1
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
2
|
Fehr A, Arvidsson G, Nordlund J, Lönnerholm G, Stenman G, Andersson MK. Increased MYB alternative promoter usage is associated with relapse in acute lymphoblastic leukemia. Genes Chromosomes Cancer 2023; 62:597-606. [PMID: 37218648 DOI: 10.1002/gcc.23151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Therapy-resistant disease is a major cause of death in patients with acute lymphoblastic leukemia (ALL). Activation of the MYB oncogene is associated with ALL and leads to uncontrolled neoplastic cell proliferation and blocked differentiation. Here, we used RNA-seq to study the clinical significance of MYB expression and MYB alternative promoter (TSS2) usage in 133 pediatric ALLs. RNA-seq revealed that all cases analyzed overexpressed MYB and demonstrated MYB TSS2 activity. qPCR analyses confirmed the expression of the alternative MYB promoter also in seven ALL cell lines. Notably, high MYB TSS2 activity was significantly associated with relapse (p = 0.007). Moreover, cases with high MYB TSS2 usage showed evidence of therapy-resistant disease with increased expression of ABC multidrug resistance transporter genes (e.g., ABCA2, ABCB5, and ABCC10) and enzymes catalyzing drug degradation (e.g., CYP1A2, CYP2C9, and CYP3A5). Elevated MYB TSS2 activity was further associated with augmented KRAS signaling (p < 0.05) and decreased methylation of the conventional MYB promoter (p < 0.01). Taken together, our results suggest that MYB alternative promoter usage is a novel potential prognostic biomarker for relapse and therapy resistance in pediatric ALL.
Collapse
Affiliation(s)
- André Fehr
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Gustav Arvidsson
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Göran Stenman
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Mattias K Andersson
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Hernandez JC, Chen CL, Machida T, Uthaya Kumar DB, Tahara SM, Montana J, Sher L, Liang J, Jung JU, Tsukamoto H, Machida K. LIN28 and histone H3K4 methylase induce TLR4 to generate tumor-initiating stem-like cells. iScience 2023; 26:106254. [PMID: 36949755 PMCID: PMC10025994 DOI: 10.1016/j.isci.2023.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/09/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Chemoresistance and plasticity of tumor-initiating stem-like cells (TICs) promote tumor recurrence and metastasis. The gut-originating endotoxin-TLR4-NANOG oncogenic axis is responsible for the genesis of TICs. This study investigated mechanisms as to how TICs arise through transcriptional, epigenetic, and post-transcriptional activation of oncogenic TLR4 pathways. Here, we expressed constitutively active TLR4 (caTLR4) in mice carrying pLAP-tTA or pAlb-tTA, under a tetracycline withdrawal-inducible system. Liver progenitor cell induction accelerated liver tumor development in caTLR4-expressing mice. Lentiviral shRNA library screening identified histone H3K4 methylase SETD7 as central to activation of TLR4. SETD7 combined with hypoxia induced TLR4 through HIF2 and NOTCH. LIN28 post-transcriptionally stabilized TLR4 mRNA via de-repression of let-7 microRNA. These results supported a LIN28-TLR4 pathway for the development of HCCs in a hypoxic microenvironment. These findings not only advance our understanding of molecular mechanisms responsible for TIC generation in HCC, but also represent new therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Juan Carlos Hernandez
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- MS Biotechnology Program, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Chia-Lin Chen
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 110, Taiwan
| | - Tatsuya Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Dinesh Babu Uthaya Kumar
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Stanley M. Tahara
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jared Montana
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Sher
- Department of Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Jae U. Jung
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Keigo Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| |
Collapse
|
4
|
Kumar H, Chattopadhyay S, Das N, Shree S, Patel D, Mohapatra J, Gurjar A, Kushwaha S, Singh AK, Dubey S, Lata K, Kushwaha R, Mohammed R, Dastidar KG, Yadav N, Vishwakarma AL, Gayen JR, Bandyopadhyay S, Chatterjee A, Jain MR, Tripathi AK, Trivedi AK, Chattopadhyay N, Ramachandran R, Sanyal S. Leprosy drug clofazimine activates peroxisome proliferator-activated receptor-γ and synergizes with imatinib to inhibit chronic myeloid leukemia cells. Haematologica 2019; 105:971-986. [PMID: 31371410 PMCID: PMC7109729 DOI: 10.3324/haematol.2018.194910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Leukemia stem cells contribute to drug-resistance and relapse in chronic myeloid leukemia (CML) and BCR-ABL1 inhibitor monotherapy fails to eliminate these cells, thereby necessitating alternate therapeutic strategies