1
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Ver Hoef L, Lubin FD. Alterations in DNA 5-hydroxymethylation patterns in the hippocampus of an experimental model of chronic epilepsy. Neurobiol Dis 2024; 200:106638. [PMID: 39142613 DOI: 10.1016/j.nbd.2024.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal, SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65, TLR4, and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
Affiliation(s)
- Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Rebecca M Hauser
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Richard G Sánchez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Silvienne Sint Jago
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Remy J Stuckey
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - R Ryley Parrish
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States of America.
| | - Lawrence Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
2
|
Policarpi C, Munafò M, Tsagkris S, Carlini V, Hackett JA. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat Genet 2024; 56:1168-1180. [PMID: 38724747 PMCID: PMC11176084 DOI: 10.1038/s41588-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Chromatin modifications are linked with regulating patterns of gene expression, but their causal role and context-dependent impact on transcription remains unresolved. Here we develop a modular epigenome editing platform that programs nine key chromatin modifications, or combinations thereof, to precise loci in living cells. We couple this with single-cell readouts to systematically quantitate the magnitude and heterogeneity of transcriptional responses elicited by each specific chromatin modification. Among these, we show that installing histone H3 lysine 4 trimethylation (H3K4me3) at promoters can causally instruct transcription by hierarchically remodeling the chromatin landscape. We further dissect how DNA sequence motifs influence the transcriptional impact of chromatin marks, identifying switch-like and attenuative effects within distinct cis contexts. Finally, we examine the interplay of combinatorial modifications, revealing that co-targeted H3K27 trimethylation (H3K27me3) and H2AK119 monoubiquitination (H2AK119ub) maximizes silencing penetrance across single cells. Our precision-perturbation strategy unveils the causal principles of how chromatin modification(s) influence transcription and dissects how quantitative responses are calibrated by contextual interactions.
Collapse
Affiliation(s)
- Cristina Policarpi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Marzia Munafò
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Stylianos Tsagkris
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Valentina Carlini
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
- Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Jamie A Hackett
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy.
- Genome Biology Unit, EMBL, Heidelberg, Germany.
| |
Collapse
|
3
|
Yi SJ, Lim J, Kim K. Exploring epigenetic strategies for the treatment of osteoporosis. Mol Biol Rep 2024; 51:398. [PMID: 38453825 DOI: 10.1007/s11033-024-09353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The worldwide trend toward an aging population has resulted in a higher incidence of chronic conditions, such as osteoporosis. Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mass and increased fracture risk, encompasses primary and secondary forms, each with distinct etiologies. Mechanistically, osteoporosis involves an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Current pharmacological interventions for osteoporosis, such as bisphosphonates, denosumab, and teriparatide, aim to modulate bone turnover and preserve bone density. Hormone replacement therapy and lifestyle modifications are also recommended to manage the condition. While current medications offer therapeutic options, they are not devoid of limitations. Recent studies have highlighted the importance of epigenetic mechanisms, including DNA methylation and histone modifications, in regulating gene expression during bone remodeling. The use of epigenetic drugs, or epidrugs, to target these mechanisms offers a promising avenue for therapeutic intervention in osteoporosis. In this review, we comprehensively examine the recent advancements in the application of epidrugs for treating osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jaeho Lim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
4
|
Taglini F, Kafetzopoulos I, Rolls W, Musialik KI, Lee HY, Zhang Y, Marenda M, Kerr L, Finan H, Rubio-Ramon C, Gautier P, Wapenaar H, Kumar D, Davidson-Smith H, Wills J, Murphy LC, Wheeler A, Wilson MD, Sproul D. DNMT3B PWWP mutations cause hypermethylation of heterochromatin. EMBO Rep 2024; 25:1130-1155. [PMID: 38291337 PMCID: PMC7615734 DOI: 10.1038/s44319-024-00061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
The correct establishment of DNA methylation patterns is vital for mammalian development and is achieved by the de novo DNA methyltransferases DNMT3A and DNMT3B. DNMT3B localises to H3K36me3 at actively transcribing gene bodies via its PWWP domain. It also functions at heterochromatin through an unknown recruitment mechanism. Here, we find that knockout of DNMT3B causes loss of methylation predominantly at H3K9me3-marked heterochromatin and that DNMT3B PWWP domain mutations or deletion result in striking increases of methylation in H3K9me3-marked heterochromatin. Removal of the N-terminal region of DNMT3B affects its ability to methylate H3K9me3-marked regions. This region of DNMT3B directly interacts with HP1α and facilitates the bridging of DNMT3B with H3K9me3-marked nucleosomes in vitro. Our results suggest that DNMT3B is recruited to H3K9me3-marked heterochromatin in a PWWP-independent manner that is facilitated by the protein's N-terminal region through an interaction with a key heterochromatin protein. More generally, we suggest that DNMT3B plays a role in DNA methylation homeostasis at heterochromatin, a process which is disrupted in cancer, aging and Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome.
Collapse
Affiliation(s)
- Francesca Taglini
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ioannis Kafetzopoulos
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Altos Labs, Cambridge Institute, Cambridge, UK
| | - Willow Rolls
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kamila Irena Musialik
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- MRC London Institute of Medical Sciences and Institute of Clinical Sciences, Imperial College London, London, UK
| | - Heng Yang Lee
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Endocrine Oncology Research Group, Department of Surgery, The Royal College of Surgeons RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Yujie Zhang
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Mattia Marenda
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Lyndsay Kerr
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Hannah Finan
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Molecular Health Sciences, Zürich, Switzerland
| | - Cristina Rubio-Ramon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Philippe Gautier
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Hannah Wapenaar
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Dhananjay Kumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Hazel Davidson-Smith
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jimi Wills
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ann Wheeler
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Hoef LV, Lubin FD. Alterations in DNA 5-hydroxymethylation Patterns in the Hippocampus of an Experimental Model of Refractory Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560698. [PMID: 37873276 PMCID: PMC10592907 DOI: 10.1101/2023.10.03.560698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal , SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65 , TLR4 , and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
|
6
|
Zhu L, Wang J, Zhang Y, Xiang X, Liu K, Wei J, Li Z, Shao D, Li B, Ma Z, Qiu Y. A Porcine DNMT1 Variant: Molecular Cloning and Generation of Specific Polyclonal Antibody. Genes (Basel) 2023; 14:1324. [PMID: 37510229 PMCID: PMC10379332 DOI: 10.3390/genes14071324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methyltransferase 1 (DNMT1), the first-identified DNA methyltransferase in mammals, has been well studied in the control of embryo development and somatic homeostasis in mice and humans. Accumulating reports have demonstrated that DNMT1 plays an important role in the regulation of differentiation and the activation of immune cells. However, little is known about the effects of porcine DNMT1 on such functional regulation, especially the regulation of the biological functions of immune cells. In this study, we report the cloning of DNMT1 (4833 bp in length) from porcine alveolar macrophages (PAMs). According to the sequence of the cloned DNMT1 gene, the deduced protein sequence contains a total of 1611 amino acids with a 2 amino acid insertion, a 1 amino acid deletion, and 12 single amino acid mutations in comparison to the reported DNMT1 protein. A polyclonal antibody based on a synthetic peptide was generated to study the expression of the porcine DNMT1. The polyclonal antibody only recognized the cloned porcine DNMT1 and not the previously reported protein due to a single amino acid difference in the antigenic peptide region. However, the polyclonal antibody recognized the endogenous DNMT1 in several porcine cells (PAM, PK15, ST, and PIEC) and the cells of other species (HEK-293T, Marc-145, MDBK, and MDCK cells). Moreover, our results demonstrated that all the detected tissues of piglet express DNMT1, which is the same as that in porcine alveolar macrophages. In summary, we have identified a porcine DNMT1 variant with sequence and expression analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yafeng Qiu
- Correspondence: ; Tel.: +86-21-34293635; Fax: +86-21-54081818
| |
Collapse
|
7
|
Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci 2023; 24:ijms24021727. [PMID: 36675240 PMCID: PMC9863985 DOI: 10.3390/ijms24021727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The mammalian DNA methylation landscape is established and maintained by the combined activities of the two key epigenetic modifiers, DNA methyltransferases (DNMT) and Ten-eleven-translocation (TET) enzymes. Once DNMTs produce 5-methylcytosine (5mC), TET proteins fine-tune the DNA methylation status by consecutively oxidizing 5mC to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives. The 5mC and oxidized methylcytosines are essential for the maintenance of cellular identity and function during differentiation. Cytosine modifications with DNMT and TET enzymes exert pleiotropic effects on various aspects of hematopoiesis, including self-renewal of hematopoietic stem/progenitor cells (HSPCs), lineage determination, differentiation, and function. Under pathological conditions, these enzymes are frequently dysregulated, leading to loss of function. In particular, the loss of DNMT3A and TET2 function is conspicuous in diverse hematological disorders, including myeloid and lymphoid malignancies, and causally related to clonal hematopoiesis and malignant transformation. Here, we update recent advances in understanding how the maintenance of DNA methylation homeostasis by DNMT and TET proteins influences normal hematopoiesis and malignant transformation, highlighting the potential impact of DNMT3A and TET2 dysregulation on clonal dominance and evolution of pre-leukemic stem cells to full-blown malignancies. Clarification of the normal and pathological functions of DNA-modifying epigenetic regulators will be crucial to future innovations in epigenetic therapies for treating hematological disorders.
