1
|
Ho AK, Jeganathan F, Bictash M, Chen HJ. Identification of novel small molecule chaperone activators for neurodegenerative disease treatment. Biomed Pharmacother 2025; 187:118049. [PMID: 40239269 PMCID: PMC12086176 DOI: 10.1016/j.biopha.2025.118049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
A pathological hallmark of neurodegenerative disease is the accumulation of aberrant protein aggregates which contribute to the cytotoxicity and are therefore a target for therapy development. One key mechanism to manage cellular protein homeostasis is heat shock proteins (HSPs), protein chaperones which are known to target aberrant protein accumulation. Activation of HSPs target aberrant TDP-43, tau and amyloid to rescue neurodegenerative disease. As an attempt to target HSP activation for neurodegeneration therapy, we here develop a drug screening assay to identify compounds that will activate the master regulator of HSPs, the transcription factor heat shock factor 1 (HSF1). As HSF1 is bound by HSP90 which prevents its activation, we developed a NanoBRET assay, which allows us to monitor and quantify the HSF1-HSP90 interaction in living cells to screen for compounds disrupting this interaction and thereby releasing HSF1 for activation. After the optimisation and validation of the assay, a two thousand compound library was screened which produced 10 hits including two known HSP90 inhibitors. Follow-up functional study showed that one of the hits oxyphenbutazone (OPB) significantly reduces the accumulation of insoluble TDP-43 in a cell model, eliciting no signs of stress or toxicity. Overall, this study demonstrates a viable strategy for new drug discovery in targeting aberrant proteins and identifies potential candidates for translation into neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Anita K Ho
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Fiona Jeganathan
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, London WC1E 6BT, UK
| | - Magda Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, London WC1E 6BT, UK
| | - Han-Jou Chen
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
2
|
Fiser O, Muller P. Role of HSF1 in cell division, tumorigenesis and therapy: a literature review. Cell Div 2025; 20:11. [PMID: 40287736 PMCID: PMC12034185 DOI: 10.1186/s13008-025-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Heat shock factor 1 (HSF1) is the master orchestrator of the heat shock response (HSR), a critical process for maintaining cellular health and protein homeostasis. These effects are achieved through rapid expression of molecular chaperones, the heat shock proteins (HSPs), which ensure correct protein folding, repair, degradation and stabilization of multiprotein complexes. In addition to its role in the HSR, HSF1 influences the cell cycle, including processes such as S phase progression and regulation of the p53 pathway, highlighting its importance in cellular protein synthesis and division. While HSF1 activity offers neuroprotective benefits in neurodegenerative diseases, its proteome-stabilizing function may also reinforce tumorigenic transformation. HSF1 overexpression in many types of cancer reportedly enhances cell growth enables survival, alters metabolism, weakens immune response and promotes angiogenesis or epithelial-mesenchymal transition (EMT) as these cells enter a form of "HSF1 addiction". Furthermore, the client proteins of HSF1-regulated chaperones, particularly Hsp90, include numerous key players in classical tumorigenic pathways. HSF1 thus presents a promising therapeutic target for cancer treatment, potentially in combination with HSP inhibitors to alleviate typical initiation of HSR upon their use.
Collapse
Affiliation(s)
- Otakar Fiser
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Muller
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
3
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Tokunaga Y, Otsuyama KI, Kakuta S, Hayashida N. Heat Shock Transcription Factor 2 Is Significantly Involved in Neurodegenerative Diseases, Inflammatory Bowel Disease, Cancer, Male Infertility, and Fetal Alcohol Spectrum Disorder: The Novel Mechanisms of Several Severe Diseases. Int J Mol Sci 2022; 23:ijms232213763. [PMID: 36430241 PMCID: PMC9691173 DOI: 10.3390/ijms232213763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
HSF (heat shock transcription factor or heat shock factor) was discovered as a transcription factor indispensable for heat shock response. Although four classical HSFs were discovered in mammals and two major HSFs, HSF1 and HSF2, were cloned in the same year of 1991, only HSF1 was intensively studied because HSF1 can give rise to heat shock response through the induction of various HSPs' expression. On the other hand, HSF2 was not well studied for some time, which was probably due to an underestimate of HSF2 itself. Since the beginning of the 21st century, HSF2 research has progressed and many biologically significant functions of HSF2 have been revealed. For example, the roles of HSF2 in nervous system protection, inflammation, maintenance of mitosis and meiosis, and cancer cell survival and death have been gradually unveiled. However, we feel that the fact HSF2 has a relationship with various factors is not yet widely recognized; therefore, the biological significance of HSF2 has been underestimated. We strongly hope to widely communicate the significance of HSF2 to researchers and readers in broad research fields through this review. In addition, we also hope that many readers will have great interest in the molecular mechanism in which HSF2 acts as an active transcription factor and gene bookmarking mechanism of HSF2 during cell cycle progression, as is summarized in this review.
Collapse
Affiliation(s)
- Yasuko Tokunaga
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Ken-Ichiro Otsuyama
- Department of Clinical Laboratory Science, Faculty of Health Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Hayashida
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Correspondence: ; Tel.: +81-836-22-2359
| |
Collapse
|
5
|
Meka PN, Amatya E, Kaur S, Banerjee M, Zuo A, Dobrowsky RT, Blagg BSJ. Synthesis and evaluation of 3'- and 4'-substituted cyclohexyl noviomimetics that modulate mitochondrial respiration. Bioorg Med Chem 2022; 70:116940. [PMID: 35905686 PMCID: PMC11664489 DOI: 10.1016/j.bmc.2022.116940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
KU-32 (2) and KU-596 (3), are first and second generation cytoprotective novologues that are derivatives of novobiocin (1), a heat shock protein 90 (Hsp90) C-terminal inhibitor. Although 2 and 3 improve mitochondrial bioenergetics and have demonstrated considerable cytoprotective activity, they contain a synthetically demanding noviose sugar. This issue was initially addressed by creating noviomimetics, such as KU-1202 (4), which replaced the noviose sugar with ether-linked cyclohexyl derivatives that retained some cytoprotective potential due to their ability to increase mitochondrial bioenergetics. Based on structure-activity relationship (SAR) studies of KU-1202 (4), the current study investigated 3'- and 4'-substituted cyclohexyl scaffolds as noviomimetics and determined their efficacy at increasing mitochondrial bioenergetic as a marker for cytoprotective potential.
Collapse
Affiliation(s)
- Penchala Narasimharao Meka
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Eva Amatya
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Sukhmanjit Kaur
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ang Zuo
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Rick T Dobrowsky
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States.
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
6
|
Occhigrossi L, D’Eletto M, Barlev N, Rossin F. The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2. Int J Mol Sci 2021; 22:ijms22126366. [PMID: 34198675 PMCID: PMC8232231 DOI: 10.3390/ijms22126366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
The cellular environment needs to be strongly regulated and the maintenance of protein homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock response (HSR), the master pathway required to maintain proteostasis, as involved in the expression of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders, metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2), a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation. HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in pathological conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological and pathological conditions.
