1
|
Farache D, Antine SP, Lee ASY. Moonlighting translation factors: multifunctionality drives diverse gene regulation. Trends Cell Biol 2022; 32:762-772. [PMID: 35466028 PMCID: PMC9378348 DOI: 10.1016/j.tcb.2022.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/09/2022]
Abstract
Translation factors have traditionally been viewed as proteins that drive ribosome function and ensure accurate mRNA translation. Recent discoveries have highlighted that these factors can also moonlight in gene regulation, but through functions distinct from their canonical roles in protein synthesis. Notably, the additional functions that translation factors encode are diverse, ranging from transcriptional control and extracellular signaling to RNA binding, and are highly regulated in response to external cues and the intrinsic cellular state. Thus, this multifunctionality of translation factors provides an additional mechanism for exquisite control of gene expression.
Collapse
Affiliation(s)
- Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sadie P Antine
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy S Y Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
2
|
A structurally conserved RNA element within SARS-CoV-2 ORF1a RNA and S mRNA regulates translation in response to viral S protein-induced signaling in human lung cells. J Virol 2021; 96:e0167821. [PMID: 34757848 PMCID: PMC8791291 DOI: 10.1128/jvi.01678-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The positive-sense, single-stranded RNA genome SARS-CoV-2 harbors functionally important cis-acting elements governing critical aspects of viral gene expression. However, insights on how these elements sense various signals from the host cell and regulate viral protein synthesis are lacking. Here, we identified two novel cis-regulatory elements in SARS-CoV-2 ORF1a and S RNAs and describe their role in translational control of SARS-CoV-2. These elements are sequence-unrelated but form conserved hairpin structures (validated by NMR) resembling Gamma Activated Inhibitor of Translation (GAIT) elements that are found in a cohort of human mRNAs directing translational suppression in myeloid cells in response to IFN-γ. Our studies show that treatment of human lung cells with receptor-binding S1 subunit, S protein pseudotyped lentivirus, and S protein-containing virus-like particles triggers a signaling pathway involving DAP-kinase1 that leads to phosphorylation and release of the ribosomal protein L13a from the large ribosomal subunit. Released L13a forms a Virus Activated Inhibitor of Translation (VAIT) complex that binds to ORF1a and S VAIT elements, causing translational silencing. Translational silencing requires extracellular S protein (and its interaction with host ACE2 receptor), but not its intracellular synthesis. RNA-protein interaction analyses and in vitro translation experiments showed that GAIT and VAIT elements do not compete with each other, highlighting differences between the two pathways. Sequence alignments of SARS-CoV-2 genomes showed a high level of conservation of VAIT elements, suggesting their functional importance. This VAIT-mediated translational control mechanism of SARS-CoV-2 may provide novel targets for small molecule intervention and/or facilitate development of more effective mRNA vaccines. Importance Specific RNA elements in the genomes of RNA viruses play important roles in host-virus interaction. For SARS-CoV-2, the mechanistic insights on how these RNA elements could sense the signals from the host cell are lacking. Here we report a novel relationship between the GAIT-like SARS-CoV-2 RNA element (called VAITs) and the signal generated from the host cell. We show that for SARS-CoV-2, the interaction of spike protein with ACE2 not only serves the purpose for viral entry into the host cell, but also transduces signals that culminate into the phosphorylation and the release of L13a from the large ribosomal subunit. We also show that this event leads to the translational arrest of ORF1a and S mRNAs in a manner dependent on the structure of the RNA elements. Translational control of viral mRNA by a host-cell generated signal triggered by viral protein is a new paradigm in the host-virus relationship.
Collapse
|
3
|
Tabatabaei N, Hou S, Kim KW, Tahmasebi S. Signaling pathways that control mRNA translation initiation in macrophages. Cell Signal 2020; 73:109700. [PMID: 32593651 DOI: 10.1016/j.cellsig.2020.109700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Translational control in mammalian cells plays a critical role in regulating differentiation, cell growth, cell cycle and response to diverse stresses. Macrophages are one of the most versatile cell types in the body. They are professional phagocytic cells that can be found in almost all tissues and adapt tissue-specific functions. Recent studies highlight the importance of translational control in macrophages during invasion of pathogens, exposure to cytokines and in the context of tissue specific functions. In this review, we summarize the current knowledge regarding the role of mRNA translational control in regulation of macrophages.
Collapse
Affiliation(s)
- Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shikun Hou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Das AS, Basu A, Kumar R, Borah PK, Bakshi S, Sharma M, Duary RK, Ray PS, Mukhopadhyay R. Post-transcriptional regulation of C-C motif chemokine ligand 2 expression by ribosomal protein L22 during LPS-mediated inflammation. FEBS J 2020; 287:3794-3813. [PMID: 32383535 DOI: 10.1111/febs.15362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/02/2020] [Accepted: 05/05/2020] [Indexed: 11/28/2022]
Abstract
Monocyte infiltration to the site of pathogenic invasion is critical for inflammatory response and host defence. However, this process demands precise regulation as uncontrolled migration of monocytes to the site delays resolution of inflammation and ultimately promotes chronic inflammation. C-C motif chemokine ligand 2 (CCL2) plays a key role in monocyte migration, and hence, its expression should be tightly regulated. Here, we report a post-transcriptional regulation of CCL2 involving the large ribosomal subunit protein L22 (RPL22) in LPS-activated, differentiated THP-1 cells. Early events following LPS treatment include transcriptional upregulation of RPL22 and its nuclear accumulation. The protein binds to the first 20 nt sequence of the 5'UTR of ccl2 mRNA. Simultaneous nuclear translocation of up-frameshift-1 protein and its interaction with RPL22 results in cytoplasmic degradation of the ccl2 mRNA at a later stage. Removal of RPL22 from cells results in increased expression of CCL2 in response to LPS causing disproportionate migration of monocytes. We propose that post-transcriptional regulation of CCL2 by RPL22 fine-tunes monocyte infiltration during a pathogenic insult and maintains homeostasis of the immune response critical to resolution of inflammation. DATABASES: Microarray data are available in NCBI GEO database (Accession No GSE126525).
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Ravi Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, West Bengal, India
| | - Pallab Kumar Borah
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Subhojit Bakshi
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Manoj Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, West Bengal, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
5
|
Basu A, Dvorina N, Baldwin WM, Mazumder B. High-fat diet-induced GAIT element-mediated translational silencing of mRNAs encoding inflammatory proteins in macrophage protects against atherosclerosis. FASEB J 2020; 34:6888-6906. [PMID: 32232901 DOI: 10.1096/fj.201903119r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 11/11/2022]
Abstract
Previously, we identified a mechanism of inflammation control directed by ribosomal protein L13a and "GAIT" (Gamma Activated Inhibitor of Translation) elements in target mRNAs and showed that its elimination in myeloid cell-specific L13a knockout mice (L13a KO) increased atherosclerosis susceptibility and severity. Here, we investigated the mechanistic basis of this endogenous defense against atherosclerosis. We compared molecular and cellular aspects of atherosclerosis in high-fat diet (HFD)-fed L13a KO and intact (control) mice. HFD treatment of control mice induced release of L13a from 60S ribosome, formation of RNA-binding complex, and subsequent GAIT element-mediated translational silencing. Atherosclerotic plaques from HFD-treated KO mice showed increased infiltration of M1 type inflammatory macrophages. Macrophages from KO mice showed increased phagocytic activity and elevated expression of LDL receptor and pro-inflammatory mediators. NanoString analysis of the plaques from KO mice showed upregulation of a number of mRNAs encoding inflammatory proteins. Bioinformatics analysis suggests the presence of the potential GAIT elements in the 3'UTRs of several of these mRNAs. Macrophage induces L13a/GAIT-dependent translational silencing of inflammatory genes in response to HFD as an endogenous defense against atherosclerosis in ApoE-/- model.
Collapse
Affiliation(s)
- Abhijit Basu
- Department of Biology, Geology and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Barsanjit Mazumder
- Department of Biology, Geology and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
6
|
|
7
|
Basu A, Jain N, Tolbert BS, Komar AA, Mazumder B. Conserved structures formed by heterogeneous RNA sequences drive silencing of an inflammation responsive post-transcriptional operon. Nucleic Acids Res 2018; 45:12987-13003. [PMID: 29069516 PMCID: PMC5727460 DOI: 10.1093/nar/gkx979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/09/2017] [Indexed: 11/21/2022] Open
Abstract
RNA–protein interactions with physiological outcomes usually rely on conserved sequences within the RNA element. By contrast, activity of the diverse gamma-interferon-activated inhibitor of translation (GAIT)-elements relies on the conserved RNA folding motifs rather than the conserved sequence motifs. These elements drive the translational silencing of a group of chemokine (CC/CXC) and chemokine receptor (CCR) mRNAs, thereby helping to resolve physiological inflammation. Despite sequence dissimilarity, these RNA elements adopt common secondary structures (as revealed by 2D-1H NMR spectroscopy), providing a basis for their interaction with the RNA-binding GAIT complex. However, many of these elements (e.g. those derived from CCL22, CXCL13, CCR4 and ceruloplasmin (Cp) mRNAs) have substantially different affinities for GAIT complex binding. Toeprinting analysis shows that different positions within the overall conserved GAIT element structure contribute to differential affinities of the GAIT protein complex towards the elements. Thus, heterogeneity of GAIT elements may provide hierarchical fine-tuning of the resolution of inflammation.