Collapse
|
8
|
Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Are Alterations in DNA Methylation Related to CKD Development? Int J Mol Sci 2022; 23:7108. [PMID: 35806113 PMCID: PMC9267048 DOI: 10.3390/ijms23137108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/29/2022] Open
Abstract
The modifications in genomic DNA methylation are involved in the regulation of normal and pathological cellular processes. The epigenetic regulation stimulates biological plasticity as an adaptive response to variations in environmental factors. The role of epigenetic changes is vital for the development of some diseases, including atherogenesis, cancers, and chronic kidney disease (CKD). The results of studies presented in this review have suggested that altered DNA methylation can modulate the expression of pro-inflammatory and pro-fibrotic genes, as well those essential for kidney development and function, thus stimulating renal disease progression. Abnormally increased homocysteine, hypoxia, and inflammation have been suggested to alter epigenetic regulation of gene expression in CKD. Studies of renal samples have demonstrated the relationship between variations in DNA methylation and fibrosis and variations in estimated glomerular filtration rate (eGFR) in human CKD. The unravelling of the genetic-epigenetic profile would enhance our understanding of processes underlying the development of CKD. The understanding of multifaceted relationship between DNA methylation, genes expression, and disease development and progression could improve the ability to identify individuals at risk of CKD and enable the choice of appropriate disease management.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Magdalena Rysz-Górzyńska
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical Univesity of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
9
|
Carlini V, Policarpi C, Hackett JA. Epigenetic inheritance is gated by naïve pluripotency and Dppa2. EMBO J 2022; 41:e108677. [PMID: 35199868 PMCID: PMC8982627 DOI: 10.15252/embj.2021108677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Environmental factors can trigger cellular responses that propagate across mitosis or even generations. Perturbations to the epigenome could underpin such acquired changes, however, the extent and contexts in which modified chromatin states confer heritable memory in mammals is unclear. Here, we exploit a precision epigenetic editing strategy and forced Xist activity to programme de novo heterochromatin domains (epialleles) at endogenous loci and track their inheritance in a developmental model. We find that naïve pluripotent phases systematically erase ectopic domains of heterochromatin via active mechanisms, which likely acts as an intergenerational safeguard against transmission of epialleles. Upon lineage specification, however, acquired chromatin states can be probabilistically inherited under selectively favourable conditions, including propagation of p53 silencing through in vivo development. Using genome‐wide CRISPR screening, we identify molecular factors that restrict heritable memory of epialleles in naïve pluripotent cells, and demonstrate that removal of chromatin factor Dppa2 unlocks the potential for epigenetic inheritance uncoupled from DNA sequence. Our study outlines a mechanistic basis for how epigenetic inheritance is constrained in mammals, and reveals genomic and developmental contexts in which heritable memory is feasible.
Collapse
Affiliation(s)
- Valentina Carlini
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy.,Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Cristina Policarpi
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Jamie A Hackett
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| |
Collapse
|
10
|
Kuo FC, Chao CT, Lin SH. The Dynamics and Plasticity of Epigenetics in Diabetic Kidney Disease: Therapeutic Applications Vis-à-Vis. Int J Mol Sci 2022; 23:ijms23020843. [PMID: 35055027 PMCID: PMC8777872 DOI: 10.3390/ijms23020843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to the phenomenon of progressive decline in the glomerular filtration rate accompanied by adverse consequences, including fluid retention, electrolyte imbalance, and an increased cardiovascular risk compared to those with normal renal function. The triggers for the irreversible renal function deterioration are multifactorial, and diabetes mellitus serves as a major contributor to the development of CKD, namely diabetic kidney disease (DKD). Recently, epigenetic dysregulation emerged as a pivotal player steering the progression of DKD, partly resulting from hyperglycemia-associated metabolic disturbances, rising oxidative stress, and/or uncontrolled inflammation. In this review, we describe the major epigenetic molecular mechanisms, followed by summarizing current understandings of the epigenetic alterations pertaining to DKD. We highlight the epigenetic regulatory processes involved in several crucial renal cell types: Mesangial cells, podocytes, tubular epithelia, and glomerular endothelial cells. Finally, we highlight epigenetic biomarkers and related therapeutic candidates that hold promising potential for the early detection of DKD and the amelioration of its progression.
Collapse
Affiliation(s)
- Feng-Chih Kuo
- National Defense Medical Center, Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chia-Ter Chao
- Department of Internal Medicine, Nephrology Division, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Internal Medicine, Nephrology Division, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Shih-Hua Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
- National Defense Medical Center, Department of Internal Medicine, Nephrology Division, Taipei 114, Taiwan
| |
Collapse
|
11
|
mRNA Expressions of Methylation Related Enzymes and Duration of Thermal Conditioning in Chicks. J Poult Sci 2022; 59:90-95. [PMID: 35125918 PMCID: PMC8791769 DOI: 10.2141/jpsa.0210029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
DNA methylation regulates gene expression by modifying the nucleosome structure of DNA, without altering the gene sequence. It has been reported that DNA methylation reactions are catalyzed by several enzymes. In chickens, thermal conditioning treatment affects the central DNA methylation levels. The purpose of this study was to clarify the changes in DNA methylation and demethylation factors during thermal conditioning in the hypothalamus of 3-day-old chicks. Male chicks (3-days old) were exposed to 40±0.5°C as a thermal conditioning treatment for 1, 2, 6, 9, or 12 h. The control chicks were kept in a thermoneutral zone (30±0.2°C). After thermal conditioning, the mRNA levels of DNA methyltransferase (DNMT)-1, -3a, -3b, and ten-eleven translocation (TET)-1, -2, and -3 in the hypothalamus were measured by q-PCR. The mRNA levels of DNMT-3a and TET-1 were increased by thermal conditioning. Moreover, the expression level of TET-1 increased with the loading time of the thermal conditioning. The gene expressions of DNMT-1, DNMT-3b, TET-2, and TET-3 were not affected by thermal conditioning. Since DNMT-3a is a catalyst for de-novo DNA methylation and TET-1 catalyzes the oxidation of methylated cytosine, it is suggested that the thermal conditioning increased the activation of DNA methylation and demethylation factors, which occur in the hypothalamus of neonatal chicks.
Collapse
|
12
|
Pastor WA, Kwon SY. Distinctive aspects of the placental epigenome and theories as to how they arise. Cell Mol Life Sci 2022; 79:569. [PMID: 36287261 PMCID: PMC9606139 DOI: 10.1007/s00018-022-04568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
The placenta has a methylome dramatically unlike that of any somatic cell type. Among other distinctions, it features low global DNA methylation, extensive “partially methylated domains” packed in dense heterochromatin and methylation of hundreds of CpG islands important in somatic development. These features attract interest in part because a substantial fraction of human cancers feature the exact same phenomena, suggesting parallels between epigenome formation in placentation and cancer. Placenta also features an expanded set of imprinted genes, some of which come about by distinctive developmental pathways. Recent discoveries, some from far outside the placental field, shed new light on how the unusual placental epigenetic state may arise. Nonetheless, key questions remain unresolved.
