1
|
Marszalek J, Craig EA, Tomiczek B. J-Domain Proteins Orchestrate the Multifunctionality of Hsp70s in Mitochondria: Insights from Mechanistic and Evolutionary Analyses. Subcell Biochem 2023; 101:293-318. [PMID: 36520311 DOI: 10.1007/978-3-031-14740-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mitochondrial J-domain protein (JDP) co-chaperones orchestrate the function of their Hsp70 chaperone partner(s) in critical organellar processes that are essential for cell function. These include folding, refolding, and import of mitochondrial proteins, maintenance of mitochondrial DNA, and biogenesis of iron-sulfur cluster(s) (FeS), prosthetic groups needed for function of mitochondrial and cytosolic proteins. Consistent with the organelle's endosymbiotic origin, mitochondrial Hsp70 and the JDPs' functioning in protein folding and FeS biogenesis clearly descended from bacteria, while the origin of the JDP involved in protein import is less evident. Regardless of their origin, all mitochondrial JDP/Hsp70 systems evolved unique features that allowed them to perform mitochondria-specific functions. Their modes of functional diversification and specialization illustrate the versatility of JDP/Hsp70 systems and inform our understanding of system functioning in other cellular compartments.
Collapse
Affiliation(s)
- Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Elucidation of the interaction proteome of mitochondrial chaperone Hsp78 highlights its role in protein aggregation during heat stress. J Biol Chem 2022; 298:102494. [PMID: 36115461 PMCID: PMC9574514 DOI: 10.1016/j.jbc.2022.102494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Chaperones of the Hsp100/Clp family represent major components of protein homeostasis, conferring maintenance of protein activity under stress. The ClpB-type members of the family, present in bacteria, fungi, and plants, are able to resolubilize aggregated proteins. The mitochondrial member of the ClpB family in Saccharomyces cerevisiae is Hsp78. Although Hsp78 has been shown to contribute to proteostasis in elevated temperatures, the biochemical mechanisms underlying this mitochondria-specific thermotolerance are still largely unclear. To identify endogenous chaperone substrate proteins, here, we generated an Hsp78-ATPase mutant with stabilized substrate-binding behavior. We used two stable isotope labeling–based quantitative mass spectrometry approaches to analyze the role of Hsp78 during heat stress–induced mitochondrial protein aggregation and disaggregation on a proteomic level. We first identified the endogenous substrate spectrum of the Hsp78 chaperone, comprising a wide variety of proteins related to metabolic functions including energy production and protein synthesis, as well as other chaperones, indicating its crucial functions in mitochondrial stress resistance. We then compared these interaction data with aggregation and disaggregation processes in mitochondria under heat stress, which revealed specific aggregation-prone protein populations and demonstrated the direct quantitative impact of Hsp78 on stress-dependent protein solubility under different conditions. We conclude that Hsp78, together with its cofactors, represents a recovery system that protects major mitochondrial metabolic functions during heat stress as well as restores protein biogenesis capacity after the return to normal conditions.
Collapse
|
3
|
Mitochondrial Homeostasis and Cellular Senescence. Cells 2019; 8:cells8070686. [PMID: 31284597 PMCID: PMC6678662 DOI: 10.3390/cells8070686] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.
Collapse
|
4
|
Wang J, Ying SH, Hu Y, Feng MG. Vital role for the J-domain protein Mdj1 in asexual development, multiple stress tolerance, and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 2016; 101:185-195. [DOI: 10.1007/s00253-016-7757-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
|
5
|
Duncan EJ, Cheetham ME, Chapple JP, van der Spuy J. The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcell Biochem 2015; 78:243-73. [PMID: 25487025 DOI: 10.1007/978-3-319-11731-7_12] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein folding, quality control and function. In particular, the HSP70 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and its co-chaperones have been recognised as potent modulators of inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. In has become evident that the HSP70 chaperone machine functions not only in folding, but also in proteasome mediated degradation of neurodegenerative disease proteins. Thus, there has been a great deal of interest in the potential manipulation of molecular chaperones as a therapeutic approach for many neurodegenerations. Furthermore, mutations in several HSP70 co-chaperones and putative co-chaperones have been identified as causing inherited neurodegenerative and cardiac disorders, directly linking the HSP70 chaperone system to human disease.