for patients CML. The peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone downregulates signal transducer and activator of transcription 5 (STAT5) and in combination with imatinib induces complete molecular response in imatinib-refractory patients by eroding leukemia stem cells. Thiazolidinediones such as pioglitazone are, however, associated with severe side effects. To identify alternate therapeutic strategies for CML we screened Food and Drug Administration-approved drugs in K562 cells and identified the leprosy drug clofazimine as an inhibitor of viability of these cells. Here we show that clofazimine induced apoptosis of blood mononuclear cells derived from patients with CML, with a particularly robust effect in imatinib-resistant cells. Clofazimine also induced apoptosis of CD34+38- progenitors and quiescent CD34+ cells from CML patients but not of hematopoietic progenitor cells from healthy donors. Mechanistic evaluation revealed that clofazimine, via physical interaction with PPARγ, induced nuclear factor kB-p65 proteasomal degradation, which led to sequential myeloblastoma oncoprotein and peroxiredoxin 1 downregulation and concomitant induction of reactive oxygen species-mediated apoptosis. Clofazimine also suppressed STAT5 expression and consequently downregulated stem cell maintenance factors hypoxia-inducible factor-1α and -2α and Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). Combining imatinib with clofazimine caused a far superior synergy than that with pioglitazone, with clofazimine reducing the half maximal inhibitory concentration (IC50) of imatinib by >4 logs and remarkably eroding quiescent CD34+ cells. In a K562 xenograft study clofazimine and imatinib co-treatment showed more robust efficacy than the individual treatments. We propose clinical evaluation of clofazimine in imatinib-refractory CML.
Collapse
Affiliation(s)
- Harish Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow
| | - Sourav Chattopadhyay
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Nabanita Das
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow
| | - Sonal Shree
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow
| | - Dinesh Patel
- Zydus Research Center, Moraiya, Ahmedabad, Gujarat
| | | | - Anagha Gurjar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Sapana Kushwaha
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow
| | | | - Shikha Dubey
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow
| | - Kiran Lata
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow
| | - Rajesh Kushwaha
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow
| | - Riyazuddin Mohammed
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow
| | | | | | | | - Jiaur Rahaman Gayen
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow
| | | | | | - Anil Kumar Tripathi
- Department of Clinical Hematology and Medical Oncology, King George's Medical University, Lucknow, Uttar Pradesh
| | - Arun Kumar Trivedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| | - Ravishankar Ramachandran
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow.,Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow .,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow
| |
Collapse
|
5
|
Jiménez-P R, Martín-Cortázar C, Kourani O, Chiodo Y, Cordoba R, Domínguez-Franjo MP, Redondo JM, Iglesias T, Campanero MR. CDCA7 is a critical mediator of lymphomagenesis that selectively regulates anchorage-independent growth. Haematologica 2018; 103:1669-1678. [PMID: 29880607 PMCID: PMC6165795 DOI: 10.3324/haematol.2018.188961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tumor formation involves the acquisition of numerous capacities along the progression from a normal cell into a malignant cell, including limitless proliferation (immortalization) and anchorage-independent growth, a capacity that correlates extremely well with tumorigenesis. Great efforts have been made to uncover genes involved in tumor formation, but most genes identified participate in processes related to cell proliferation. Accordingly, therapies targeting these genes also affect the proliferation of normal cells. To identify potential targets for therapeutic intervention more specific to tumor cells, we looked for genes implicated in the acquisition of anchorage-independent growth and in vivo tumorigenesis capacity. A transcriptomic analysis identified CDCA7 as a candidate gene. Indeed, CDCA7 protein was upregulated in Burkitt's lymphoma cell lines and human tumor biopsy specimens relative to control cell lines and tissues, respectively. CDCA7 levels were also markedly elevated in numerous T and B-lymphoid tumor cell lines. While CDCA7 was not required for anchorage-dependent growth of normal fibroblasts or non-malignant lymphocytes, it was essential but not sufficient for anchorage-independent growth of lymphoid tumor cells and for lymphomagenesis. These data suggest that therapies aimed at inhibiting CDCA7 expression or function might significantly decrease the growth of lymphoid tumors.
