1
|
Cano-Santiago A, Florencio-Martínez LE, Vélez-Ramírez DE, Romero-Chaveste AJ, Manning-Cela RG, Nepomuceno-Mejía T, Martínez-Calvillo S. Analyses of the essential C82 subunit uncovered some differences in RNA polymerase III transcription between Trypanosoma brucei and Leishmania major. Parasitology 2024; 151:1185-1200. [PMID: 39523652 PMCID: PMC11894013 DOI: 10.1017/s0031182024000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 11/16/2024]
Abstract
The 17-subunit RNA polymerase III (RNAP III) synthesizes essential untranslated RNAs such as tRNAs and 5S rRNA. In yeast and vertebrates, subunit C82 forms a stable subcomplex with C34 and C31 that is necessary for promoter-specific transcription initiation. Little is known about RNAP III transcription in trypanosomatid parasites. To narrow this knowledge gap, we characterized the C82 subunit in Trypanosoma brucei and Leishmania major. Bioinformatic analyses showed that the 4 distinctive extended winged-helix (eWH) domains and the coiled-coil motif are present in C82 in these microorganisms. Nevertheless, C82 in trypanosomatids presents certain unique traits, including an exclusive loop within the eWH1 domain. We found that C82 localizes to the nucleus and binds to RNAP III-dependent genes in the insect stages of both parasites. Knock-down of C82 by RNA interference significantly reduced the levels of tRNAs and 5S rRNA and led to the death of procyclic forms of T. brucei. Tandem affinity purifications with both parasites allowed the identification of several C82-interacting partners, including C34 and some genus-specific putative regulators of transcription. However, the orthologue of C31 was not found in trypanosomatids. Interestingly, our data suggest a strong association of C82 with TFIIIC subunits in T. brucei, but not in L. major.
Collapse
Affiliation(s)
- Andrés Cano-Santiago
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Luis E. Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Daniel E. Vélez-Ramírez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Adrián J. Romero-Chaveste
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Rebeca G. Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| |
Collapse
|
2
|
Martónez-Ferníndez V, Navarro F. Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS GENETICS 2021. [DOI: 10.3934/genet.2018.1.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractRpb5 is one of the five common subunits to all eukaryotic RNA polymerases, which is conserved in archaea, but not in bacteria. Among these common subunits, it is the only one that is not interchangeable between yeasts and humans, and accounts for the functional incompatibility of yeast and human subunits. Rpb5 has been proposed to contribute to the gene-specific activation of RNA pol II, notably during the infectious cycle of the hepatitis B virus, and also to participate in general transcription mediated by all eukaryotic RNA pol. The structural analysis of Rpb5 and its interaction with different transcription factors, regulators and DNA, accounts for Rpb5 being necessary to maintain the correct conformation of the shelf module of RNA pol II, which favors the proper organization of the transcription bubble and the clamp closure of the enzyme.In this work we provide details about subunit Rpb5's structure, conservation and the role it plays in transcription regulation by analyzing the different interactions with several factors, as well as its participation in the assembly of the three RNA pols, in cooperation with prefoldin-like Bud27/URI.
Collapse
Affiliation(s)
- Veránica Martónez-Ferníndez
- Department of Experimental Biology, Faculty of Experimental Sciences, University of JaÉn, Paraje de las Lagunillas, s/n, 23071, JaÉn, Spain
| | - Francisco Navarro
- Department of Experimental Biology, Faculty of Experimental Sciences, University of JaÉn, Paraje de las Lagunillas, s/n, 23071, JaÉn, Spain
| |
Collapse
|
3
|
Wang K, Deshaies RJ, Liu X. Assembly and Regulation of CRL Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:33-46. [DOI: 10.1007/978-981-15-1025-0_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Donnio LM, Miquel C, Vermeulen W, Giglia-Mari G, Mari PO. Cell-type specific concentration regulation of the basal transcription factor TFIIH in XPB y/y mice model. Cancer Cell Int 2019; 19:237. [PMID: 31516394 PMCID: PMC6734240 DOI: 10.1186/s12935-019-0945-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/18/2019] [Indexed: 11/15/2022] Open
Abstract
Background The basal transcription/repair factor TFIIH is a ten sub-unit complex essential for RNA polymerase II (RNAP2) transcription initiation and DNA repair. In both these processes TFIIH acts as a DNA helix opener, required for promoter escape of RNAP2 in transcription initiation, and to set the stage for strand incision within the nucleotide excision repair (NER) pathway. Methods We used a knock-in mouse model that we generated and that endogenously expresses a fluorescent version of XPB (XPB-YFP). Using different microscopy, cellular biology and biochemistry approaches we quantified the steady state levels of this protein in different cells, and cells imbedded in tissues. Results Here we demonstrate, via confocal imaging of ex vivo tissues and cells derived from this mouse model, that TFIIH steady state levels are tightly regulated at the single cell level, thus keeping nuclear TFIIH concentrations remarkably constant in a cell type dependent manner. Moreover, we show that individual cellular TFIIH levels are proportional to the speed of mRNA production, hence to a cell’s transcriptional activity, which we can correlate to proliferation status. Importantly, cancer tissue presents a higher TFIIH than normal healthy tissues. Conclusion This study shows that TFIIH cellular concentration can be used as a bona-fide quantitative marker of transcriptional activity and cellular proliferation.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- 1Institut NeuroMyoGène (INMG), CNRS, UMR 5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008 LYON, France
| | - Catherine Miquel
- 2Pathology Department, Saint-Louis Hospital, Université de Paris, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Wim Vermeulen
- 3Department of Genetics, Erasmus MC, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Giuseppina Giglia-Mari
- 1Institut NeuroMyoGène (INMG), CNRS, UMR 5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008 LYON, France
| | - Pierre-Olivier Mari
- 1Institut NeuroMyoGène (INMG), CNRS, UMR 5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008 LYON, France
| |
Collapse
|
5
|
Martínez-Fernández V, Navarro F. Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS GENETICS 2018; 5:63-74. [PMID: 31435513 PMCID: PMC6690254 DOI: 10.3934/genet.2018.1.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Rpb5 is one of the five common subunits to all eukaryotic RNA polymerases, which is conserved in archaea, but not in bacteria. Among these common subunits, it is the only one that is not interchangeable between yeasts and humans, and accounts for the functional incompatibility of yeast and human subunits. Rpb5 has been proposed to contribute to the gene-specific activation of RNA pol II, notably during the infectious cycle of the hepatitis B virus, and also to participate in general transcription mediated by all eukaryotic RNA pol. The structural analysis of Rpb5 and its interaction with different transcription factors, regulators and DNA, accounts for Rpb5 being necessary to maintain the correct conformation of the shelf module of RNA pol II, which favors the proper organization of the transcription bubble and the clamp closure of the enzyme. In this work we provide details about subunit Rpb5's structure, conservation and the role it plays in transcription regulation by analyzing the different interactions with several factors, as well as its participation in the assembly of the three RNA pols, in cooperation with prefoldin-like Bud27/URI.
