1
|
Seifert-Dávila W, Chaban A, Baudin F, Girbig M, Hauptmann L, Hoffmann T, Duss O, Eustermann S, Müller C. Structural and kinetic insights into tRNA promoter engagement by yeast general transcription factor TFIIIC. Nucleic Acids Res 2025; 53:gkae1174. [PMID: 39657784 PMCID: PMC11724288 DOI: 10.1093/nar/gkae1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Transcription of transfer RNA (tRNA) genes by RNA polymerase (Pol) III requires the general transcription factor IIIC (TFIIIC), which recognizes intragenic A-box and B-box DNA motifs of type II gene promoters. However, the underlying mechanism has remained elusive, in part due to missing structural information for A-box recognition. In this study, we use single-particle cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) to reveal structural and real-time kinetic insights into how the 520-kDa yeast TFIIIC complex engages A-box and B-box DNA motifs in the context of a tRNA gene promoter. Cryo-EM structures of τA and τB subcomplexes bound to the A-box and B-box were obtained at 3.7 and 2.5 Å resolution, respectively, while cryo-EM single-particle mapping determined the specific distance and relative orientation of the τA and τB subcomplexes revealing a fully engaged state of TFIIIC. smFRET experiments show that overall recruitment and residence times of TFIIIC on a tRNA gene are primarily governed by B-box recognition, while footprinting experiments suggest a key role of τA and the A-box in TFIIIB and Pol III recruitment following TFIIIC recognition of type II promoters.
Collapse
Affiliation(s)
- Wolfram Seifert-Dávila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anastasiia Chaban
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Mathias Girbig
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Yamada N, Rossi MJ, Farrell N, Pugh BF, Mahony S. Alignment and quantification of ChIP-exo crosslinking patterns reveal the spatial organization of protein-DNA complexes. Nucleic Acids Res 2020; 48:11215-11226. [PMID: 32747934 PMCID: PMC7672471 DOI: 10.1093/nar/gkaa618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.
Collapse
Affiliation(s)
- Naomi Yamada
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nina Farrell
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Ciesla M, Skowronek E, Boguta M. Function of TFIIIC, RNA polymerase III initiation factor, in activation and repression of tRNA gene transcription. Nucleic Acids Res 2019; 46:9444-9455. [PMID: 30053100 PMCID: PMC6182151 DOI: 10.1093/nar/gky656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023] Open
Abstract
Transcription of transfer RNA genes by RNA polymerase III (Pol III) is controlled by general factors, TFIIIB and TFIIIC, and a negative regulator, Maf1. Here we report the interplay between TFIIIC and Maf1 in controlling Pol III activity upon the physiological switch of yeast from fermentation to respiration. TFIIIC directly competes with Pol III for chromatin occupancy as demonstrated by inversely correlated tDNA binding. The association of TFIIIC with tDNA was stronger under unfavorable respiratory conditions and in the presence of Maf1. Induction of tDNA transcription by glucose-activated protein kinase A (PKA) was correlated with the down-regulation of TFIIIC occupancy on tDNA. The conditions that activate the PKA signaling pathway promoted the binding of TFIIIB subunits, Brf1 and Bdp1, with tDNA, but decreased their interaction with TFIIIC. Association of Brf1 and Bdp1 with TFIIIC was much stronger under repressive conditions, potentially restricting TFIIIB recruitment to tDNA and preventing Pol III recruitment. Altogether, we propose a model in which, depending on growth conditions, TFIIIC promotes activation or repression of tDNA transcription.
Collapse
Affiliation(s)
- Malgorzata Ciesla
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Ewa Skowronek
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:285-294. [PMID: 29155071 DOI: 10.1016/j.bbagrm.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
MESH Headings
- Animals
- Eukaryotic Cells/metabolism
- Humans
- Models, Genetic
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Subunits
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acid-Specific/biosynthesis
- RNA, Transfer, Amino Acid-Specific/genetics
- Transcription Elongation, Genetic
- Transcription Factors/genetics
- Transcription Initiation, Genetic
Collapse
|
5
|
Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc Trans 2017; 44:1367-1375. [PMID: 27911719 PMCID: PMC5095917 DOI: 10.1042/bst20160062] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
The highly abundant, small stable RNAs that are synthesized by RNA polymerase III (RNAPIII) have key functional roles, particularly in the protein synthesis apparatus. Their expression is metabolically demanding, and is therefore coupled to changing demands for protein synthesis during cell growth and division. Here, we review the regulatory mechanisms that control the levels of RNAPIII transcripts and discuss their potential physiological relevance. Recent analyses have revealed differential regulation of tRNA expression at all steps on its biogenesis, with significant deregulation of mature tRNAs in cancer cells.