Collapse
Affiliation(s)
- Raúl Jiménez-P
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Raul Cordoba
- Department of Hematology, University Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | | | - Juan Miguel Redondo
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, (CNIC), Madrid, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain .,CIBERCV, Spain
| |
Collapse
|
6
|
Álvaro-Blanco J, Urso K, Chiodo Y, Martín-Cortázar C, Kourani O, Arco PGD, Rodríguez-Martínez M, Calonge E, Alcamí J, Redondo JM, Iglesias T, Campanero MR. MAZ induces MYB expression during the exit from quiescence via the E2F site in the MYB promoter. Nucleic Acids Res 2017; 45:9960-9975. [PMID: 28973440 PMCID: PMC5622404 DOI: 10.1093/nar/gkx641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/13/2017] [Indexed: 12/27/2022] Open
Abstract
Most E2F-binding sites repress transcription through the recruitment of Retinoblastoma (RB) family members until the end of the G1 cell-cycle phase. Although the MYB promoter contains an E2F-binding site, its transcription is activated shortly after the exit from quiescence, before RB family members inactivation, by unknown mechanisms. We had previously uncovered a nuclear factor distinct from E2F, Myb-sp, whose DNA-binding site overlapped the E2F element and had hypothesized that this factor might overcome the transcriptional repression of MYB by E2F-RB family members. We have purified Myb-sp and discovered that Myc-associated zinc finger proteins (MAZ) are major components. We show that various MAZ isoforms are present in Myb-sp and activate transcription via the MYB-E2F element. Moreover, while forced RB or p130 expression repressed the activity of a luciferase reporter driven by the MYB-E2F element, co-expression of MAZ proteins not only reverted repression, but also activated transcription. Finally, we show that MAZ binds the MYB promoter in vivo, that its binding site is critical for MYB transactivation, and that MAZ knockdown inhibits MYB expression during the exit from quiescence. Together, these data indicate that MAZ is essential to bypass MYB promoter repression by RB family members and to induce MYB expression.