Collapse
Affiliation(s)
- Verónica Martínez-Fernández
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| | - Francisco Navarro
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Paraje de las Lagunillas, s/n, 23071, Jaén, Spain
| |
Collapse
|
6
|
Wu S, Zhu W, Nhan T, Toth JI, Petroski MD, Wolf DA. CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat Commun 2013; 4:1642. [PMID: 23535663 PMCID: PMC3637025 DOI: 10.1038/ncomms2636] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 02/06/2023] Open
Abstract
The combinatorial architecture of cullin 1-RING ubiquitin ligases (CRL1s), in which multiple F-box containing substrate receptors (FBPs) compete for access to CUL1, poses special challenges to assembling CRL1 complexes through high affinity protein interactions while maintaining the flexibility to dynamically sample the entire FBP repertoire. Here, using highly quantitative mass spectrometry, we demonstrate that this problem is addressed by CAND1, a factor that controls the dynamics of the global CRL1 network by promoting the assembly of newly synthesized FBPs with CUL1-RBX1 core complexes. Our studies of in vivo CRL1 dynamics and in vitro biochemical findings showing that CAND1 can displace FBPs from Cul1p suggest that CAND1 functions in a cycle that serves to exchange FBPs on CUL1 cores. We propose that this cycle assures comprehensive sampling of the entire FBP repertoire in order to maintain the CRL1 landscape, a function that we show to be critical for substrate degradation and normal physiology.
Collapse
Affiliation(s)
- Shuangding Wu
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
7
|
Buanne P, Renzone G, Monteleone F, Vitale M, Monti SM, Sandomenico A, Garbi C, Montanaro D, Accardo M, Troncone G, Zatovicova M, Csaderova L, Supuran CT, Pastorekova S, Scaloni A, De Simone G, Zambrano N. Characterization of Carbonic Anhydrase IX Interactome Reveals Proteins Assisting Its Nuclear Localization in Hypoxic Cells. J Proteome Res 2012. [DOI: 10.1021/pr300565w] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Giovanni Renzone
- Proteomics and Mass Spectrometry
Laboratory, ISPAAM, CNR, Naples, Italy
| | | | - Monica Vitale
- CEINGE Biotecnologie Avanzate SCaRL, Naples, Italy
- Dipartimento di Medicina Molecolare
e Biotecnologie Mediche, Università di Napoli Federico II, Italy
| | | | | | - Corrado Garbi
- Dipartimento di Biologia e Patologia
Cellulare e Molecolare, Università di Napoli Federico II, Italy
| | | | - Marina Accardo
- Department
of Public Health, Section
of Pathology, Seconda Università di Napoli, Italy
| | - Giancarlo Troncone
- CEINGE Biotecnologie Avanzate SCaRL, Naples, Italy
- Dipartimento di
Scienze Biomorfologiche
e Funzionali, Università di Napoli Federico II, Italy
| | - Miriam Zatovicova
- Department of
Molecular Medicine,
Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Lucia Csaderova
- Department of
Molecular Medicine,
Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Silvia Pastorekova
- Department of
Molecular Medicine,
Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry
Laboratory, ISPAAM, CNR, Naples, Italy
| | | | - Nicola Zambrano
- CEINGE Biotecnologie Avanzate SCaRL, Naples, Italy
- Dipartimento di Medicina Molecolare
e Biotecnologie Mediche, Università di Napoli Federico II, Italy
| |
Collapse
|
8
|
Stephenson ST, Bostik P, Song B, Rajan D, Bhimani S, Rehulka P, Mayne AE, Ansari AA. Distinct host cell proteins incorporated by SIV replicating in CD4+ T cells from natural disease resistant versus non-natural disease susceptible hosts. Retrovirology 2010; 7:107. [PMID: 21162735 PMCID: PMC3012658 DOI: 10.1186/1742-4690-7-107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/16/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Enveloped viruses including the simian immunodeficiency virus (SIV) replicating within host cells acquire host proteins upon egress from the host cells. A number of studies have catalogued such host proteins, and a few have documented the potential positive and negative biological functions of such host proteins. The studies conducted herein utilized proteomic analysis to identify differences in the spectrum of host proteins acquired by a single source of SIV replicating within CD4+ T cells from disease resistant sooty mangabeys and disease susceptible rhesus macaques. RESULTS While a total of 202 host derived proteins were present in viral preparations from CD4+ T cells from both species, there were 4 host-derived proteins that consistently and uniquely associated with SIV replicating within CD4+ T cells from rhesus macaques but not sooty mangabeys; and, similarly, 28 host-derived proteins that uniquely associated with SIV replicating within CD4+ T cells from sooty mangabeys, but not rhesus macaques. Of interest was the finding that of the 4 proteins uniquely present in SIV preparations from rhesus macaques was a 26 S protease subunit 7 (MSS1) that was shown to enhance HIV-1 'tat' mediated transactivation. Among the 28 proteins found in SIV preparations from sooty mangabeys included several molecules associated with immune function such as CD2, CD3ε, TLR4, TLR9 and TNFR and a bioactive form of IL-13. CONCLUSIONS The finding of 4 host proteins that are uniquely associated with SIV replicating within CD4+ T cells from disease susceptible rhesus macaques and 28 host proteins that are uniquely associated with SIV replicating within CD4+ T cells from disease resistant sooty mangabeys provide the foundation for determining the potential role of each of these unique host-derived proteins in contributing to the polarized clinical outcome in these 2 species of nonhuman primates.