Collapse
|
6
|
Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly. Nat Commun 2015; 6:7387. [PMID: 26060179 PMCID: PMC4490372 DOI: 10.1038/ncomms8387] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/04/2015] [Indexed: 02/05/2023] Open
Abstract
In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes are linked and how their interaction affects the formation of the Pol III pre-initiation complex (PIC) is poorly understood. Here we use chemical crosslinking mass spectrometry and determine the molecular architecture of TFIIIC. We further report the crystal structure of the essential TPR array from τA subunit τ131 and characterize its interaction with a central region of τB subunit τ138. The identified τ131–τ138 interacting region is essential in vivo and overlaps with TFIIIB-binding sites, revealing a crucial interaction platform for the regulation of tRNA transcription initiation. TFIIIC is a RNA polymerase III-specific general transcription factor complex essential for tRNA synthesis. Here the authors combine chemical crosslinking/mass spectrometry and X-ray crystallography to define the architecture of TFIIIC and suggest a model for the assembly of pre-initiation complexes at tRNA genes.
Collapse
|
7
|
Gietl A, Holzmeister P, Blombach F, Schulz S, von Voithenberg LV, Lamb DC, Werner F, Tinnefeld P, Grohmann D. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways. Nucleic Acids Res 2014; 42:6219-31. [PMID: 24744242 PMCID: PMC4041446 DOI: 10.1093/nar/gku273] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 02/01/2023] Open
Abstract
During transcription initiation, the promoter DNA is recognized and bent by the basal transcription factor TATA-binding protein (TBP). Subsequent association of transcription factor B (TFB) with the TBP-DNA complex is followed by the recruitment of the ribonucleic acid polymerase resulting in the formation of the pre-initiation complex. TBP and TFB/TF(II)B are highly conserved in structure and function among the eukaryotic-archaeal domain but intriguingly have to operate under vastly different conditions. Employing single-pair fluorescence resonance energy transfer, we monitored DNA bending by eukaryotic and archaeal TBPs in the absence and presence of TFB in real-time. We observed that the lifetime of the TBP-DNA interaction differs significantly between the archaeal and eukaryotic system. We show that the eukaryotic DNA-TBP interaction is characterized by a linear, stepwise bending mechanism with an intermediate state distinguished by a distinct bending angle. TF(II)B specifically stabilizes the fully bent TBP-promoter DNA complex and we identify this step as a regulatory checkpoint. In contrast, the archaeal TBP-DNA interaction is extremely dynamic and TBP from the archaeal organism Sulfolobus acidocaldarius strictly requires TFB for DNA bending. Thus, we demonstrate that transcription initiation follows diverse pathways on the way to the formation of the pre-initiation complex.
Collapse
Affiliation(s)
- Andreas Gietl
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | - Phil Holzmeister
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | - Fabian Blombach
- RNAP Laboratory, University College London, Institute of Structural and Molecular Biology, Division of Biosciences, Gower St., London WC1E 6BT, UK
| | - Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | - Lena Voith von Voithenberg
- Department of Chemistry, Center for Nanoscience (CeNS) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University, Butenandtstraße 11, 81377 Munich, Germany
| | - Don C Lamb
- Department of Chemistry, Center for Nanoscience (CeNS) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University, Butenandtstraße 11, 81377 Munich, Germany
| | - Finn Werner
- RNAP Laboratory, University College London, Institute of Structural and Molecular Biology, Division of Biosciences, Gower St., London WC1E 6BT, UK
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
9
|
Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 2012; 45:439-46. [PMID: 22365827 DOI: 10.1016/j.molcel.2012.01.023] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 01/24/2023]
Abstract
Recent studies of the three eukaryotic transcription machineries revealed that all initiation complexes share a conserved core. This core consists of the RNA polymerase (I, II, or III), the TATA box-binding protein (TBP), and transcription factors TFIIB, TFIIE, and TFIIF (for Pol II) or proteins structurally and functionally related to parts of these factors (for Pol I and Pol III). The conserved core initiation complex stabilizes the open DNA promoter complex and directs initial RNA synthesis. The periphery of the core initiation complex is decorated by additional polymerase-specific factors that account for functional differences in promoter recognition and opening, and gene class-specific regulation. This review outlines the similarities and differences between these important molecular machines.
Collapse
Affiliation(s)
- Alessandro Vannini
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | | |
Collapse
|
10
|
Karkusiewicz I, Turowski TW, Graczyk D, Towpik J, Dhungel N, Hopper AK, Boguta M. Maf1 protein, repressor of RNA polymerase III, indirectly affects tRNA processing. J Biol Chem 2011; 286:39478-88. [PMID: 21940626 DOI: 10.1074/jbc.m111.253310] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner.