Collapse
Affiliation(s)
- Abhijit Basu
- Center for Gene Regulation in Health & Disease, Department of Biology, Geology and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Niyati Jain
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anton A Komar
- Center for Gene Regulation in Health & Disease, Department of Biology, Geology and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health & Disease, Department of Biology, Geology and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| |
Collapse
|
8
|
L13a-dependent translational control in macrophages limits the pathogenesis of colitis. Cell Mol Immunol 2015; 13:816-827. [PMID: 26166763 DOI: 10.1038/cmi.2015.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022] Open
Abstract
Sustained inflammation from infiltrated immune cells plays a pivotal role in the pathogenesis of ulcerative colitis (UC). Previously, we established the role of ribosomal protein L13a in the regulation of an inflammation-responsive post-transcriptional operon in myeloid cells. However, the role of this protein as a molecular cue to control the severity of colitis is not known. Here, we examined whether L13a-dependent translational control in macrophages could serve as an endogenous defense against colitis. The administration of dextran sodium sulfate induced experimental colitis in myeloid-specific L13a-knockout (KO) and control mice. Pathological scoring and injury to the colon mucosa evaluated the severity of colitis. The steady-state levels of several pro-inflammatory cytokines and chemokines were determined through ELISA and polyribosome profile analysis. Rapid weight loss, severe rectal bleeding, shortening of the colon, and significantly reduced survival rate were observed in the KO mice. Histopathological analysis of the colons of KO mice showed a severe disruption of epithelial crypts with immune cell infiltrates. Elevated levels of several inflammatory cytokines and chemokines and abrogation of their naturally imposed translational silencing were observed in the colons of the KO mice. Higher serum levels of several pro-inflammatory cytokines and the release of gut bacteria and endotoxins into the blood streams of KO mice were detected, suggesting the amplification of the inflammatory response to septicemia. Taken together, these results reveal an essential role for L13a in the endogenous protection against UC and demonstrate the potential for new therapeutic opportunities through the deliberate promotion of this mechanism.
Collapse
|
9
|
Regulation of angiogenesis by aminoacyl-tRNA synthetases. Int J Mol Sci 2014; 15:23725-48. [PMID: 25535072 PMCID: PMC4284789 DOI: 10.3390/ijms151223725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
In addition to their canonical roles in translation the aminoacyl-tRNA synthetases (ARSs) have developed secondary functions over the course of evolution. Many of these activities are associated with cellular survival and nutritional stress responses essential for homeostatic processes in higher eukaryotes. In particular, six ARSs and one associated factor have documented functions in angiogenesis. However, despite their connection to this process, the ARSs are mechanistically distinct and exhibit a range of positive or negative effects on aspects of endothelial cell migration, proliferation, and survival. This variability is achieved through the appearance of appended domains and interplay with inflammatory pathways not found in prokaryotic systems. Complete knowledge of the non-canonical functions of ARSs is necessary to understand the mechanisms underlying the physiological regulation of angiogenesis.
Collapse
|
10
|
Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 2014; 14:361-76. [PMID: 24854588 DOI: 10.1038/nri3682] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Innate immune responses combat infectious microorganisms by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. Multiple genes within each of these functional categories are coordinately and temporally regulated in response to distinct external stimuli. The substantial potential of these responses to drive pathological inflammation and tissue damage highlights the need for rigorous control of these responses. Although transcriptional control of inflammatory gene expression has been studied extensively, the importance of post-transcriptional regulation of these processes is less well defined. In this Review, we discuss the regulatory mechanisms that occur at the level of mRNA splicing, mRNA polyadenylation, mRNA stability and protein translation, and that have instrumental roles in controlling both the magnitude and duration of the inflammatory response.
Collapse
Affiliation(s)
- Susan Carpenter
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Emiliano P Ricci
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Blandine C Mercier
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Katherine A Fitzgerald
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2] Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
11
|
Abstract
UNLABELLED We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3'untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. IMPORTANCE The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal protein L13a is released from the large ribosomal subunit soon after infection and inhibits the translation of a specific viral mRNA, namely, that of the matrix protein M. Regarding its mechanism, we show that the recognition of a specific secondary structure in the 3' untranslated region of the M mRNA leads to translational arrest of the mRNA. We also show that the level of M protein in the infected cell is rate limiting for viral morphogenesis, providing a rationale for L13a to target the M mRNA for suppression of RSV growth. Translational silencing of a viral mRNA by a deployed ribosomal protein is a new paradigm in innate immunity.
Collapse
|
12
|
Translational control of immune responses: from transcripts to translatomes. Nat Immunol 2014; 15:503-11. [DOI: 10.1038/ni.2891] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
|
13
|
Basu A, Poddar D, Robinet P, Smith JD, Febbraio M, Baldwin WM, Mazumder B. Ribosomal protein L13a deficiency in macrophages promotes atherosclerosis by limiting translation control-dependent retardation of inflammation. Arterioscler Thromb Vasc Biol 2014; 34:533-42. [PMID: 24436370 DOI: 10.1161/atvbaha.113.302573] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Unresolved inflammatory response of macrophages plays a pivotal role in the pathogenesis of atherosclerosis. Previously we showed that ribosomal protein L13a-dependent translational silencing suppresses the synthesis of a cohort of inflammatory proteins in monocytes and macrophages. We also found that genetic abrogation of L13a expression in macrophages significantly compromised the resolution of inflammation in a mouse model of lipopolysaccharide-induced endotoxemia. However, its function in the pathogenesis of atherosclerosis is not known. Here, we examine whether L13a in macrophage has a protective role against high-fat diet-induced atherosclerosis. APPROACH AND RESULTS We bred the macrophage-specific L13a knockout mice L13a Flox(+/+) Cre(+/+) onto apolipoprotein E-deficient background and generated the experimental double knockout mice L13a Flox(+/+) Cre(+/+) apolipoprotein E deficient (apoE(-/-)). L13a Flox(+/+) Cre(-/-) mice on apolipoprotein E-deficient background were used as controls. Control and knockout mice were subjected to high-fat diet for 10 weeks. Evaluation of aortic sinus sections and entire aorta by en face showed significantly higher atherosclerosis in the knockout mice. Severity of atherosclerosis in knockout mice was accompanied by thinning of the smooth muscle cell layer in the media, larger macrophage area in the intimal plaque region and higher plasma levels of inflammatory cytokines. In addition, macrophages isolated from knockout mice had higher polyribosomal abundance of several target mRNAs, thus showing defect in translation control. CONCLUSIONS Our data demonstrate that loss of L13a in macrophages increases susceptibility to atherosclerosis in apolipoprotein E-deficient mice, revealing an important role of L13a-dependent translational control as an endogenous protection mechanism against atherosclerosis.
Collapse
Affiliation(s)
- Abhijit Basu
- From the Department of Biology, Geology, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH (A.B., D.P., B.M.); Department of Cellular and Molecular Medicine (P.R., J.D.S.), Department of Immunology (W.M.B.), and Department of Molecular Cardiology (M.F), Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
15
|
Insights into the mechanism of ribosomal incorporation of mammalian L13a protein during ribosome biogenesis. Mol Cell Biol 2013; 33:2829-42. [PMID: 23689135 DOI: 10.1128/mcb.00250-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis.
Collapse
|
16
|
Poddar D, Basu A, Baldwin WM, Kondratov RV, Barik S, Mazumder B. An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:3600-12. [PMID: 23460747 DOI: 10.4049/jimmunol.1201933] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammation is an obligatory attempt of the immune system to protect the host from infections. However, unregulated synthesis of proinflammatory products can have detrimental effects. Although mechanisms that lead to inflammation are well appreciated, those that restrain it are not adequately understood. Creating macrophage-specific L13a-knockout mice, we report that depletion of ribosomal protein L13a abrogates the endogenous translation control of several chemokines in macrophages. Upon LPS-induced endotoxemia, these animals displayed symptoms of severe inflammation caused by widespread infiltration of macrophages in major organs causing tissue injury and reduced survival rates. Macrophages from these knockout animals show unregulated expression of several chemokines (e.g., CXCL13, CCL22, CCL8, and CCR3). These macrophages failed to show L13a-dependent RNA binding complex formation on target mRNAs. In addition, increased polyribosomal abundance of these mRNAs shows a defect in translation control in the macrophages. Thus, to our knowledge, our studies provide the first evidence of an essential extraribosomal function of ribosomal protein L13a in resolving physiological inflammation in a mammalian host.