Collapse
Affiliation(s)
- Susan T Stephenson
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Feig M, Burton ZF. RNA polymerase II flexibility during translocation from normal mode analysis. Proteins 2010; 78:434-46. [PMID: 19714773 DOI: 10.1002/prot.22560] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The structural dynamics in eukaryotic RNA polymerase II (RNAPII) is described from computational normal mode analysis based on a series of crystal structures of pre- and post-translocated states with open and closed trigger loops. Conserved modes are identified that involve translocation of the nucleic acid complex coupled to motions of the enzyme, in particular in the clamp and jaw domains of RNAPII. A combination of these modes is hypothesized to be involved during active transcription. The NMA modes indicate furthermore that downstream DNA translocation may occur separately from DNA:RNA hybrid translocation. A comparison of the modes between different states of RNAPII suggests that productive translocation requires an open trigger loop and is inhibited by the presence of an NTP in the active site. This conclusion is also supported by a comparison of the overall flexibility in terms of root mean square fluctuations.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
10
|
Pitulescu ME, Teichmann M, Luo L, Kessel M. TIPT2 and geminin interact with basal transcription factors to synergize in transcriptional regulation. BMC BIOCHEMISTRY 2009; 10:16. [PMID: 19515240 PMCID: PMC2702275 DOI: 10.1186/1471-2091-10-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/10/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND The re-replication inhibitor Geminin binds to several transcription factors including homeodomain proteins, and to members of the polycomb and the SWI/SNF complexes. RESULTS Here we describe the TATA-binding protein-like factor-interacting protein (TIPT) isoform 2, as a strong binding partner of Geminin. TIPT2 is widely expressed in mouse embryonic and adult tissues, residing both in cyto- and nucleoplasma, and enriched in the nucleolus. Like Geminin, also TIPT2 interacts with several polycomb factors, with the general transcription factor TBP (TATA box binding protein), and with the related protein TBPL1 (TRF2). TIPT2 synergizes with geminin and TBP in the activation of TATA box-containing promoters, and with TBPL1 and geminin in the activation of the TATA-less NF1 promoter. Geminin and TIPT2 were detected in the chromatin near TBP/TBPL1 binding sites. CONCLUSION Together, our study introduces a novel transcriptional regulator and its function in cooperation with chromatin associated factors and the basal transcription machinery.
Collapse
Affiliation(s)
- Mara E Pitulescu
- Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
11
|
Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, Zhu JK, Hagen G, Guilfoyle TJ, Pasa-Tolić L, Pikaard CS. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell 2008; 33:192-203. [PMID: 19110459 DOI: 10.1016/j.molcel.2008.12.015] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 01/09/2023]
Abstract
In addition to RNA polymerases I, II, and III, the essential RNA polymerases present in all eukaryotes, plants have two additional nuclear RNA polymerases, abbreviated as Pol IV and Pol V, that play nonredundant roles in siRNA-directed DNA methylation and gene silencing. We show that Arabidopsis Pol IV and Pol V are composed of subunits that are paralogous or identical to the 12 subunits of Pol II. Four subunits of Pol IV are distinct from their Pol II paralogs, six subunits of Pol V are distinct from their Pol II paralogs, and four subunits differ between Pol IV and Pol V. Importantly, the subunit differences occur in key positions relative to the template entry and RNA exit paths. Our findings support the hypothesis that Pol IV and Pol V are Pol II-like enzymes that evolved specialized roles in the production of noncoding transcripts for RNA silencing and genome defense.
Collapse
Affiliation(s)
- Thomas S Ream
- Biology Department, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tsvetkov AS, Samsonov A, Akhmanova A, Galjart N, Popov SV. Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. ACTA ACUST UNITED AC 2007; 64:519-30. [PMID: 17342765 DOI: 10.1002/cm.20201] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell morphogenesis requires dynamic communication between actin filaments and microtubules which is mediated, at least in part, by direct structural links between the two cytoskeletal systems. Here, we examined interaction between the CLIP-associated proteins (CLASP) CLASP1 and CLASP2, and actin filaments. We demonstrate that, in addition to a well-established association with the distal ends of microtubules, CLASP2alpha co-localizes with stress fibers, and that both CLASP1alpha and CLASP2alpha co-immunoprecipitate with actin. GFP-CLASP2alpha exhibits retrograde flow in the lamellipodia of Xenopus primary fibroblasts and in the filopodia of Xenopus spinal cord neurons. A deletion mapping analysis reveals that both the microtubule-binding domain of CLASP2 (which is homologous between all CLASPs) and the N-terminal dis1/TOG domain of CLASP2alpha (which is homologous between alpha isoforms) possess actin-binding activity. Fluorescence resonance energy transfer experiments demonstrate significant energy transfer between YFP-CLASP2alpha and CFP-actin. Our results indicate that CLASPs function as actin/microtubule crosslinkers in interphase cells. We propose that CLASPs facilitate recognition of actin filaments by the plus ends of growing microtubules at the initial stages of actin-microtubule interaction. Cell Motil.
Collapse
Affiliation(s)
- Andrey S Tsvetkov
- Department of Physiology and Biophysics M/C 901, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
13
|
Shiraishi S, Zhou C, Aoki T, Sato N, Chiba T, Tanaka K, Yoshida S, Nabeshima Y, Nabeshima YI, Tamura TA. TBP-interacting protein 120B (TIP120B)/cullin-associated and neddylation-dissociated 2 (CAND2) inhibits SCF-dependent ubiquitination of myogenin and accelerates myogenic differentiation. J Biol Chem 2007; 282:9017-28. [PMID: 17242400 DOI: 10.1074/jbc.m611513200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite fast protein degradation in muscles, protein concentrations remain constant during differentiation and maintenance of muscle tissues. Myogenin, a basic helix-loop-helix-type myogenic transcription factor, plays a critical role through transcriptional activation in myogenesis as well as muscle maintenance. TBP-interacting protein 120/cullin-associated neddylation-dissociated (TIP120/CAND) is known to bind to cullin and negatively regulate SCF (Skp1-Cullin1-F-box protein) ubiquitin ligase, although its physiological role has not been elucidated. We have identified a muscle-specific isoform of TIP120, named TIP120B/CAND2. In this study, we found that TIP120B is not only induced in association with myogenic differentiation but also actively accelerates the myogenic differentiation of C2C12 cells. Although myogenin is a short lived protein and is degraded by a ubiquitin-proteasome system, TIP120B suppressed its ubiquitination and subsequent degradation of myogenin. TIP120B bound to cullin family proteins, especially Cullin 1 (CUL1), and was associated with SCF complex in cells. It was demonstrated that myogenin was also associated with SCF and that CUL1 small interference RNA treatment inhibited ubiquitination of myogenin and stabilized it. TIP120B was found to break down the SCF-myogenin complex. Consequently suppression of SCF-dependent ubiquitination of myogenin by TIP120B, which leads to stabilization of myogenin, can account for the TIP120B-directed accelerated differentiation of C2C12 cells. TIP120B is proposed to be a novel regulator for myogenesis.