Collapse
Affiliation(s)
- William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
13
|
Meng L, Hu H, Liu Z, Zhang L, Zhuan Q, Li X, Fu X, Zhu S, Hou Y. The Role of Ca 2 + in Maturation and Reprogramming of Bovine Oocytes: A System Study of Low-Calcium Model. Front Cell Dev Biol 2021; 9:746237. [PMID: 34765601 PMCID: PMC8577575 DOI: 10.3389/fcell.2021.746237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
[Ca2+]i is essential for mammalian oocyte maturation and early embryonic development, as those processes are Ca2+ dependent. In the present study, we investigated the effect of [Ca2+]i on in vitro maturation and reprogramming of oocytes in a lower calcium model of oocyte at metaphase II (MII) stage, which was established by adding cell-permeant Ca2+ chelator BAPTA-AM to the maturation medium. Results showed that the extrusion of the first polar body (PB1) was delayed, and oocyte cytoplasmic maturation, including mitochondrial and endoplasmic reticulum distribution, was impaired in lower calcium model. The low-calcium-model oocytes presented a poor developmental phenotype of somatic cell nuclear transfer (SCNT) embryos at the beginning of activation of zygotic genome. At the same time, oxidative stress and apoptosis were observed in the low-calcium-model oocytes; subsequently, an RNA-seq analysis of the lower-calcium-model oocytes screened 24 genes responsible for the poor oocyte reprogramming, and six genes (ID1, SOX2, DPPA3, ASF1A, MSL3, and KDM6B) were identified by quantitative PCR. Analyzing the expression of these genes is helpful to elucidate the mechanisms of [Ca2+]i regulating oocyte reprogramming. The most significant difference gene in this enriched item was ID1. Our results showed that the low calcium might give rise to oxidative stress and apoptosis, resulting in impaired maturation of bovine oocytes and possibly affecting subsequent reprogramming ability through the reduction of ID1.
Collapse
Affiliation(s)
- Lin Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongmei Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Wu J, Liu LL, Cao M, Hu A, Hu D, Luo Y, Wang H, Zhong JN. DNA methylation plays important roles in retinal development and diseases. Exp Eye Res 2021; 211:108733. [PMID: 34418429 DOI: 10.1016/j.exer.2021.108733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
DNA methylation is important in developing and post-mitotic cells in various tissues. Recent studies have shown that DNA methylation is highly dynamic, and plays important roles during retinal development and aging. In addition, the dynamic regulation of DNA methylation is involved in the occurrence and development of age-related macular degeneration and diabetic retinopathy and shows potential in disease diagnoses and prognoses. This review introduces the epigenetic concepts of DNA methylation and demethylation with an emphasis on their regulatory roles in retinal development and related diseases. Moreover, we propose exciting ideas such as its crosstalk with other epigenetic modifications and retinal regeneration, to provide a potential direction for understanding retinal diseases from the epigenetic perspective.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China; Department of Ophthalmology, Lishui Municipal Central Hospital, Lishui, 323000, Zhejiang Province, China
| | - Lin-Lin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Miao Cao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China; Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Ang Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Die Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China; Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Hui Wang
- Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Jia-Ning Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| |
Collapse
|
15
|
Effect of the HDAC Inhibitor on Histone Acetylation and Methyltransferases in A2780 Ovarian Cancer Cells. ACTA ACUST UNITED AC 2021; 57:medicina57050456. [PMID: 34066975 PMCID: PMC8151761 DOI: 10.3390/medicina57050456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
Background andObjective: Epigenetic modifications are believed to play a significant role in the development of cancer progression, growth, differentiation, and cell death. One of the most popular histone deacetylases inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, can directly activate p21WAF1/CIP1 gene transcription through hyperacetylation of histones by a p53 independent mechanism. In the present investigation, we evaluated the correlation between histone modifications and DNA methyltransferase enzyme levels following SAHA treatments in A2780 ovarian cancer cells. Materials and Methods: Acetylation of histones and methyltransferases levels were analyzed using RT2 profiler PCR array, immunoblotting, and immunofluorescence methods in 2D and 3D cell culture systems. Results: The inhibition of histone deacetylases (HDAC) activities by SAHA can reduce DNA methyl transferases / histone methyl transferases (DNMTs/HMTs) levels through induction of hyperacetylation of histones. Immunofluorescence analysis of cells growing in monolayers and spheroids revealed significant up-regulation of histone acetylation preceding the above-described changes. Conclusions: Our results depict an interesting interplay between histone hyperacetylation and a decrease in methyltransferase levels in ovarian cancer cells, which may have a positive impact on the overall outcomes of cancer treatment.
Collapse
|
16
|
Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021; 12:649587. [PMID: 34025445 PMCID: PMC8131683 DOI: 10.3389/fphys.2021.649587] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) leads to high morbidity and disability. Inflammation plays a critical role in the pathogenesis of DN, which involves renal cells and immune cells, the microenvironment, as well as extrinsic factors, such as hyperglycemia, chemokines, cytokines, and growth factors. Epigenetic modifications usually regulate gene expression via DNA methylation, histone modification, and non-coding RNAs without altering the DNA sequence. During the past years, numerous studies have been published to reveal the mechanisms of epigenetic modifications that regulate inflammation in DN. This review aimed to summarize the latest evidence on the interplay of epigenetics and inflammation in DN, and highlight the potential targets for treatment and diagnosis of DN.
Collapse
Affiliation(s)
- Bao-Yi Shao
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shao-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
17
|
Soukupová M, Zucchini S, Trempat P, Ingusci S, Perrier-Biollay C, Barbieri M, Cattaneo S, Bettegazzi B, Falzoni S, Berthommé H, Simonato M. Improvement of HSV-1 based amplicon vectors for a safe and long-lasting gene therapy in non-replicating cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:399-412. [PMID: 33869657 PMCID: PMC8044385 DOI: 10.1016/j.omtm.2021.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/25/2021] [Indexed: 11/22/2022]
Abstract
A key factor for developing gene therapy strategies for neurological disorders is the availability of suitable vectors. Currently, the most advanced are adeno-associated vectors that, while being safe and ensuring long-lasting transgene expression, have a very limited cargo capacity. In contrast, herpes simplex virus-based amplicon vectors can host huge amounts of foreign DNA, but concerns exist about their safety and ability to express transgenes long-term. We aimed at modulating and prolonging amplicon-induced transgene expression kinetics in vivo using different promoters and preventing transgene silencing. To pursue the latter, we deleted bacterial DNA sequences derived from vector construction and shielded the transgene cassette using AT-rich and insulator-like sequences (SAm technology). We employed luciferase and GFP as reporter genes. To determine transgene expression kinetics, we injected vectors in the hippocampus of mice that were longitudinally scanned for bioluminescence for 6 months. To evaluate safety, we analyzed multiple markers of damage and performed patch clamp electrophysiology experiments. All vectors proved safe, and we managed to modulate the duration of transgene expression, up to obtaining a stable, long-lasting expression using the SAm technology. Therefore, these amplicon vectors represent a flexible, efficient, and safe tool for gene delivery in the brain.
Collapse
Affiliation(s)
- Marie Soukupová
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Pascal Trempat
- Bioviron, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Selene Ingusci
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy
| | | | - Mario Barbieri
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Cattaneo
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Barbara Bettegazzi
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Simonetta Falzoni
- Department of Medical Sciences, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Hervé Berthommé
- Bioviron, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy.,Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| |
Collapse
|
18
|
Masalmeh RHA, Taglini F, Rubio-Ramon C, Musialik KI, Higham J, Davidson-Smith H, Kafetzopoulos I, Pawlicka KP, Finan HM, Clark R, Wills J, Finch AJ, Murphy L, Sproul D. De novo DNA methyltransferase activity in colorectal cancer is directed towards H3K36me3 marked CpG islands. Nat Commun 2021; 12:694. [PMID: 33514701 PMCID: PMC7846778 DOI: 10.1038/s41467-020-20716-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.
Collapse
Affiliation(s)
| | - Francesca Taglini
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Cristina Rubio-Ramon
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila I Musialik
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Jonathan Higham
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Ioannis Kafetzopoulos
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila P Pawlicka
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Hannah M Finan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Jimi Wills
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Andrew J Finch
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK.