Collapse
Affiliation(s)
- Luca Occhigrossi
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Manuela D’Eletto
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Nickolai Barlev
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Moscow Institute of Physics and Technology (MIPT), 141701 Dolgoprudny, Russia
| | - Federica Rossin
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Correspondence:
| |
Collapse
|
7
|
Wu YW, Chao MW, Tu HJ, Chen LC, Hsu KC, Liou JP, Yang CR, Yen SC, HuangFu WC, Pan SL. A novel dual HDAC and HSP90 inhibitor, MPT0G449, downregulates oncogenic pathways in human acute leukemia in vitro and in vivo. Oncogenesis 2021; 10:39. [PMID: 33986242 PMCID: PMC8119482 DOI: 10.1038/s41389-021-00331-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Acute leukemia is a highly heterogeneous disease; therefore, combination therapy is commonly used for patient treatment. Drug–drug interaction is a major concern of combined therapy; hence, dual/multi-target inhibitors have become a dominant approach for cancer drug development. HDACs and HSP90 are involved in the activation of various oncogenic signaling pathways, including PI3K/AKT/mTOR, JAK/STAT, and RAF/MEK/ERK, which are also highly enriched in acute leukemia gene expression profiles. Therefore, we suggest that dual HDAC and HSP90 inhibitors could represent a novel therapeutic approach for acute leukemia. MPT0G449 is a dual effect inhibitor, and it showed cytotoxic effectiveness in acute leukemia cells. Molecular docking analysis indicated that MPT0G449 possessed dual HDAC and HSP90 inhibitory abilities. Furthermore, MPT0G449 induced G2 arrest and caspase-mediated cell apoptosis in acute leukemia cells. The oncogenic signaling molecules AKT, mTOR, STAT3, STAT5, MEK, and ERK were significantly downregulated after MPT0G449 treatment in HL-60 and MOLT-4 cells. In vivo xenograft models confirmed the antitumor activity and showed the upregulation of acetyl-histone H3 and HSP70, biomarkers of pan-HDAC and HSP90 inhibition, with MPT0G449 treatment. These findings suggest that the dual inhibition of HDAC and HSP90 can suppress the expression of oncogenic pathways in acute leukemia, and MPT0G449 represents a novel therapeutic for anticancer treatment.
Collapse
Affiliation(s)
- Yi-Wen Wu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Min-Wu Chao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huang-Ju Tu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chung Yen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Morishima Y, Mehta RK, Yoshimura M, Lau M, Southworth DR, Lawrence TS, Pratt WB, Nyati MK, Osawa Y. Chaperone Activity and Dimerization Properties of Hsp90 α and Hsp90 β in Glucocorticoid Receptor Activation by the Multiprotein Hsp90/Hsp70-Dependent Chaperone Machinery. Mol Pharmacol 2018; 94:984-991. [PMID: 29941666 PMCID: PMC6064783 DOI: 10.1124/mol.118.112516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022] Open
Abstract
Several hundred proteins cycle into heterocomplexes with a dimer of the chaperone heat shock protein 90 (Hsp90), regulating their activity and turnover. There are two isoforms of Hsp90, Hsp90α and Hsp90β, and their relative chaperone activities and composition in these client protein•Hsp90 heterocomplexes has not been determined. Here, we examined the activity of human Hsp90α and Hsp90β in a purified five-protein chaperone machinery that assembles glucocorticoid receptor (GR)•Hsp90 heterocomplexes to generate high-affinity steroid-binding activity. We found that human Hsp90α and Hsp90β have equivalent chaperone activities, and when mixed together in this assay, they formed only GR•Hsp90αα and GR•Hsp90ββ homodimers and no GR•Hsp90αβ heterodimers. In contrast, GR•Hsp90 heterocomplexes formed in human embryonic kidney (HEK) cells also contain GR•Hsp90αβ heterodimers. The formation of GR•Hsp90αβ heterodimers in HEK cells probably reflects the longer time permitted for exchange to form Hsp90αβ heterodimers in the cell versus in the cell-free assembly conditions. This purified GR-activating chaperone machinery can be used to determine how modifications of Hsp90 affect its chaperone activity. To that effect, we have tested whether the unique phosphorylation of Hsp90α at threonines 5 and 7 that occurs during DNA damage repair affects its chaperone activity. We showed that the phosphomimetic mutant Hsp90α T5/7D has the same intrinsic chaperone activity as wild-type human Hsp90α in activation of GR steroid-binding activity by the five-protein machinery, supporting the conclusion that T5/7 phosphorylation does not affect Hsp90α chaperone activity.
Collapse
Affiliation(s)
- Yoshihiro Morishima
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Ranjit K Mehta
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Miyako Yoshimura
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Miranda Lau
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Daniel R Southworth
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Theodore S Lawrence
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - William B Pratt
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Mukesh K Nyati
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Yoichi Osawa
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| |
Collapse
|
9
|
Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 2018; 23:467-482. [PMID: 29392504 PMCID: PMC6045531 DOI: 10.1007/s12192-018-0877-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is one component of a highly complex and interactive cellular proteostasis network (PN) that participates in protein folding, directs misfolded and damaged proteins for destruction, and participates in regulating cellular transcriptional responses to environmental stress, thus promoting cell and organismal survival. Over the last 20 years, it has become clear that various disease states, including cancer, neurodegeneration, metabolic disorders, and infection by diverse microbes, impact the PN. Among PN components, Hsp90 was among the first to be pharmacologically targeted with small molecules. While the number of Hsp90 inhibitors described in the literature has dramatically increased since the first such small molecule was described in 1994, it has become increasingly apparent that not all of these agents have been sufficiently validated for specificity, mechanism of action, and lack of off-target effects. Given the less than expected activity of Hsp90 inhibitors in cancer-related human clinical trials, a re-evaluation of potentially confounding off-target effects, as well as confidence in target specificity and mechanism of action, is warranted. In this commentary, we provide feasible approaches to achieve these goals and we discuss additional considerations to improve the clinical efficacy of Hsp90 inhibitors in treating cancer and other diseases.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Brian Blagg
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Luke Whitesell
- Whitehead Institute, Cambridge, MA, 02142, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, 1211, Geneva 4, Switzerland.
| |
Collapse
|
10
|
Frinchi M, Scaduto P, Cappello F, Belluardo N, Mudò G. Heat shock protein (Hsp) regulation by muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus. J Cell Physiol 2018; 233:6107-6116. [DOI: 10.1002/jcp.26454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Pietro Scaduto
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, div. of AnatomyUniversity of PalermoPalermoItaly
- Euro‐Mediterranean Institute of Science and TechnologyPalermoItaly
- Department of BiologyTemple UniversityPhiladelphiaPennsylvania
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| |
Collapse
|
11
|
Progress in Molecular Chaperone Regulation of Heat Shock Protein 90 and Cancer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(17)61071-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Nelson VK, Ali A, Dutta N, Ghosh S, Jana M, Ganguli A, Komarov A, Paul S, Dwivedi V, Chatterjee S, Jana NR, Lakhotia SC, Chakrabarti G, Misra AK, Mandal SC, Pal M. Azadiradione ameliorates polyglutamine expansion disease in Drosophila by potentiating DNA binding activity of heat shock factor 1. Oncotarget 2018; 7:78281-78296. [PMID: 27835876 PMCID: PMC5346638 DOI: 10.18632/oncotarget.12930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/21/2016] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins with the expansion of polyglutamine tracts in the brain underlies progressive genetic neurodegenerative diseases (NDs) like Huntington's disease and spinocerebellar ataxias (SCA). An insensitive cellular proteotoxic stress response to non-native protein oligomers is common in such conditions. Indeed, upregulation of heat shock factor 1 (HSF1) function and its target protein chaperone expression has shown promising results in animal models of NDs. Using an HSF1 sensitive cell based reporter screening, we have isolated azadiradione (AZD) from the methanolic extract of seeds of Azadirachta indica, a plant known for its multifarious medicinal properties. We show that AZD ameliorates toxicity due to protein aggregation in cell and fly models of polyglutamine expansion diseases to a great extent. All these effects are correlated with activation of HSF1 function and expression of its target protein chaperone genes. Notably, HSF1 activation by AZD is independent of cellular HSP90 or proteasome function. Furthermore, we show that AZD directly interacts with purified human HSF1 with high specificity, and facilitates binding of HSF1 to its recognition sequence with higher affinity. These unique findings qualify AZD as an ideal lead molecule for consideration for drug development against NDs that affect millions worldwide.