Collapse
Affiliation(s)
- Iwona Karkusiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02 106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
11
|
Acker J, Ozanne C, Kachouri-Lafond R, Gaillardin C, Neuvéglise C, Marck C. Dicistronic tRNA-5S rRNA genes in Yarrowia lipolytica: an alternative TFIIIA-independent way for expression of 5S rRNA genes. Nucleic Acids Res 2008; 36:5832-44. [PMID: 18790808 PMCID: PMC2566860 DOI: 10.1093/nar/gkn549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In eukaryotes, genes transcribed by RNA polymerase III (Pol III) carry their own internal promoters and as such, are transcribed as individual units. Indeed, a very few cases of dicistronic Pol III genes are yet known. In contrast to other hemiascomycetes, 5S rRNA genes of Yarrowia lipolytica are not embedded into the tandemly repeated rDNA units, but appear scattered throughout the genome. We report here an unprecedented genomic organization: 48 over the 108 copies of the 5S rRNA genes are located 3' of tRNA genes. We show that these peculiar tRNA-5S rRNA dicistronic genes are expressed in vitro and in vivo as Pol III transcriptional fusions without the need of the 5S rRNA gene-specific factor TFIIIA, the deletion of which displays a viable phenotype. We also report the existence of a novel putative non-coding Pol III RNA of unknown function about 70 nucleotide-long (RUF70), the 13 genes of which are devoid of internal Pol III promoters and located 3' of the 13 copies of the tDNA-Trp (CCA). All genes embedded in the various dicistronic genes, fused 5S rRNA genes, RUF70 genes and their leader tRNA genes appear to be efficiently transcribed and their products correctly processed in vivo.
Collapse
Affiliation(s)
- Joël Acker
- Saclay Biology and Technologies Institute (iBiTec-S), CEA, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Dumay-Odelot H, Marck C, Durrieu-Gaillard S, Lefebvre O, Jourdain S, Prochazkova M, Pflieger A, Teichmann M. Identification, molecular cloning, and characterization of the sixth subunit of human transcription factor TFIIIC. J Biol Chem 2007; 282:17179-89. [PMID: 17409385 DOI: 10.1074/jbc.m611542200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIIC in yeast and humans is required for transcription of tRNA and 5 S RNA genes by RNA polymerase III. In the yeast Saccharomyces cerevisiae, TFIIIC is composed of six subunits, five of which are conserved in humans. We report the identification, molecular cloning, and characterization of the sixth subunit of human TFIIIC, TFIIIC35, which is related to the smallest subunit of yeast TFIIIC. Human TFIIIC35 does not contain the phosphoglycerate mutase domain of its yeast counterpart, and these two proteins display only limited homology within a 34-amino acid domain. Homologs of the sixth TFIIIC subunit are also identified in other eukaryotes, and their phylogenic evolution is analyzed. Affinity-purified human TFIIIC from an epitope-tagged TFIIIC35 cell line is active in binding to and in transcription of the VA1 gene in vitro. Furthermore, TFIIIC35 specifically interacts with the human TFIIIC subunits TFIIIC63 and, to a lesser extent, TFIIIC90 in vitro. Finally, we determined a limited region in the smallest subunit of yeast TFIIIC that is sufficient for interacting with the yeast TFIIIC subunit ScTfc1 (orthologous to TFIIIC63) and found it to be adjacent to and overlap the 34-amino acid domain that is conserved from yeast to humans.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université Bordeaux 2 Victor Ségalen, INSERM U869, rue Robert Escarpit, Pessac, F-33607, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mylona A, Fernández-Tornero C, Legrand P, Haupt M, Sentenac A, Acker J, Müller CW. Structure of the τ60/Δτ91 Subcomplex of Yeast Transcription Factor IIIC: Insights into Preinitiation Complex Assembly. Mol Cell 2006; 24:221-32. [PMID: 17052456 DOI: 10.1016/j.molcel.2006.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 07/06/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
Yeast RNA polymerase III is recruited upon binding of subcomplexes tauA and tauB of transcription factor IIIC (TFIIIC) to the A and B blocks of tRNA gene promoters. The tauB subcomplex consists of subunits tau60, tau91, and tau138. We determined the 3.2 A crystal structure of tau60 bound to a large C-terminal fragment of tau91 (Deltatau91). Deltatau91 protein contains a seven-bladed propeller preceded by an N-terminal extension, whereas tau60 contains a structurally homologous propeller followed by a C-terminal domain with a novel alpha/beta fold. The two propeller domains do not have any detectable DNA binding activity and mediate heterodimer formation that may serve as scaffold for tau138 assembly. We show that the C-terminal tau60 domain interacts with the TATA binding protein (TBP). Recombinant tauB recruits TBP and stimulates TFIIIB-directed transcription on a TATA box containing tRNA gene, implying a combined contribution of tauA and tauB to preinitiation complex formation.