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
19
|
Juarez PD, Hood DB, Song MA, Ramesh A. Use of an Exposome Approach to Understand the Effects of Exposures From the Natural, Built, and Social Environments on Cardio-Vascular Disease Onset, Progression, and Outcomes. Front Public Health 2020; 8:379. [PMID: 32903514 PMCID: PMC7437454 DOI: 10.3389/fpubh.2020.00379] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity, diabetes, and hypertension have increased by epidemic proportions in recent years among African Americans in comparison to Whites resulting in significant adverse cardiovascular disease (CVD) disparities. Today, African Americans are 30% more likely to die of heart disease than Whites and twice as likely to have a stroke. The causes of these disparities are not yet well-understood. Improved methods for identifying underlying risk factors is a critical first step toward reducing Black:White CVD disparities. This article will focus on environmental exposures in the external environment and how they can lead to changes at the cellular, molecular, and organ level to increase the personal risk for CVD and lead to population level CVD racial disparities. The external environment is defined in three broad domains: natural (air, water, land), built (places you live, work, and play) and social (social, demographic, economic, and political). We will describe how environmental exposures in the natural, built, and social environments "get under the skin" to affect gene expression though epigenetic, pan-omics, and related mechanisms that lead to increased risk for adverse CVD health outcomes and population level disparities. We also will examine the important role of metabolomics, proteomics, transcriptomics, genomics, and epigenomics in understanding how exposures in the natural, built, and social environments lead to CVD disparities with implications for clinical, public health, and policy interventions. In this review, we apply an exposome approach to Black:White CVD racial disparities. The exposome is a measure of all the exposures of an individual across the life course and the relationship of those exposures to health effects. The exposome represents the totality of exogenous (external) and endogenous (internal) exposures from conception onwards, simultaneously distinguishing, characterizing, and quantifying etiologic, mediating, moderating, and co-occurring risk and protective factors and their relationship to disease. Specifically, it assesses the biological mechanisms and underlying pathways through which chemical and non-chemical environmental exposures are associated with CVD onset, progression and outcomes. The exposome is a promising approach for understanding the complex relationships among environment, behavior, biology, genetics, and disease phenotypes that underlie population level, Black: White CVD disparities.
Collapse
Affiliation(s)
- Paul D Juarez
- Meharry Medical College, Nashville, TN, United States
| | - Darryl B Hood
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
20
|
Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S, Uryu H, Zhang ZM, Chen D, Yin J, Dukatz M, Anteneh H, Jurkowska RZ, Lu J, Wang Y, Bashtrykov P, Wade PA, Wang GG, Jeltsch A, Song J. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun 2020; 11:3355. [PMID: 32620778 PMCID: PMC7335073 DOI: 10.1038/s41467-020-17109-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Mammalian DNA methylation patterns are established by two de novo DNA methyltransferases, DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis.
Collapse
Affiliation(s)
- Linfeng Gao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sara A Grimm
- Division of Intramural Research, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Sabrina Adam
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Hidetaka Uryu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Dongliang Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Hiwot Anteneh
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Paul A Wade
- Division of Intramural Research, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Jikui Song
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA.
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
21
|
Abstract
Early life adversity is associated with long-term effects on physical and mental
health later in life, but the mechanisms are yet unclear. Epigenetic mechanisms program
cell-type-specific gene expression during development, enabling one genome to be
programmed in many ways, resulting in diverse stable profiles of gene expression in
different cells and organs in the body. DNA methylation, an enzymatic covalent
modification of DNA, has been one of the principal epigenetic mechanisms investigated.
Emerging evidence is consistent with the idea that epigenetic processes are involved in
embedding the impact of early-life experience in the genome and mediating between social
environments and later behavioral phenotypes. Whereas there is evidence supporting this
hypothesis in animal studies, human studies have been less conclusive. A major problem
is the fact that the brain is inaccessible to epigenetic studies in humans and the
relevance of DNA methylation in peripheral tissues to behavioral phenotypes has been
questioned. In addition, human studies are usually confounded with genetic and
environmental heterogeneity and it is very difficult to derive causality. The idea that
epigenetic mechanisms mediate the life-long effects of perinatal adversity has
attractive potential implications for early detection, prevention, and intervention in
mental health disorders will be discussed.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
22
|
Harnessing targeted DNA methylation and demethylation using dCas9. Essays Biochem 2020; 63:813-825. [PMID: 31724704 DOI: 10.1042/ebc20190029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
DNA methylation is an essential DNA modification that plays a crucial role in genome regulation during differentiation and development, and is disrupted in a range of disease states. The recent development of CRISPR/catalytically dead CRISPR/Cas9 (dCas9)-based targeted DNA methylation editing tools has enabled new insights into the roles and functional relevance of this modification, including its importance at regulatory regions and the role of aberrant methylation in various diseases. However, while these tools are advancing our ability to understand and manipulate this regulatory layer of the genome, they still possess a variety of limitations in efficacy, implementation, and targeting specificity. Effective targeted DNA methylation editing will continue to advance our fundamental understanding of the role of this modification in different genomic and cellular contexts, and further improvements may enable more accurate disease modeling and possible future treatments. In this review, we discuss strategies, considerations, and future directions for targeted DNA methylation editing.
Collapse
|
23
|
Lin CC, Chen YP, Yang WZ, Shen JCK, Yuan H. Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res 2020; 48:3949-3961. [PMID: 32083663 PMCID: PMC7144912 DOI: 10.1093/nar/gkaa111] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B-3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.
Collapse
Affiliation(s)
- Chien-Chu Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - James C K Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei 10048, Taiwan
| |
Collapse
|
24
|
Ectopic Methylation of a Single Persistently Unmethylated CpG in the Promoter of the Vitellogenin Gene Abolishes Its Inducibility by Estrogen through Attenuation of Upstream Stimulating Factor Binding. Mol Cell Biol 2019; 39:MCB.00436-19. [PMID: 31548262 DOI: 10.1128/mcb.00436-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 01/02/2023] Open
Abstract
The enhancer/promoter of the vitellogenin II gene (VTG) has been extensively studied as a model system of vertebrate transcriptional control. While deletion mutagenesis and in vivo footprinting identified the transcription factor (TF) binding sites governing its tissue specificity, DNase hypersensitivity and DNA methylation studies revealed the epigenetic changes accompanying its hormone-dependent activation. Moreover, upon induction with estrogen (E2), the region flanking the estrogen-responsive element (ERE) was reported to undergo active DNA demethylation. We now show that although the VTG ERE is methylated in embryonic chicken liver and in LMH/2A hepatocytes, its induction by E2 was not accompanied by extensive demethylation. In contrast, E2 failed to activate a VTG enhancer/promoter-controlled luciferase reporter gene methylated by SssI. Surprisingly, this inducibility difference could be traced not to the ERE but rather to a single CpG in an E-box (CACGTG) sequence upstream of the VTG TATA box, which is unmethylated in vivo but methylated by SssI. We demonstrate that this E-box binds the upstream stimulating factor USF1/2. Selective methylation of the CpG within this binding site with an E-box-specific DNA methyltransferase, Eco72IM, was sufficient to attenuate USF1/2 binding in vitro and abolish the hormone-induced transcription of the VTG gene in the reporter system.
Collapse
|
25
|
Sato K, Kumagai N, Suzuki N. Alteration of the DNA Methylation Signature of Renal Erythropoietin-Producing Cells Governs the Sensitivity to Drugs Targeting the Hypoxia-Response Pathway in Kidney Disease Progression. Front Genet 2019; 10:1134. [PMID: 31798631 PMCID: PMC6863978 DOI: 10.3389/fgene.2019.01134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% of the population worldwide and burdens citizens with heavy medical expenses in many countries. Because a vital erythroid growth factor, erythropoietin (EPO), is secreted from renal interstitial fibroblasts [renal EPO-producing (REP) cells], anemia arises as a major complication of CKD. We determined that hypoxia-inducible factor 2α (HIF2α), which is inactivated by HIF-prolyl hydroxylase domain-containing proteins (PHDs) in an oxygen-dependent manner, tightly regulates EPO production in REP cells at the gene transcription level to maintain oxygen homeostasis. HIF2α-mediated disassembly of the nucleosome in the EPO gene is also involved in hypoxia-inducible EPO production. In renal anemia patients, anemic and pathological hypoxia is ineffective toward EPO induction due to the inappropriate over-activation of PHDs in REP cells transformed into myofibroblasts (MF-REP cells) due to kidney damage. Accordingly, PHD inhibitory compounds are being developed for the treatment of renal anemia. However, our studies have demonstrated that the promoter regions of the genes encoding EPO and HIF2α are highly methylated in MF-REP cells, and the expression of these genes is epigenetically silenced with CKD progression. This finding notably indicates that the efficacy of PHD inhibitors depends on the CKD stage of each patient. In addition, a strategy for harvesting renal cells, including REP cells from the urine of patients, is proposed to identify plausible biomarkers for CKD and to develop personalized precision medicine against CKD by a non-invasive strategy.