Collapse
Affiliation(s)
- Emma J Duncan
- Molecular Endocrinology Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charter House Square, EC1M 6BQ, London, UK,
| | | | | | | |
Collapse
|
6
|
Park WK, Yang JW, Kim HS. Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2015; 42:567-75. [DOI: 10.1007/s10295-015-1584-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
Abstract
Abstract
Saccharomyces cerevisiae strains tolerant to salt stress are important for the production of single-cell protein using kimchi waste brine. In this study, two strains (TN-1 and TN-2) tolerant of up to 10 % (w/v) NaCl were isolated by screening a transposon-mediated mutant library. The determination of transposon insertion sites and Northern blot analysis identified two genes, MDJ1 and VPS74, and revealed disruptions of the open reading frame of both genes, indicating that salt tolerance can be conferred. Such tolerant phenotypes reverted to sensitive phenotypes on the autologous or overexpression of each gene. The two transposon mutants grew faster than the control strain when cultured at 30 °C in rich medium containing 5, 7.5 or 10 % NaCl. The genes identified in this study may provide a basis for application in developing industrial yeast strains.
Collapse
Affiliation(s)
- Won-Kun Park
- grid.37172.30 0000000122920500 Department of Chemical and Biomolecular Engineering KAIST 291, Daehak-ro, Yuseong-gu 350-701 Daejeon Korea
| | - Ji-Won Yang
- grid.37172.30 0000000122920500 Department of Chemical and Biomolecular Engineering KAIST 291, Daehak-ro, Yuseong-gu 350-701 Daejeon Korea
| | - Hyun-Soo Kim
- grid.440940.d 0000000404463336 Department of Food Science and Industry Jungwon University 85, Munmu-ro, Goesan-eup, Goesan-gun 367-805 Chungbuk Korea
| |
Collapse
|
7
|
Lodi T, Dallabona C, Nolli C, Goffrini P, Donnini C, Baruffini E. DNA polymerase γ and disease: what we have learned from yeast. Front Genet 2015; 6:106. [PMID: 25852747 PMCID: PMC4362329 DOI: 10.3389/fgene.2015.00106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1) cause many mitochondrial pathologies, such as progressive external ophthalmoplegia (PEO), Alpers' syndrome, and ataxia-neuropathy syndrome, all of which present instability of mtDNA, which results in impaired mitochondrial function in several tissues with variable degrees of severity. In this review, we summarize the genetic and biochemical knowledge published on yeast mitochondrial DNA polymerase from 1989, when the MIP1 gene was first cloned, up until now. The role of yeast is particularly emphasized in (i) validating the pathological mutations found in human POLG and modeled in MIP1, (ii) determining the molecular defects caused by these mutations and (iii) finding the correlation between mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We also describe recent findings regarding the discovery of molecules able to rescue the phenotypic defects caused by pathological mutations in Mip1, and the construction of a model system in which the human Pol γ holoenzyme is expressed in yeast and complements the loss of Mip1.
Collapse
Affiliation(s)
- Tiziana Lodi
- Department of Life Sciences, University of Parma Parma, Italy
| | | | - Cecilia Nolli
- Department of Life Sciences, University of Parma Parma, Italy
| | - Paola Goffrini
- Department of Life Sciences, University of Parma Parma, Italy
| | - Claudia Donnini
- Department of Life Sciences, University of Parma Parma, Italy
| | | |
Collapse
|
8
|
Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. mBio 2015; 6:mBio.02425-14. [PMID: 25670781 PMCID: PMC4337576 DOI: 10.1128/mbio.02425-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. Impairment or loss of mitochondrial DNA is associated with mitochondrial dysfunction and a wide range of neural, muscular, and other diseases. We present the first evidence showing that the entire mtHsp70/mtHsp40 machinery plays an important role in mitochondrial DNA replication and maintenance, a function likely retained from prokaryotes. These abundant, ubiquitous, and multifunctional chaperones share phenotypes with enzymes engaged in the initial stages of replication of the mitochondrial DNA in T. brucei.
Collapse
|
9
|
Týč J, Klingbeil MM, Lukeš J. Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. mBio 2015. [PMID: 25670781 DOI: 10.1128/mbio.02425-02414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
UNLABELLED Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. IMPORTANCE Impairment or loss of mitochondrial DNA is associated with mitochondrial dysfunction and a wide range of neural, muscular, and other diseases. We present the first evidence showing that the entire mtHsp70/mtHsp40 machinery plays an important role in mitochondrial DNA replication and maintenance, a function likely retained from prokaryotes. These abundant, ubiquitous, and multifunctional chaperones share phenotypes with enzymes engaged in the initial stages of replication of the mitochondrial DNA in T. brucei.