Collapse
Affiliation(s)
- Josué Álvaro-Blanco
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Katia Urso
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Pablo Gómez-Del Arco
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biología Molecular, Cantoblanco, Madrid 28049, Spain.,CIBERCV, Spain
| | - María Rodríguez-Martínez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Esther Calonge
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - Juan Miguel Redondo
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERCV, Spain
| |
Collapse
|
7
|
Barr JY, Goodfellow RX, Colgan DF, Colgan JD. Early B Cell Progenitors Deficient for GON4L Fail To Differentiate Due to a Block in Mitotic Cell Division. THE JOURNAL OF IMMUNOLOGY 2017; 198:3978-3988. [PMID: 28381640 DOI: 10.4049/jimmunol.1602054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 11/19/2022]
Abstract
B cell development in Justy mutant mice is blocked due to a precursor mRNA splicing defect that depletes the protein GON4-like (GON4L) in B cell progenitors. Genetic and biochemical studies have suggested that GON4L is a transcriptional regulator that coordinates cell division with differentiation, but its role in B cell development is unknown. To understand the function of GON4L, we characterized B cell differentiation, cell cycle control, and mitotic gene expression in GON4L-deficient B cell progenitors from Justy mice. We found that these cells established key aspects of the transcription factor network that guides B cell development and proliferation and rearranged the IgH gene locus. However, despite intact IL-7 signaling, GON4L-deficient pro-B cell stage precursors failed to undergo a characteristic IL-7-dependent proliferative burst. These cells also failed to upregulate genes required for mitotic division, including those encoding the G1/S cyclin D3 and E2F transcription factors and their targets. Additionally, GON4L-deficient B cell progenitors displayed defects in DNA synthesis and passage through the G1/S transition, contained fragmented DNA, and underwent apoptosis. These phenotypes were not suppressed by transgenic expression of prosurvival factors. However, transgenic expression of cyclin D3 or other regulators of the G1/S transition restored pro-B cell development from Justy progenitor cells, suggesting that GON4L acts at the beginning of the cell cycle. Together, our findings indicate that GON4L is essential for cell cycle progression and division during the early stages of B cell development.
Collapse
Affiliation(s)
- Jennifer Y Barr
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Renee X Goodfellow
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| | - Diana F Colgan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| | - John D Colgan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; .,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and.,Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
8
|
Hugo HJ, Saunders C, Ramsay RG, Thompson EW. New Insights on COX-2 in Chronic Inflammation Driving Breast Cancer Growth and Metastasis. J Mammary Gland Biol Neoplasia 2015; 20:109-19. [PMID: 26193871 DOI: 10.1007/s10911-015-9333-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
The medicinal use of aspirin stretches back to ancient times, before it was manufactured in its pure form in the late 19th century. Its accepted mechanistic target, cyclooxygenase (COX), was discovered in the 1970s and since this landmark discovery, the therapeutic application of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has increased dramatically. The most significant benefits of NSAIDs are in conditions involving chronic inflammation (CI). Given the recognized role of CI in cancer development, the use of long-term NSAID treatment in the prevention of cancer is an enticing possibility. COX-2 is a key driver of CI, and here we review COX-2 expression as a predictor of survival in various cancer types, including breast. Obesity and post-partum involution are natural inflammatory states that are associated with increased breast cancer risk. We outline the COX-2 mediated mechanisms contributing to the growth of cancers. We dissect the cellular mechanism of epithelial-mesenchymal transition (EMT) and how COX-2 may induce this to facilitate tumor progression. Finally we examine the potential regulation of COX-2 by c-Myb, and the possible interplay between c-Myb/COX-2 in proliferation, and hypoxia inducible factor-1 alpha (HIF1α)/COX-2 in invasive pathways in breast cancer.
Collapse
Affiliation(s)
- Honor J Hugo
- VBCRC Invasion and Metastasis Unit, St Vincent's Institute, Fitzroy, VIC, Australia.