Collapse
Affiliation(s)
- Anastasia Mylona
- European Molecular Biology Laboratory, Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Guffanti E, Ferrari R, Preti M, Forloni M, Harismendy O, Lefebvre O, Dieci G. A Minimal Promoter for TFIIIC-dependent in Vitro Transcription of snoRNA and tRNA Genes by RNA Polymerase III. J Biol Chem 2006; 281:23945-57. [PMID: 16787917 DOI: 10.1074/jbc.m513814200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae SNR52 gene is unique among the snoRNA coding genes in being transcribed by RNA polymerase III. The primary transcript of SNR52 is a 250-nucleotide precursor RNA from which a long leader sequence is cleaved to generate the mature snR52 RNA. We found that the box A and box B sequence elements in the leader region are both required for the in vivo accumulation of the snoRNA. As expected box B, but not box A, was absolutely required for stable TFIIIC, yet in vitro. Surprisingly, however, the box B was found to be largely dispensable for in vitro transcription of SNR52, whereas the box A-mutated template effectively recruited TFIIIB; yet it was transcriptionally inactive. Even in the complete absence of box B and both upstream TATA-like and T-rich elements, the box A still directed efficient, TFIIIC-dependent transcription. Box B-independent transcription was also observed for two members of the tRNA(Asn)(GTT) gene family, but not for two tRNA(Pro)(AGG) gene copies. Fully recombinant TFIIIC supported box B-independent transcription of both SNR52 and tRNA(Asn) genes, but only in the presence of TFIIIB reconstituted with a crude B'' fraction. Non-TFIIIB component(s) in this fraction were also required for transcription of wild-type SNR52. Transcription of the box B-less tRNA(Asn) genes was strongly influenced by their 5'-flanking regions, and it was stimulated by TBP and Brf1 proteins synergistically. The box A can thus be viewed as a core TFIIIC-interacting element that, assisted by upstream TFIIIB-DNA contacts, is sufficient to promote class III gene transcription.
Collapse
Affiliation(s)
- Elisa Guffanti
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Ducrot C, Lefebvre O, Landrieux E, Guirouilh-Barbat J, Sentenac A, Acker J. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J Biol Chem 2006; 281:11685-92. [PMID: 16517597 DOI: 10.1074/jbc.m600101200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.
Collapse
Affiliation(s)
- Cécile Ducrot
- Service de Biochimie et de Génétique Moléculaire, Bâtiment 144, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Mylona A, Acker J, Fernández-Tornero C, Sentenac A, Müller CW. Expression, proteolytic analysis, reconstitution, and crystallization of the τ60/τ91 subcomplex of yeast TFIIIC. Protein Expr Purif 2006; 45:255-61. [PMID: 16115780 DOI: 10.1016/j.pep.2005.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/16/2005] [Accepted: 06/25/2005] [Indexed: 11/16/2022]
Abstract
The transcription factor IIIC (TFIIIC) is a multisubunit DNA-binding factor required for promoter recognition and TFIIIB assembly on tRNA genes transcribed by RNA polymerase III. Yeast TFIIIC consists of six subunits, organized in the two globular subcomplexes tauA and tauB, which recognize two internal tDNA promoter elements, the A and the B block, respectively. As a first step toward a detailed structural analysis of TFIIIC, we report here the expression, proteolytic analysis, reconstitution, and crystallization of the complex between yeast TFIIIC subunits tau91 and tau60. Proteolysis provided an insight into the domain structure of tau60 and tau91. Both the proteins form a stable complex that does not require an N-terminal, protease-sensitive extension of tau91. Crystals diffracting beyond 3.2 A were obtained from a complex formed by full-length tau60 and the N-terminally truncated form of tau91 lacking this extension.