Collapse
Affiliation(s)
- Jiří Týč
- Faculty of Sciences, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Michele M Klingbeil
- Department of Microbiology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| | | |
Collapse
|
10
|
Regev-Rudzki N, Gabriel K, Bursać D. The evolution and function of co-chaperones in mitochondria. Subcell Biochem 2015; 78:201-217. [PMID: 25487023 DOI: 10.1007/978-3-319-11731-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mitochondrial chaperones mediate and affect critical organellar processes, essential for cellular function. These chaperone systems have both prokaryotic and eukaryotic features. While some of the mitochondrial co-chaperones have clear homologues in prokaryotes, some are unique to eukaryotes and have no homologues in the chaperone machinery of other cellular compartments. The mitochondrial co-chaperones are required for protein import into the organelle and in enforcing the structure of the main chaperones. In addition to novel types of interaction with their senior partners, unexpected and essential interactions between the co-chaperones themselves have recently been described.
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovolt, Israel,
| | | | | |
Collapse
|
11
|
Ciesielski GL, Plotka M, Manicki M, Schilke BA, Dutkiewicz R, Sahi C, Marszalek J, Craig EA. Nucleoid localization of Hsp40 Mdj1 is important for its function in maintenance of mitochondrial DNA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2233-43. [PMID: 23688635 PMCID: PMC3750215 DOI: 10.1016/j.bbamcr.2013.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 11/26/2022]
Abstract
Faithful replication and propagation of mitochondrial DNA (mtDNA) is critical for cellular respiration. Molecular chaperones, ubiquitous proteins involved in protein folding and remodeling of protein complexes, have been implicated in mtDNA transactions. In particular, cells lacking Mdj1, an Hsp40 co-chaperone of Hsp70 in the mitochondrial matrix, do not maintain functional mtDNA. Here we report that the great majority of Mdj1 is associated with nucleoids, DNA-protein complexes that are the functional unit of mtDNA transactions. Underscoring the importance of Hsp70 chaperone activity in the maintenance of mtDNA, an Mdj1 variant having an alteration in the Hsp70-interacting J-domain does not maintain mtDNA. However, a J-domain containing fragment expressed at the level that Mdj1 is normally present is not competent to maintain mtDNA, suggesting a function of Mdj1 beyond that carried out by its J-domain. Nevertheless, loss of mtDNA function upon Mdj1 depletion is retarded when the J-domain, is overexpressed. Analysis of Mdj1 variants revealed a correlation between nucleoid association and DNA maintenance activity, suggesting that localization is functionally important. We found that Mdj1 has DNA binding activity and that variants retaining DNA-binding activity also retained nucleoid association. Together, our results are consistent with a model in which Mdj1, tethered to the nucleoid via DNA binding, thus driving a high local concentration of the Hsp70 machinery, is important for faithful DNA maintenance and propagation. J-protein co-chaperone Mdj1 is critical for maintenance of functional mtDNA. Majority of Mdj1 localizes to the nucleoid, likely via interaction with mtDNA. Nucleoid localization of Mdj1 is necessary for mtDNA maintenance. Function of Mdj1 in mtDNA maintenance requires cooperation with Hsp70.