Collapse
Affiliation(s)
- Darshana Poddar
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yao P, Poruri K, Martinis SA, Fox PL. Non-catalytic Regulation of Gene Expression by Aminoacyl-tRNA Synthetases. Top Curr Chem (Cham) 2013; 344:167-87. [DOI: 10.1007/128_2013_422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Hussey GS, Link LA, Brown AS, Howley BV, Chaudhury A, Howe PH. Establishment of a TGFβ-induced post-transcriptional EMT gene signature. PLoS One 2012; 7:e52624. [PMID: 23285117 PMCID: PMC3527574 DOI: 10.1371/journal.pone.0052624] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/20/2012] [Indexed: 12/31/2022] Open
Abstract
A major challenge in the clinical management of human cancers is to accurately stratify patients according to risk and likelihood of a favorable response. Stratification is confounded by significant phenotypic heterogeneity in some tumor types, often without obvious criteria for subdivision. Despite intensive transcriptional array analyses, the identity and validation of cancer specific ‘signature genes’ remains elusive, partially because the transcriptome does not mirror the proteome. The simplification associated with transcriptomic profiling does not take into consideration changes in the relative expression among transcripts that arise due to post-transcriptional regulatory events. We have previously shown that TGFβ post-transcriptionally regulates epithelial-mesenchymal transition (EMT) by causing increased expression of two transcripts, Dab2 and ILEI, by modulating hnRNP E1 phosphorylation. Using a genome-wide combinatorial approach involving expression profiling and RIP-Chip analysis, we have identified a cohort of translationally regulated mRNAs that are induced during TGFβ-mediated EMT. Coordinated translational regulation by hnRNP E1 constitutes a post-transcriptional regulon inhibiting the expression of related EMT-facilitating genes, thus enabling the cell to rapidly and coordinately regulate multiple EMT-facilitating genes.
Collapse
Affiliation(s)
- George S. Hussey
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Laura A. Link
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Andrew S. Brown
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Breege V. Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Philip H. Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Jia J, Arif A, Stuehr DJ, Hazen SL, Fox PL. Protection of extraribosomal RPL13a by GAPDH and dysregulation by S-nitrosylation. Mol Cell 2012; 47:656-63. [PMID: 22771119 PMCID: PMC3635105 DOI: 10.1016/j.molcel.2012.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/03/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
Abstract
Multiple eukaryotic ribosomal proteins (RPs) are co-opted for extraribosomal "moonlighting" activities, but paradoxically, RPs exhibit rapid turnover when not ribosome-bound. In one illustrative case of a functional extraribosomal RP, interferon (IFN)-γ induces ribosome release of L13a and assembly into the IFN-gamma-activated inhibitor of translation (GAIT) complex for translational control of a subset of inflammation-related proteins. Here we show GAPDH functions as a chaperone, shielding newly released L13a from proteasomal degradation. However, GAPDH protective activity is lost following cell treatment with oxidatively modified low density lipoprotein and IFN-γ. These agonists stimulate S-nitrosylation at Cys(247) of GAPDH, which fails to interact with L13a, causing proteasomal degradation of essentially the entire cell complement of L13a and defective translational control. Evolution of extraribosomal RP activities might require coevolution of protective chaperones, and pathological disruption of either protein, or their interaction, presents an alternative mechanism of diseases due to RP defects, and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jie Jia
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Abul Arif
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stanley L. Hazen
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 2012; 13:355-69. [PMID: 22617470 DOI: 10.1038/nrm3359] [Citation(s) in RCA: 496] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than intrinsic regulatory capacity in mRNA translation. However, emerging studies reveal that ribosome activity may be highly regulated. Heterogeneity in ribosome composition resulting from differential expression and post-translational modifications of ribosomal proteins, ribosomal RNA (rRNA) diversity and the activity of ribosome-associated factors may generate 'specialized ribosomes' that have a substantial impact on how the genomic template is translated into functional proteins. Moreover, constitutive components of the ribosome may also exert more specialized activities by virtue of their interactions with specific mRNA regulatory elements such as internal ribosome entry sites (IRESs) or upstream open reading frames (uORFs). Here we discuss the hypothesis that intrinsic regulation by the ribosome acts to selectively translate subsets of mRNAs harbouring unique cis-regulatory elements, thereby introducing an additional level of regulation in gene expression and the life of an organism.
Collapse
Affiliation(s)
- Shifeng Xue
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
21
|
Yao P, Potdar AA, Arif A, Ray PS, Mukhopadhyay R, Willard B, Xu Y, Yan J, Saidel GM, Fox PL. Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell 2012; 149:88-100. [PMID: 22386318 DOI: 10.1016/j.cell.2012.02.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/29/2011] [Accepted: 02/09/2012] [Indexed: 12/21/2022]
Abstract
Posttranscriptional regulatory mechanisms superimpose "fine-tuning" control upon "on-off" switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. The GAIT (gamma-interferon-activated inhibitor of translation) complex repressed VEGF-A synthesis to a low, constant rate independent of VEGF-A mRNA expression levels. Dynamic model simulations predicted an inhibitory GAIT-element-interacting factor to account for this relationship and led to the identification of a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), a GAIT constituent that mediates binding to target transcripts. The truncated protein, EPRS(N1), shields GAIT-element-bearing transcripts from the inhibitory GAIT complex, thereby dictating a "translational trickle" of GAIT target proteins. EPRS(N1) mRNA is generated by polyadenylation-directed conversion of a Tyr codon in the EPRS-coding sequence to a stop codon (PAY(∗)). Genome-wide analysis revealed multiple candidate PAY(∗) targets, including the authenticated target RRM1, suggesting a general mechanism for production of C terminus-truncated regulatory proteins.
Collapse
Affiliation(s)
- Peng Yao
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Grayfer L, Garcia EG, Belosevic M. Comparison of macrophage antimicrobial responses induced by type II interferons of the goldfish (Carassius auratus L.). J Biol Chem 2010; 285:23537-47. [PMID: 20507977 DOI: 10.1074/jbc.m109.096925] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Unlike mammals, bony fish have two type II interferons, IFNgamma and IFNgammarel, whose pro-inflammatory functions have not been fully characterized. To elucidate the distinct roles of these type II interferons of bony fish, we examined the effects of recombinant goldfish (rg) IFNgamma and IFNgammarel on the macrophage antimicrobial responses, immune gene expression, and their signaling pathways. Our findings indicate that rgIFNgamma and rgIFNgammarel possess unique capacities to mediate each of the above processes. Q-PCR analysis revealed similar expression of both cytokines in tissues and immune cell populations of the goldfish, although IFNgamma mRNA levels were generally higher in most tissues and cell types. Whereas rgIFNgamma had long-lasting effects on the priming of goldfish monocyte ROI production, the rgIFNgammarel had relatively short-lived ROI priming potential and eventually down-regulated the priming of ROI production induced by rgIFNgamma or rgTNFalpha2. Whereas rgIFNgamma induced relatively modest phagocytic and nitric oxide responses of goldfish macrophages, rgIFNgammarel induced significantly higher phagocytosis, iNOSA and iNOSB gene expression and nitric oxide production compared with rgIFNgamma. The rgIFNgamma and rgIFNgammarel induced different gene expression profiles in goldfish monocytes. These differences included significantly higher induction of TNFalpha2, CXCL8, ceruloplasmin, and interferon regulatory factor (IRFs) expression after activation of monocytes with rgIFNgammarel. The rgIFNgammarel was more abundant in whole cell lysates compared with rgIFNgamma. Both cytokines induced the phosphorylation of Stat1, while the nuclear localization of Stat1 was only observed following treatment of monocytes with rgIFNgamma. Our findings suggest the presence of functional segregation of the induction of macrophage antimicrobial functions by type II interferons of bony fish.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6E 2E9, Canada
| | | | | |
Collapse
|
23
|
Mazumder B, Li X, Barik S. Translation control: a multifaceted regulator of inflammatory response. THE JOURNAL OF IMMUNOLOGY 2010; 184:3311-9. [PMID: 20304832 DOI: 10.4049/jimmunol.0903778] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A robust innate immune response is essential to the protection of all vertebrates from infection, but it often comes with the price tag of acute inflammation. If unchecked, a runaway inflammatory response can cause significant tissue damage, resulting in myriad disorders, such as dermatitis, toxic shock, cardiovascular disease, acute pelvic and arthritic inflammatory diseases, and various infections. To prevent such pathologies, cells have evolved mechanisms to rapidly and specifically shut off these beneficial inflammatory activities before they become detrimental. Our review of recent literature, including our own work, reveals that the most dominant and common mechanism is translational silencing, in which specific regulatory proteins or complexes are recruited to cis-acting RNA structures in the untranslated regions of single or multiple mRNAs that code for the inflammatory protein(s). Enhancement of the silencing function may constitute a novel pharmacological approach to prevent immunity-related inflammation.