Collapse
Affiliation(s)
- Koji Sato
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naonori Kumagai
- Department of Pediatrics, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
26
|
Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Curr Opin Neurobiol 2019; 59:189-206. [PMID: 31634674 DOI: 10.1016/j.conb.2019.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Inherited information not encoded in the DNA sequence can regulate a variety of complex phenotypes. However, how this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear. Here we review recent examples of brain related transgenerational epigenetic inheritance and delineate potential molecular mechanisms that could regulate how non-genetic information could be transmitted.
Collapse
Affiliation(s)
- Noa Liberman
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
27
|
Nowialis P, Lopusna K, Opavska J, Haney SL, Abraham A, Sheng P, Riva A, Natarajan A, Guryanova O, Simpson M, Hlady R, Xie M, Opavsky R. Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions. Nat Commun 2019; 10:4374. [PMID: 31558711 PMCID: PMC6763448 DOI: 10.1038/s41467-019-12355-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
DNA methylation regulates gene expression in a variety of processes, including mouse embryonic development. Four catalytically active enzymes function in mice as DNA methyltransferases (Dnmts) and as transcriptional regulators. Inactivation of Dnmt3b results in mouse embryonic lethality, but which activities are involved is unclear. Here we show that catalytically inactive Dnmt3b restores a majority of methylation and expression changes deregulated in the absence of Dnmt3b, and as a result, mice survive embryonic development. Thus, Dnmt3b functions as an accessory cofactor supporting catalytic activities performed by other Dnmts. We further demonstrate that Dnmt3b is linked to a control of major developmental pathways, including Wnt and hedgehog signaling. Dnmt3b directly represses Wnt9b whose aberrant up-regulation contributes to embryonic lethality of Dnmt3b knockout embryos. Our results highlight that Dnmt3b is a multifaceted protein that serves as an enzyme, an accessory factor for other methyltransferases, and as a transcriptional repressor in mouse embryogenesis.
Collapse
Affiliation(s)
- Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Amarnath Natarajan
- University of Nebraska Medical Center, The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, 986805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Olga Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 260, Gainesville, FL, 32610, USA
| | - Melanie Simpson
- Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA
| | - Ryan Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55901, USA
| | - Mingyi Xie
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
28
|
Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of Epigenetic Mechanisms and Non-coding RNAs in Blood-Brain Barrier and Neurovascular Unit Injury and Recovery After Stroke. Front Neurosci 2019; 13:864. [PMID: 31543756 PMCID: PMC6732937 DOI: 10.3389/fnins.2019.00864] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cessation of blood flow leads to a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface which evolves over time and space, and results in damage to neural cells and edema formation. Cerebral ischemic injury evokes a profound and deleterious upregulation in inflammation and triggers multiple cell death pathways, but it also induces a series of the events associated with regenerative responses, including vascular remodeling, angiogenesis, and neurogenesis. Emerging evidence suggests that epigenetic reprograming could play a pivotal role in ongoing post-stroke neurovascular unit (NVU) changes and recovery. This review summarizes current knowledge about post-stroke recovery processes at the NVU, as well as epigenetic mechanisms and modifiers (e.g., DNA methylation, histone modifying enzymes and microRNAs) associated with stroke injury, and NVU repair. It also discusses novel drug targets and therapeutic strategies for enhancing post-stroke recovery.
Collapse
Affiliation(s)
- Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
29
|
An immortalized cell line derived from renal erythropoietin-producing (REP) cells demonstrates their potential to transform into myofibroblasts. Sci Rep 2019; 9:11254. [PMID: 31375751 PMCID: PMC6677766 DOI: 10.1038/s41598-019-47766-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/23/2019] [Indexed: 12/22/2022] Open
Abstract
The erythroid growth factor erythropoietin (Epo) is produced by renal interstitial fibroblasts, called REP (renal Epo-producing) cells, in a hypoxia-inducible manner. In chronic kidney disease (CKD), REP cells lose their Epo-production ability, leading to renal anaemia. Concurrently, REP cells are suggested to be transformed into myofibroblasts, which are the major player of renal fibrosis. Although establishment of cultured cell lines derived from REP cells has been a long-term challenge, we here successfully established a REP-cell-derived immortalized and cultivable cell line (Replic cells) by using a genetically modified mouse line. Replic cells exhibited myofibroblastic phenotypes and lost their Epo-production ability, reflecting the situation in renal fibrosis. Additionally, we found that cell-autonomous TGFβ signalling contributes to maintenance of the myofibroblastic features of Replic cells. Furthermore, the promoters of genes for Epo and HIF2α, a major activator of Epo gene expression, were highly methylated in Replic cells. Thus, these results strongly support our contention that REP cells are the origin of myofibroblasts in fibrotic kidneys and demonstrate that cell-autonomous TGFβ signalling and epigenetic silencing are involved in renal fibrosis and renal anaemia, respectively, in CKD. The Replic cell line is a useful tool to further investigate the molecular mechanisms underlying renal fibrosis.
Collapse
|
30
|
Lyu G, Zong L, Zhang C, Huang X, Xie W, Fang J, Guan Y, Zhang L, Ni T, Gu J, Tao W. Metastasis-related methyltransferase 1 (Merm1) represses the methyltransferase activity of Dnmt3a and facilitates RNA polymerase I transcriptional elongation. J Mol Cell Biol 2019; 11:78-90. [PMID: 30535232 DOI: 10.1093/jmcb/mjy023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Stimulatory regulators for DNA methyltransferase activity, such as Dnmt3L and some Dnmt3b isoforms, affect DNA methylation patterns, thereby maintaining gene body methylation and maternal methylation imprinting, as well as the methylation landscape of pluripotent cells. Here we show that metastasis-related methyltransferase 1 (Merm1), a protein deleted in individuals with Williams-Beuren syndrome, acts as a repressive regulator of Dnmt3a. Merm1 interacts with Dnmt3a and represses its methyltransferase activity with the requirement of the binding motif for S-adenosyl-L-methionine. Functional analysis of gene regulation revealed that Merm1 is capable of maintaining hypomethylated rRNA gene bodies and co-localizes with RNA polymerase I in the nucleolus. Dnmt3a recruits Merm1, and in return, Merm1 ensures the binding of Dnmt3a to hypomethylated gene bodies. Such interplay between Dnmt3a and Merm1 facilitates transcriptional elongation by RNA polymerase I. Our findings reveal a repressive factor for Dnmt3a and uncover a molecular mechanism underlying transcriptional elongation of rRNA genes.
Collapse
Affiliation(s)
- Guoliang Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Le Zong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chao Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xiaoke Huang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Wenbing Xie
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Junnan Fang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiting Guan
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Lijun Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Ting Ni
- State Key Laboratory of Genetics Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai0, China
| | - Jun Gu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
31
|
Epigenetic Modification Mechanisms Involved in Inflammation and Fibrosis in Renal Pathology. Mediators Inflamm 2018; 2018:2931049. [PMID: 30647531 PMCID: PMC6311799 DOI: 10.1155/2018/2931049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/19/2023] Open
Abstract
The growing incidence of obesity, hypertension, and diabetes, coupled with the aging of the population, is increasing the prevalence of renal diseases in our society. Chronic kidney disease (CKD) is characterized by persistent inflammation, fibrosis, and loss of renal function leading to end-stage renal disease. Nowadays, CKD treatment has limited effectiveness underscoring the importance of the development of innovative therapeutic options. Recent studies have identified how epigenetic modifications participate in the susceptibility to CKD and have explained how the environment interacts with the renal cell epigenome to contribute to renal damage. Epigenetic mechanisms regulate critical processes involved in gene regulation and downstream cellular responses. The most relevant epigenetic modifications that play a critical role in renal damage include DNA methylation, histone modifications, and changes in miRNA levels. Importantly, these epigenetic modifications are reversible and, therefore, a source of potential therapeutic targets. Here, we will explain how epigenetic mechanisms may regulate essential processes involved in renal pathology and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
|
32
|
Chatterjee B, Lin MH, Chen CC, Peng KL, Wu MS, Tseng MC, Chen YJ, Shen CKJ. DNA Demethylation by DNMT3A and DNMT3B in vitro and of Methylated Episomal DNA in Transiently Transfected Cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:1048-1061. [PMID: 30300721 DOI: 10.1016/j.bbagrm.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022]
Abstract
The DNA methylation program in vertebrates is an essential part of the epigenetic regulatory cascade of development, cell differentiation, and progression of diseases including cancer. While the DNA methyltransferases (DNMTs) are responsible for the in vivo conversion of cytosine (C) to methylated cytosine (5mC), demethylation of 5mC on cellular DNA could be accomplished by the combined action of the ten-eleven translocation (TET) enzymes and DNA repair. Surprisingly, the mammalian DNMTs also possess active DNA demethylation activity in vitro in a Ca2+- and redox conditions-dependent manner, although little is known about its molecular mechanisms and occurrence in a cellular context. In this study, we have used LC-MS/MS to track down the fate of the methyl group removed from 5mC on DNA by mouse DNMT3B in vitro and found that it becomes covalently linked to the DNA methylation catalytic cysteine of the enzyme. We also show that Ca2+ homeostasis-dependent but TET1/TET2/TET3/TDG-independent demethylation of methylated episomal DNA by mouse DNMT3A or DNMT3B can occur in transfected human HEK 293 and mouse embryonic stem (ES) cells. Based on these results, we present a tentative working model of Ca2+ and redox conditions-dependent active DNA demethylation by DNMTs. Our study substantiates the potential roles of the vertebrate DNMTs as double-edged swords in DNA methylation-demethylation during Ca2+-dependent physiological processes.
