotes, contain conserved 5'-TTAGGG-3' repeated sequences and are maintained by the action of telomerase. Fractionated T. brucei cell extracts with telomerase activity were used as a source of potential regulatory factors or telomerase-associated components that might interact with T. brucei telomeres. Electrophoretic mobility shift assays and UV cross-linking were used to detect possible single-stranded telomeric protein.DNA complexes and to estimate the approximate size of the protein constituents. Three single-stranded telomeric protein.DNA complexes were observed. Complex C3 was highly specific for the G-strand telomeric repeat sequence and shares biochemical characteristics with G-rich, single-stranded telomeric binding proteins and with components of the telomerase holoenzyme described in yeast, ciliates, and humans. Susceptibility to RNase A or chemical nuclease (hydroxyl radical) pre-treatment showed that complex C3 was tightly associated with an RNA component. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry was used to estimate the molecular mass of the peptides obtained by in-gel Lys-C digestion of low abundance C3-associated proteins. The molecular masses of the peptides showed no homologies with other proteins from trypanosomes or with any protein in the data bases screened.
Collapse
Affiliation(s)
- Maria Isabel N Cano
- Department of Stomatology, University of California, San Francisco, California 94143-0422, USA.
| | | | | | | |
Collapse
|
20
|
Buratti E, Baralle FE. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 2001; 276:36337-43. [PMID: 11470789 DOI: 10.1074/jbc.m104236200] [Citation(s) in RCA: 525] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Variations in a polymorphic (TG)m sequence near exon 9 of the human CFTR gene have been associated with variable proportions of exon skipping and occurrence of disease. We have recently identified nuclear factor TDP-43 as a novel splicing regulator capable of binding to this element in the CFTR pre-mRNA and inhibiting recognition of the neighboring exon. In this study we report the dissection of the RNA binding properties of TDP-43 and their functional implications in relationship with the splicing process. Our results show that this protein contains two fully functional RNA recognition motif (RRM) domains with distinct RNA/DNA binding characteristics. Interestingly, TDP-43 can bind a minimum number of six UG (or TG) single-stranded dinucleotide stretches, and binding affinity increases with the number of repeats. In particular, the highly conserved Phe residues in the first RRM region play a key role in nucleic acid recognition.
Collapse
Affiliation(s)
- E Buratti
- International Center for Genetic Engineering and Biotechnology (ICGEB) 34012 Trieste, Italy
| | | |
Collapse
|
21
|
Chennathukuzhi VM, Kurihara Y, Bray JD, Hecht NB. Trax (translin-associated factor X), a primarily cytoplasmic protein, inhibits the binding of TB-RBP (translin) to RNA. J Biol Chem 2001; 276:13256-63. [PMID: 11278549 DOI: 10.1074/jbc.m009707200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trax (Translin-associated factor X) has been shown to interact with TB-RBP/Translin by its coimmunoprecipitation and in yeast two-hybrid assays. Here we demonstrate that Trax is widely expressed, does not bind to DNA or RNA, but forms heterodimers with TB-RBP under reducing conditions. The heterodimer of TB-RBP and Trax inhibits TB-RBP binding to RNA, but enhances TB-RBP binding to specific single stranded DNA sequences. The in vitro interactions between TB-RBP and Trax are confirmed by similar interactions in the yeast two-hybrid system. Cell fractionation and confocal microscope studies reveal that Trax is predominantly cytoplasmic. In contrast, TB-RBP is present in both the nuclei and cytoplasm of transfected cells and uses a highly conserved nuclear export signal to exit nuclei. In addition to a leucine zipper, two basic domains in TB-RBP are essential for RNA binding, but only one of these domains is needed for DNA binding. Trax restores DNA binding to TB-RBP containing an altered form of this domain. These data suggest that Trax-TB.RBP interactions modulate the DNA- and RNA-binding activity of TB-RBP.
Collapse
Affiliation(s)
- V M Chennathukuzhi
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | | | |
Collapse
|
22
|
Telomerase and the cell cycle. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1566-3124(01)08004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Ford LP, Suh JM, Wright WE, Shay JW. Heterogeneous nuclear ribonucleoproteins C1 and C2 associate with the RNA component of human telomerase. Mol Cell Biol 2000; 20:9084-91. [PMID: 11074006 PMCID: PMC86561 DOI: 10.1128/mcb.20.23.9084-9091.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we demonstrate that heterogeneous nuclear ribonucleoproteins (hnRNPs) C1 and C2 can associate directly with the integral RNA component of mammalian telomerase. The binding site for hnRNPs C1 and C2 maps to a 6-base uridylate tract located directly 5' to the template region in the human telomerase RNA (TR) and a 4-base uridylate tract directly 3' to the template in the mouse TR. Telomerase activity is precipitated with antibodies specific to hnRNPs C1 and C2 from cells expressing wild-type human TR but not a variant of the human TR lacking the hnRNPs C1 and C2 binding site, indicating that hnRNPs C1 and C2 require the 6-base uridylate tract within the human TR to associate with the telomerase holoenzyme. In addition, we demonstrate that binding of hnRNPs C1 and C2 to telomerase correlates with the ability of telomerase to access the telomere. Although correlative, these data do suggest that the binding of hnRNPs C1 and C2 to telomerase may be important for the ability of telomerase to function on telomeres. The C proteins of the hnRNP particle are also capable of colocalizing with telomere binding proteins, suggesting that the C proteins may associate with telomeres in vivo. Therefore, human telomerase is capable of associating with core members of the hnRNP family of RNA binding proteins through a direct and sequence-specific interaction with the human TR. This is also the first account describing the precise mapping of a sequence in the human TR that is required to associate with an auxiliary component of the human telomerase holoenzyme.