Collapse
Affiliation(s)
- Barsanjit Mazumder
- Department of Biology, Geology and Environmental Science, Center for Gene Regulation in Health and Disease, College of Science, Cleveland State University, Cleveland, OH 44115, USA.
| | | | | |
Collapse
|
24
|
Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH. TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol 2010; 12:286-93. [PMID: 20154680 PMCID: PMC2830561 DOI: 10.1038/ncb2029] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/21/2010] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGF-beta) induces epithelial-mesenchymal transdifferentiation (EMT) accompanied by cellular differentiation and migration. Despite extensive transcriptomic profiling, the identification of TGF-beta-inducible, EMT-specific genes has met with limited success. Here we identify a post-transcriptional pathway by which TGF-beta modulates the expression of EMT-specific proteins and of EMT itself. We show that heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) binds a structural, 33-nucleotide TGF-beta-activated translation (BAT) element in the 3' untranslated region of disabled-2 (Dab2) and interleukin-like EMT inducer (ILEI) transcripts, and represses their translation. TGF-beta activation leads to phosphorylation at Ser 43 of hnRNP E1 by protein kinase Bbeta/Akt2, inducing its release from the BAT element and translational activation of Dab2 and ILEI messenger RNAs. Modulation of hnRNP E1 expression or its post-translational modification alters the TGF-beta-mediated reversal of translational silencing of the target transcripts and EMT. These results suggest the existence of a TGF-beta-inducible post-transcriptional regulon that controls EMT during the development and metastatic progression of tumours.
Collapse
Affiliation(s)
- Arindam Chaudhury
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
25
|
Mukhopadhyay R, Jia J, Arif A, Ray PS, Fox PL. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem Sci 2009; 34:324-31. [PMID: 19535251 DOI: 10.1016/j.tibs.2009.03.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 12/25/2022]
Abstract
Functionally related genes are coregulated by specific RNA-protein interactions that direct transcript-selective translational control. In myeloid cells, interferon (IFN)-gamma induces formation of the heterotetrameric, IFN-gamma-activated inhibitor of translation (GAIT) complex comprising glutamyl-prolyl tRNA synthetase (EPRS), NS1-associated protein 1 (NSAP1), ribosomal protein L13a and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This complex binds defined 3' untranslated region elements within a family of inflammatory mRNAs and suppresses their translation. IFN-gamma-dependent phosphorylation, and consequent release of EPRS and L13a from the tRNA multisynthetase complex and 60S ribosomal subunit, respectively, regulates GAIT complex assembly. EPRS recognizes and binds target mRNAs, NSAP1 negatively regulates RNA binding, and L13a inhibits translation initiation by binding eukaryotic initiation factor 4G. Repression of a post-transcriptional regulon by the GAIT system might contribute to the resolution of chronic inflammation.
Collapse
Affiliation(s)
- Rupak Mukhopadhyay
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | | | | | | | | |
Collapse
|
26
|
Bruce SR, Atkins CL, Colasurdo GN, Alcorn JL. Respiratory syncytial virus infection alters surfactant protein A expression in human pulmonary epithelial cells by reducing translation efficiency. Am J Physiol Lung Cell Mol Physiol 2009; 297:L559-67. [PMID: 19525387 DOI: 10.1152/ajplung.90507.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection of neonatal lung by respiratory syncytial virus (RSV) is a common cause of respiratory dysfunction. Lung alveolar type II and bronchiolar epithelial (Clara) cells secrete surfactant protein A (SP-A), a collectin that is an important component of the pulmonary innate immune system. SP-A binds to the virus, targeting the infectious agent for clearance by host defense mechanisms. We have previously shown that while the steady-state level of SP-A mRNA increases approximately threefold after RSV infection, steady-state levels of cellular and secreted SP-A protein decrease 40-60% in human type II cells in primary culture, suggesting a mechanism where the virus alters components of the innate immune response in infected cells. In these studies, we find that changes in SP-A mRNA and protein levels in RSV-infected NCI-H441 cells (a bronchiolar epithelial cell line) recapitulate the results in SP-A expression observed in primary lung cells. While SP-A protein is normally ubiquitinated, there is no change in the level of SP-A protein ubiquitination or proteasome activity during RSV infection, suggesting that the reduced levels of SP-A protein are not due to degradation by activated proteasomes. SP-A mRNA is appropriately processed and exported from the nucleus to the cytoplasm during RSV infection. As evidenced by polysome analysis of SP-A mRNA and pulse-chase analysis of newly synthesized SP-A protein, we find a decrease in translational efficiency that is specific for SP-A mRNA. Therefore, the decrease in SP-A protein levels observed after RSV infection of pulmonary bronchiolar epithelial cells results from a mechanism that affects SP-A mRNA translation efficiency.
Collapse
Affiliation(s)
- Shirley R Bruce
- Dept. of Pediatrics, Univ. of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
27
|
Tapryal N, Mukhopadhyay C, Das D, Fox PL, Mukhopadhyay CK. Reactive oxygen species regulate ceruloplasmin by a novel mRNA decay mechanism involving its 3'-untranslated region: implications in neurodegenerative diseases. J Biol Chem 2008; 284:1873-83. [PMID: 19019832 DOI: 10.1074/jbc.m804079200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceruloplasmin (Cp), a copper-containing protein, plays a significant role in body iron homeostasis as aceruloplasminemia patients and Cp knock-out mice exhibit iron overload in several tissues including liver and brain. Several other functions as oxidant, as antioxidant, and in nitric oxide metabolism are also attributed to Cp. Despite its role in iron oxidation and other biological oxidation reactions the regulation of Cp by reactive oxygen species (ROS) remains unexplored. Cp is synthesized in liver as a secretory protein and predominantly as a glycosylphosphatidylinositol-anchored membrane-bound form in astroglia. In this study we demonstrated that Cp expression is decreased by an mRNA decay mechanism in response to extracellular (H2O2) or intracellular oxidative stress (by mitochondrial chain blockers rotenone or antimycin A) in both hepatic and astroglial cells. The promotion of Cp mRNA decay is conferred by its 3'-untranslated region (UTR). When chloramphenicol acetyltransferase (CAT) gene was transfected as a chimera with Cp 3'-UTR in hepatic or astroglial cells, in response to either H2O2, rotenone, or antimycin A, the expression of CAT transcript was decreased, whereas expression of a 3'-UTR-less CAT transcript remained unaffected. RNA gel shift assay showed significant reduction in 3'-UTR-binding protein complex by ROS in both cell types that was reversed by the antioxidant N-acetylcysteine suggesting that ROS affects RNA-protein complex formation to promote Cp mRNA decay. Our finding is not only the first demonstration of regulation of Cp by ROS by a novel post-transcriptional mechanism but also provides a mechanism of iron deposition in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nisha Tapryal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | | | | | |
Collapse
|
28
|
Genome-wide polysome profiling reveals an inflammation-responsive posttranscriptional operon in gamma interferon-activated monocytes. Mol Cell Biol 2008; 29:458-70. [PMID: 19001086 DOI: 10.1128/mcb.00824-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that ribosomal protein L13a is required for translational silencing of gamma interferon (IFN-gamma)-induced ceruloplasmin (Cp) synthesis in monocytes. This silencing also requires the presence of the GAIT (IFN-gamma activated inhibitor of translation) element in the 3' untranslated region (UTR) of Cp mRNA. Considering that Cp is an inflammatory protein, we hypothesized that this mechanism may have evolved to silence a family of proinflammatory proteins, of which Cp is just one member. To identify the other mRNAs that are targets for this silencing, we performed a genome-wide analysis of the polysome-profiled mRNAs by using an Affymetrix GeneChip and an inflammation-responsive gene array. A cluster of mRNAs encoding different chemokines and their receptors was identified as common hits in the two approaches and validated by real-time PCR. In silico predicted GAIT hairpins in the 3' UTRs of the target mRNAs were confirmed as functional cis-acting elements for translational silencing by luciferase reporter assays. Consistent with Cp, the newly identified target mRNAs also required L13a for silencing. Our studies have identified a new inflammation-responsive posttranscriptional operon that can be regulated directly at the level of translation in IFN-gamma-activated monocytes. This regulation of a cohort of mRNAs encoding inflammatory proteins may be important to resolve inflammation.