| | - C Saunders
- School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - R G Ramsay
- Differentation and Transcription Laboratory, Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - E W Thompson
- VBCRC Invasion and Metastasis Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland Institute of Technology, Brisbane, QLD, Australia
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Balwierz PJ, Pachkov M, Arnold P, Gruber AJ, Zavolan M, van Nimwegen E. ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Res 2014; 24:869-84. [PMID: 24515121 PMCID: PMC4009616 DOI: 10.1101/gr.169508.113] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accurate reconstruction of the regulatory networks that control gene expression is one of the key current challenges in molecular biology. Although gene expression and chromatin state dynamics are ultimately encoded by constellations of binding sites recognized by regulators such as transcriptions factors (TFs) and microRNAs (miRNAs), our understanding of this regulatory code and its context-dependent read-out remains very limited. Given that there are thousands of potential regulators in mammals, it is not practical to use direct experimentation to identify which of these play a key role for a particular system of interest. We developed a methodology that models gene expression or chromatin modifications in terms of genome-wide predictions of regulatory sites and completely automated it into a web-based tool called ISMARA (Integrated System for Motif Activity Response Analysis). Given only gene expression or chromatin state data across a set of samples as input, ISMARA identifies the key TFs and miRNAs driving expression/chromatin changes and makes detailed predictions regarding their regulatory roles. These include predicted activities of the regulators across the samples, their genome-wide targets, enriched gene categories among the targets, and direct interactions between the regulators. Applying ISMARA to data sets from well-studied systems, we show that it consistently identifies known key regulators ab initio. We also present a number of novel predictions including regulatory interactions in innate immunity, a master regulator of mucociliary differentiation, TFs consistently disregulated in cancer, and TFs that mediate specific chromatin modifications.
Collapse
Affiliation(s)
- Piotr J Balwierz
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Analysis of genetic aberrations on chromosomal region 8q21–24 identifies E2F5 as an oncogene with copy number gain in prostate cancer. Med Oncol 2013; 30:465. [DOI: 10.1007/s12032-013-0465-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
11
|
Molina-Privado I, Jiménez-P R, Montes-Moreno S, Chiodo Y, Rodríguez-Martínez M, Sánchez-Verde L, Iglesias T, Piris MA, Campanero MR. E2F4 plays a key role in Burkitt lymphoma tumorigenesis. Leukemia 2012; 26:2277-85. [PMID: 22475873 DOI: 10.1038/leu.2012.99] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sporadic Burkitt lymphoma (sBL) is a rapidly growing B-cell non-Hodgkin's lymphoma whose treatment requires highly aggressive therapies that often result severely toxic. Identification of proteins whose expression or function is deregulated in sBL and play a role in its formation could facilitate development of less toxic therapies. We have previously shown that E2F1 expression is deregulated in sBL. We have now investigated the mechanisms underlying E2F1 deregulation and found that the E2F sites in its promoter fail to repress its transcriptional activity in BL cells and that the transcriptional repressor E2F4 barely interacts with these sites. We also have found that E2F4 protein levels, but not those of its mRNA, are reduced in sBL cell lines relative to immortal B-cell lines. E2F4 protein expression is also decreased in 24 of 26 sBL tumor samples from patients compared with control tissues. Our data demonstrate that enforced E2F4 expression in BL cells not only diminishes E2F1 levels, but also reduces selectively the tumorigenic properties and proliferation of BL cells, while increasing their accumulation in G(2)/M. Our results therefore point to E2F4 as a target for developing novel and less toxic treatments for sBL.
Collapse
Affiliation(s)
- I Molina-Privado
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zheng ZM, Wang X. Regulation of cellular miRNA expression by human papillomaviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:668-77. [PMID: 21616186 DOI: 10.1016/j.bbagrm.2011.05.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/20/2011] [Accepted: 05/09/2011] [Indexed: 12/17/2022]
Abstract
High-risk HPV infection leads to aberrant expression of cellular oncogenic and tumor suppressive miRNAs. A large number of these miRNA genes are downstream targets of the transcription factors c-Myc, p53, and E2F and their expression can therefore be modulated by oncogenic HPV E6 and E7. Cervical cancer represents a unique tumor model for understanding how viral E6 and E7 oncoproteins deregulate the expression of the miR-15/16 cluster, miR-17-92 family, miR-21, miR-23b, miR-34a, and miR-106b/93/25 cluster via the E6-p53 and E7-pRb pathways. Moreover, miRNAs may influence the expression of papillomavirus genes in a differentiation-dependent manner by targeting viral RNA transcripts. Cellular miRNAs affecting HPV DNA replication are of great interest and will be a future focus. We are entering an era focusing on miRNA and noncoding RNA, and the studies on HPV and host miRNA interactions will continue shedding more light on our understanding of the HPV life cycle and the mechanistic underpinnings of HPV-induced oncogenesis. This article is part of a Special Issue entitled: "MicroRNAs in viral gene regulation".