Collapse
Affiliation(s)
- L P Ford
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA
| | | | | | | |
Collapse
|
24
|
Dallaire F, Dupuis S, Fiset S, Chabot B. Heterogeneous nuclear ribonucleoprotein A1 and UP1 protect mammalian telomeric repeats and modulate telomere replication in vitro. J Biol Chem 2000; 275:14509-16. [PMID: 10799534 DOI: 10.1074/jbc.275.19.14509] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein A1 protein and a shortened derivative (UP1) promote telomere elongation in mammalian cells. To gain insights into the function of A1/UP1 in telomere biogenesis, we have investigated the binding properties of recombinant A1/UP1 and derivatives to single-stranded DNA oligonucleotides. Our results indicate that UP1 prefers to bind to DNA carrying single-stranded telomeric extensions at the 3' terminus. The RNA recognition motif 1 is sufficient for strong and specific binding to oligomers carrying vertebrate telomeric repeats. We find that the binding of A1/UP1 protects telomeric sequences against degradation by endo- and exonucleases. Moreover, A1/UP1 binding prevents extension by telomerase and terminal deoxynucleotidyltransferase and inhibits rNTP-dependent DNA synthesis in vitro. These observations are consistent with the hypothesis that A1/UP1 is a telomere end-binding protein that plays a role in the maintenance of long 3' overhangs.
Collapse
Affiliation(s)
- F Dallaire
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
25
|
Abstract
Est1 is a component of yeast telomerase, and est1 mutants have senescence and telomere loss phenotypes. The exact function of Est1 is not known, and it is not homologous to components of other telomerases. We previously showed that Est1 protein coimmunoprecipitates with Tlc1 (the telomerase RNA) as well as with telomerase activity. Est1 has homology to Ebs1, an uncharacterized yeast open reading frame product, including homology to a putative RNA recognition motif (RRM) of Ebs1. Deletion of EBS1 results in short telomeres. We created point mutations in a putative RRM of Est1. One mutant was unable to complement either the senescence or the telomere loss phenotype of est1 mutants. Furthermore, the mutant protein no longer coprecipitated with the Tlc1 telomerase RNA. Mutants defective in the binding of Tlc1 RNA were nevertheless capable of binding single-stranded TG-rich DNA. Our data suggest that an important role of Est1 in the telomerase complex is to bind to the Tlc1 telomerase RNA via an RRM. Since Est1 can also bind telomeric DNA, Est1 may tether telomerase to the telomere.
Collapse
Affiliation(s)
- J Zhou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
26
|
Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM. Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev 1999; 13:1102-15. [PMID: 10323862 PMCID: PMC316951 DOI: 10.1101/gad.13.9.1102] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human hnRNP A1 is a versatile single-stranded nucleic acid-binding protein that functions in various aspects of mRNA maturation and in telomere length regulation. The crystal structure of UP1, the amino-terminal domain of human hnRNP A1 containing two RNA-recognition motifs (RRMs), bound to a 12-nucleotide single-stranded telomeric DNA has been determined at 2.1 A resolution. The structure of the complex reveals the basis for sequence-specific recognition of the single-stranded overhangs of human telomeres by hnRNP A1. It also provides insights into the basis for high-affinity binding of hnRNP A1 to certain RNA sequences, and for nucleic acid binding and functional synergy between the RRMs. In the crystal structure, a UP1 dimer binds to two strands of DNA, and each strand contacts RRM1 of one monomer and RRM2 of the other. The two DNA strands are antiparallel, and regions of the protein flanking each RRM make important contacts with DNA. The extensive protein-protein interface seen in the crystal structure of the protein-DNA complex and the evolutionary conservation of the interface residues suggest the importance of specific protein-protein interactions for the sequence-specific recognition of single-stranded nucleic acids. Models for regular packaging of telomere 3' overhangs and for juxtaposition of alternative 5' splice sites are proposed.
Collapse
Affiliation(s)
- J Ding
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|