Collapse
|
29
|
Tye SL, Gilg AG, Tolliver LB, Wheeler WG, Toole BP, Maria BL. Hyaluronan regulates ceruloplasmin production by gliomas and their treatment-resistant multipotent progenitors. J Child Neurol 2008; 23:1221-30. [PMID: 18952589 PMCID: PMC3640370 DOI: 10.1177/0883073808321066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ceruloplasmin (glycosylphosphatidylinositol-linked ferroxidase associated with normal astrocytes) can also be secreted by glioma cells, where its function is unknown. Ceruloplasmin is not only present in glioma cells and in human glioma specimens but also is enriched in highly malignant glioma stem-like cells. Hyaluronan is a large extracellular glycosaminoglycan that enhances malignant glioma behaviors by interacting with CD44 receptors and by downstream activation of signaling proteins and transporters associated with malignancy. We examined the relationship between hyaluronan and ceruloplasmin expression in glioma stem-like cells. Antagonism of hyaluronan interactions with short-fragment hyaluronan oligomers decreased ceruloplasmin expression in parental and stem-like glioma cells in vivo and in cell culture, implying that hyaluronan regulates ceruloplasmin expression. Further gain and loss-of-function studies are needed to fully define the relationship between hyaluronan and ceruloplasmin, and ceruloplasmin's effect on malignant behaviors.
Collapse
Affiliation(s)
- Sandra L Tye
- Department of Pediatrics, Charles P Darby Children's Research Institute, College of Medicine, Medical University of South Carolina, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kozak M. Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 2008; 423:108-15. [PMID: 18692553 DOI: 10.1016/j.gene.2008.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/07/2008] [Accepted: 07/15/2008] [Indexed: 12/14/2022]
Abstract
Despite a recent surge of reports about how microRNAs might regulate translation, the question has not been answered. The proposed mechanisms contradict one another, and none is supported by strong evidence. This review explains some deficiencies in the experiments with microRNAs. Some of the problems are traceable to bad habits carried over from older studies of translational regulation, here illustrated by discussing two models involving mRNA binding proteins. One widely-accepted model, called into doubt by recent findings, is the maskin hypothesis for translational repression of cyclin B1 in Xenopus oocytes. The second dubious model postulates repression of translation of ceruloplasmin by mRNA binding proteins. A big fault in the latter case is reconstructing the imagined mechanism before looking carefully at the real thing--a criticism that applies also to studies with microRNAs. Experiments with microRNAs often employ internal ribosome entry sequences (IRESs) as tools, necessitating brief discussion of that topic. A sensitive new assay reveals that many putative IRESs promote expression of downstream cistrons via splicing rather than internal initiation of translation. Recent claims about the biological importance of IRES-binding proteins--including suggestions that these proteins might serve as targets for cancer therapy--are not supported by any meaningful evidence. The bottom line is that older studies of mRNA binding proteins and putative IRESs have created a confusing picture of translational regulation which is not helpful when trying to understand how microRNAs might work. The obvious biological importance of microRNAs makes it essential to understand how they do what they do. Fresh ways of thinking and looking are needed.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
31
|
WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression. Mol Cell 2008; 29:679-90. [PMID: 18374644 DOI: 10.1016/j.molcel.2008.01.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 12/19/2022]
Abstract
The heterotetrameric GAIT complex suppresses translation of selected mRNAs in interferon-gamma-activated monocytic cells. Specificity is dictated by glutamyl-prolyl tRNA synthetase (EPRS) binding to a 3'UTR element in target mRNAs. EPRS consists of two synthetase cores joined by a linker containing three WHEP domains of unknown function. Here we show the critical role of EPRS WHEP domains in targeting and regulating GAIT complex binding to RNA. The upstream WHEP pair directs high-affinity binding to GAIT element-bearing mRNAs, while the overlapping, downstream pair binds NSAP1, which inhibits mRNA binding. Interaction of EPRS with ribosomal protein L13a and GAPDH induces a conformational switch that rescues mRNA binding and restores translational control. Total reconstitution from purified components indicates that the four GAIT proteins are necessary and sufficient for self-assembly of a functional complex. Our results establish the essentiality of WHEP domains in the noncanonical function of EPRS in regulating inflammatory gene expression.
Collapse
|
32
|
Chaudhuri S, Vyas K, Kapasi P, Komar AA, Dinman JD, Barik S, Mazumder B. Human ribosomal protein L13a is dispensable for canonical ribosome function but indispensable for efficient rRNA methylation. RNA (NEW YORK, N.Y.) 2007; 13:2224-37. [PMID: 17921318 PMCID: PMC2080596 DOI: 10.1261/rna.694007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Previously, we demonstrated that treatment of monocytic cells with IFN-gamma causes release of ribosomal protein L13a from the 60S ribosome and subsequent translational silencing of Ceruloplasmin (Cp) mRNA. Here, evidence using cultured cells demonstrates that Cp mRNA silencing is dependent on L13a and that L13a-deficient ribosomes are competent for global translational activity. Human monocytic U937 cells were stably transfected with two different shRNA sequences for L13a and clonally selected for more than 98% abrogation of total L13a expression. Metabolic labeling of these cells showed rescue of Cp translation from the IFN-gamma mediated translational silencing activity. Depletion of L13a caused significant reduction of methylation of ribosomal RNA and of cap-independent translation mediated by Internal Ribosome Entry Site (IRES) elements derived from p27, p53, and SNAT2 mRNAs. However, no significant differences in the ribosomal RNA processing, polysome formation, global translational activity, translational fidelity, and cell proliferation were observed between L13a-deficient and wild-type control cells. These results support the notion that ribosome can serve as a depot for releasable translation-regulatory factors unrelated to its basal polypeptide synthetic function. Unlike mammalian cells, the L13a homolog in yeast is indispensable for growth. Thus, L13a may have evolved from an essential ribosomal protein in lower eukaryotes to having a role as a dispensable extra-ribosomal function in higher eukaryotes.
Collapse
Affiliation(s)
- Sujan Chaudhuri
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ray PS, Fox PL. A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. EMBO J 2007; 26:3360-72. [PMID: 17611605 PMCID: PMC1933405 DOI: 10.1038/sj.emboj.7601774] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Accepted: 05/30/2007] [Indexed: 01/01/2023] Open
Abstract
Monocyte-macrophage activation by interferon (IFN)-gamma is a key initiating event in inflammation. Usually, the macrophage response is self-limiting and inflammation resolves. Here, we describe a mechanism by which IFN-gamma contributes to inflammation resolution by suppressing expression of vascular endothelial growth factor-A (VEGF-A), a macrophage product that stimulates angiogenesis during chronic inflammation and tumorigenesis. VEGF-A was identified as a candidate target of the IFN-gamma-activated inhibitor of translation (GAIT) complex by bioinformatic analysis, and experimentally validated by messenger RNA-protein interaction studies. Although IFN-gamma induced persistent VEGF-A mRNA expression, translation was suppressed by delayed binding of the GAIT complex to a specific element delineated in the 3'UTR. Translational silencing resulted in decreased VEGF-A synthesis and angiogenic activity. Our results describe a unique anti-inflammatory pathway in which IFN-gamma-dependent induction of VEGF-A mRNA is translationally silenced by the same stimulus, and they suggest the GAIT system directs a post-transcriptional operon that contributes to inflammation resolution.
Collapse
Affiliation(s)
- Partho Sarothi Ray
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul L Fox
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NC10, Cleveland, OH 44195, USA. Tel.: +1 216 444 8053; Fax: +1 216 444 9404; E-mail:
| |
Collapse
|
34
|
Kapasi P, Chaudhuri S, Vyas K, Baus D, Komar AA, Fox PL, Merrick WC, Mazumder B. L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control. Mol Cell 2007; 25:113-26. [PMID: 17218275 PMCID: PMC1810376 DOI: 10.1016/j.molcel.2006.11.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/23/2006] [Accepted: 11/30/2006] [Indexed: 01/30/2023]
Abstract
Transcript-specific translational control restricts macrophage inflammatory gene expression. The proinflammatory cytokine interferon-gamma induces phosphorylation of ribosomal protein L13a and translocation from the 60S ribosomal subunit to the interferon-gamma-activated inhibitor of translation (GAIT) complex. This complex binds the 3'UTR of ceruloplasmin mRNA and blocks its translation. Here, we elucidate the molecular mechanism underlying repression by L13a. Translation of the GAIT element-containing reporter mRNA is sensitive to L13a-mediated silencing when driven by internal ribosome entry sites (IRESs) that require initiation factor eIF4G, but is resistant to silencing when driven by eIF4F-independent IRESs, demonstrating a critical role for eIF4G. Interaction of L13a with eIF4G blocks 43S recruitment without suppressing eIF4F complex formation. eIF4G attack, e.g., by virus, stress, or caspases, is a well-known mechanism of global inhibition of protein synthesis. However, our studies reveal a unique mechanism in which targeting of eIF4G by mRNA-bound L13a elicits transcript-specific translational repression.