Collapse
Affiliation(s)
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei City 115, Taiwan
| | - Chun-Chang Chen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Kai-Lin Peng
- Genomics Research Center, Academia Sinica, Taipei City 115, Taiwan
| | - Mu-Sheng Wu
- Genomics Research Center, Academia Sinica, Taipei City 115, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei City 112, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei City 115, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei City 115, Taiwan.
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan.
| |
Collapse
|
33
|
Simões R, Rodrigues Santos A. Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. Organogenesis 2018; 13:156-178. [PMID: 29020571 DOI: 10.1080/15476278.2017.1389367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.
Collapse
Affiliation(s)
- Renata Simões
- a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , SP , Brazil
| | | |
Collapse
|
34
|
Mei M, Song H, Chen L, Hu B, Bai R, Xu D, Liu Y, Zhao Y, Chen C. Early-life exposure to three size-fractionated ultrafine and fine atmospheric particulates in Beijing exacerbates asthma development in mature mice. Part Fibre Toxicol 2018. [PMID: 29540228 PMCID: PMC5851307 DOI: 10.1186/s12989-018-0249-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Epidemiological studies have suggested that elevated levels of air pollution contribute to an increased incidence or severity of asthma. Although late-onset adult asthma seems to be more attributable to environmental risk factors, limited data is available on the impact of early-life exposure to size-fractionated ambient particulate matter (PM) on asthma in adults. We aimed to determine the effect on the development and exacerbation of asthma in the adult after the mice were exposed as juveniles to three size-fractionated ambient particulates collected from Beijing. METHODS The three size-fractionated ambient particulates were collected from urban Beijing in winter, heavily affected by traffic and coal-fired emissions. The typical morphological and major chemical components of the PM were characterized first. Oxidative stress and expression of DNA methyltransferases (DNMTs) were then examined in vitro and in the lungs of mouse pups 48 h after exposure to PM by oropharyngeal aspiration. When the exposed and control juvenile mice matured to adulthood, an antigen-induced asthma model was established and relevant bio-indices were assessed. RESULTS PM with different granularities can induce oxidative stress; in particular, F1, with the smallest size (< 0.49 μm), decreased the mRNA expression of DNMTs in vitro and in vivo the most significantly. In an asthma model of adult mice, previous exposure as juveniles to size-fractionated PM caused increased peribronchiolar inflammation, increased airway mucus secretion, and increased production of Th2 cytokines and chemokines. In general, F1 and F2 (aerodynamic diameter < 0.95 μm) particulates affected murine adult asthma development more seriously than F3 (0.95-1.5 μm). Moreover, F1 led to airway inflammation in the form of both increased neutrophils and eosinophils in BALF. The activation of the TGF-β1/Smad2 and Smad3/Stat3 signaling pathways leading to airway fibrosis was more profoundly induced by F1. CONCLUSION This study demonstrated that exposure to ambient PM in juvenile mice enhanced adult asthma development, as shown by increased Th2 responses, which might be associated with the persistent effects resulting from the oxidative stress and decreased gene expression of DNMTs induced by PM exposure. The observed differences between the effects of three size-fractionated particulates were attributed to particle sizes and chemical constituents, including heavy metals and also PAHs, since the amounts of PAH associated with more severe toxicity were enriched equivalently in the F1 and F2 fractions. Relative to the often mentioned PM2.5, PM with an aerodynamic diameter smaller than 0.95 μm had a more aggravating effect on asthma development.
Collapse
Affiliation(s)
- Mei Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Haojun Song
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lina Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Diandou Xu
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
35
|
Brocklehurst S, Watson M, Carr IM, Out S, Heidmann I, Meyer P. Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1). PLoS One 2018; 13:e0192170. [PMID: 29466369 PMCID: PMC5821449 DOI: 10.1371/journal.pone.0192170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/17/2018] [Indexed: 11/18/2022] Open
Abstract
Epigenetic marks such as DNA methylation and histone modification can vary among plant accessions creating epi-alleles with different levels of expression competence. Mutations in epigenetic pathway functions are powerful tools to induce epigenetic variation. As an alternative approach, we investigated the potential of over-expressing an epigenetic function, using DNA METHYLTRANSFERASE1 (MET1) for proof-of-concept. In Arabidopsis thaliana, MET1 controls maintenance of cytosine methylation at symmetrical CG positions. At some loci, which contain dense DNA methylation in CG- and non-CG context, loss of MET1 causes joint loss of all cytosines methylation marks. We find that over-expression of both catalytically active and inactive versions of MET1 stochastically generates new epi-alleles at loci encoding transposable elements, non-coding RNAs and proteins, which results for most loci in an increase in expression. Individual transformants share some common phenotypes and genes with altered gene expression. Altered expression states can be transmitted to the next generation, which does not require the continuous presence of the MET1 transgene. Long-term stability and epigenetic features differ for individual loci. Our data show that over-expression of MET1, and potentially of other genes encoding epigenetic factors, offers an alternative strategy to identify epigenetic target genes and to create novel epi-alleles.
Collapse
Affiliation(s)
| | - Michael Watson
- Center for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Ian M. Carr
- School of Medicine Institute of Biomed. & Clin. Sciences (LIBACS), University of Leeds, Leeds, United Kingdom
| | - Suzan Out
- Enza Zaden Research and Development B.V., Enkhuizen, NL
| | - Iris Heidmann
- Enza Zaden Research and Development B.V., Enkhuizen, NL
| | - Peter Meyer
- Center for Plant Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
You D, Nilsson E, Tenen DE, Lyubetskaya A, Lo JC, Jiang R, Deng J, Dawes BA, Vaag A, Ling C, Rosen ED, Kang S. Dnmt3a is an epigenetic mediator of adipose insulin resistance. eLife 2017; 6:30766. [PMID: 29091029 PMCID: PMC5730374 DOI: 10.7554/elife.30766] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022] Open
Abstract
Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human adipose tissue. Taken together, our data demonstrate that adipose Dnmt3a is a novel epigenetic mediator of insulin resistance in vitro and in vivo.
Collapse
Affiliation(s)
- Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, United States
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Danielle E Tenen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States
| | | | - James C Lo
- Weill Cornell Medical College, New York, United States
| | - Rencong Jiang
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, United States
| | - Jasmine Deng
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, United States
| | - Brian A Dawes
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States
| | - Allan Vaag
- Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Early Clinical Development, AstraZeneca, Innovative Medicines, Göteborg, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
37
|
Vaillancourt K, Ernst C, Mash D, Turecki G. DNA Methylation Dynamics and Cocaine in the Brain: Progress and Prospects. Genes (Basel) 2017; 8:genes8050138. [PMID: 28498318 PMCID: PMC5448012 DOI: 10.3390/genes8050138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
Cytosine modifications, including DNA methylation, are stable epigenetic marks that may translate environmental change into transcriptional regulation. Research has begun to investigate DNA methylation dynamics in relation to cocaine use disorders. Specifically, DNA methylation machinery, including methyltransferases and binding proteins, are dysregulated in brain reward pathways after chronic cocaine exposure. In addition, numerous methylome-wide and candidate promoter studies have identified differential methylation, at the nucleotide level, in rodent models of cocaine abuse and drug seeking behavior. This review highlights the current progress in the field of cocaine-related methylation, and offers considerations for future research.