Collapse
Affiliation(s)
- Seiji Shiraishi
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yamamoto T, Matsuda T, Inoue T, Matsumura H, Morikawa M, Kanaya S, Kai Y. Crystal structure of TBP-interacting protein (Tk-TIP26) and implications for its inhibition mechanism of the interaction between TBP and TATA-DNA. Protein Sci 2005; 15:152-61. [PMID: 16322571 PMCID: PMC2242372 DOI: 10.1110/ps.051788906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
TATA-binding protein (TBP)-interacting protein from the hyperthermophilic archaeon Thermococcus kodakaraensis strain KOD1 (Tk-TIP26) is a possible transcription regulatory protein in Thermococcales. Here, we report the crystal structure of Tk-TIP26 determined at 2.3 A resolution with multiple-wavelength anomalous dispersion (MAD) method. The overall structure of Tk-TIP26 consists of two domains. The N-terminal domain forms an alpha/beta structure, in which three alpha-helices enclose the central beta-sheet. The topology of this domain is similar to that of holliday junction resolvase Hjc from Pyrococcus furiosus. The C-terminal domain comprises three alpha-helices, six beta-strands, and two 3(10)-helices. In the dimer structure of Tk-TIP26, two molecules are related with the crystallographic twofold axis, and these molecules rigidly interact with each other via hydrogen bonds. The complex of Tk-TIP26/Tk-TBP is isolated and analyzed by SDS-PAGE and gel filtration column chromatography, resulting in a stoichiometric ratio of the interaction between Tk-TIP26 and Tk-TBP of 4:2, i.e., two dimer molecules of Tk-TIP26 formed a complex with one dimeric TBP. The electrostatic surfaces of Tk-TIP26 and TBP from Pyrocuccus woesei (PwTBP) allowed us to build a model of the Tk-TIP26/TBP complex, and to propose the inhibition mechanism where two dimer molecules of Tk-TIP26 bind to a dimeric TBP, preventing its binding to TATA-DNA.
Collapse
Affiliation(s)
- Takahiko Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Braun BR, van het Hoog M, d'Enfert C, Martchenko M, Dungan J, Kuo A, Inglis DO, Uhl MA, Hogues H, Berriman M, Lorenz M, Levitin A, Oberholzer U, Bachewich C, Harcus D, Marcil A, Dignard D, Iouk T, Zito R, Frangeul L, Tekaia F, Rutherford K, Wang E, Munro CA, Bates S, Gow NA, Hoyer LL, Köhler G, Morschhäuser J, Newport G, Znaidi S, Raymond M, Turcotte B, Sherlock G, Costanzo M, Ihmels J, Berman J, Sanglard D, Agabian N, Mitchell AP, Johnson AD, Whiteway M, Nantel A. A human-curated annotation of the Candida albicans genome. PLoS Genet 2005; 1:36-57. [PMID: 16103911 PMCID: PMC1183520 DOI: 10.1371/journal.pgen.0010001] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 03/14/2005] [Indexed: 11/24/2022] Open
Abstract
Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Burkhard R Braun
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Marco van het Hoog
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Christophe d'Enfert
- Unité Postulante Biologie et Pathogénicité Fongiques, INRA USC 2019, Institut Pasteur, Paris, France
| | - Mikhail Martchenko
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Jan Dungan
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Alan Kuo
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Diane O Inglis
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - M. Andrew Uhl
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Hervé Hogues
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | | | - Michael Lorenz
- Department of Microbiology and Molecular Genetics, Utah-Houston Medical School, Houston, Texas, United States of America
| | - Anastasia Levitin
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Ursula Oberholzer
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Catherine Bachewich
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Doreen Harcus
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Anne Marcil
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Daniel Dignard
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Tatiana Iouk
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Rosa Zito
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Lionel Frangeul
- Plate-Forme Intégration et Analyse Génomique, Institut Pasteur, Paris, France
| | - Fredj Tekaia
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France
| | | | - Edwin Wang
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Carol A Munro
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Steve Bates
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Neil A Gow
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Lois L Hoyer
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gerwald Köhler
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Wurzburg, Wurzburg, Germany
| | - George Newport
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Sadri Znaidi
- Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada
| | - Martine Raymond
- Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada
| | - Bernard Turcotte
- Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Maria Costanzo
- Department of Genetics, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Jan Ihmels
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Nina Agabian
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Aaron P Mitchell
- Department of Microbiology and Institute of Cancer Research, Columbia University, New York, New York, United States of America
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Malcolm Whiteway
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - André Nantel
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Larsen E, Kwon K, Coin F, Egly JM, Klungland A. Transcription activities at 8-oxoG lesions in DNA. DNA Repair (Amst) 2005; 3:1457-68. [PMID: 15380101 DOI: 10.1016/j.dnarep.2004.06.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Indexed: 02/07/2023]
Abstract
7,8-Dihydro-8-oxoguanine (8-oxoG) is the most frequent mutagenic lesion caused by oxidative stress. Eukaryotic cells use a specific DNA glycosylase, OGG1, to excise 8-oxoG from DNA. The mild phenotype of OGG1 null mice has been attributed to the existence of alternative pathways, including Cockayne syndrome B (CSB)-dependent transcription coupled repair (TCR), for removal of 8-oxoG. We have studied repair and transcription activities at 8-oxoG lesions with a reconstituted transcription system (RTS; RNA polymerase II, TBP, TFIIA, TFIIB, TFIIE, TFIIF and TFIIH), as well as in cellular extracts and in vivo. All measurable repair activity at 8-oxoG lesions takes place in the 3'-direction from the lesion, indicating base excision repair (BER) activity and negligible role of nucleotide excision repair (NER). Although 8-oxoG has been shown to be preferentially removed from the transcribed strand, in vitro experiments with purified transcription factors failed to identify a definite block for RNA polymerase II at the lesion. However, a weak block was observed at the lesion during transcription carried out with RTS as well as with cellular extracts. RNA polymerase II was identified at the site of the lesion on obstructed templates. Wild-type cells, as well as cells carrying targeted mutations of genes required for removal of 8-oxoG, were transfected with a luciferase expression vector containing an 8-oxoG lesion. No significant obstruction at 8-oxoG lesions was observed by this in vivo approach. In control experiments transcription elongation was completely blocked by cisplatin.