Collapse
Affiliation(s)
- Vinod K Nelson
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India.,Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Laboratory, Jadavpur University, Jadavpur, West Bengal, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Manas Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Arnab Ganguli
- Dr. B. C. Guha Center for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Andrei Komarov
- Cellecta Inc, Mountain View, California, United States of America
| | - Soumyadip Paul
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Vibha Dwivedi
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Nihar R Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Institute, Manesar, Gurgaon, Haryana, India
| | - Subhash C Lakhotia
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gopal Chakrabarti
- Dr. B. C. Guha Center for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Anup K Misra
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Laboratory, Jadavpur University, Jadavpur, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
13
|
Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Forsberg LK, Anyika M, You Z, Emery S, McMullen M, Dobrowsky RT, Blagg BSJ. Development of noviomimetics that modulate molecular chaperones and manifest neuroprotective effects. Eur J Med Chem 2018; 143:1428-1435. [PMID: 29137866 PMCID: PMC5736410 DOI: 10.1016/j.ejmech.2017.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 11/30/2022]
Abstract
Heat shock protein 90 (Hsp90) is a chaperone under investigation for the treatment of cancer and neurodegenerative diseases. Neuroprotective Hsp90 C-terminal inhibitors derived from novobiocin (novologues) include KU-32 and KU-596. These novologues modulate molecular chaperones and result in an induction of Heat Shock Protein 70 (Hsp70). "Noviomimetics" replace the synthetically complex noviose sugar with a simple cyclohexyl moiety to maintain biological efficacy as compared to novologues KU-596 and KU-32. In this study, we further explore the development of noviomimetics and evaluate their efficacy using a luciferase refolding assay, immunoblot analysis, a c-jun assay, and an assay measuring mitochondrial bioenergetics. These new noviomimetics were designed and synthesized and found to induce Hsp70 and improve biological activity. Noviomimetics 39e and 40a were found to induce Hsp70 and exhibit promising effects in cellular assays.
Collapse
Affiliation(s)
- Leah K Forsberg
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, KS 66045-7563, United States
| | - Mercy Anyika
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, KS 66045-7563, United States
| | - Zhenyuan You
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Sean Emery
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Mason McMullen
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Rick T Dobrowsky
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
15
|
San Gil R, Ooi L, Yerbury JJ, Ecroyd H. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 2017; 12:65. [PMID: 28923065 PMCID: PMC5604514 DOI: 10.1186/s13024-017-0208-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Protein inclusions are a predominant molecular pathology found in numerous neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease. Protein inclusions form in discrete areas of the brain characteristic to the type of neurodegenerative disease, and coincide with the death of neurons in that region (e.g. spinal cord motor neurons in amyotrophic lateral sclerosis). This suggests that the process of protein misfolding leading to inclusion formation is neurotoxic, and that cell-autonomous and non-cell autonomous mechanisms that maintain protein homeostasis (proteostasis) can, at times, be insufficient to prevent protein inclusion formation in the central nervous system. The heat shock response is a pro-survival pathway induced under conditions of cellular stress that acts to maintain proteostasis through the up-regulation of heat shock proteins, a superfamily of molecular chaperones, other co-chaperones and mitotic regulators. The kinetics and magnitude of the heat shock response varies in a stress- and cell-type dependent manner. It remains to be determined if and/or how the heat shock response is activated in the different cell-types that comprise the central nervous system (e.g. neurons and astroglia) in response to protein misfolding events that precede cellular dysfunctions in neurodegenerative diseases. This is particularly relevant considering emerging evidence demonstrating the non-cell autonomous nature of amyotrophic lateral sclerosis and Huntington's disease (and other neurodegenerative diseases) and the destructive role of astroglia in disease progression. This review highlights the complexity of heat shock response activation and addresses whether neurons and glia sense and respond to protein misfolding and aggregation associated with neurodegenerative diseases, in particular Huntington's disease and amyotrophic lateral sclerosis, by inducing a pro-survival heat shock response.
Collapse
Affiliation(s)
- Rebecca San Gil
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| |
Collapse
|
16
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that is involved in the activation of disparate client proteins. This implicates Hsp90 in diverse biological processes that require a variety of co-ordinated regulatory mechanisms to control its activity. Perhaps the most important regulator is heat shock factor 1 (HSF1), which is primarily responsible for upregulating Hsp90 by binding heat shock elements (HSEs) within Hsp90 promoters. HSF1 is itself subject to a variety of regulatory processes and can directly respond to stress. HSF1 also interacts with a variety of transcriptional factors that help integrate biological signals, which in turn regulate Hsp90 appropriately. Because of the diverse clientele of Hsp90 a whole variety of co-chaperones also regulate its activity and some are directly responsible for delivery of client protein. Consequently, co-chaperones themselves, like Hsp90, are also subject to regulatory mechanisms such as post translational modification. This review, looks at the many different levels by which Hsp90 activity is ultimately regulated.