Collapse
Affiliation(s)
- Purvi Kapasi
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
| | - Sujan Chaudhuri
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
| | - Keyur Vyas
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
| | - Diane Baus
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Anton A. Komar
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
| | - Paul L. Fox
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - William C. Merrick
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Barsanjit Mazumder
- Department of Biological, Geological and Environmental Science, Cleveland State University, Cleveland, Ohio 44115
- *Correspondence: E-mail: , Phone: 216-687-2435, Fax: 216-687-2932
| |
Collapse
|
35
|
Moussay E, Stamm I, Taubert A, Baljer G, Menge C. Escherichia coli Shiga toxin 1 enhances il-4 transcripts in bovine ileal intraepithelial lymphocytes. Vet Immunol Immunopathol 2006; 113:367-82. [PMID: 16879873 DOI: 10.1016/j.vetimm.2006.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 04/04/2006] [Accepted: 06/19/2006] [Indexed: 11/27/2022]
Abstract
Shiga toxin 1 (Stx1) blocks the activation of bovine peripheral and intraepithelial lymphocytes (IEL), implying that the toxin has the potential to retard the host's immune response during intestinal colonization of cattle with human pathogenic Stx-producing Escherichia coli (STEC). Since Stx1 does not eliminate affected lymphocytes by causing cellular death, we assumed that Stx1 disturbs the integrity of the immune regulatory network. We therefore assessed the impact of Stx1 on the expression of selected chemokine and cytokine genes in vitro by real-time RT-PCR and by quantitation of intracellular cytokine proteins. While Stx1 did not alter the amount of mRNA specific for interleukin (IL)-2, IL-10, gamma interferon (IFN-gamma), transforming growth factor beta (TGF-beta), IL-8, 10kDa interferon inducible protein (IP-10), and monocyte chemoattractant protein 1 (MCP-1) in cultured ileal IEL (iIEL), minute concentrations of Stx1 led to an up to 40-fold increase of il-4 transcripts within 6-8h of incubation. Comparative experiments with peripheral lymphocytes revealed that the effect was specific for iIEL. The enhancement of il-4 transcripts in iIEL was not accompanied by apoptosis but required the enzymatic activity of the holotoxin. Nevertheless, iIEL retained their ability to synthesize proteins in the presence of Stx1: 40% of iIEL could be stimulated to synthesize IFN-gamma while less than 10% expressed IL-4 or TGF-beta. Furthermore, iIEL were found to produce granulocyte chemoattractants, but the release of these substances was not different in iIEL cultures incubated with or without Stx1. Although Stx1 did not affect the numbers of iIEL producing either cytokine, these findings point to an altered responsiveness of IEL during bovine STEC infections and shed light on the initial effects Stx1 exerts on the local adaptive immune system.
Collapse
Affiliation(s)
- Etienne Moussay
- Institute for Hygiene and Infectious Diseases of Animals, Frankfurter Strasse 85-89, Justus-Liebig-University, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
36
|
Lindemann SW, Weyrich AS, Zimmerman GA. Signaling to translational control pathways: diversity in gene regulation in inflammatory and vascular cells. Trends Cardiovasc Med 2005; 15:9-17. [PMID: 15795158 DOI: 10.1016/j.tcm.2004.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/13/2004] [Accepted: 10/18/2004] [Indexed: 10/25/2022]
Abstract
The expression of a subset of genes is strongly controlled at translational checkpoints, a major mechanism of posttranscriptional regulation. Inflammatory and vascular cells receive outside-in signals to specialized pathways that regulate translation of specific messenger RNAs in a transcript-specific fashion and thereby influence key features of cellular phenotype. These pathways and the expression of proteins that they control may be dysregulated in cardiovascular diseases and are therapeutic targets.
Collapse
Affiliation(s)
- Stephan W Lindemann
- Department of Internal Medicine and the Program in Human Molecular Biology and Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
37
|
Kozak M. How strong is the case for regulation of the initiation step of translation by elements at the 3' end of eukaryotic mRNAs? Gene 2005; 343:41-54. [PMID: 15563830 DOI: 10.1016/j.gene.2004.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/30/2004] [Accepted: 08/12/2004] [Indexed: 02/04/2023]
Abstract
The belief that initiation of translation requires communication between the 5' and 3' ends of the mRNA guides--or misguides--the interpretation of many experiments. The closed-loop model for initiation creates the expectation that sequences at the 3' end of eukaryotic mRNAs should regulate translation. This review looks closely at the evidence in three prominent cases where such regulation is claimed. The mRNAs in question encode 15-lipoxygenase, ceruloplasmin, and histones. Vertebrate histone mRNAs lack a poly(A) tail, instead of which a 3' stem-loop structure is said to promote translation by binding a protein which purportedly binds initiation factors. The proffered evidence for this hypothesis has many flaws. Temporal control of 15-lipoxygenase production in reticulocytes is often cited as another well-documented example of translational regulation via the 3' untranslated region, but inspection of the evidence reveals significant gaps and contradictions. Solid evidence is lacking also for the idea that a ribosomal protein binds to and shuts off translation of ceruloplasmin mRNA. Some viral RNAs that lack a poly(A) tail have alternative 3' structures which are said to promote translation via circularization of the mRNA, but in no case has this been shown convincingly. Interpretation of many experiments is compromised by possible effects of the 3' structures on mRNA stability rather than translation. The functional-half-life assay, which is often employed to rule out effects on mRNA stability, might not be adequate to settle the question. Other issues, such as the possibility of artifacts caused by overexpression of RNA-binding proteins, can complicate studies of translational regulation. There is no doubt that elements at the 3' end of eukaryotic mRNAs can regulate gene expression in a variety of ways. It has not been shown unequivocally that one of these ways involves direct participation of the 3' untranslated region in the initiation step of translation.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
38
|
Sampath P, Mazumder B, Seshadri V, Gerber CA, Chavatte L, Kinter M, Ting SM, Dignam JD, Kim S, Driscoll DM, Fox PL. Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 2004; 119:195-208. [PMID: 15479637 DOI: 10.1016/j.cell.2004.09.030] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/21/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Aminoacyl tRNA synthetases (ARS) catalyze the ligation of amino acids to cognate tRNAs. Chordate ARSs have evolved distinctive features absent from ancestral forms, including compartmentalization in a multisynthetase complex (MSC), noncatalytic peptide appendages, and ancillary functions unrelated to aminoacylation. Here, we show that glutamyl-prolyl-tRNA synthetase (GluProRS), a bifunctional ARS of the MSC, has a regulated, noncanonical activity that blocks synthesis of a specific protein. GluProRS was identified as a component of the interferon (IFN)-gamma-activated inhibitor of translation (GAIT) complex by RNA affinity chromatography using the ceruloplasmin (Cp) GAIT element as ligand. In response to IFN-gamma, GluProRS is phosphorylated and released from the MSC, binds the Cp 3'-untranslated region in an mRNP containing three additional proteins, and silences Cp mRNA translation. Thus, GluProRS has divergent functions in protein synthesis: in the MSC, its aminoacylation activity supports global translation, but translocation of GluProRS to an inflammation-responsive mRNP causes gene-specific translational silencing.
Collapse
Affiliation(s)
- Prabha Sampath
- Department of Cell Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kandasamy K, Joseph K, Subramaniam K, Raymond JR, Tholanikunnel BG. Translational control of beta2-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein. J Biol Chem 2004; 280:1931-43. [PMID: 15536087 DOI: 10.1074/jbc.m405937200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'-UTR or the adenylate/uridylate-rich (A+U-rich element (ARE)) RNA from the 3'-UTR sequences of beta(2)-AR in cell lines that endogenously express this receptor. Reversal of beta(2)-adrenergic receptor translational repression by retroviral expression of 3'-UTR sequences suggested that ARE RNA-binding proteins are involved in translational suppression of beta(2)-adrenergic receptor expression. Using a 20-nucleotide ARE RNA from the receptor 3'-UTR as an affinity ligand, we purified the proteins that bind to these sequences. T-cell-restricted intracellular antigen-related protein (TIAR) was one of the strongly bound proteins identified by this method. UV-catalyzed cross-linking experiments using in vitro transcribed 3'-UTR RNA and glutathione S-transferase-TIAR demonstrated multiple binding sites for this protein on beta(2)-AR 3'-UTR sequences. The distal 340-nucleotide region of the 3'-UTR was identified as a target RNA motif for TIAR binding by both RNA gel shift analysis and immunoprecipitation experiments. Overexpression of TIAR resulted in suppression of receptor protein synthesis and a significant shift in endogenously expressed beta(2)-AR mRNA toward low molecular weight fractions in sucrose gradient polysome fractionation. Taken together, our results provide the first evidence for translational control of beta(2)-AR mRNA by TIAR.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Medicine and Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina 29425-2221, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Translational control is widely used to regulate gene expression. This mode of regulation is especially relevant in situations where transcription is silent or when local control over protein accumulation is required. Although many examples of translational regulation have been described, only a few are beginning to be mechanistically understood. Instead of providing a comprehensive account of the examples that are known at present, we discuss instructive cases that serve as paradigms for different modes of translational control.