Collapse
Affiliation(s)
- Anastasia Mylona
- European Molecular Biology Laboratory, Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
17
|
Moir RD, Willis IM. Tetratricopeptide repeats of Tfc4 and a limiting step in the assembly of the initiation factor TFIIIB. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:93-121. [PMID: 14969725 DOI: 10.1016/s0065-3233(04)67004-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
18
|
Liao Y, Willis IM, Moir RD. The Brf1 and Bdp1 subunits of transcription factor TFIIIB bind to overlapping sites in the tetratricopeptide repeats of Tfc4. J Biol Chem 2003; 278:44467-74. [PMID: 12930823 DOI: 10.1074/jbc.m308354200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The RNA polymerase III initiation factor TFIIIB is assembled onto DNA through interactions involving the Tfc4 subunit of the assembly factor TFIIIC and two subunits of TFIIIB, Brf1 and Bdp1. Tfc4 contains two arrays of tetratricopeptide repeats (TPRs), each of which provides a binding site for Brf1. Dominant mutations in the ligand binding channel of the first TPR array, TPRs1-5, and on the back side of this array, increase Brf1 binding by Tfc4. Here we examine the biological importance of the second TPR array, TPRs6 -9. Radical mutations at phylogenetically conserved residues in the ligand binding channel of TPRs6 -9 impair pol III reporter gene transcription. Biochemical studies on one such mutation, L469K in TPR7, revealed a defect in the recruitment of Brf1 into TFIIIB-TFIIIC-DNA complexes and diminished the direct interaction between Tfc4 and Brf1. Multicopy suppression analysis implicates TPR9 in Brf1 binding and TPRs7 and 8 in binding to more than one ligand. Indeed, the L469K mutation also decreased the binding affinity for Bdp1 incorporation into TFIIIB-TFIIIC-DNA complexes and inhibited binary interactions between Bdp1 and Tfc4. The Bdp1 binding domain in Tfc4 was mapped to TPRs1-9, a domain that contains both TPR arrays and thus overlaps two of the known binding sites for Brf1. The properties of the L469K mutation identify both Brf1 and Bdp1 as ligands for the second TPR array.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
19
|
Abstract
Gene transcription is repetitive, enabling the synthesis of multiple copies of identical RNA molecules from the same template. The cyclic process of RNA synthesis from active genes, referred to as transcription reinitiation, contributes significantly to the level of RNAs in living cells. Contrary to the perception that multiple transcription cycles are a mere iteration of mechanistically identical steps, a large body of evidence indicates that, in most transcription systems, reinitiation involves highly specific and regulated pathways. These pathways influence the availability for reinitiation of template DNA and/or transcription proteins, and represent an important yet poorly characterized aspect of gene regulation.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Italy.
| | | |
Collapse
|
20
|
Jourdain S, Acker J, Ducrot C, Sentenac A, Lefebvre O. The tau95 subunit of yeast TFIIIC influences upstream and downstream functions of TFIIIC.DNA complexes. J Biol Chem 2003; 278:10450-7. [PMID: 12533520 DOI: 10.1074/jbc.m213310200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcription factor IIIC (TFIIIC) is organized in two distinct multisubunit domains, tauA and tauB, that are respectively responsible for TFIIIB assembly and stable anchoring of TFIIIC on the B block of tRNA genes. Surprisingly, we found that the removal of tauA by mild proteolysis stabilizes the residual tauB.DNA complexes at high temperatures. Focusing on the well conserved tau95 subunit that belongs to the tauA domain, we found that the tau95-E447K mutation has long distance effects on the stability of TFIIIC.DNA complexes and start site selection. Mutant TFIIIC.DNA complexes presented a shift in their 5' border, generated slow-migrating TFIIIB.DNA complexes upon stripping TFIIIC by heparin or heat treatment, and allowed initiation at downstream sites. In addition, mutant TFIIIC.DNA complexes were highly unstable at high temperatures. Coimmunoprecipitation experiments indicated that tau95 participates in the interconnection of tauA with tauB via its contacts with tau138 and tau91 polypeptides. The results suggest that tau95 serves as a scaffold critical for tauA.DNA spatial configuration and tauB.DNA stability.