Collapse
|
12
|
Voos W. Chaperone-protease networks in mitochondrial protein homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:388-99. [PMID: 22705353 DOI: 10.1016/j.bbamcr.2012.06.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 12/22/2022]
Abstract
As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Wolfgang Voos
- Institut für Biochemie und Molekularbiologie IBMB, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
13
|
Control of Programmed Cell Death During Plant Reproductive Development. BIOCOMMUNICATION OF PLANTS 2012. [DOI: 10.1007/978-3-642-23524-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Bogenhagen DF. Mitochondrial DNA nucleoid structure. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:914-20. [PMID: 22142616 DOI: 10.1016/j.bbagrm.2011.11.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/13/2011] [Accepted: 11/16/2011] [Indexed: 12/21/2022]
Abstract
Eukaryotic cells are characterized by their content of intracellular membrane-bound organelles, including mitochondria as well as nuclei. These two DNA-containing compartments employ two distinct strategies for storage and readout of genetic information. The diploid nuclei of human cells contain about 6 billion base pairs encoding about 25,000 protein-encoding genes, averaging 120 kB/gene, packaged in chromatin arranged as a regular nucleosomal array. In contrast, human cells contain hundreds to thousands of copies of a ca.16 kB mtDNA genome tightly packed with 13 protein-coding genes along with rRNA and tRNA genes required for their expression. The mtDNAs are dispersed throughout the mitochondrial network as histone-free nucleoids containing single copies or small clusters of genomes. This review will summarize recent advances in understanding the microscopic structure and molecular composition of mtDNA nucleoids in higher eukaryotes. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Daniel F Bogenhagen
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| |
Collapse
|
15
|
Malc E, Dzierzbicki P, Kaniak A, Skoneczna A, Ciesla Z. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae. Mutat Res 2009; 669:95-103. [PMID: 19467248 DOI: 10.1016/j.mrfmmm.2009.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 04/30/2009] [Accepted: 05/14/2009] [Indexed: 01/29/2023]
Abstract
The proteasome plays fundamental roles in the removal of oxidized proteins and in normal degradation of short-lived proteins. Increasing evidence suggests that the proteasome may be an important factor in both oxidative stress response and cellular aging. Moreover, it was recently reported that proteasome inhibition leads to mitochondrial dysfunction. In this study, we have investigated whether proteasome impairment, caused by deletion of UMP1, a gene necessary for the 20S proteasome biogenesis, may influence the stability of the yeast mitochondrial genome. Here we show that an ump1Delta mutant displays enhanced mitochondrial point mutagenesis, measured by the frequency of oligomycin-resistant (Oli(r)) and erythromycin-resistant (Ery(r)) mutants, compared to that of the isogenic wild-type strain. Deletion of UMP1 significantly increases also the frequency of respiration-defective mutants having gross rearrangements of the mitochondrial genome. We show that this mitochondrial mutator phenotype of the ump1Delta strain is considerably reduced in the presence of a plasmid encoding Msh1p, the mitochondrial homologue of the bacterial mismatch protein MutS, which was shown previously to counteract oxidative lesion-induced instability of mtDNA. In search of the mechanism underlying the decreased stability of mtDNA in the ump1Delta deletion mutant, we have determined the level of reactive oxygen species (ROS) in the mutant cells and have found that they are exposed to endogenous oxidative stress. Furthermore, we show also that both cellular and intramitochondrial levels of Msh1p are significantly reduced in the mutant cells compared to the wild-type cells. We conclude, therefore, that both an increased ROS production and a markedly decreased level of Msh1p, a protein crucial for the repair of mtDNA, lead in S. cerevisiae cells with impaired proteasome activity to the increased instability of their mitochondrial genome.
Collapse
Affiliation(s)
- Ewa Malc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
16
|
Cheng X, Qin Y, Ivessa AS. Loss of mitochondrial DNA under genotoxic stress conditions in the absence of the yeast DNA helicase Pif1p occurs independently of the DNA helicase Rrm3p. Mol Genet Genomics 2009; 281:635-45. [PMID: 19277716 DOI: 10.1007/s00438-009-0438-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/21/2009] [Indexed: 11/28/2022]
Abstract