Collapse
Affiliation(s)
- Kathryn Vaillancourt
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| | - Carl Ernst
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| | - Deborah Mash
- Department of Neurology, University of Miami Miller School of Medicine, University of Miami, Coral Gables, FL 33146, USA.
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| |
Collapse
|
38
|
Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res 2017; 369:75-92. [PMID: 28286899 DOI: 10.1007/s00441-017-2588-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Collapse
Affiliation(s)
- Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| | - Wibke Bechtel-Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| |
Collapse
|
39
|
DNA methylation is dispensable for changes in global chromatin architecture but required for chromocentre formation in early stem cell differentiation. Chromosoma 2017; 126:605-614. [PMID: 28084535 DOI: 10.1007/s00412-017-0625-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 01/05/2023]
Abstract
Epiblast stem cells (EpiSCs), which are pluripotent cells isolated from early post-implantation mouse embryos (E5.5), show both similarities and differences compared to mouse embryonic stem cells (mESCs), isolated earlier from the inner cell mass (ICM) of the E3.5 embryo. Previously, we have observed that while chromatin is very dispersed in E3.5 ICM, compact chromatin domains and chromocentres appear in E5.5 epiblasts after embryo implantation. Given that the observed chromatin re-organization in E5.5 epiblasts coincides with an increase in DNA methylation, in this study, we aimed to examine the role of DNA methylation in chromatin re-organization during the in vitro conversion of ESCs to EpiSCs. The requirement for DNA methylation was determined by converting both wild-type and DNA methylation-deficient ESCs to EpiSCs, followed by structural analysis with electron spectroscopic imaging (ESI). We show that the chromatin re-organization which occurs in vivo can be re-capitulated in vitro during the ESC to EpiSC conversion. Indeed, after 7 days in EpiSC media, compact chromatin domains begin to appear throughout the nuclear volume, creating a chromatin organization similar to E5 epiblasts and embryo-derived EpiSCs. Our data demonstrate that DNA methylation is dispensable for this global chromatin re-organization but required for the compaction of pericentromeric chromatin into chromocentres.
Collapse
|
40
|
Kalo D, Roth Z. Low level of mono(2-ethylhexyl) phthalate reduces oocyte developmental competence in association with impaired gene expression. Toxicology 2016; 377:38-48. [PMID: 27989758 DOI: 10.1016/j.tox.2016.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite, mono-(2-ethylhexyl) phthalate (MEHP), are reproductive toxicants. However, disruptive effects of MEHP at low concentrations on the oocyte and developing blastocyst are unknown. Previously, we detected low levels of MEHP in follicular fluid aspirated from DEHP-treated cows associated with reduced estradiol levels. Moreover, the MEHP concentrations found were similar to those reported for follicular fluid aspirated from women who have undergone IVF cycles. In the current study, we used an in vitro embryo production model to examine the effect of MEHP at low levels on oocyte developmental competence. We set up several experiments to mimic the follicular fluid content, i.e., low MEHP level and low estradiol. For all experiments, cumulus oocyte complexes (COCs) were aspirated from bovine ovaries, then matured in vitro in standard oocyte maturation medium (OMM) supplemented with: MEHP at a range levels (20-1000nM) or with estradiol at a range levels (0-2000ng/ml). Then, oocytes were fertilized and cultured for an additional 7days to allow blastocyst development. Findings revealed that MEHP at low levels impairs oocyte developmental competence in a dose-dependent manner (P<0.05) and that estradiol by itself does not impair it. Accordingly, in another set of experiments, COCs were matured in vitro with MEHP at two choosen concentrations (20 or 1000nM) with or without estradiol, fertilized and cultured for 7days. Samples of mature oocytes and their derived blastocysts were subjected to quantitative real-time PCR to examine the profiles of selected genes (CYC1, MT-CO1, ATP5B, POU5F1, SOX2 and DNMT3b). Maturation of COCs with MEHP (20 or 1000nM) affected gene expression in the mature oocyte. Maturation of COCs with MEHP (20 or 1000nM) in the absence of estradiol reduced oocyte developmental competence (P<0.05). A differential carryover effect on transcript abundance was recorded in blastocysts developed from MEHP-treated oocytes. In the presence of estradiol, increased expression was recorded for CYC1, ATP5B, SOX2 and DNMT3b. In the absence of estradiol, decreased expression was recorded, with a significant effect for 1000nM MEHP (P<0.05). Taken together, the findings suggest that low levels of phthalate must be taken into consideration in risk assessments.
Collapse
Affiliation(s)
- D Kalo
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel; Center of Excellence in Agriculture and Environmental Health, The Hebrew University, Rehovot 76100, Israel
| | - Z Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel; Center of Excellence in Agriculture and Environmental Health, The Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
41
|
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86:80-90. [PMID: 27160443 DOI: 10.1016/j.theriogenology.2016.04.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
42
|
Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities. Int J Mol Sci 2016; 17:465. [PMID: 27043533 PMCID: PMC4848921 DOI: 10.3390/ijms17040465] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC) axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Puiyan Lam
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
43
|
Kohan-Ghadr HR, Kadam L, Jain C, Armant DR, Drewlo S. Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta. Cell Adh Migr 2016; 10:126-35. [PMID: 26745760 PMCID: PMC4853046 DOI: 10.1080/19336918.2015.1098800] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The proper establishment and organogenesis of the placenta is crucial for intrauterine fetal growth and development. Endometrial invasion by the extravillous trophoblast cells, as well as formation of the syncytiotrophoblast (STB), are of vital importance for placental function. Trophoblast migration and invasion is often compared to tumor metastasis, which uses many of the same molecular mechanisms. However, unlike cancer cells, both initiation and the extent of trophoblast invasion are tightly regulated by feto-maternal cross-talk, which when perturbed, results in a wide range of abnormalities. Multiple factors control the trophoblast, including cytokines and hormones, which are subject to transcriptional regulatory networks. The relevance of epigenetics in transcriptional regulation of trophoblast differentiation and invasion, as well as in the onset of placenta-related pregnancy disorders, became recognized decades ago. Although, there has been tremendous progress in uncovering the molecular foundation of placental development, there is still much to be learned about the epigenetic machinery, and its role in trophoblast differentiation and invasion. This review will provide an overview of the epigenetic control of trophoblast differentiation and invasion. It will also highlight the major epigenetic mechanisms involved in pregnancy complications related to placental deficiencies.
Collapse
Affiliation(s)
- Hamid-Reza Kohan-Ghadr
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chandni Jain
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D. Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
44
|
Oliveira LH, Schiavinato JL, Fráguas MS, Lucena-Araujo AR, Haddad R, Araújo AG, Dalmazzo LF, Rego EM, Covas DT, Zago MA, Panepucci RA. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci 2015; 106:1264-77. [PMID: 26251039 PMCID: PMC4637998 DOI: 10.1111/cas.12766] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022] Open
Abstract
Recent evidence has shown that deregulated expression of members of the microRNA-29 (miR-29) family may play a critical role in human cancer, including hematological malignancies. However, the roles of miR-29 in the molecular pathophysiology of T-cell acute lymphoblastic leukemia (T-ALL) has not been investigated. Here, we show that lower levels of miR-29a were significantly associated with higher blast counts in the bone marrow and with increased disease-free survival in T-ALL patients. Furthermore, miR-29a levels are extremely reduced in T-ALL cells compared to normal T cells. Microarray analysis following introduction of synthetic miR-29a mimics into Jurkat cells revealed the downregulation of several predicted targets (CDK6, PXDN, MCL1, PIK3R1, and CXXC6), including targets with roles in active and passive DNA demethylation (such as DNMT3a, DNMT3b, and members of the TET family and TDG). Restoring miR-29a levels in Jurkat and Molt-4 T-ALL cells led to the demethylation of many genes commonly methylated in T-ALL. Overall, our results suggest that reduced miR-29a levels may contribute to the altered epigenetic status of T-ALL, highlighting its relevance in the physiopathology of this disease.