Collapse
Affiliation(s)
- Sabine Jourdain
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Laura Schramm
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
22
|
Yieh L, Hatzis H, Kassavetis G, Sandmeyer SB. Mutational analysis of the transcription factor IIIB-DNA target of Ty3 retroelement integration. J Biol Chem 2002; 277:25920-8. [PMID: 11994300 DOI: 10.1074/jbc.m202729200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ty3 retrovirus-like element inserts preferentially at the transcription initiation sites of genes transcribed by RNA polymerase III. The requirements for transcription factor (TF) IIIC and TFIIIB in Ty3 integration into the two initiation sites of the U6 gene carried on pU6LboxB were previously examined. Ty3 integrates at low but detectable frequencies in the presence of TFIIIB subunits Brf1 and TATA-binding protein. Integration increases in the presence of the third subunit, Bdp1. TFIIIC is not essential, but the presence of TFIIIC specifies an orientation of TFIIIB for transcriptional initiation and directs integration to the U6 gene-proximal initiation site. In the current study, recombinant wild type TATA-binding protein, wild type and mutant Brf1, and Bdp1 proteins and highly purified TFIIIC were used to investigate the roles of specific protein domains in Ty3 integration. The amino-terminal half of Brf1, which contains a TFIIB-like repeat, contributed more strongly than the carboxyl-terminal half of Brf1 to Ty3 targeting. Each half of Bdp1 split at amino acid 352 enhanced integration. In the presence of TFIIIB and TFIIIC, the pattern of integration extended downstream by several base pairs compared with the pattern observed in vitro in the absence of TFIIIC and in vivo, suggesting that TFIIIC may not be present on genes targeted by Ty3 in vivo. Mutations in Bdp1 that affect its interaction with TFIIIC resulted in TFIIIC-independent patterns of Ty3 integration. Brf1 zinc ribbon and Bdp1 internal deletion mutants that are competent for polymerase III recruitment but defective in promoter opening were competent for Ty3 integration irrespective of the state of DNA supercoiling. These results extend the similarities between the TFIIIB domains required for transcription and Ty3 integration and also reveal requirements that are specific to transcription.
Collapse
Affiliation(s)
- Lynn Yieh
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
23
|
Ishiguro A, Kassavetis GA, Geiduschek EP. Essential roles of Bdp1, a subunit of RNA polymerase III initiation factor TFIIIB, in transcription and tRNA processing. Mol Cell Biol 2002; 22:3264-75. [PMID: 11971960 PMCID: PMC133792 DOI: 10.1128/mcb.22.10.3264-3275.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The essential Saccharomyces cerevisiae gene BDP1 encodes a subunit of RNA polymerase III (Pol III) transcription factor (TFIIIB); TATA box binding protein (TBP) and Brf1 are the other subunits of this three-protein complex. Deletion analysis defined three segments of Bdp1 that are essential for viability. A central segment, comprising amino acids 327 to 353, was found to be dispensable, and cells making Bdp1 that was split within this segment, at amino acid 352, are viable. Suppression of bdp1 conditional viability by overexpressing SPT15 and BRF1 identified functional interactions of specific Bdp1 segments with TBP and Brf1, respectively. A Bdp1 deletion near essential segment I was synthetically lethal with overexpression of PCF1-1, a dominant gain-of-function mutation in the second tetracopeptide repeat motif (out of 11) of the Tfc4 (tau(131)) subunit of TFIIIC. The analysis also identifies a connection between Bdp1 and posttranscriptional processing of Pol III transcripts. Yeast genomic library screening identified RPR1 as the specific overexpression suppressor of very slow growth at 37 degrees C due to deletion of Bdp1 amino acids 253 to 269. RPR1 RNA, a Pol III transcript, is the RNA subunit of RNase P, which trims pre-tRNA transcript 5' ends. Maturation of tRNA was found to be aberrant in bdp1-Delta 253-269 cells, and RPR1 transcription with the highly resolved Pol III transcription system in vitro was also diminished when recombinant Bdp1 Delta 253-269 replaced wild-type Bdp1. Physical interaction of RNase P with Bdp1 was demonstrated by coimmunoprecipitation and pull-down assays.
Collapse
Affiliation(s)
- Akira Ishiguro
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
24
|
Moir RD, Puglia KV, Willis IM. Autoinhibition of TFIIIB70 binding by the tetratricopeptide repeat-containing subunit of TFIIIC. J Biol Chem 2002; 277:694-701. [PMID: 11684692 DOI: 10.1074/jbc.m108924200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important step in the assembly of RNA polymerase (pol) III transcription complexes on tRNA and 5 S genes is the interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC (TFIIIC131) and the TFIIB-related subunit of TFIIIB (TFIIIB70/Brf1). A fragment of TFIIIC131 that contains the hydrophilic amino terminus and two TPR arrays, with five and four repeats, respectively (Nt-TPR9), is sufficient to support an interaction with TFIIIB70. Here we evaluate the contribution of each TPR array to TFIIIB70 binding. Both TPR arrays bind independently to TFIIIB70 with TPR6-9 having a 4-fold higher apparent affinity than TPR1-5. However, the TPR arrays are not sufficient for a high affinity interaction with TFIIIB70. The addition of amino-terminal sequences increases the affinity of TPR1-5 18-fold to create a high affinity TFIIIB70 binding site (Nt-TPR5, 44 +/- 6 nm). Although the Nt-TPR5 and TPR6-9 fragments are contained entirely within the Nt-TPR9 fragment, the affinity of the latter is significantly lower than either of these smaller fragments. The results demonstrate that the TFIIIB70 binding sites in TFIIIC131 are subject to autoinhibition. We propose that the binding of TFIIIB70 to these sites within the TFIIIC complex may proceed in an ordered fashion.