How the cellular amount of mitochondrial DNA (mtDNA) is regulated under normal conditions and in the presence of genotoxic stress is less understood. We demonstrate that the inefficient mtDNA replication process of mutant yeast cells lacking the PIF1 DNA helicase is partly rescued in the absence of the DNA helicase RRM3. The rescue effect is likely due to the increase in the deoxynucleoside triphosphates (dNTPs) pool caused by the lack of RRM3. In contrast, the Pif1p-dependent mtDNA breakage in the presence and absence of genotoxic stress is not suppressed if RRM3 is lacking suggesting that this phenotype is likely independent of the dNTP pool. Pif1 protein (Pif1p) was found to stimulate the incorporation of dNTPs into newly synthesised mtDNA of gradient-purified mitochondria. We propose that Pif1p that acts likely as a DNA helicase in mitochondria affects mtDNA replication directly. Possible roles of Pif1p include the resolution of secondary DNA and/or DNA/RNA structures, the temporarily displacement of tightly bound mtDNA-binding proteins, or the stabilization of the mitochondrial replication complex during mtDNA replication.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
17
|
Kaniak A, Dzierzbicki P, Rogowska AT, Malc E, Fikus M, Ciesla Z. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:318-29. [DOI: 10.1016/j.dnarep.2008.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/02/2008] [Accepted: 11/05/2008] [Indexed: 01/01/2023]
|
18
|
Lu B, Garrido N, Spelbrink JN, Suzuki CK. Tid1 Isoforms Are Mitochondrial DnaJ-like Chaperones with Unique Carboxyl Termini That Determine Cytosolic Fate. J Biol Chem 2006; 281:13150-13158. [PMID: 16531398 DOI: 10.1074/jbc.m509179200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tid1 is a human homolog of bacterial DnaJ and the Drosophila tumor suppressor Tid56 that has two alternatively spliced isoforms, Tid1-long and -short (Tid1-L and -S), which differ only at their carboxyl termini. Although Tid1 proteins localize overwhelmingly to mitochondria, published data demonstrate principally nonmitochondrial protein interactions and activities. This study was undertaken to determine whether Tid1 proteins function as mitochondrial DnaJ-like chaperones and to resolve the paradox of how proteins targeted primarily to mitochondria function in nonmitochondrial pathways. Here we demonstrate that Tid1 isoforms exhibit a conserved mitochondrial DnaJ-like function substituting for the yeast mitochondrial DnaJ-like protein Mdj1p. Like Mdj1p, Tid1 localizes to human mitochondrial nucleoids, which are large protein complexes bound to mitochondrial DNA. Unlike other DnaJs, Tid1-L and -S form heterocomplexes; both unassembled and complexed Tid1 are observed in human cells. Results demonstrate that Tid1-L has a longer residency time in the cytosol prior to mitochondrial import as compared with Tid1-S; Tid1-L is also significantly more stable in the cytosol than Tid1-S, which is rapidly degraded. The longer cytosolic residency time and the half-life of Tid1-L are explained by its interaction with cytosolic Hsc70 and potential protein substrates such as the STAT1 and STAT3 transcription factors. We show that the unique carboxyl terminus of Tid1-L is required for interaction with Hsc70 and STAT1 and -3. We propose that the association of Tid1 with chaperones and/or protein substrates in the cytosol provides a mechanism for the alternate fates and functions of Tid1 in mitochondrial and nonmitochondrial pathways.
Collapse
Affiliation(s)
- Bin Lu
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, New Jersey 07103
| | - Nuria Garrido
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, FIN-33014 Tampere, Finland
| | - Johannes N Spelbrink
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, FIN-33014 Tampere, Finland
| | - Carolyn K Suzuki
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, New Jersey 07103.
| |
Collapse
|
19
|
Lewandowska A, Gierszewska M, Marszalek J, Liberek K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:141-51. [PMID: 16545993 DOI: 10.1016/j.bbamcr.2006.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/17/2022]
Abstract
Under physiological conditions mitochondria of yeast Saccharomyces cerevisiae form a branched tubular network, the continuity of which is maintained by balanced membrane fusion and fission processes. Here, we show using mitochondrial matrix targeted green fluorescent protein that exposure of cells to extreme heat shock led to dramatic changes in mitochondrial morphology, as tubular network disintegrated into several fragmented vesicles. Interestingly, this fragmentation did not affect mitochondrial ability to maintain the membrane potential. Cells subjected to recovery at physiological temperature were able to restore the mitochondrial network, as long as an active matrix chaperone, Hsp78, was present. Deletion of HSP78 gene did not affect fragmentation of mitochondria upon heat stress, but significantly inhibited ability to restore mitochondrial network. Changes of mitochondrial morphology correlated with aggregation of mitochondrial proteins. On the other hand, recovery of mitochondrial network correlated with disappearance of protein aggregates and reactivation of enzymatic activity of a model thermo-sensitive protein: mitochondrial DNA polymerase. Since protein disaggregation and refolding is mediated by Hsp78 chaperone collaborating with Hsp70 chaperone system, we postulate that effect of Hsp78 on mitochondrial morphology upon recovery after heat shock is mediated by its ability to restore activity of unknown protein(s) responsible for maintenance of mitochondrial morphology.