Collapse
|
17
|
Saranyan PV, Ross NW, Benfey TJ. Erythrocyte heat shock protein responses to chronic (in vivo) and acute (in vitro) temperature challenge in diploid and triploid salmonids. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:95-104. [DOI: 10.1016/j.cbpa.2017.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 02/08/2023]
|
18
|
Le B, Powers GL, Tam YT, Schumacher N, Malinowski RL, Steinke L, Kwon G, Marker PC. Multi-drug loaded micelles delivering chemotherapy and targeted therapies directed against HSP90 and the PI3K/AKT/mTOR pathway in prostate cancer. PLoS One 2017; 12:e0174658. [PMID: 28350865 PMCID: PMC5370140 DOI: 10.1371/journal.pone.0174658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Advanced prostate cancers that are resistant to all current therapies create a need for new therapeutic strategies. One recent innovative approach to cancer therapy is the simultaneous use of multiple FDA-approved drugs to target multiple pathways. A challenge for this approach is caused by the different solubility requirements of each individual drug, resulting in the need for a drug vehicle that is non-toxic and capable of carrying multiple water-insoluble antitumor drugs. Micelles have recently been shown to be new candidate drug solubilizers for anti cancer therapy. METHODS This study set out to examine the potential use of multi-drug loaded micelles for prostate cancer treatment in preclinical models including cell line and mouse models for prostate cancers with Pten deletions. Specifically antimitotic agent docetaxel, mTOR inhibitor rapamycin, and HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin were incorporated into the micelle system (DR17) and tested for antitumor efficacy. RESULTS In vitro growth inhibition of prostate cancer cells was greater when all three drugs were used in combination compared to each individual drug, and packaging the drugs into micelles enhanced the cytotoxic effects. At the molecular level DR17 targeted simultaneously several molecular signaling axes important in prostate cancer including androgen receptor, mTOR, and PI3K/AKT. In a mouse genetic model of prostate cancer, DR17 treatment decreased prostate weight, which was achieved by both increasing caspase-dependent cell death and decreasing cell proliferation. Similar effects were also observed when DR17 was administered to nude mice bearing prostate cancer cells xenografts. CONCLUSION These results suggest that combining these three cancer drugs in multi-drug loaded micelles may be a promising strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Bao Le
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ginny L. Powers
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yu Tong Tam
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Schumacher
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rita L. Malinowski
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laura Steinke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Glen Kwon
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul C. Marker
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
19
|
Abstract
The ability of Hsp90 to activate a disparate clientele implicates this chaperone in diverse biological processes. To accommodate such varied roles, Hsp90 requires a variety of regulatory mechanisms that are coordinated in order to modulate its activity appropriately. Amongst these, the master-regulator heat shock factor 1 (HSF1) is critically important in upregulating Hsp90 during stress, but is also responsible, through interaction with specific transcription factors (such as STAT1 and Strap/p300) for the integration of a variety of biological signals that ultimately modulate Hsp90 expression. Additionally, transcription factors, such as STAT1, STAT3 (including STAT1-STAT3 oligomers), NF-IL6, and NF-kB, are known to influence Hsp90 expression directly. Co-chaperones offer another mechanism for Hsp90 regulation, and these can modulate the chaperone cycle appropriately for specific clientele. Co-chaperones include those that deliver specific clients to Hsp90, and others that regulate the chaperone cycle for specific Hsp90-client complexes by modulating Hsp90s ATPase activity. Finally, post-translational modification (PTM) of Hsp90 and its co-chaperones helps too further regulate the variety of different Hsp90 complexes found in cells.
Collapse
|
20
|
Su KH, Dai C. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders. Cell Mol Life Sci 2016; 73:4231-4248. [PMID: 27289378 PMCID: PMC5599143 DOI: 10.1007/s00018-016-2291-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kuo-Hui Su
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Chengkai Dai
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
21
|
Rein T. FK506 binding protein 51 integrates pathways of adaptation: FKBP51 shapes the reactivity to environmental change. Bioessays 2016; 38:894-902. [PMID: 27374865 DOI: 10.1002/bies.201600050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review portraits FK506 binding protein (FKBP) 51 as "reactivity protein" and collates recent publications to develop the concept of FKBP51 as contributor to different levels of adaptation. Adaptation is a fundamental process that enables unicellular and multicellular organisms to adjust their molecular circuits and structural conditions in reaction to environmental changes threatening their homeostasis. FKBP51 is known as chaperone and co-chaperone of heat shock protein (HSP) 90, thus involved in processes ensuring correct protein folding in response to proteotoxic stress. In mammals, FKBP51 both shapes the stress response and is calibrated by the stress levels through an ultrashort molecular feedback loop. More recently, it has been linked to several intracellular pathways related to the reactivity to drug exposure and stress. Through its role in autophagy and DNA methylation in particular it influences adaptive pathways, possibly also in a transgenerational fashion. Also see the video abstract here.
Collapse
Affiliation(s)
- Theo Rein
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
22
|
Huntingtin interacting protein HYPK is a negative regulator of heat shock response and is downregulated in models of Huntington's Disease. Exp Cell Res 2016; 343:107-117. [DOI: 10.1016/j.yexcr.2016.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/20/2022]
|
23
|
Piedrahita D, Castro-Alvarez JF, Boudreau RL, Villegas-Lanau A, Kosik KS, Gallego-Gomez JC, Cardona-Gómez GP. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci 2016; 9:498. [PMID: 26778963 PMCID: PMC4705306 DOI: 10.3389/fncel.2015.00498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023] Open
Abstract
β-site APP cleaving enzyme 1 (BACE1) initiates APP cleavage, which has been reported to be an inducer of tau pathology by altering proteasome functions in Alzheimer’s disease (AD). However, the exact relationship between BACE1 and PHF (Paired Helical Filaments) formation is not clear. In this study, we confirm that BACE1 and Hsc70 are upregulated in the brains of AD patients, and we demonstrate that both proteins show enhanced expression in lipid rafts from AD-affected triple transgenic mouse brains. BACE1 targeting increased Hsc70 levels in the membrane and cytoplasm fractions and downregulated Hsp90 and CHIP in the nucleus in the hippocampi of 3xTg-AD mice. However, these observations occurred in a proteasome-independent manner in vitro. The BACE1miR-induced reduction of soluble hyperphosphorylated tau was associated with a decrease in MAPK activity. However, the BACE1 RNAi-mediated reduction of hyperphosphorylated tau was only blocked by 3-MA (3-methyladenine) in vitro, and it resulted in the increase of Hsc70 and LAMP2 in lipid rafts from hippocampi of 3xTg-AD mice, and upregulation of survival and homeostasis signaling. In summary, our findings suggest that BACE1 silencing neuroprotects reducing soluble hyperphosphorylated tau, modulating certain autophagy-related proteins in aged 3xTg-AD mice.
Collapse
Affiliation(s)
- Diego Piedrahita
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| | - John Fredy Castro-Alvarez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| | | | - Andres Villegas-Lanau
- Neurobank, Neuroscience Group of Antioquia, Faculty of Medicine, SIU, University of Antioquia Medellín, Colombia
| | - Kenneth S Kosik
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara Santa Barbara, CA, USA
| | - Juan Carlos Gallego-Gomez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| |
Collapse
|
24
|
Wang Y, McAlpine SR. C-terminal heat shock protein 90 modulators produce desirable oncogenic properties. Org Biomol Chem 2015; 13:4627-31. [PMID: 25711919 DOI: 10.1039/c5ob00044k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cellular protection mechanism, the heat shock response, is only activated by classical heat shock 90 inhibitors (Hsp90) that "target" the N-terminus of the protein, but not by those that modulate the C-terminus. Significant differences in cytotoxicity (nanomolar) for classical inhibitors versus their ability to modulate Hsp90 (low micromolar) are discussed. In contrast, molecules that modulate Hsp90's C-terminus show similar IC50 values for cytotoxicity and Hsp90 inhibition. A comparison between the two types of Hsp90 inhibitors suggests that classical inhibitors may be modulating an alternative biological target that stresses the cell rather directly inhibiting Hsp90, whereas C-terminal modulators are most likely acting by directly inhibiting Hsp90.