Collapse
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
25
|
Dumay-Odelot H, Acker J, Arrebola R, Sentenac A, Marck C. Multiple roles of the tau131 subunit of yeast transcription factor IIIC (TFIIIC) in TFIIIB assembly. Mol Cell Biol 2002; 22:298-308. [PMID: 11739742 PMCID: PMC134217 DOI: 10.1128/mcb.22.1.298-308.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast transcription factor IIIC (TFIIIC) plays a key role in assembling the transcription initiation factor TFIIIB on class III genes after TFIIIC-DNA binding. The second largest subunit of TFIIIC, tau131, is thought to initiate TFIIIB assembly by interacting with Brf1/TFIIIB70. In this work, we have analyzed a TFIIIC mutant (tau131-DeltaTPR2) harboring a deletion in tau131 removing the second of its 11 tetratricopeptide repeats. Remarkably, this thermosensitive mutation was selectively suppressed in vivo by overexpression of B"/TFIIIB90, but not Brf1 or TATA-binding protein. In vitro, the mutant factor preincubated at restrictive temperature bound DNA efficiently but lost transcription factor activity. The in vitro transcription defect was abolished at high concentrations of B" but not Brf1. Copurification experiments of baculovirus-expressed proteins confirmed a direct physical interaction between tau131 and B". tau131, therefore, appears to be involved in the recruitment of both Brf1 and B".
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
26
|
Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90. [PMID: 11433012 PMCID: PMC55761 DOI: 10.1093/nar/29.13.2675] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
28
|
Wang Z, Bai L, Hsieh YJ, Roeder RG. Nuclear factor 1 (NF1) affects accurate termination and multiple-round transcription by human RNA polymerase III. EMBO J 2000; 19:6823-32. [PMID: 11118217 PMCID: PMC305894 DOI: 10.1093/emboj/19.24.6823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have shown previously that the TFIIIC1/TFIIIC1' fraction interacts specifically with the VA1 terminator regions to affect both termination and initiation/reinitiation of transcription by human RNA polymerase III. Here, we further purified the VA1 terminator-binding factor to apparent homogeneity and found, by peptide sequence analysis, that it belongs to the NF1 protein family. NF1 interacts specifically with the NF1-binding sites within the terminator regions of the VA1 gene and with two subunits (TFIIIC220 and TFIIIC110) of human TFIIIC2. Immunodepletion with anti-NF1 antibodies dramatically decreases transcription from the VA1 template in nuclear extract, and mutation at the NF1-binding site in the terminator region of the VA1 gene selectively affects multiple-round transcription (reinitiation of transcription) and termination. In addition, NF1 acts in conjunction with TFIIIC to promote accurate termination by RNA polymerase III on a C-tailed VA1 template.
Collapse
Affiliation(s)
- Z Wang
- The Laboratory of Biochemistry and Molecular Biology,The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
29
|
Huang Y, Hamada M, Maraia RJ. Isolation and cloning of four subunits of a fission yeast TFIIIC complex that includes an ortholog of the human regulatory protein TFIIICbeta. J Biol Chem 2000; 275:31480-7. [PMID: 10906331 DOI: 10.1074/jbc.m004635200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic tRNA genes are controlled by proximal and downstream elements that direct transcription by RNA polymerase (pol) III. Transcription factors (TFs) that reside near the initiation site are related in Saccharomyces cerevisiae and humans, while those that reside at or downstream of the B box share no recognizable sequence relatedness. Human TFIIICbeta is a transcriptional regulator that exhibits no homology to S. cerevisiae sequences on its own. We cloned an essential Schizosaccharomyces pombe gene that encodes a protein, Sfc6p, with homology to the S. cerevisiae TFIIIC subunit, TFC6p, that extends to human TFIIICbeta. We also isolated and cloned S. pombe homologs of three other TFIIIC subunits, Sfc3p, Sfc4p, and Sfc1p, the latter two of which are conserved from S. cerevisiae to humans, while the former shares homology with the S. cerevisiae B box-binding homolog only. Sfc6p is a component of a sequence-specific DNA-binding complex that also contains the B box-binding homolog, Sfc3p. Immunoprecipitation of Sfc3p further revealed that Sfc1p, Sfc3p, Sfc4p, and Sfc6p are associated in vivo and that the isolated Sfc3p complex is active for pol III-mediated transcription of a S. pombe tRNA gene in vitro. These results establish a link between the downstream pol III TFs in yeast and humans.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | |
Collapse
|
30
|