Collapse
Affiliation(s)
- Elisabeth Larsen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, National Hospital, University of Oslo, 0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
17
|
Oda T, Fukuda A, Hagiwara H, Masuho Y, Muramatsu MA, Hisatake K, Yamashita T. ABT1-associated protein (ABTAP), a novel nuclear protein conserved from yeast to mammals, represses transcriptional activation by ABT1. J Cell Biochem 2004; 93:788-806. [PMID: 15660422 DOI: 10.1002/jcb.20114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Various TATA-binding protein (TBP)-associated proteins are involved in the regulation of gene expression through control of basal transcription directed by RNA polymerase (Pol) II. We recently identified a novel nuclear protein, activator of basal transcription 1 (ABT1), which binds TBP and DNA, and enhances Pol II-directed basal transcription. To better understand regulatory mechanisms for ABT1, we searched for ABT1-binding proteins using a yeast two-hybrid screening and isolated a cDNA clone encoding a novel protein termed ABT1-associated protein (ABTAP). ABTAP formed a complex with ABT1 and suppressed the ABT1-induced activation of Pol II-directed transcription in mammalian cells. Furthermore, ABTAP directly bound to ABT1, disrupted the interaction between ABT1 and TBP, and suppressed the ABT1-induced activation of Pol II-directed basal transcription in vitro. These two proteins colocalized in the nucleolus and nucleoplasm and were concomitantly relocalized into discrete nuclear bodies at higher expression of ABTAP. Taken together, these results suggest that ABTAP binds and negatively regulates ABT1. The ABT1/ABTAP complex is evolutionarily conserved and may constitute a novel regulatory system for basal transcription.
Collapse
Affiliation(s)
- Tsukasa Oda
- Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Zwartjes CGM, Jayne S, van den Berg DLC, Timmers HTM. Repression of promoter activity by CNOT2, a subunit of the transcription regulatory Ccr4-not complex. J Biol Chem 2004; 279:10848-54. [PMID: 14707134 DOI: 10.1074/jbc.m311747200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionary conserved Ccr4-Not complex controls mRNA metabolism at multiple levels in eukaryotic cells. Genetic analysis of not mutants in yeast identifies a negative role in transcription, which is dependent on core promoter structure. To obtain direct support for this we targeted individual core subunits of the human Ccr4-Not complex to promoters in transient transfections of human cells. In this experimental setup we found that the CNOT2 and CNOT9(hRcd1/hCaf40) subunits act as repressors of reporter gene activity. Interestingly, recruitment of other Ccr4-Not subunits did not affect the reporter gene. The major repression function of CNOT2 is localized in a specialized protein motif, the Not-Box. This conserved motif is present in all CNOT2 orthologs and surprisingly also in CNOT3 orthologs. Repression by the Not-Box was sensitive to treatment with the histone deacetylase inhibitor trichostatin A. In addition, mutation of a canonical TATA-box enhanced repression. Our experiments show for the first time direct regulation of promoter activity by components of the Ccr4-Not complex.
Collapse
Affiliation(s)
- Carin G M Zwartjes
- Department of Physiological Chemistry, Stratenum STR 3.229, University Medical Center Utrecht, Universiteitsweg 100, Utrecht 3584 CG, The Netherlands
| | | | | | | |
Collapse
|
19
|
Collart MA, Timmers HTM. The eukaryotic Ccr4-not complex: a regulatory platform integrating mRNA metabolism with cellular signaling pathways? PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:289-322. [PMID: 15196896 DOI: 10.1016/s0079-6603(04)77008-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Martine A Collart
- Department of Medical Biochemistry, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
20
|
You J, Wang M, Aoki T, Tamura TA, Pickart CM. Proteolytic targeting of transcriptional regulator TIP120B by a HECT domain E3 ligase. J Biol Chem 2003; 278:23369-75. [PMID: 12692129 DOI: 10.1074/jbc.m212887200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-protein ligases (E3s) of the HECT family share a conserved catalytic region that is homologous to the E6-AP C terminus. The HECT domain defines a large E3 family, but only a handful of these enzymes have been defined with respect to substrate specificity or biological function. We showed previously that the C-terminal domain of one family member, KIAA10, catalyzes the assembly of polyubiquitin chains, whereas the N-terminal domain binds to proteasomes in vitro (You, J., and Pickart, C. M. (2001) J. Biol. Chem. 276, 19871-19878). We show here that KIAA10 also associates with proteasomes within cells but that this association probably involves additional contacts with proteasome subunits other than the one (S2/Rpn1) identified in our previous work. We report that the N-domain of KIAA10 also mediates an association with TIP120B (TATA-binding protein-interacting protein 120B), a putative transcriptional regulator. Biochemical and co-transfection studies revealed that TIP120B, but not the closely related protein TIP120A, is a specific substrate of KIAA10 in vitro and within C2C12 myoblasts but not in Cos-1 cells. KIAA10 and TIP120B are both highly expressed in human skeletal muscle, suggesting that KIAA10 may regulate TIP120B homeostasis specifically in this tissue.
Collapse
Affiliation(s)
- Jianxin You
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
21
|
Min KW, Hwang JW, Lee JS, Park Y, Tamura TA, Yoon JB. TIP120A associates with cullins and modulates ubiquitin ligase activity. J Biol Chem 2003; 278:15905-10. [PMID: 12609982 DOI: 10.1074/jbc.m213070200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cullin-containing ubiquitin-protein isopeptide ligases (E3s) play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. They have multisubunit modular structures in which substrate recognition and the catalysis of ubiquitination are carried out by distinct polypeptides. In a search for proteins involved in regulation of cullin-containing E3 ubiquitin ligases we immunopurified CUL4B-containing complex from HeLa cells and identified TIP120A as an associated protein by mass spectrometry. Immunoprecipitation of cullins revealed that all cullins tested specifically interacted with TIP120A. Reciprocal immunoaffinity purification of TIP120A confirmed the stable interaction of TIP120A with cullin family proteins. TIP120A formed a complex with CUL1 and Rbx1, but interfered with the binding of Skp1 and F-box proteins to CUL1. TIP120A greatly reduced the ubiquitination of phosphorylated IkappaBalpha by SCF(beta-TrCP) ubiquitin ligase. These results suggest that TIP120A functions as a negative regulator of SCF E3 ubiquitin ligases and may modulate other cullin ligases in a similar fashion.