Collapse
Affiliation(s)
- Agnieszka Lewandowska
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | |
Collapse
|
20
|
Hayashi M, Imanaka-Yoshida K, Yoshida T, Wood M, Fearns C, Tatake RJ, Lee JD. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 2005; 12:128-32. [PMID: 16327803 DOI: 10.1038/nm1327] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 10/14/2005] [Indexed: 11/08/2022]
Abstract
Many heat-shock proteins (Hsp) are members of evolutionarily conserved families of chaperone proteins that inhibit the aggregation of unfolded polypeptides and refold denatured proteins, thereby remedying phenotypic effects that may result from protein aggregation or protein instability. Here we report that the mitochondrial chaperone Hsp40, also known as Dnaja3 or Tid1, is differentially expressed during cardiac development and pathological hypertrophy. Mice deficient in Dnaja3 developed dilated cardiomyopathy (DCM) and died before 10 weeks of age. Progressive respiratory chain deficiency and decreased copy number of mitochondrial DNA were evident in cardiomyocytes lacking Dnaja3. Profiling of Dnaja3-interacting proteins identified the alpha-subunit of DNA polymerase gamma (Polga) as a client protein. These findings suggest that Dnaja3 is crucial for mitochondrial biogenesis, at least in part, through its chaperone activity on Polga and provide genetic evidence of the necessity for mitochondrial Hsp40 in preventing DCM.
Collapse
MESH Headings
- Animals
- Aorta/pathology
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Cell Line
- DNA/metabolism
- DNA Polymerase gamma
- DNA, Mitochondrial/metabolism
- DNA-Directed DNA Polymerase/metabolism
- Electron Transport
- Electron Transport Complex IV/metabolism
- Evolution, Molecular
- Green Fluorescent Proteins/metabolism
- HSP40 Heat-Shock Proteins/chemistry
- HSP40 Heat-Shock Proteins/genetics
- HSP40 Heat-Shock Proteins/metabolism
- HSP40 Heat-Shock Proteins/physiology
- Humans
- Immunoblotting
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Myocytes, Cardiac/metabolism
- Protein Binding
- Protein Denaturation
- Protein Folding
- Protein Renaturation
- Protein Structure, Tertiary
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Masaaki Hayashi
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037-1000, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Fritz S, Weinbach N, Westermann B. Mdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast. Mol Biol Cell 2003; 14:2303-13. [PMID: 12808031 PMCID: PMC194880 DOI: 10.1091/mbc.e02-12-0831] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial fusion and fission play important roles for mitochondrial morphology and function. We identified Mdm30 as a novel component required for maintenance of fusion-competent mitochondria in yeast. The Mdm30 sequence contains an F-box motif that is commonly found in subunits of Skp1-Cdc53-F-box protein ubiquitin ligases. A fraction of Mdm30 is associated with mitochondria. Cells lacking Mdm30 contain highly aggregated or fragmented mitochondria instead of the branched tubular network seen in wild-type cells. Deltamdm30 cells lose mitochondrial DNA at elevated temperature and fail to fuse mitochondria in zygotes at all temperatures. These defects are rescued by deletion of DNM1, a gene encoding a component of the mitochondrial division machinery. The protein level of Fzo1, a key component of the mitochondrial fusion machinery, is regulated by Mdm30. Elevated Fzo1 levels in cells lacking Mdm30 or in cells overexpressing Fzo1 from a heterologous promoter induce mitochondrial aggregation in a similar manner. Our results suggest that Mdm30 controls mitochondrial shape by regulating the steady-state level of Fzo1 and point to a connection of the ubiquitin/26S proteasome system and mitochondria.
Collapse
Affiliation(s)
- Stefan Fritz
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | |
Collapse
|
22
|
Voos W, Röttgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:51-62. [PMID: 12191768 DOI: 10.1016/s0167-4889(02)00264-1] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chaperone proteins have been initially identified by their ability to confer cellular resistance to various stress conditions. However, molecular chaperones participate also in many constitutive cellular processes. Mitochondria contain several members of the major chaperone families that have important functions in maintaining mitochondrial function. The major Hsp70 of the mitochondrial matrix (mtHsp70) is essential for the translocation of cytosolic precursor proteins across the two mitochondrial membranes. MtHsp70 interacts with the preprotein in transit in an ATP-dependent reaction as it emerges from the translocation channel of the inner membrane. Together with two essential partner proteins, Tim44 and Mge1, mtHsp70 forms a membrane-associated import motor complex responsible for vectorial polypeptide movement and unfolding of preprotein domains. Folding of newly imported proteins in the matrix is assisted by the soluble chaperone system formed by mtHsp70 and its partner protein Mdj1. For certain substrate proteins, the protected folding environment that is offered by the large oligomeric Hsp60 complex facilitates further folding reactions. The mitochondrial Hsp70 Ssq1 is involved in the assembly of mitochondrial Fe/S clusters together with another member of the DnaJ family, Jac1. Chaperones of the Clp/Hsp100 family mediate the prevention of aggregation under stress conditions and eventually the degradation of mitochondrial proteins. Together, the chaperones of the mitochondrial matrix form a complex interdependent chaperone network that is essential for most reactions of mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104, Freiburg, Germany.