Collapse
Affiliation(s)
- Y Wang
- Department of Chemistry, The University of New South Wales, Gate 2 High street, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
25
|
Horikawa M, Sural S, Hsu AL, Antebi A. Co-chaperone p23 regulates C. elegans Lifespan in Response to Temperature. PLoS Genet 2015; 11:e1005023. [PMID: 25830239 PMCID: PMC4382338 DOI: 10.1371/journal.pgen.1005023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/25/2015] [Indexed: 11/19/2022] Open
Abstract
Temperature potently modulates various physiologic processes including organismal motility, growth rate, reproduction, and ageing. In ectotherms, longevity varies inversely with temperature, with animals living shorter at higher temperatures. Thermal effects on lifespan and other processes are ascribed to passive changes in metabolic rate, but recent evidence also suggests a regulated process. Here, we demonstrate that in response to temperature, daf-41/ZC395.10, the C. elegans homolog of p23 co-chaperone/prostaglandin E synthase-3, governs entry into the long-lived dauer diapause and regulates adult lifespan. daf-41 deletion triggers constitutive entry into the dauer diapause at elevated temperature dependent on neurosensory machinery (daf-10/IFT122), insulin/IGF-1 signaling (daf-16/FOXO), and steroidal signaling (daf-12/FXR). Surprisingly, daf-41 mutation alters the longevity response to temperature, living longer than wild-type at 25°C but shorter than wild-type at 15°C. Longevity phenotypes at 25°C work through daf-16/FOXO and heat shock factor hsf-1, while short lived phenotypes converge on daf-16/FOXO and depend on the daf-12/FXR steroid receptor. Correlatively daf-41 affected expression of DAF-16 and HSF-1 target genes at high temperature, and nuclear extracts from daf-41 animals showed increased occupancy of the heat shock response element. Our studies suggest that daf-41/p23 modulates key transcriptional changes in longevity pathways in response to temperature.
Collapse
Affiliation(s)
- Makoto Horikawa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Surojit Sural
- University of Michigan, Department of Internal Medicine, Division of Geriatric and Palliative Medicine, Ann Arbor, Michigan, United States of America
- University of Michigan, Department of Molecular and Integrative Physiology, Ann Arbor, Michigan, United States of America
| | - Ao-Lin Hsu
- University of Michigan, Department of Internal Medicine, Division of Geriatric and Palliative Medicine, Ann Arbor, Michigan, United States of America
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Molecular and Cellular Biology, Huffington Center on Ageing, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Evaluating Dual Hsp90 and Hsp70 Inhibition as a Cancer Therapy. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Abstract
The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided.
Collapse
Affiliation(s)
- Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine and the Baltimore V.A. Medical Center, Baltimore, Maryland
| | | | | |
Collapse
|
28
|
Roth DM, Hutt DM, Tong J, Bouchecareilh M, Wang N, Seeley T, Dekkers JF, Beekman JM, Garza D, Drew L, Masliah E, Morimoto RI, Balch WE. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol 2014; 12:e1001998. [PMID: 25406061 PMCID: PMC4236052 DOI: 10.1371/journal.pbio.1001998] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
Diseases of protein folding arise because of the inability of an altered peptide sequence to properly engage protein homeostasis components that direct protein folding and function. To identify global principles of misfolding disease pathology we examined the impact of the local folding environment in alpha-1-antitrypsin deficiency (AATD), Niemann-Pick type C1 disease (NPC1), Alzheimer's disease (AD), and cystic fibrosis (CF). Using distinct models, including patient-derived cell lines and primary epithelium, mouse brain tissue, and Caenorhabditis elegans, we found that chronic expression of misfolded proteins not only triggers the sustained activation of the heat shock response (HSR) pathway, but that this sustained activation is maladaptive. In diseased cells, maladaptation alters protein structure-function relationships, impacts protein folding in the cytosol, and further exacerbates the disease state. We show that down-regulation of this maladaptive stress response (MSR), through silencing of HSF1, the master regulator of the HSR, restores cellular protein folding and improves the disease phenotype. We propose that restoration of a more physiological proteostatic environment will strongly impact the management and progression of loss-of-function and gain-of-toxic-function phenotypes common in human disease.
Collapse
Affiliation(s)
- Daniela Martino Roth
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Darren M. Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jiansong Tong
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marion Bouchecareilh
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ning Wang
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - Theo Seeley
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Johanna F. Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Dan Garza
- Proteostasis Therapeutics Inc., Cambridge, Massachusetts, United States of America
| | - Lawrence Drew
- Proteostasis Therapeutics Inc., Cambridge, Massachusetts, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - William E. Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- The Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
Protein quality control is regulated by the proteostasis network and cell stress response pathways to promote cellular health. In this review, van Oosten-Hawle and Morimoto cover recent advances in model systems that reveal how communication between subcellular compartments and across different cells and tissues maintains a functional proteome during stress. The authors propose that transcellular stress signaling provides a critical control mechanism for the proteostasis network to maintain organismal health and life span. Protein quality control is essential in all organisms and regulated by the proteostasis network (PN) and cell stress response pathways that maintain a functional proteome to promote cellular health. In this review, we describe how metazoans employ multiple modes of cell-nonautonomous signaling across tissues to integrate and transmit the heat-shock response (HSR) for balanced expression of molecular chaperones. The HSR and other cell stress responses such as the unfolded protein response (UPR) can function autonomously in single-cell eukaryotes and tissue culture cells; however, within the context of a multicellular animal, the PN is regulated by cell-nonautonomous signaling through specific sensory neurons and by the process of transcellular chaperone signaling. These newly identified forms of stress signaling control the PN between neurons and nonneuronal somatic tissues to achieve balanced tissue expression of chaperones in response to environmental stress and to ensure that metastable aggregation-prone proteins expressed within any single tissue do not generate local proteotoxic risk. Transcellular chaperone signaling leads to the compensatory expression of chaperones in other somatic tissues of the animal, perhaps preventing the spread of proteotoxic damage. Thus, communication between subcellular compartments and across different cells and tissues maintains proteostasis when challenged by acute stress and upon chronic expression of metastable proteins. We propose that transcellular chaperone signaling provides a critical control step for the PN to maintain cellular and organismal health span.
Collapse
|
30
|
A Novel Mechanism for Cross-Adaptation between Heat and Altitude Acclimation: The Role of Heat Shock Protein 90. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/121402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heat shock protein 90 (HSP90) is a member of a family of molecular chaperone proteins which can be upregulated by various stressors including heat stress leading to increases in HSP90 protein expression. Its primary functions include (1) renaturing and denaturing of damaged proteins caused by heat stress and (2) interacting with client proteins to induce cell signaling for gene expression. The latter function is of interest because, in cancer cells, HSP90 has been reported to interact with the transcription hypoxic-inducible factor 1α (HIF1α). In a normoxic environment, HIF1α is degraded and therefore has limited physiological function. In contrast, in a hypoxic environment, stabilized HIF1α acts to promote erythropoiesis and angiogenesis. Since HSP90 interacts with HIF1α, and HSP90 can be upregulated from heat acclimation in humans, we present a proposal that heat acclimation can mimic molecular adaptations to those of altitude exposure. Specifically, we propose that heat acclimation increases HSP90 which then stabilizes HIF1α in a normoxic environment. This has many implications since HIF1α regulates red blood cell and vasculature formation. In this paper we will discuss (1) the functional roles of HSP90 and HIF1α, (2) the interaction between HSP90 and other client proteins including HIF1α, and (3) results from in vitro studies that may suggest how the relationship between HSP90 and HIF1α might be applied to individuals preparing to make altitude sojourns.