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
13
|
Sahin F, Sladek TL. E2F-1 has dual roles depending on the cell cycle. Int J Biol Sci 2010; 6:116-28. [PMID: 20224733 PMCID: PMC2836542 DOI: 10.7150/ijbs.6.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 02/28/2010] [Indexed: 02/03/2023] Open
Abstract
The E2F family of transcription factors play a critical role in the control of cell proliferation. E2F-1 is the major cellular target of pRB and is regulated by pRB during cell proliferation. E2F-1-mediated activation and repression of target genes occurs in different settings. The role of E2F-1 and E2F-1/pRB complexes in regulation of different target genes, and in cycling versus quiescent cells, is unclear. In this study, effects of free E2F-1 (doesn't complex with pRb) and E2F-1/pRb complex, on E2F-1 target gene expression were compared in different cell growth conditions. Findings suggest that E2F-1 acts in different ways, not only depending on the target gene but also depending on different stages of the cell cycle. For example, E2F-1 acts as part of the repression complex with pRB in the expression of DHFR, b-myb, TK and cdc2 in asynchronously growing cells; on the other hand, E2F-1 acts as an activator in the expression of the same genes in cells that are re-entering the cycle.
Collapse
Affiliation(s)
- Fikret Sahin
- Department of Microbiology and Immunology, Finch University of Health Sciences/Chicago Medical School (now Rosalind Franklin University), 3333 Green Bay Road, North Chicago, Illinois 60064-3095, USA.
| | | |
Collapse
|
14
|
Molina-Privado I, Rodríguez-Martínez M, Rebollo P, Martín-Pérez D, Artiga MJ, Menárguez J, Flemington EK, Piris MA, Campanero MR. E2F1 expression is deregulated and plays an oncogenic role in sporadic Burkitt's lymphoma. Cancer Res 2009; 69:4052-8. [PMID: 19406837 DOI: 10.1158/0008-5472.can-08-4617] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Current treatments of sporadic Burkitt's lymphoma (sBL) are associated with severe toxicities. A better understanding of sBL formation would facilitate development of less toxic therapies. The etiology of sBL remains, however, largely unknown, C-MYC up-regulation being the only lesion known to occur in all sBL cases. Several studies examining the role of C-MYC in the pathogenesis of BL have concluded that C-MYC translocation is not the only critical event and that additional unidentified factors are expected to be involved in the formation of this tumor. We herein report that a gene distinct from C-MYC, E2F1, is involved in the formation of all or most sBL tumors. We found that E2F1 is highly expressed in Burkitt's lymphoma cell lines and sBL lymphoma specimens. Our data indicate that its elevated expression is not merely the consequence of the presence of more cycling cells in this tumor relative to other cell lines or to other neoplasias. In fact, we show that reduction of its expression in sBL cells inhibits tumor formation and decreases their proliferation rate. We also provide data suggesting that E2F1 collaborates with C-MYC in sBL formation. E2F1 expression down-regulation did not affect, however, the proliferation of human primary diploid fibroblasts. Because E2F1 is not needed for cell proliferation of normal cells, our results reveal E2F1 as a promising therapeutic target for sBL.