Collapse
Affiliation(s)
- Fátima Gebauer
- Centre de Regulació Genómica, Passeig Marítim 37–49, Barcelona, 08003 Spain
| | - Matthias W. Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, D-69117 Germany
| |
Collapse
|
41
|
Subramaniam K, Chen K, Joseph K, Raymond JR, Tholanikunnel BG. The 3′-Untranslated Region of the β2-Adrenergic Receptor mRNA Regulates Receptor Synthesis. J Biol Chem 2004; 279:27108-15. [PMID: 15107422 DOI: 10.1074/jbc.m401352200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta(2)-Adrenergic receptors (beta(2)-ARs) are low abundance integral membrane proteins that mediate the effects of catecholamines at the cell surface. Post-transcriptional regulation of beta(2)-AR is dependent, in part, on sequences within the 5'- and 3'-untranslated regions (UTRs) of the receptor mRNA. In this work, we demonstrate that 3'-UTR sequences regulate the translation of the receptor mRNA. Deletion of the 3'-UTR sequences resulted in 2-2.5-fold increases in receptor expression. The steadystate levels of beta(2)-AR mRNA did not change significantly in the presence or absence of the 3'-UTR, suggesting that the translation of the receptor mRNA is suppressed by 3'-UTR sequences. Introduction of the receptor 3'-UTR sequences into the 3'-UTR of a heterologous reporter gene (luciferase) resulted in a 70% decrease in reporter gene expression without significant changes in luciferase mRNA levels. Sucrose density gradient fractionation of cytoplasmic extracts from Chinese hamster ovary cells transfected with full-length receptor cDNA demonstrated that the receptor transcripts were distributed between polysomal and non-polysomal fractions. Deletion of 3'-UTR sequences from the receptor cDNA resulted in a clear shift in the distribution of receptor mRNA toward the polysomal fractions, favoring increased translation. The 3'-UTR sequences of the receptor mRNA were sufficient to shift the distribution of luciferase mRNA from predominantly polysomal fractions toward non-polysomal fractions in cells transfected with the chimeric luciferase construct. Taken together, our results provide the first evidence for translational control of beta(2)-AR expression by 3'-UTR sequences. Presumably, this occurs by affecting the receptor mRNA localization.
Collapse
Affiliation(s)
- Kothandharaman Subramaniam
- Department of Medicine and the Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina 29425-2221, USA
| | | | | | | | | |
Collapse
|
42
|
Mazumder B, Sampath P, Seshadri V, Maitra RK, DiCorleto PE, Fox PL. Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell 2003; 115:187-98. [PMID: 14567916 DOI: 10.1016/s0092-8674(03)00773-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transcript-specific translational control is generally directed by binding of trans-acting proteins to structural elements in the untranslated region (UTR) of the target mRNA. Here, we elucidate a translational silencing mechanism involving regulated release of an integral ribosomal protein and subsequent binding to its target mRNA. Human ribosomal protein L13a was identified as a candidate interferon-Gamma-Activated Inhibitor of Translation (GAIT) of ceruloplasmin (Cp) mRNA by a genetic screen for Cp 3'-UTR binding proteins. In vitro activity of L13a was shown by inhibition of target mRNA translation by recombinant protein. In response to interferon-gamma in vivo, the entire cellular pool of L13a was phosphorylated and released from the 60S ribosomal subunit. Released L13a specifically bound the 3'-UTR GAIT element of Cp mRNA and silenced translation. We propose a model in which the ribosome functions not only as a protein synthesis machine, but also as a depot for regulatory proteins that modulate translation.
Collapse
Affiliation(s)
- Barsanjit Mazumder
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
43
|
Matsukura S, Kokubu F, Kuga H, Kawaguchi M, Ieki K, Odaka M, Suzuki S, Watanabe S, Takeuchi H, Adachi M, Stellato C, Schleimer RP. Differential regulation of eotaxin expression by IFN-gamma in airway epithelial cells. J Allergy Clin Immunol 2003; 111:1337-44. [PMID: 12789237 DOI: 10.1067/mai.2003.1513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Eotaxin is a chemokine that binds with high affinity and specificity to the chemokine receptor CCR3 and plays an important role in the pathogenesis of allergic disease. OBJECTIVE We studied the regulation of eotaxin expression by the T(H)1 cytokine IFN-gamma and analyzed its molecular mechanisms. METHODS Levels of eotaxin mRNA and protein expression in the airway epithelial cell line BEAS-2B were determined with RT-PCR and ELISA. Mechanisms of transcriptional regulation were assessed by means of electrophoretic mobility shift assays and luciferase assay with eotaxin promoter-luciferase reporter plasmids. RESULTS Although IFN-gamma did not directly induce the expression of eotaxin protein, it increased the induction by TNF-alpha when these cytokines were added simultaneously. In contrast, preincubation of cells with IFN-gamma for 24 hours profoundly inhibited the production induced by TNF-alpha. IFN-gamma did not influence the TNF-alpha-induced binding of nuclear factor kappaB to a DNA probe derived from the eotaxin promoter. IFN-gamma did not increase the ability of TNF-alpha to activate the eotaxin promoter. Studies of eotaxin mRNA levels indicate that IFN-gamma combined with TNF-alpha increased the expression of eotaxin mRNA. When cells were preincubated with IFN-gamma, there was no inhibition of the appearance of eotaxin mRNA. CONCLUSION These studies demonstrate that IFN-gamma enhances eotaxin expression when added in combination with TNF-alpha and profoundly inhibits eotaxin expression after preincubation. In both cases the available data indicate that the effect is mediated by a posttranscriptional mechanism.
Collapse
Affiliation(s)
- Satoshi Matsukura
- First Department of Internal Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mittal B, Doroudchi MM, Jeong SY, Patel BN, David S. Expression of a membrane-bound form of the ferroxidase ceruloplasmin by leptomeningeal cells. Glia 2003; 41:337-46. [PMID: 12555201 DOI: 10.1002/glia.10158] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ceruloplasmin is a key enzyme involved in detoxifying ferrous iron, which can generate free radicals. The secreted form of ceruloplasmin is produced by the liver and is abundant in serum. We have previously identified a membrane-bound glycosylphosphatidylinositol (GPI)-anchored form of ceruloplasmin (GPI-Cp) that is expressed by astrocytes in the central nervous system (CNS) (Patel and David. 1997. J Biol Chem 272:20185-20190). We now provide direct evidence that rat leptomeningeal cells, which cover the surface of the brain, also express GPI-Cp. The expression of GPI-Cp on the surface of these cells increases with postnatal development and is regulated in vitro by cell density, time in culture, and various extracellular matrix molecules. The expression of GPI-Cp also appears to be regulated differently in astrocytes and leptomeningeal cells in vitro. The abundant expression of GPI-Cp on the surface of leptomeningeal cells suggests that these cells play a role in antioxidant defense along the surface of the postnatal CNS possibly by detoxifying the cerebrospinal fluid.
Collapse
Affiliation(s)
- Bina Mittal
- Centre for Research in Neuroscience, Montreal General Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
45
|
Thekkumkara TJ, Linas SL. Evidence for involvement of 3'-untranslated region in determining angiotensin II receptor coupling specificity to G-protein. Biochem J 2003; 370:631-9. [PMID: 12431186 PMCID: PMC1223184 DOI: 10.1042/bj20020960] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2002] [Revised: 11/04/2002] [Accepted: 11/13/2002] [Indexed: 11/17/2022]
Abstract
The mRNA 3'-untranslated region (3'-UTR) of many genes has been identified as an important regulator of the mRNA transcript itself as well as the translated product. Previously, we demonstrated that Chinese-hamster ovary-K1 cells stably expressing angiotensin receptor subtypes (AT(1A)) with and without 3'-UTR differed in AT(1A) mRNA content and its coupling with intracellular signalling pathways. Moreover, RNA mobility-shift assay and UV cross-linking studies using the AT(1A) 3'-UTR probe identified a major mRNA-binding protein complex of 55 kDa in Chinese-hamster ovary-K1 cells. In the present study, we have determined the functional significance of the native AT(1A) receptor 3'-UTR in rat liver epithelial (WB) cell lines by co-expressing the AT(1A) 3'-UTR sequence 'decoy' to compete with the native receptor 3'-UTR for its mRNA-binding proteins. PCR analysis using specific primers for the AT(1A) receptor and [(125)I]angiotensin II (AngII)-binding studies demonstrated the expression of the native AT(1A) receptors in WB (B(max)=2.7 pmol/mg of protein, K(d)=0.56 nM). Northern-blot analysis showed a significant increase in native receptor mRNA expression in 3'-UTR decoy-expressing cells, confirming the role of 3'-UTR in mRNA destabilization. Compared with vehicle control, AngII induced DNA and protein synthesis in wild-type WB as measured by [(3)H]thymidine and [(3)H]leucine incorporation respectively. Activation of [(3)H]thymidine and [(3)H]leucine correlated with a significant increase in cell number (cellular hyperplasia). In these cells, AngII stimulated GTPase activity by AT(1) receptor coupling with G-protein alpha i. We also delineated that functional coupling of AT(1A) receptor with G-protein alpha i is an essential mechanism for AngII-mediated cellular hyperplasia in WB by specifically blocking G-protein alpha i activation. In contrast with wild-type cells, stable expression of the 3'-UTR 'decoy' produced AngII-stimulated protein synthesis and cellular hypertrophy as demonstrated by a significant increase in [(3)H]leucine incorporation and no increase in [(3)H]thymidine incorporation and cell number. Furthermore, [(125)I]AngII cross-linking and immunoprecipitation studies using specific G-protein alpha antibodies showed that in wild-type cells, the AT(1A) receptor coupled with G-protein alpha i, whereas in cells expressing the 3'-UTR 'decoy', the AT(1A) receptor coupled with G-protein alpha q. These findings indicate that the 3'-UTR-mediated changes in receptor function may be mediated in part by a switch from G-protein alpha i to G-protein alpha q coupling of the receptor. Our results suggest that the 3'-UTR-mediated post-transcriptional modification of the AT(1A) receptor is critical for regulating tissue-specific receptor functions.