Collapse
|
31
|
The regulatory mechanism of a client kinase controlling its own release from Hsp90 chaperone machinery through phosphorylation. Biochem J 2014; 457:171-83. [PMID: 24117238 PMCID: PMC3927929 DOI: 10.1042/bj20130963] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is believed that the stability and activity of client proteins are passively regulated by the Hsp90 (heat-shock protein 90) chaperone machinery, which is known to be modulated by its intrinsic ATPase activity, co-chaperones and post-translational modifications. However, it is unclear whether client proteins themselves participate in regulation of the chaperoning process. The present study is the first example to show that a client kinase directly regulates Hsp90 activity, which is a novel level of regulation for the Hsp90 chaperone machinery. First, we prove that PKCγ (protein kinase Cγ) is a client protein of Hsp90α, and, that by interacting with PKCγ, Hsp90α prevents PKCγ degradation and facilitates its cytosol-to-membrane translocation and activation. A threonine residue set, Thr115/Thr425/Thr603, of Hsp90α is specifically phosphorylated by PKCγ, and, more interestingly, this threonine residue set serves as a ‘phosphorylation switch’ for Hsp90α binding or release of PKCγ. Moreover, phosphorylation of Hsp90α by PKCγ decreases the binding affinity of Hsp90α towards ATP and co-chaperones such as Cdc37 (cell-division cycle 37), thereby decreasing its chaperone activity. Further investigation demonstrated that the reciprocal regulation of Hsp90α and PKCγ plays a critical role in cancer cells, and that simultaneous inhibition of PKCγ and Hsp90α synergistically prevents cell migration and promotes apoptosis in cancer cells. The present study is the first example to show that a client directly regulates Hsp90 activity, which is a novel level of regulation for the Hsp90 chaperone machinery.
Collapse
|
32
|
Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl F. Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell 2014; 156:975-85. [DOI: 10.1016/j.cell.2014.01.055] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
|
33
|
Ho SW, Tsui YTC, Wong TT, Cheung SKK, Goggins WB, Yi LM, Cheng KK, Baum L. Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in transgenic mouse models of frontotemporal lobar degeneration and Alzheimer's disease. Transl Neurodegener 2013; 2:24. [PMID: 24344631 PMCID: PMC3878847 DOI: 10.1186/2047-9158-2-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), the most common dementia, is characterized by potentially neurotoxic aggregation of Aβ peptide and tau protein, and their deposition as amyloid plaques and neurofibrillary tangles (NFTs). Tau aggregation also occurs in other common neurodegenerative diseases. Frontotemporal dementia (FTD) can be caused by tau mutations that increase the susceptibility of tau to hyperphosphorylation and aggregation, which may cause neuronal dysfunction and deposition of NFTs. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is a potent inhibitor of heat shock protein 90 (Hsp90), a cytosolic chaperone implicated in the proper folding and functions of a repertoire of client proteins. 17-AAG binds to Hsp90 and enhances degradation of Hsp90 client protein. We sought to determine whether 17-AAG can reduce Aβ and tau pathology in the brains of AD and FTD model mice expressing Aβ or P301L mutant tau, respectively. Mice were randomized to receive 25, 5, or 0 mg/kg 17-AAG thrice weekly from age eight to 11 months. Analysis was performed by rotarod test on motor function, on the area occupied by plaques in hippocampus or NFTs in medulla tissue sections, and on mortality. A high dose of 17-AAG tended to decrease NFTs in male mice (p = 0.08). Further studies are required to confirm the effect of 17-AAG in diseases of tau aggregation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Larry Baum
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
34
|
Capacity for protein synthesis following heat stimulus of Drosophila associates with heat tolerance but does not underlie the latitudinal tolerance cline. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2013.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
van Oosten-Hawle P, Porter RS, Morimoto RI. Regulation of organismal proteostasis by transcellular chaperone signaling. Cell 2013; 153:1366-78. [PMID: 23746847 DOI: 10.1016/j.cell.2013.05.015] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/16/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
A major challenge for metazoans is to ensure that different tissues, each expressing distinctive proteomes, are nevertheless well protected at an organismal level from proteotoxic stress. We show that expression of endogenous metastable proteins in muscle cells, which rely on chaperones for proper folding, induces a systemic stress response throughout multiple tissues of C. elegans. Suppression of misfolding in muscle cells can be achieved not only by enhanced expression of HSP90 in muscle cells but as effectively by elevated expression of HSP90 in intestine or neuronal cells. This cell-nonautonomous control of HSP90 expression relies upon transcriptional feedback between somatic tissues that is regulated by the FoxA transcription factor PHA-4. This transcellular chaperone signaling response maintains organismal proteostasis when challenged by a local tissue imbalance in folding and provides the basis for organismal stress-sensing surveillance.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- Department Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
36
|
Klenke C, Widera D, Engelen T, Müller J, Noll T, Niehaus K, Schmitz ML, Kaltschmidt B, Kaltschmidt C. Hsc70 is a novel interactor of NF-kappaB p65 in living hippocampal neurons. PLoS One 2013; 8:e65280. [PMID: 23762333 PMCID: PMC3676459 DOI: 10.1371/journal.pone.0065280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/23/2013] [Indexed: 12/29/2022] Open
Abstract
Signaling via NF-κB in neurons depends on complex formation with interactors such as dynein/dynactin motor complex and can be triggered by synaptic activation. However, so far a detailed interaction map for the neuronal NF-κB is missing. In this study we used mass spectrometry to identify novel interactors of NF-κB p65 within the brain. Hsc70 was identified as a novel neuronal interactor of NF-κB p65. In HEK293 cells, a direct physical interaction was shown by co-immunoprecipitation and verified via in situ proximity ligation in healthy rat neurons. Pharmacological blockade of Hsc70 by deoxyspergualin (DSG) strongly decreased nuclear translocation of NF-κB p65 and transcriptional activity shown by reporter gene assays in neurons after stimulation with glutamate. In addition, knock down of Hsc70 via siRNA significantly reduced neuronal NF-κB activity. Taken together these data provide evidence for Hsc70 as a novel neuronal interactor of NF-κB p65.
Collapse
Affiliation(s)
| | - Darius Widera
- Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Thomas Engelen
- Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Janine Müller
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Thomas Noll
- Cell Culture Technology, University of Bielefeld, Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, University of Bielefeld, Bielefeld, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Barbara Kaltschmidt
- Cell Biology, University of Bielefeld, Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
37
|
Reikvam H, Nepstad I, Sulen A, Gjertsen BT, Hatfield KJ, Bruserud Ø. Increased antileukemic effects in human acute myeloid leukemia by combining HSP70 and HSP90 inhibitors. Expert Opin Investig Drugs 2013; 22:551-63. [DOI: 10.1517/13543784.2013.791280] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Håkon Reikvam
- University of Bergen, Department of Clinical Science, Division for Hematology, Bergen, Norway
- Haukeland University Hospital, Division for Hematology, Department of Medicine, Bergen, N-5021, Norway ;
- Haukeland University Hospital, Department of Immunology and Transfusion Medicine, Bergen, Norway
| | - Ina Nepstad
- University of Bergen, Department of Clinical Science, Division for Hematology, Bergen, Norway
| | - André Sulen
- University of Bergen, Department of Clinical Science, Division for Hematology, Bergen, Norway
| | - Bjørn Tore Gjertsen
- University of Bergen, Department of Clinical Science, Division for Hematology, Bergen, Norway
- Haukeland University Hospital, Division for Hematology, Department of Medicine, Bergen, N-5021, Norway ;
| | | | - Øystein Bruserud
- University of Bergen, Department of Clinical Science, Division for Hematology, Bergen, Norway
- Haukeland University Hospital, Division for Hematology, Department of Medicine, Bergen, N-5021, Norway ;
| |
Collapse
|
38
|
Liu Y, Zhang C, Chen J, Guo L, Li X, Li W, Yu Z, Deng J, Zhang P, Zhang K, Zhang L. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 64:92-8. [PMID: 23399534 DOI: 10.1016/j.plaphy.2012.12.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/19/2012] [Indexed: 05/21/2023]
Abstract
Arabidopsis heat shock factor HsfA1a is present in a latent, monomeric state under normal conditions; its activation involves heat stress-induced trimerization, binding to heat shock element in target promoters, and the acquisition of transcriptional competence. HsfA1a is an important regulator for heat stress-induced gene expression and thermotolerance. However, it is not clear whether HsfA1a is directly activated by stress and the mechanisms of the stress signaling are poorly understood. We analyzed HsfA1a activation by trimerization and DNA-binding assays in vitro and in vivo in response to heat stress, low/high pH, and hydrogen peroxide treatments. Our results show that purified recombinant HsfA1a was activated by these stress treatments in vitro. The same treatments also induced the binding to HSP18.2 and HSP70 promoters as examined by chromatin immunoprecipitation, and the HsfA1a DNA binding paralleled the mRNA expression of its target genes induced by different stresses. Stress-induced DNA-binding could be reversed, both in vitro and in vivo, by subsequent incubation with reducing agents (DTT, NADPH). These data suggest that HsfA1a can directly sense stress and become activated, and this process is dependent on the redox state. An N-terminal deletion of the amino acid residues from 48 to 74 negatively affected pH- and hydrogen peroxide-, but not heat-stress sensing.