Collapse
Affiliation(s)
- Kyoeng-Woo Min
- Department of Biochemistry and Protein Network Research Center, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Oshikawa K, Matsumoto M, Yada M, Kamura T, Hatakeyama S, Nakayama KI. Preferential interaction of TIP120A with Cul1 that is not modified by NEDD8 and not associated with Skp1. Biochem Biophys Res Commun 2003; 303:1209-16. [PMID: 12684064 DOI: 10.1016/s0006-291x(03)00501-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The SCF complex, which consists of the invariable components Skp1, Cul1, and Rbx1 as well as a variable F-box protein, functions as an E3 ubiquitin ligase. The mechanism by which the activity of this complex is regulated, however, has been unclear. The application of tandem affinity purification has now resulted in the identification of a novel Cul1-binding protein: TATA-binding protein-interacting protein 120A (TIP120A, also called CAND1). Immunoprecipitation, immunoblot, and immunofluorescence analyses with mammalian cells revealed that TIP120A physically associates with Cul1 in the nucleus and that this interaction is mediated by a central region of Cul1 distinct from its binding sites for Skp1 and Rbx1. Furthermore, TIP120A was shown to interact selectively with Cul1 that is not modified by NEDD8. The Cul1-TIP120A complex does not include Skp1, raising the possibility that TIP120A competes with Skp1 for binding to Cul1. These observations thus suggest that TIP120A may function as a negative regulator of the SCF complex by binding to nonneddylated Cul1 and thereby preventing assembly of this ubiquitin ligase.
Collapse
Affiliation(s)
- Kiyotaka Oshikawa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Aoki T, Okada N, Wakamatsu T, Tamura TA. TBP-interacting protein 120B, which is induced in relation to myogenesis, binds to NOT3. Biochem Biophys Res Commun 2002; 296:1097-103. [PMID: 12207886 DOI: 10.1016/s0006-291x(02)02031-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TBP-interacting protein 120 (TIP120) has been identified by TBP-mediated affinity screening. Classical TIP120, TIP120A, which functions as a transcriptional activator, is expressed ubiquitously whereas TIP120B is specifically expressed in muscle tissues. We found that TIP120B gene was induced in C2C12 myoblasts when these cells differentiated into myotubes, whereas TIP120A gene expression was down-regulated. Whole-mount in situ hybridization revealed that TIP120B mRNA was concentrated in limb buds of mouse embryos. TIP120B is thus thought to be a myogenesis-responding gene. We searched for TIP120B-binding proteins by yeast two-hybrid screening and identified NOT3. NOT3, a constituent of CCR4-NOT complex, is suggested to be involved in global gene regulation via interaction with TBP. The human NOT3 (hNOT3L), which we identified, has an extra 144 amino acids (AAs) at the C-terminus of a classical NOT3. GST pull-down and yeast two-hybrid assays demonstrated that hNOT3L is associated with TIP120B but not with TIP120A. A hNOT3L-specific C-terminal region of 92 AAs was assigned as a TIP120B-interacting domain. The N-terminus of 209 AAs of TIP120B was responsible for this binding. TIP120B presumably affects tissue-specific transcriptional regulation via interaction with NOT3.
Collapse
Affiliation(s)
- Tsutomu Aoki
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoicho, Inage-ku, 263-8522, Chiba, Japan
| | | | | | | |
Collapse
|
24
|
Surapureddi S, Yu S, Bu H, Hashimoto T, Yeldandi AV, Kashireddy P, Cherkaoui-Malki M, Qi C, Zhu YJ, Rao MS, Reddy JK. Identification of a transcriptionally active peroxisome proliferator-activated receptor alpha -interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc Natl Acad Sci U S A 2002; 99:11836-41. [PMID: 12189208 PMCID: PMC129355 DOI: 10.1073/pnas.182426699] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Accepted: 07/17/2002] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPAR alpha) plays a central role in the cell-specific pleiotropic responses induced by structurally diverse synthetic chemicals designated as peroxisome proliferators. Transcriptional regulation by liganded nuclear receptors involves the participation of cofactors that form multiprotein complexes to achieve cell- and gene-specific transcription. Here we report the identification of such a transcriptionally active PPAR alpha-interacting cofactor (PRIC) complex from rat liver nuclear extracts that interacts with full-length PPAR alpha in the presence of ciprofibrate, a synthetic ligand, and leukotriene B(4), a natural ligand. The liganded PPAR alpha-PRIC complex enhanced transcription from a peroxisomal enoyl-CoA hydratase/l-3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme gene promoter template that contains peroxisome proliferator response elements. Rat liver PRIC complex comprises some 25 polypeptides, and their identities were established by mass spectrometry and limited sequence analysis. Eighteen of these peptides contain one or more LXXLL motifs necessary for interacting with nuclear receptors. PRIC complex includes known coactivators or coactivator-binding proteins (CBP, SRC-1, PBP, PRIP, PIMT, TRAP100, SUR-2, and PGC-1), other proteins that have not previously been described in association with transcription complexes (CHD5, TOG, and MORF), and a few novel polypeptides designated PRIC300, -285, -215, -177, and -145. We describe the cDNA for PRIC285, which contains five LXXLL motifs. It interacts with PPAR alpha and acts as a coactivator by moderately stimulating PPAR alpha-mediated transcription in transfected cells. We conclude that liganded PPAR alpha recruits a distinctive multiprotein complex from rat liver nuclear extracts. The composition of this complex may provide insight into the basis of tissue and species sensitivity to peroxisome proliferators.
Collapse
Affiliation(s)
- Sailesh Surapureddi
- Department of Pathology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, Rousseaux S, Khochbin S. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 2001; 21:8035-44. [PMID: 11689694 PMCID: PMC99970 DOI: 10.1128/mcb.21.23.8035-8044.2001] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunopurification of the endogenous cytoplasmic murine histone deacetylase 6 (mHDAC6), a member of the class II HDACs, from mouse testis cytosolic extracts allowed the identification of two associated proteins. Both were mammalian homologues of yeast proteins known to interact with each other and involved in the ubiquitin signaling pathway: p97/VCP/Cdc48p, a homologue of yeast Cdc48p, and phospholipase A2-activating protein, a homologue of yeast UFD3 (ubiquitin fusion degradation protein 3). Moreover, in the C-terminal region of mHDAC6, a conserved zinc finger-containing domain named ZnF-UBP, also present in several ubiquitin-specific proteases, was discovered and was shown to mediate the specific binding of ubiquitin by mHDAC6. By using a ubiquitin pull-down approach, nine major ubiquitin-binding proteins were identified in mouse testis cytosolic extracts, and mHDAC6 was found to be one of them. All of these findings strongly suggest that mHDAC6 could be involved in the control of protein ubiquitination. The investigation of biochemical properties of the mHDAC6 complex in vitro further supported this hypothesis and clearly established a link between protein acetylation and protein ubiquitination.