| | | |
Collapse
|
23
|
Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN. Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. THE PLANT CELL 2002; 14:2215-32. [PMID: 12215516 PMCID: PMC150766 DOI: 10.1105/tpc.002170] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2002] [Accepted: 05/19/2002] [Indexed: 05/19/2023]
Abstract
Little is known about the molecular processes that govern female gametophyte (FG) development and function, and few FG-expressed genes have been identified. We report the identification and phenotypic analysis of 31 new FG mutants in Arabidopsis. These mutants have defects throughout development, indicating that FG-expressed genes govern essentially every step of FG development. To identify genes involved in cell death during FG development, we analyzed this mutant collection for lines with cell death defects. From this analysis, we identified one mutant, gfa2, with a defect in synergid cell death. Additionally, the gfa2 mutant has a defect in fusion of the polar nuclei. We isolated the GFA2 gene and show that it encodes a J-domain-containing protein. Of the J-domain-containing proteins in Saccharomyces cerevisiae (budding yeast), GFA2 is most similar to Mdj1p, which functions as a chaperone in the mitochondrial matrix. GFA2 is targeted to mitochondria in Arabidopsis and partially complements a yeast mdj1 mutant, suggesting that GFA2 is the Arabidopsis ortholog of yeast Mdj1p. These data suggest a role for mitochondria in cell death in plants.
Collapse
Affiliation(s)
- Cory A Christensen
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Germaniuk A, Liberek K, Marszalek J. A bichaperone (Hsp70-Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J Biol Chem 2002; 277:27801-8. [PMID: 12023279 DOI: 10.1074/jbc.m201756200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA synthesis is a thermosensitive process in the yeast Saccharomyces cerevisiae. We found that restoration of mtDNA synthesis following heat treatment of cells is dependent on reactivation of the mtDNA polymerase Mip1p through the action of a mitochondrial bichaperone system consisting of the Hsp70 system and the Hsp78 oligomeric protein. mtDNA synthesis was inefficiently restored after heat shock in yeast lacking either functional component of the bichaperone system. Furthermore, the activity of purified Mip1p was also thermosensitive; however, the purified components of the mitochondrial bichaperone system (Ssc1p, Mdj1p, Mge1p, and Hsp78p) were able to protect its activity under moderate heat shock conditions as well as to reactivate thermally inactivated Mip1p. Interestingly, the reactivation of endogenous Mip1p contributed more significantly to the restoration of mtDNA synthesis than did import of newly synthesized Mip1p from the cytosol. These observations suggest an important link between function of mitochondrial chaperones and the propagation of mitochondrial genomes under ever-changing environmental conditions.
Collapse
Affiliation(s)
- Aleksandra Germaniuk
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | | | | |
Collapse
|
25
|
Krzewska J, Langer T, Liberek K. Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Lett 2001; 489:92-6. [PMID: 11231020 DOI: 10.1016/s0014-5793(00)02423-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular chaperone protein Hsp78, a member of the Clp/Hsp100 family localized in the mitochondria of Saccharomyces cerevisiae, is required for maintenance of mitochondrial functions under heat stress. To characterize the biochemical mechanisms of Hsp78 function, Hsp78 was purified to homogeneity and its role in the reactivation of chemically and heat-denatured substrate protein was analyzed in vitro. Hsp78 alone was not able to mediate reactivation of firefly luciferase. Rather, efficient refolding was dependent on the simultaneous presence of Hsp78 and the mitochondrial Hsp70 machinery, composed of Ssc1p/Mdj1p/Mge1p. Bacterial DnaK/DnaJ/GrpE, which cooperates with the Hsp78 homolog, ClpB in Escherichia coli, could not substitute for the mitochondrial Hsp70 system. However, efficient Hsp78-dependent refolding of luciferase was observed if DnaK was replaced by Ssc1p in these experiments, suggesting a specific functional interaction of both chaperone proteins. These findings establish the cooperation of Hsp78 with the Hsp70 machinery in the refolding of heat-inactivated proteins and demonstrate a conserved mode of action of ClpB homologs.