Collapse
Affiliation(s)
- Irene Molina-Privado
- Instituto de Investigaciones Biomédicas de Madrid, Consejo Superior de Investigaciones Científicas, Hospital Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Umemura S, Shirane M, Takekoshi S, Kusakabe T, Itoh J, Egashira N, Tokuda Y, Mori K, Osamura YR. Overexpression of E2F-5 correlates with a pathological basal phenotype and a worse clinical outcome. Br J Cancer 2009; 100:764-71. [PMID: 19259095 PMCID: PMC2653774 DOI: 10.1038/sj.bjc.6604900] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The purpose of the present study is to identify genes that contribute to cell proliferation or differentiation of breast cancers independent of signalling through the oestrogen receptor (ER) or human epidermal growth factor receptor 2 (HER2). An oligonucleotide microarray assayed 40 tumour samples from ER(+)/HER2(−), ER(+)/HER2(+), ER(−)/HER2(+), and ER(−)/HER2(−) breast cancer tissues. Quantitative reverse transcriptase PCR detected overexpression of a cell cycle-related transcription factor, E2F-5, in ER-negative breast cancers, and fluorescence in situ hybridisation detected gene amplification of E2F-5 in 5 out of 57 (8.8%) breast cancer samples. No point mutations were found in the DNA-binding or DNA-dimerisation domain of E2F-5. Immunohistochemically, E2F-5-positive cancers correlated with a higher Ki-67 labelling index (59.5%, P=0.001) and higher histological grades (P=0.049). E2F-5-positive cancers were found more frequently in ER(−)/progesterone receptor (PgR)(−)/HER2(−) cancer samples (51.9%, P=0.0049) and in breast cancer samples exhibiting a basal phenotype (56.0%, P=0.0012). Disease-free survival in node-negative patients with E2F-5-positive cancers was shorter than for patients with E2F-5-negative cancers. In conclusion, we identify, for the first time, a population of breast cancer cells that overexpress the cell cycle-related transcription factor, E2F-5. This E2F-5-positive breast cancer subtype was associated with an ER(−)/PgR(−)/HER2(−) status, a basal phenotype, and a worse clinical outcome.
Collapse
Affiliation(s)
- S Umemura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Álvaro-Blanco J, Martínez-Gac L, Calonge E, Rodríguez-Martínez M, Molina-Privado I, Redondo JM, Alcamí J, Flemington EK, Campanero MR. A novel factor distinct from E2F mediates C-MYC promoter activation through its E2F element during exit from quiescence. Carcinogenesis 2009; 30:440-8. [DOI: 10.1093/carcin/bgp002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
17
|
Abstract
Burkitt's lymphoma is a rapidly fatal tumor if untreated, but it is curable with intensive polychemotherapy. Unfortunately, the toxicities reported for its treatment in adults are poorly tolerated. Novel therapies aimed at specific molecular targets might prove to be less toxic. A better knowledge of the mechanisms involved in the pathogenesis of Burkitt's lymphoma would facilitate the identification of such targets. This review explores the current knowledge on the alterations found in the three main Burkitt's lymphoma variants.
Collapse
Affiliation(s)
- M R Campanero
- Departamento de Biología del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
18
|
Abstract
The transcription factor MYB has a key role as a regulator of stem and progenitor cells in the bone marrow, colonic crypts and a neurogenic region of the adult brain. It is in these compartments that a deficit in MYB activity leads to severe or lethal phenotypes. As was predicted from its leukaemogenicity in several animal species, MYB has now been identified as an oncogene that is involved in some human leukaemias. Moreover, recent evidence has strengthened the case that MYB is activated in colon and breast cancer: a block to MYB expression is overcome by mutation of the regulatory machinery in the former disease and by oestrogen receptor-alpha (ERalpha) in the latter.