Collapse
Affiliation(s)
- D Seigneurin-Berny
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, INSERM U309, Equipe Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, 38706 La Tronche Cedex, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Kayukawa K, Kitajima Y, Tamura T. TBP-interacting protein TIP120A is a new global transcription activator with bipartite functional domains. Genes Cells 2001; 6:165-74. [PMID: 11260261 DOI: 10.1046/j.1365-2443.2001.00407.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We previously identified a TBP (TATA-binding protein)-interacting protein 120A (TIP120A) from rat liver nuclear extracts. TIP120A is thought to be a unique global transcription factor that can interact with TBP and can stimulate all classes of eukaryotic transcription. RESULTS We produced various truncation proteins of TIP120A to delineate its functional domains. TIP120A binds to TBP in the acidic amino acid-rich N-terminal region and in the leucine-rich C-terminal region. These regions exhibited an ability to stimulate basal transcription in vitro. In addition, these two regions overlap with domains that facilitate nonspecific DNA-binding of RNA polymerase II. The sequences of these two regions are significantly conserved among TIP120A homologues of eukaryotes. CONCLUSIONS TIP120A is a bipartite transcription factor, and both N-terminal and C-terminal regions exhibit TBP-binding activity and stimulate the basal transcription ability.
Collapse
Affiliation(s)
- K Kayukawa
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | |
Collapse
|
27
|
Hollyfield JG, Rayborn ME, Nishiyama K, Shadrach KG, Miyagi M, Crabb JW, Rodriguez IR. Interphotoreceptor matrix in the fovea and peripheral retina of the primate Macaca mulatta: distribution and glycoforms of SPACR and SPACRCAN. Exp Eye Res 2001; 72:49-61. [PMID: 11133182 DOI: 10.1006/exer.2000.0922] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SPACR and SPACRCAN localization in the interphotoreceptor matrix (IPM) of the fovea and peripheral retina of Macaca mulatta was established with antibodies to these core proteins and the chondroitin sulfate epitopes and lectin binding properties of these molecules were defined. The IPM of both rods and cones labeled with anti-SPACR, anti-SPACRCAN, anti-Delta Di6S antibodies and wheat germ agglutinin (WGA). Whereas anti-SPACR and anti-SPACRCAN antibodies labeled rod and cone matrix compartments with similar intensity, the Delta Di6S chondroitin antibody labeling was more intense around cones than rods. Peanut lectin (PNA) labeling was present only around cones. No IPM labeling was observed with Delta Di0S-chondroitin or Delta Di4S-chondroitin antibodies. Western blots of undigested IPM extracts showed anti-SPACR immunoreactivity at 150 kDa, colocalizing with the position of WGA and PNA binding. In Western blots of the chondroitinase ABC digested sample and samples double digested with chondroitinase ABC and AC II, anti-SPACR immunoreactivity, WGA and PNA labeling intensity were virtually identical to that in the undigested sample, with prominent staining of the 150 kDa SPACR band. In contrast, anti-SPACRCAN immunoreactivity was not present in the undigested sample, but was evident in both the chondroitinase ABC and double digested samples as a broad band at approximately 230 kDa. Delta Di6S, Delta Di4S, WGA and PNA labeling colocalized with the anti-SPACRCAN immunoreactivity in the chondroitinase ABC digested sample. These findings indicate that SPACR and SPACRCAN are present around cones in the fovea and both rods and cones in the peripheral retina, but that the specific glycoforms of these molecules are different depending on whether present in the cone or rod associated IPM.
Collapse
Affiliation(s)
- J G Hollyfield
- Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Yanagi S, Shimbara N, Tamura TA. Tissue and cell distribution of a mammalian proteasomal ATPase, MSS1, and its complex formation with the basal transcription factors. Biochem Biophys Res Commun 2000; 279:568-73. [PMID: 11118327 DOI: 10.1006/bbrc.2000.3969] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteasome is an eukaryotic multi-subunit protease complex composed of one 20S core component and two 19S regulatory complexes. The regulatory complex contains 6 putative ATPases. We investigated tissue and cell distribution of one of these ATPases, MSS1 (mammalian suppressor of sgv1). MSS1 was ubiquitously present in rat tissues as was the 20S core component of proteasome. However, the ratio of MSS1 to 20S varied greatly among tissues and MSS1 was concentrated in the thymus. Glycerol gradient sedimentation analysis revealed that MSS1 is included in protein complexes whose density is lighter than that of the proteasome. MSS1 was distributed in mammalian cells ubiquitously, while proteasome was rather concentrated in the nuclei. Hence, a novel molecular status of MSS1 distinct from proteasome is implicated. Interestingly, multiple basal transcription factors for RNA polymerase II, including TBP, TFIIB, TFIIH, and TFIIF, were found to be associated with MSS1. These results suggest that MSS1, in addition to proteolysis, plays a role in DNA metabolism including transcriptional regulation.
Collapse
Affiliation(s)
- S Yanagi
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | |
Collapse
|
29
|
Neuwald AF, Hirano T. HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res 2000; 10:1445-52. [PMID: 11042144 PMCID: PMC310966 DOI: 10.1101/gr.147400] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Accepted: 08/17/2000] [Indexed: 11/25/2022]
Abstract
HEAT repeats correspond to tandemly arranged curlicue-like structures that appear to serve as flexible scaffolding on which other components can assemble. Using sensitive sequence analysis techniques we detected HEAT repeats in various chromosome-associated proteins, including four families of proteins associated with condensins and cohesins, which are nuclear complexes that contain structural maintenance of chromosome (SMC) proteins. Among the proteins detected were the XCAP-D2 and XCAP-G subunits of the Xenopus laevis 13S condensin complex, the Aspergillus BimD and Sordaria macrospora Spo76p proteins, the budding yeast Scc2p protein, and the related Drosophila transcriptional activator Nipped-B. Clathrin adaptor and COP-I coatomer subunits, which function in vesicle coat assembly and were previously noted to share weak sequence similarity to condensin subunits, also contain HEAT repeats. HEAT repeats were also found in the TBP-associated TIP120 protein, a global enhancer of transcription, and in the budding yeast Mot1p protein, which is a member of the SWI2/SNF2 family. SWI2/SNF2 proteins, some of which are helicases, perform diverse roles in transcription control, DNA repair, and chromosome segregation and form chromatin-remodeling complexes. HEAT repeats also were found in dis1-TOG family and cofactor D family microtubule-associated proteins, which, owing to their roles in microtubule dynamics, perform functions related to mitotic progression and chromosome segregation. Hence, our analysis predicts structural features of these proteins and suggests that HEAT repeats may play important roles in chromosome dynamics.