Collapse
Affiliation(s)
- J Krzewska
- Department of Molecular and Cellular Biology, University of Gdansk, Poland
| | | | | |
Collapse
|
26
|
Oxelmark E, Marchini A, Malanchi I, Magherini F, Jaquet L, Hajibagheri MA, Blight KJ, Jauniaux JC, Tommasino M. Mmf1p, a novel yeast mitochondrial protein conserved throughout evolution and involved in maintenance of the mitochondrial genome. Mol Cell Biol 2000; 20:7784-97. [PMID: 11003673 PMCID: PMC86367 DOI: 10.1128/mcb.20.20.7784-7797.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel protein family (p14.5, or YERO57c/YJGFc) highly conserved throughout evolution has recently been identified. The biological role of these proteins is not yet well characterized. Two members of the p14.5 family are present in the yeast Saccharomyces cerevisiae. In this study, we have characterized some of the biological functions of the two yeast proteins. Mmf1p is a mitochondrial matrix factor, and homologous Mmf1p factor (Hmf1p) copurifies with the soluble cytoplasmic fraction. Deltammf1 cells lose mitochondrial DNA (mtDNA) and have a decreased growth rate, while Deltahmf1 cells do not display any visible phenotype. Furthermore, we demonstrate by genetic analysis that Mmf1p does not play a direct role in replication and segregation of the mtDNA. rho(+) Deltammf1 haploid cells can be obtained when tetrads are directly dissected on medium containing a nonfermentable carbon source. Our data also indicate that Mmf1p and Hmf1p have similar biological functions in different subcellular compartments. Hmf1p, when fused with the Mmf1p leader peptide, is transported into mitochondria and is able to functionally replace Mmf1p. Moreover, we show that homologous mammalian proteins are functionally related to Mmf1p. Human p14.5 localizes in yeast mitochondria and rescues the Deltammf1-associated phenotypes. In addition, fractionation of rat liver mitochondria showed that rat p14.5, like Mmf1p, is a soluble protein of the matrix. Our study identifies a biological function for Mmf1p and furthermore indicates that this function is conserved between members of the p14.5 family.
Collapse
Affiliation(s)
- E Oxelmark
- Abteilung F0200, Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kaufman BA, Newman SM, Hallberg RL, Slaughter CA, Perlman PS, Butow RA. In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc Natl Acad Sci U S A 2000; 97:7772-7. [PMID: 10869431 PMCID: PMC16620 DOI: 10.1073/pnas.140063197] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The segregating unit of mtDNA is a protein-DNA complex called the nucleoid. In an effort to understand how nucleoid proteins contribute to mtDNA organization and inheritance, we have developed an in organello formaldehyde crosslinking procedure to identify proteins associated with mtDNA. Using highly purified mitochondria, we observed a time-dependent crosslinking of protein to mtDNA as determined by sedimentation through isopycnic cesium chloride gradients. We detected approximately 20 proteins crosslinked to mtDNA and identified 11, mostly by mass spectrometry. Among them is Abf2p, an abundant, high-mobility group protein that is known to function in nucleoid morphology, and in mtDNA transactions. In addition to several other proteins with known DNA binding properties or that function in mtDNA maintenance, we identified other mtDNA-associated proteins that were not anticipated, such as the molecular chaperone Hsp60p and a Krebs cycle protein, Kgd2p. Genetic experiments indicate that hsp60-ts mutants have a petite-inducing phenotype at the permissive temperature and that a kgd2Delta mutation increases the petite-inducing phenotype of an abf2Delta mutation. Crosslinking and DNA gel shift experiments show that Hsp60p binds to single-stranded DNA with high specificity for the template strand of a putative origin of mtDNA replication. These data identify bifunctional proteins that participate in the stability of rho(+) mtDNA.
Collapse
Affiliation(s)
- B A Kaufman
- Department of Molecular Biology, and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | | | | | |
Collapse
|