Collapse
Affiliation(s)
- Yanfang Liu
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Choudhury KR, Raychaudhuri S, Bhattacharyya NP. Identification of HYPK-interacting proteins reveals involvement of HYPK in regulating cell growth, cell cycle, unfolded protein response and cell death. PLoS One 2012; 7:e51415. [PMID: 23272104 PMCID: PMC3525516 DOI: 10.1371/journal.pone.0051415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022] Open
Abstract
Huntingtin Yeast Two-Hybrid Protein K (HYPK) is an intrinsically unstructured huntingtin (HTT)-interacting protein with chaperone-like activity. To obtain more information about the function(s) of the protein, we identified 27 novel interacting partners of HYPK by pull-down assay coupled with mass spectrometry and, further, 9 proteins were identified by co-localization and co-immunoprecipitation (co-IP) assays. In neuronal cells, (EEF1A1 and HSPA1A), (HTT and LMNB2) and (TP53 and RELA) were identified in complex with HYPK in different experiments. Various Gene Ontology (GO) terms for biological processes, like protein folding (GO: 0006457), response to unfolded protein (GO: 0006986), cell cycle arrest (GO: 0007050), anti-apoptosis (GO: 0006916) and regulation of transcription (GO: 0006355) were significantly enriched with the HYPK-interacting proteins. Cell growth and the ability to refold heat-denatured reporter luciferase were decreased, but cytotoxicity was increased in neuronal cells where HYPK was knocked-down using HYPK antisense DNA construct. The proportion of cells in different phases of cell cycle was also altered in cells with reduced levels of HYPK. These results show that HYPK is involved in several biological processes, possibly through interaction with its partners.
Collapse
Affiliation(s)
- Kamalika Roy Choudhury
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Swasti Raychaudhuri
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Nitai P. Bhattacharyya
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
40
|
O'Neill S, Ross JA, Wigmore SJ, Harrison EM. The role of heat shock protein 90 in modulating ischemia-reperfusion injury in the kidney. Expert Opin Investig Drugs 2012; 21:1535-48. [PMID: 22876854 DOI: 10.1517/13543784.2012.713939] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Kidney transplantation is the gold standard treatment for end-stage renal disease. Ischemia-reperfusion injury (IRI) is an unavoidable consequence of the transplantation procedure and is responsible for delayed graft function and poorer long-term outcomes. AREAS COVERED Pharmacological induction of heat shock protein (Hsp) expression is an emerging pre-conditioning strategy aimed at reducing IRI following renal transplantation. Hsp90 inhibition up-regulates protective Hsps (especially Hsp70) and potentially down-regulates NF-κB by disruption of the IκB kinase (IKK) complex. However, the clinical application of Hsp90 inhibitors is currently limited by their toxicity profile and the exact mechanism of protection conferred is unknown. Toll-like receptor 4 (TLR4) is a further regulator of NF-κB and recent studies suggest TLR4 plays a dominant role in mediating kidney damage following IRI. The full interaction of Hsps with TLRs is yet to be delineated and whether TLR4 signalling can be targeted by Hsp90 inhibition in IRI remains uncertain. EXPERT OPINION Pharmacological pre-conditioning by Hsp90 inhibition involves direct treatment to the kidney donor and/or organ, which aims to reduce injury prior to the onset of ischemia. The major challenges going forward are to establish the exact mechanism of protection offered by these drugs and the investgiation of less toxic analogues that could be safely translated into human studies.
Collapse
Affiliation(s)
- Stephen O'Neill
- MRC Centre for Inflammation Research, Tissue Injury and Repair Group, University of Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | | | | | | |
Collapse
|
41
|
Secreted Stress-Induced Phosphoprotein 1 Activates the ALK2-SMAD Signaling Pathways and Promotes Cell Proliferation of Ovarian Cancer Cells. Cell Rep 2012; 2:283-93. [DOI: 10.1016/j.celrep.2012.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 06/22/2012] [Accepted: 07/06/2012] [Indexed: 11/22/2022] Open
|
42
|
Li J, Sun X, Wang Z, Chen L, Li D, Zhou J, Liu M. Regulation of vascular endothelial cell polarization and migration by Hsp70/Hsp90-organizing protein. PLoS One 2012; 7:e36389. [PMID: 22558459 PMCID: PMC3340350 DOI: 10.1371/journal.pone.0036389] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/31/2012] [Indexed: 11/18/2022] Open
Abstract
Hsp70/Hsp90-organizing protein (HOP) is a member of the co-chaperone family, which directly binds to chaperones to regulate their activities. The participation of HOP in cell motility and endothelial cell functions remains largely unknown. In this study, we demonstrate that HOP is critically involved in endothelial cell migration and angiogenesis. Tube formation and capillary sprouting experiments reveal that depletion of HOP expression significantly inhibits vessel formation from endothelial cells. Wound healing and transwell migration assays show that HOP is important for endothelial cell migration. By examination of centrosome reorientation and membrane ruffle dynamics, we find that HOP plays a crucial role in the establishment of cell polarity in response to migratory stimulus. Furthermore, our data show that HOP interacts with tubulin and colocalizes with microtubules in endothelial cells. These findings indicate HOP as a novel regulator of angiogenesis that functions through promoting vascular endothelial cell polarization and migration.
Collapse
Affiliation(s)
- Jingyu Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 2011; 10:930-44. [PMID: 22129991 DOI: 10.1038/nrd3453] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion-based neurodegeneration are associated with the accumulation of misfolded proteins, resulting in neuronal dysfunction and cell death. However, current treatments for these diseases predominantly address disease symptoms, rather than the underlying protein misfolding and cell death, and are not able to halt or reverse the degenerative process. Studies in cell culture, fruitfly, worm and mouse models of protein misfolding-based neurodegenerative diseases indicate that enhancing the protein-folding capacity of cells, via elevated expression of chaperone proteins, has therapeutic potential. Here, we review advances in strategies to harness the power of the natural cellular protein-folding machinery through pharmacological activation of heat shock transcription factor 1--the master activator of chaperone protein gene expression--to treat neurodegenerative diseases.