Collapse
Affiliation(s)
- Thomas J Thekkumkara
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | | |
Collapse
|
46
|
Sampath P, Mazumder B, Seshadri V, Fox PL. Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region. Mol Cell Biol 2003; 23:1509-19. [PMID: 12588972 PMCID: PMC151701 DOI: 10.1128/mcb.23.5.1509-1519.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcript-selective translational control of eukaryotic gene expression is often directed by a structural element in the 3' untranslated region (3'-UTR) of the mRNA. In the case of ceruloplasmin (Cp), induced synthesis of the protein by gamma interferon (IFN-gamma) in U937 monocytic cells is halted by a delayed translational silencing mechanism requiring the binding of a cytosolic inhibitor to the Cp 3'-UTR. Silencing requires the essential elements of mRNA circularization, i.e., eukaryotic initiation factor 4G, poly(A)-binding protein, and poly(A) tail. We here determined the minimal silencing element in the Cp 3'-UTR by progressive deletions from both termini. A minimal, 29-nucleotide (nt) element was determined by gel shift assay to be sufficient for maximal binding of the IFN-gamma-activated inhibitor of translation (GAIT), an as-yet-unidentified protein or complex. The interaction was shown to be functional by an in vitro translation assay in which the GAIT element was used as a decoy to overcome translational silencing. Mutation analysis showed that the GAIT element contained a 5-nt terminal loop, a weak 3-bp helix, an asymmetric internal bulge, and a proximal 6-bp helical stem. Two invariant loop residues essential for binding activity were identified. Ligation of the GAIT element immediately downstream of a luciferase reporter conferred the translational silencing response to the heterologous transcript in vitro and in vivo; a construct containing a nonbinding, mutated GAIT element was ineffective. Translational silencing of Cp, and possibly other transcripts, mediated by the GAIT element may contribute to the resolution of the local inflammatory response following cytokine activation of macrophages.
Collapse
Affiliation(s)
- Prabha Sampath
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
47
|
Abstract
In most cases, translational control mechanisms result from the interaction of RNA-binding proteins with 5'- or 3'-untranslated regions (UTRs) of mRNA. In organisms ranging from viruses to humans, protein-mediated interactions between transcript termini result in the formation of an RNA loop. Such RNA 'circularization' is thought to increase translational efficiency and, in addition, permits regulation by novel mechanisms, particularly 3'-UTR-mediated translational control. Two general mechanisms of translational inhibition by 3'-UTR-binding proteins have been proposed, one in which mRNA closure is disrupted and another in which mRNA closure is required. Experimental evidence for the latter is provided by studies of interferon-gamma-mediated translational silencing of ceruloplasmin expression in monocytic cells. A multi-species analysis has shown that, in most vertebrates, 3'-UTRs are substantially longer than their 5' counterparts, indicating a significant potential for regulation. In addition, the average length of 3'-UTR sequences has increased during evolution, suggesting that their utilization might contribute to organism complexity.
Collapse
Affiliation(s)
- Barsanjit Mazumder
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
48
|
Mazumder B, Seshadri V, Imataka H, Sonenberg N, Fox PL. Translational silencing of ceruloplasmin requires the essential elements of mRNA circularization: poly(A) tail, poly(A)-binding protein, and eukaryotic translation initiation factor 4G. Mol Cell Biol 2001; 21:6440-9. [PMID: 11533233 PMCID: PMC99791 DOI: 10.1128/mcb.21.19.6440-6449.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceruloplasmin (Cp) is a glycoprotein secreted by the liver and monocytic cells and probably plays roles in inflammation and iron metabolism. We showed previously that gamma interferon (IFN-gamma) induced Cp synthesis by human U937 monocytic cells but that the synthesis was subsequently halted by a transcript-specific translational silencing mechanism involving the binding of a cytosolic factor(s) to the Cp mRNA 3' untranslated region (UTR). To investigate how protein interactions at the Cp 3'-UTR inhibit translation initiation at the distant 5' end, we considered the "closed-loop" model of mRNA translation. In this model, the transcript termini are brought together by interactions of poly(A)-binding protein (PABP) with both the poly(A) tail and initiation factor eIF4G. The effect of these elements on Cp translational control was tested using chimeric reporter transcripts in rabbit reticulocyte lysates. The requirement for poly(A) was shown since the cytosolic inhibitor from IFN-gamma-treated cells minimally inhibited the translation of a luciferase reporter upstream of the Cp 3'-UTR but almost completely blocked the translation of a transcript containing a poly(A) tail. Likewise, a requirement for poly(A) was shown for silencing of endogenous Cp mRNA. We considered the possibility that the cytosolic inhibitor blocked the interaction of PABP with the poly(A) tail or with eIF4G. We found that neither of these interactions were inhibited, as shown by immunoprecipitation of PABP followed by quantitation of the poly(A) tail by reverse transcription-PCR and of eIF4G by immunoblot analysis. We considered the alternate possibility that these interactions were required for translational silencing. When PABP was depleted from the reticulocyte lysate with anti-human PABP antibody, the cytosolic factor did not inhibit translation of the chimeric reporter, thus showing the requirement for PABP. Similarly, in lysates treated with anti-human eIF4G antibody, the cytosolic extract did not inhibit the translation of the chimeric reporter, thereby showing a requirement for eIF4G. These data show that translational silencing of Cp requires interactions of three essential elements of mRNA circularization, poly(A), PABP, and eIF4G. We suggest that Cp mRNA circularization brings the cytosolic Cp 3'-UTR-binding factor into the proximity of the translation initiation site, where it silences translation by an undetermined mechanism. These results suggest that in addition to its important function in increasing the efficiency of translation, transcript circularization may serve as an essential structural determinant for transcript-specific translational control.
Collapse
Affiliation(s)
- B Mazumder
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
49
|
Mukhopadhyay CK, Mazumder B, Fox PL. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem 2000; 275:21048-54. [PMID: 10777486 DOI: 10.1074/jbc.m000636200] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these observations.
Collapse
Affiliation(s)
- C K Mukhopadhyay
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
50
|
Abstract
Transition metal ion-mediated oxidation is a commonly used model system for studies of the chemical, structural, and functional modifications of low-density lipoprotein (LDL). The physiological relevance of studies using free metal ions is unclear and has led to an exploration of free metal ion-independent mechanisms of oxidation. We and others have investigated the role of human ceruloplasmin (Cp) in oxidative processes because it the principal copper-containing protein in serum. There is an abundance of epidemiological data that suggests that serum Cp may be an important risk factor predicting myocardial infarction and cardiovascular disease. Biochemical studies have shown that Cp is a potent catalyst of LDL oxidation in vitro. The pro-oxidant activity of Cp requires an intact structure, and a single copper atom at the surface of the protein, near His(426), is required for LDL oxidation. Under conditions where inhibitory protein (such as albumin) is present, LDL oxidation by Cp is optimal in the presence of superoxide, which reduces the surface copper atom of Cp. Cultured vascular endothelial and smooth muscle cells also oxidize LDL in the presence of Cp. Superoxide release by these cells is a critical factor regulating the rate of oxidation. Cultured monocytic cells, when activated by zymosan, can oxidize LDL, but these cells are unique in their secretion of Cp. Inhibitor studies using Cp-specific antibodies and antisense oligonucleotides show that Cp is a major contributor to LDL oxidation by these cells. The role of Cp in lipoprotein oxidation and atherosclerotic lesion progression in vivo has not been directly assessed and is an important area for future studies.
Collapse
Affiliation(s)
- P L Fox
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|