Collapse
Affiliation(s)
- A F Neuwald
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724,
| | | |
Collapse
|
30
|
Nadeau G, Boufaied N, Moisan A, Lemieux KM, Cayanan C, Monteiro AN, Gaudreau L. BRCA1 can stimulate gene transcription by a unique mechanism. EMBO Rep 2000; 1:260-5. [PMID: 11256609 PMCID: PMC1083733 DOI: 10.1093/embo-reports/kvd059] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most familial breast and ovarian cancers have been linked to mutations in the BRCA1 gene. BRCA1 has been shown to affect gene transcription but how it does so remains elusive. Here we show that BRCA1 can stimulate transcription without the requirement for a DNA-tethering function in mammalian and yeast cells. Furthermore, the BRCA1 C-terminal region can stimulate transcription of the p53-responsive promoter, MDM2. Unlike many enhancer-specific activators, non-tethered BRCA1 does not require a functional TATA element to stimulate transcription. Our results suggest that BRCA1 can enhance transcription by a function additional to recruiting the transcriptional machinery to a targeted gene.
Collapse
Affiliation(s)
- G Nadeau
- Centre de Recherche sur les Mécanismes d'Expression Génétique, Départment de Biologie, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Sunesen M, Selzer RR, Brosh RM, Balajee AS, Stevnsner T, Bohr VA. Molecular characterization of an acidic region deletion mutant of Cockayne syndrome group B protein. Nucleic Acids Res 2000; 28:3151-9. [PMID: 10931931 PMCID: PMC108419 DOI: 10.1093/nar/28.16.3151] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cockayne syndrome (CS) is a human genetic disorder characterized by post-natal growth failure, neurological abnormalities and premature aging. CS cells exhibit high sensitivity to UV light, delayed RNA synthesis recovery after UV irradiation and defective transcription-coupled repair (TCR). Two genetic complementation groups of CS have been identified, designated CS-A and CS-B. The CSB gene encodes a helicase domain and a highly acidic region N-terminal to the helicase domain. This study describes the genetic characterization of a CSB mutant allele encoding a full deletion of the acidic region. We have tested its ability to complement the sensitivity of UV61, the hamster homolog of human CS-B cells, to UV and the genotoxic agent N-acetoxy-2-acetylaminofluorene (NA-AAF). Deleting 39 consecutive amino acids, of which approximately 60% are negatively charged, did not impact on the ability of the protein to complement the sensitive phenotype of UV61 cells to either UV or NA-AAF. Our data indicate that the highly acidic region of CSB is not essential for the TCR and general genome repair pathways of UV- and NA-AAF-induced DNA lesions.
Collapse
Affiliation(s)
- M Sunesen
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Todone F, Weinzierl RO, Brick P, Onesti S. Crystal structure of RPB5, a universal eukaryotic RNA polymerase subunit and transcription factor interaction target. Proc Natl Acad Sci U S A 2000; 97:6306-10. [PMID: 10841537 PMCID: PMC18598 DOI: 10.1073/pnas.97.12.6306] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2000] [Accepted: 04/05/2000] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic nuclei contain three different types of RNA polymerases (RNAPs), each consisting of 12-18 different subunits. The evolutionarily highly conserved RNAP subunit RPB5 is shared by all three enzymes and therefore represents a key structural/functional component of all eukaryotic RNAPs. Here we present the crystal structure of the RPB5 subunit from Saccharomyces cerevisiae. The bipartite structure includes a eukaryote-specific N-terminal domain and a C-terminal domain resembling the archaeal RNAP subunit H. RPB5 has been implicated in direct protein-protein contacts with transcription factor IIB, one of the components of the RNAP(II) basal transcriptional machinery, and gene-specific activator proteins, such as the hepatitis B virus transactivator protein X. The experimentally mapped regions of RPB5 involved in these interactions correspond to distinct and surface-exposed alpha-helical structures.
Collapse
Affiliation(s)
- F Todone
- Blackett Laboratory and Department of Biochemistry, Imperial College, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
33
|
Yogosawa S, Kayukawa K, Kawata T, Makino Y, Inoue S, Okuda A, Muramatsu M, Tamura T. Induced expression, localization, and chromosome mapping of a gene for the TBP-interacting protein 120A. Biochem Biophys Res Commun 1999; 266:123-8. [PMID: 10581176 DOI: 10.1006/bbrc.1999.1773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TBP-interacting protein 120A (TIP120A) is a novel eukaryotic transcriptional regulator and has been suggested to be involved in the general regulation of transcription because of its ability to potentiate transcription of all classes of genes and to interact with common transcriptional machineries. In the present study, we investigated the expression of the tip120a gene. TIP120A transcripts were expressed abundantly in the heart and liver, moderately in the brain and skeletal muscle, and only slightly in the spleen and lung. This ubiquitous expression pattern was similar to that of TBP. Gene expression of TIP120A in the rat liver was not stimulated by hepatocarcinogenesis or liver regeneration. TIP120A was thus suggested not to be a growth-related protein. On the other hand, in P19 mouse embryonal carcinoma cells, TIP120A expression was elevated upon retinoic acid treatment, which induces differentiation. Notably, the foci-like nuclear localization pattern of TIP120A was transformed into a speckle-like pattern. The level of TIP120A was also elevated in such stem-like cells as F9 and HL60 after each differentiation procedure, retinoic acid and DMSO, respectively. In HEp-2 cells, TIP120A was observed as a limited number of nuclear foci, and the localization coincided with that of the PML oncogenic domain. FISH detection revealed that the human tip120a gene was located at 12q14, the position to which a myopathic type scapuloperoneal syndrome locus also mapped. Our study suggests that, contrary to an early assumption, TIP120A is involved in tissue-specific and/or differentiation-related gene expression.
Collapse
Affiliation(s)
- S Yogosawa
- Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|