Collapse
|
44
|
Yohannes E, Ghosh SK, Jiang B, McCormick TS, Weinberg A, Hill E, Faddoul F, Chance MR. Proteomic signatures of human oral epithelial cells in HIV-infected subjects. PLoS One 2011; 6:e27816. [PMID: 22114700 PMCID: PMC3218055 DOI: 10.1371/journal.pone.0027816] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/26/2011] [Indexed: 01/26/2023] Open
Abstract
The oral epithelium, the most abundant structural tissue lining the oral mucosa, is an important line of defense against infectious microorganisms. HIV infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid viral, bacterial and fungal infections in the oral cavity. To provide an assessment of the molecular alterations of oral epithelia potentially associated with susceptibility to comorbid infections in such subjects, we performed various proteomic studies on over twenty HIV infected and healthy subjects. In a discovery phase two Dimensional Difference Gel Electrophoresis (2-D DIGE) analyses of human oral gingival epithelial cell (HOEC) lysates were carried out; this identified 61 differentially expressed proteins between HIV-infected on HAART subjects and healthy controls. Down regulated proteins in HIV-infected subjects include proteins associated with maintenance of protein folding and pro- and anti-inflammatory responses (e.g., heat-shock proteins, Cryab, Calr, IL-1RA, and Galectin-3-binding protein) as well as proteins involved in redox homeostasis and detoxification (e.g., Gstp1, Prdx1, and Ero1). Up regulated proteins include: protein disulfide isomerases, proteins whose expression is negatively regulated by Hsp90 (e.g., Ndrg1), and proteins that maintain cellular integrity (e.g., Vimentin). In a verification phase, proteins identified in the protein profiling experiments and those inferred from Ingenuity Pathway Analysis were analyzed using Western blotting analysis on separate HOEC lysate samples, confirming many of the discovery findings. Additionally in HIV-infected patient samples Heat Shock Factor 1 is down regulated, which explains the reduced heat shock responses, while activation of the MAPK signal transduction cascade is observed. Overall, HAART therapy provides an incomplete immune recovery of the oral epithelial cells of the oral cavity for HIV-infected subjects, and the toxic side effects of HAART and/or HIV chronicity silence expression of multiple proteins that in healthy subjects function to provide robust innate immune responses and combat cellular stress.
Collapse
Affiliation(s)
- Elizabeth Yohannes
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Santosh K. Ghosh
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bin Jiang
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas S. McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aaron Weinberg
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Edward Hill
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Faddy Faddoul
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University Cleveland, Ohio, United States of America
| |
Collapse
|
45
|
Nakamura M, Morita M, Kurihara H, Mitarai S. Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol Open 2011; 1:75-81. [PMID: 23213399 PMCID: PMC3507200 DOI: 10.1242/bio.2011036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ocean acidification is an ongoing threat for marine organisms due to the increasing atmospheric CO2 concentration. Seawater acidification has a serious impact on physiologic processes in marine organisms at all life stages. On the other hand, potential tolerance to external pH changes has been reported in coral larvae. Information about the possible mechanisms underlying such tolerance responses, however, is scarce. In the present study, we examined the effects of acidified seawater on the larvae of Acropora digitifera at the molecular level. We targeted two heat shock proteins, Hsp70 and Hsp90, and a heat shock transcription factor, Hsf1, because of their importance in stress responses and in early life developmental stages. Coral larvae were maintained under the ambient and elevated CO2 conditions that are expected to occur within next 100 years, and then we evaluated the expression of hsps and hsf1 by quantitative real-time polymerase chain reaction (PCR). Expression levels of these molecules significantly differed among target genes, but they did not change significantly between CO2 conditions. These findings indicate that the expression of hsps is not changed due to external pH changes, and suggest that tolerance to acidified seawater in coral larvae may not be related to hsp expression.
Collapse
Affiliation(s)
- Masako Nakamura
- Marine Biophysics Unit, Okinawa Institute of Science and Technology , Okinawa 904-0412 , Japan
| | | | | | | |
Collapse
|
46
|
Zorzi E, Bonvini P. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel) 2011; 3:3921-56. [PMID: 24213118 PMCID: PMC3763403 DOI: 10.3390/cancers3043921] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more "addicted" to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.
Collapse
Affiliation(s)
- Elisa Zorzi
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
| | - Paolo Bonvini
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
- Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza, Italy
| |
Collapse
|
47
|
Anckar J, Sistonen L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 2011; 80:1089-115. [PMID: 21417720 DOI: 10.1146/annurev-biochem-060809-095203] [Citation(s) in RCA: 558] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation. Transcriptional activation of the heat shock response is orchestrated by heat shock factor 1 (HSF1), which rapidly translocates to hsp genes and induces their expression. Although the role of HSF1 in protecting cells and organisms against severe stress insults is well established, many aspects of how HSF1 senses qualitatively and quantitatively different forms of stresses have remained poorly understood. Moreover, recent discoveries that HSF1 controls life span have prompted new ways of thinking about an old transcription factor. Here, we review the established role of HSF1 in counteracting cell stress and prospect the role of HSF1 as a regulator of disease states and aging.
Collapse
Affiliation(s)
- Julius Anckar
- Department of Biosciences, Åbo Akademi University, BioCity, 20520 Turku, Finland.
| | | |
Collapse
|
48
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
49
|
Abstract
BACKGROUND The 90-kDa heat-shock proteins (Hsp90) have rapidly evolved into promising therapeutic targets for the treatment of several diseases, including cancer and neurodegenerative diseases. Hsp90 is a molecular chaperone that aids in the conformational maturation of nascent polypeptides, as well as the rematuration of denatured proteins. DISCUSSION Many of the Hsp90-dependent client proteins are associated with cellular growth and survival and, consequently, inhibition of Hsp90 represents a promising approach for the treatment of cancer. Conversely, stimulation of heat-shock protein levels has potential therapeutic applications for the treatment of neurodegenerative diseases that result from misfolded and aggregated proteins. CONCLUSION Hsp90 modulation exhibits the potential to treat unrelated disease states, from cancer to neurodegenerative diseases, and, thus, to fold or not to fold, becomes a question of great value.
Collapse
|
50
|
Differential activation of Toll-like receptor-mediated apoptosis induced by hypoxia. Oncotarget 2011; 1:741-50. [PMID: 21321383 DOI: 10.18632/oncotarget.101203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ischemia-reperfusion injury induces intense inflammatory response and tissue damages resulting from the capacity of endogenous constituents called damageassociated molecular patterns (DAMPs) released by damaged or necrotic cells, to activate signaling pathways mediated by receptors of the innate immune systems. Among them, two members of the Toll-like receptors (TLR) family, TLR2 and TLR4 have been shown to play key roles in the induction of inflammatory response and cell apoptosis in a variety of ischemic tissues. The oxidative stress injury caused by I/R injury has been attributed to the activation of MAP kinase pathways, including those of ERK, JNK and p38. Here, we summarise recent findings concerning the role of the protein phosphatase 5 involved in the selective regulation of TLR2-mediated ERK1/2 signaling and the identification of the key role of the non-phagocytic NADPH oxidase 4 producing reactive oxygen species in the control of TLR4-mediated apoptosis in murine models of renal I/R injury and in post-hypoxic kidney tubule cells. The identification of molecules signaling involved in the ER stress-induced apoptotic signaling cascade may therefore represent potential targets to prevent the induction of apoptosis in hypoxic tissues.
Collapse
|