Moir RD, Puglia KV, Willis IM. Interactions between the tetratricopeptide repeat-containing transcription factor TFIIIC131 and its ligand, TFIIIB70. Evidence for a conformational change in the complex. J Biol Chem 2000; 275:26591-8. [PMID: 10859316 DOI: 10.1074/jbc.m003991200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the transcription of tRNA and 5 S genes by RNA polymerase III, recruitment of the transcription factor (TF)IIIB is mediated by the promoter-bound assembly factor TFIIIC. A critical limiting step in this process is the interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC (TFIIIC131) and the TFIIB-related factor Brf1p/TFIIIB70. To facilitate biochemical studies of this interaction, we expressed a fragment of TFIIIC131, TFIIIC131-(1-580), that includes the minimal TFIIIB70 interaction domain defined by two-hybrid studies together with adjacent sequences, up to the end of TPR9, implicated in the assembly reaction. TFIIIC131-(1-580) interacts with TFIIIB70 in solution and inhibits the formation of TFIIIB70.TFIIIC.DNA complexes. In a coupled equilibrium binding assay, the formation of TFIIIC131-(1-580).TFIIIB70 complexes was adequately described by a single-site binding model and yielded an apparent equilibrium dissociation constant of 334 +/- 23 nm. CD spectroscopy and limited proteolysis experiments defined a well structured and largely protease-resistant core in TFIIIC131-(1-580) comprising part of the hydrophilic amino terminus, TPR1-5, the intervening non-TPR region, and TPR6-8. CD spectra showed that trifluoroethanol induced significant alpha-helical structure in TFIIIC131-(1-580). A more modest monovalent ion-dependent CD difference was observed in mixtures of TFIIIC131-(1-580) and TFIIIB70, suggesting that formation of the binary complex may proceed with the acquisition of alpha-helicity.
Collapse
Affiliation(s)
- R D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
31
|
Dieci G, Percudani R, Giuliodori S, Bottarelli L, Ottonello S. TFIIIC-independent in vitro transcription of yeast tRNA genes. J Mol Biol 2000; 299:601-13. [PMID: 10835271 DOI: 10.1006/jmbi.2000.3783] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most peculiar transcriptional property of eukaryotic tRNA genes, as well as of other genes served by RNA polymerase III, is their complete dependence on the intragenic interaction platform provided by transcription factor IIIC (TFIIIC) for the productive assembly of the TBP-containing initiation factor TFIIIB. The sole exception, in yeast, is the U6 RNA gene, which is able to exploit a TATAAATA element, 30 bp upstream of the transcription start site, for the TFIIIC-independent assembly of TFIIIB. To find out whether this extragenic core promoter organization and autonomous TFIIIB assembly capacity are unique features of the U6 gene or also apply to other genes transcribed by RNA polymerase III, we scanned the 5'-flanking regions (up to position -100) of the entire tRNA gene set of Saccharomyces cerevisiae searching for U6-like TATA motifs. Four tRNA genes harboring such a sequence motif around position -30 were identified and found to be transcribed in vitro by a minimal system only composed of TFIIIB and RNA polymerase III. In this system, start site selection is not at all affected by the absence of TFIIIC, which, when added, significantly stimulates transcription by determining an increase in the number, rather than in the efficiency of utilization, of productive initiation complexes. A specific TBP-TATA element interaction is absolutely required for TFIIIC-independent transcription, but the nearby sequence context also contributes to the efficiency of autonomous TFIIIB assembly. The existence of a TFIIIB assembly pathway leading to the faithful transcription of natural eukaryotic tRNA genes in the absence of TFIIIC provides novel insights into the functional flexibility of the eukaryotic tRNA gene transcription machinery and on its evolution from an ancestral RNA polymerase III system relying on upstream, TATA- centered control elements.
Collapse
MESH Headings
- Base Sequence
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Fungal/genetics
- Gene Frequency/genetics
- Genes, Fungal/genetics
- Genes, Plant/genetics
- Kinetics
- Molecular Sequence Data
- Mutation/genetics
- RNA Polymerase III/metabolism
- RNA, Fungal/analysis
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Small Nuclear/genetics
- RNA, Transfer/analysis
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- TATA Box/genetics
- TATA-Box Binding Protein
- Templates, Genetic
- Transcription Factor TFIIIB
- Transcription Factors/metabolism
- Transcription Factors, TFIII/physiology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- G Dieci
- Institute of Biochemical Sciences, University of Parma, Parma, I-43100, Italy.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|