Collapse
Affiliation(s)
- Lucila H Oliveira
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Josiane L Schiavinato
- Department of Genetics, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Mariane S Fráguas
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | | | - Rodrigo Haddad
- School of Ceilandia, University of BrasiliaBrasilia, Brazil
| | - Amélia G Araújo
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Leandro F Dalmazzo
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - Eduardo M Rego
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Dimas T Covas
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Marco A Zago
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Rodrigo A Panepucci
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Department of Genetics, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| |
Collapse
|
45
|
Dyson MT, Kakinuma T, Pavone ME, Monsivais D, Navarro A, Malpani SS, Ono M, Bulun SE. Aberrant expression and localization of deoxyribonucleic acid methyltransferase 3B in endometriotic stromal cells. Fertil Steril 2015; 104:953-963.e2. [PMID: 26239024 PMCID: PMC4603532 DOI: 10.1016/j.fertnstert.2015.06.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To define the expression and function of DNA methyltransferases (DNMTs) in response to decidualizing stimuli in endometriotic cells compared with healthy endometrial stroma. DESIGN Basic science. SETTING University research center. PATIENT(S) Premenopausal women with or without endometriosis. INTERVENTION(S) Primary cultures of stromal cells from healthy endometrium (E-IUM) or endometriomas (E-OSIS) were subjected to in vitro decidualization (IVD) using 1 μM medroxyprogesterone acetate, 35 nM 17β-estradiol, and 0.05 mM 8-Br-cAMP. MAIN OUTCOME MEASURE(S) Expression of DNMT1, DNMT3A, and DNMT3B in E-IUM and E-OSIS were assessed by quantitative real-time polymerase chain reaction and immunoblotting. Recruitment of DNMT3B to the promoters of steroidogenic factor 1 (SF-1) and estrogen receptor α (ESR1) was examined by chromatin immunoprecipitation. RESULT(S) IVD treatment reduced DNMT3B messenger RNA (74%) and protein levels (81%) only in E-IUM; DNMT1 and DNMT3A were unchanged in both cell types. Significantly more DNMT3B bound to the SF-1 promoter in E-IUM compared with E-OSIS, and IVD treatment reduced binding in E-IUM to levels similar to those in E-OSIS. Enrichment of DNMT3B across 3 ESR1 promoters was reduced in E-IUM after IVD, although the more-distal promoter showed increased DNMT3B enrichment in E-OSIS after IVD. CONCLUSION(S) The inability to downregulate DNMT3B expression in E-OSIS may contribute to an aberrant epigenetic fingerprint that misdirects gene expression in endometriosis and contributes to its altered response to steroid hormones.
Collapse
Affiliation(s)
- Matthew T Dyson
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Toshiyuki Kakinuma
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mary Ellen Pavone
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Diana Monsivais
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Antonia Navarro
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Saurabh S Malpani
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Masanori Ono
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Serdar E Bulun
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
46
|
Noh KM, Wang H, Kim HR, Wenderski W, Fang F, Li CH, Dewell S, Hughes SH, Melnick AM, Patel DJ, Li H, Allis CD. Engineering of a Histone-Recognition Domain in Dnmt3a Alters the Epigenetic Landscape and Phenotypic Features of Mouse ESCs. Mol Cell 2015; 59:89-103. [PMID: 26073541 DOI: 10.1016/j.molcel.2015.05.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 03/19/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023]
Abstract
Histone modification and DNA methylation are associated with varying epigenetic "landscapes," but detailed mechanistic and functional links between the two remain unclear. Using the ATRX-DNMT3-DNMT3L (ADD) domain of the DNA methyltransferase Dnmt3a as a paradigm, we apply protein engineering to dissect the molecular interactions underlying the recruitment of this enzyme to specific regions of chromatin in mouse embryonic stem cells (ESCs). By rendering the ADD domain insensitive to histone modification, specifically H3K4 methylation or H3T3 phosphorylation, we demonstrate the consequence of dysregulated Dnmt3a binding and activity. Targeting of a Dnmt3a mutant to H3K4me3 promoters decreases gene expression in a subset of developmental genes and alters ESC differentiation, whereas aberrant binding of another mutant to H3T3ph during mitosis promotes chromosome instability. Our studies support the general view that histone modification "reading" and DNA methylation are closely coupled in mammalian cells, and suggest an avenue for the functional assessment of chromatin-associated proteins.
Collapse
Affiliation(s)
- Kyung-Min Noh
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.,European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Haibo Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, P.R. China.,MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Hyunjae R Kim
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wendy Wenderski
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Fang Fang
- Department of Medicine, Hematology-Oncology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Charles H Li
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Scott Dewell
- Genomics, Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Stephen H Hughes
- IV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ari M Melnick
- Department of Medicine, Hematology-Oncology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Dinshaw J Patel
- Structure Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Haitao Li
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, P.R. China.,MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
47
|
Szyf M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur Neuropsychopharmacol 2015; 25:682-702. [PMID: 24857313 DOI: 10.1016/j.euroneuro.2014.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
Aberrant changes in gene function are believed to be involved in a wide spectrum of human disease including behavioral, cognitive and neurodegenerative pathologies. Most of the attention in last few decades have focused on changes in gene sequence as a cause of gene dysfunction leading to disease and mental health disorders. Germ line mutations or other alterations in the sequence of DNA that associate with different behavioral and neurological pathologies have been identified. However, sequence alterations explain only a small fraction of the cases. In addition there is evidence for "gene-environment" interactions in the brain suggesting mechanisms that alter gene function and the phenotype through environmental exposure. Genes are programmed by "epigenetic" mechanisms such as chromatin structure, chromatin modification and DNA methylation. These mechanisms confer on similar sequences different identities during cellular differentiation. Epigenetic differences are proposed to be involved in differentiating gene function in response to different environmental contexts and could result in alterations in functional gene networks that lead to brain disease. Epigenetic markers could serve important biomarkers in brain and behavioral diseases. Moreover, epigenetic processes are potentially reversible pointing to epigenetic therapeutics in psychotherapy.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G1Y5.
| |
Collapse
|
48
|
Yara S, Lavoie JC, Levy E. Oxidative stress and DNA methylation regulation in the metabolic syndrome. Epigenomics 2015; 7:283-300. [DOI: 10.2217/epi.14.84] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is implicated in tissue-specific gene expression and genomic imprinting. It is modulated by environmental factors, especially nutrition. Modified DNA methylation patterns may contribute to health problems and susceptibility to complex diseases. Current advances have suggested that the metabolic syndrome (MS) is a programmable disease, which is characterized by epigenetic modifications of vital genes when exposed to oxidative stress. Therefore, the main objective of this paper is to critically review the central context of MS while presenting the most recent knowledge related to epigenetic alterations that are promoted by oxidative stress. Potential pro-oxidant mechanisms that orchestrate changes in methylation profiling and are related to obesity, diabetes and hypertension are discussed. It is anticipated that the identification and understanding of the role of DNA methylation marks could be used to uncover early predictors and define drugs or diet-related treatments able to delay or reverse epigenetic changes, thereby combating MS burden.
Collapse
Affiliation(s)
- Sabrina Yara
- Faculty of Medicine, Research Centre, Université de Montréal, CHU-Sainte-Justine, Montreal, QC, Canada, H3T 1C5
| | - Jean-Claude Lavoie
- Faculty of Medicine, Research Centre, Université de Montréal, CHU-Sainte-Justine, Montreal, QC, Canada, H3T 1C5
- Departments of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Emile Levy
- Faculty of Medicine, Research Centre, Université de Montréal, CHU-Sainte-Justine, Montreal, QC, Canada, H3T 1C5
- Departments of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| |
Collapse
|
49
|
Harb H, Renz H. Update on epigenetics in allergic disease. J Allergy Clin Immunol 2015; 135:15-24. [PMID: 25567039 DOI: 10.1016/j.jaci.2014.11.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Chronic inflammatory diseases, including allergies and asthma, are the result of complex gene-environment interactions. One of the most challenging questions in this regard relates to the biochemical mechanism of how exogenous environmental trigger factors modulate and modify gene expression, subsequently leading to the development of chronic inflammatory conditions. Epigenetics comprises the umbrella of biochemical reactions and mechanisms, such as DNA methylation and chromatin modifications on histones and other structures. Recently, several lifestyle and environmental factors have been investigated in terms of such biochemical interactions with the gene expression-regulating machinery: allergens; microbes and microbial compounds; dietary factors, including vitamin B12, folic acid, and fish oil; obesity; and stress. This article aims to update recent developments in this context with an emphasis on allergy and asthma research.
Collapse
Affiliation(s)
- Hani Harb
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany
| | - Harald Renz
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
50
|
Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 2015; 16:569-85. [DOI: 10.1007/s10522-015-9562-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/19/2015] [Indexed: 01/15/2023]
|