Collapse
Affiliation(s)
- Robert G Ramsay
- Peter MacCallum Cancer Centre, St Andrew's Place, Melbourne, Victoria 3002, Australia
| | | |
Collapse
|
19
|
Montanuy I, Torremocha R, Hernández-Munain C, Suñé C. Promoter Influences Transcription Elongation. J Biol Chem 2008; 283:7368-78. [DOI: 10.1074/jbc.m706243200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Campanero MR, Herrero A, Calvo V. The histone deacetylase inhibitor trichostatin A induces GADD45 gamma expression via Oct and NF-Y binding sites. Oncogene 2007; 27:1263-72. [PMID: 17724474 DOI: 10.1038/sj.onc.1210735] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The GADD45gamma protein is a potential tumor suppressor whose expression is reduced in several tumors. However, very little is known about the regulation of its expression. We have determined that the most relevant region of its promoter lies between nucleotides -112 and -54, relative to the transcription start site. Putative Oct and NF-Y elements were found in this region and factors belonging to these families interacted with these elements in vitro and with the promoter in vivo. Mutation of these elements reduced the basal activity of the promoter, suggesting that both sites are essential for basal expression. These factors interact with chromatin modifying proteins and we found that histone deacetylase 1 or silencing mediator for retinoid and thyroid hormone receptor overexpression reduced the basal activity of the promoter. In contrast, forced expression of the histone acetylase protein PCAF or cell treatment with the HDAC inhibitor trichostatin A increased GADD45gamma mRNA levels and induced GADD45gamma promoter activity through its Oct and NF-Y elements. Moreover, ectopic expression of a dominant-negative version of NF-YA strongly inhibited trichostatin A-induced activation of the promoter. Our data strongly suggest that inhibition of deacetylase activity could potentially be used for treatment of tumors where GADD45gamma expression is reduced.
Collapse
Affiliation(s)
- M R Campanero
- Instituto de Investigaciones Biomédicas, CSIC-UAM, Arturo Duperier, Madrid, Spain
| | | | | |
Collapse
|
21
|
Hugo H, Cures A, Suraweera N, Drabsch Y, Purcell D, Mantamadiotis T, Phillips W, Dobrovic A, Zupi G, Gonda TJ, Iacopetta B, Ramsay RG. Mutations in the MYB intron I regulatory sequence increase transcription in colon cancers. Genes Chromosomes Cancer 2006; 45:1143-54. [PMID: 16977606 DOI: 10.1002/gcc.20378] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although MYB overexpression in colorectal cancer (CRC) is known to be a prognostic indicator for poor survival, the basis for this overexpression is unclear. Among multiple levels of MYB regulation, the most dynamic is the control of transcriptional elongation by sequences within intron 1. The authors have proposed that this regulatory sequence is transcribed into an RNA stem-loop and 19-residue polyuridine tract, and is subject to mutation in CRC. When this region was examined in colorectal and breast carcinoma cell lines and tissues, the authors found frequent mutations only in CRC. It was determined that these mutations allowed increased transcription compared with the wild type sequence. These data suggest that this MYB regulatory region within intron 1 is subject to mutations in CRC but not breast cancer, perhaps consistent with the mutagenic insult that occurs within the colon and not mammary tissue. In CRC, these mutations may contribute to MYB overexpression, highlighting the importance of noncoding sequences in the regulation of key cancer genes.
Collapse
Affiliation(s)
- Honor Hugo
- Peter MacCallum Cancer Center, East Melbourne and Department of Pathology, The University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mallakin A, Taneja P, Matise LA, Willingham MC, Inoue K. Expression of Dmp1 in specific differentiated, nonproliferating cells and its regulation by E2Fs. Oncogene 2006; 25:7703-13. [PMID: 16878159 PMCID: PMC2077854 DOI: 10.1038/sj.onc.1209750] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dmp1 is a Myb-like transcription factor that transmits oncogenic Ras-Raf signaling to the Arf-p53 pathway and induces cell cycle arrest. Immunohistochemical staining was performed to identify the pattern of Dmp1 expression in normal murine tissues compared with the proliferation marker, Ki67. In thymus, the nuclei of mature T lymphocytes in the medulla were strongly positive for Dmp1, whereas Ki67 was detected only in the cortex. In intestine, Dmp1 was detected in the nuclei of superficial layers of the villi, whereas Ki67-positive cells were confined to the lower one-third of the crypt. Double staining for Dmp1 and Ki67 revealed that these two proteins were expressed in mutually exclusive fashion in nearly all the tissues examined. Subsets of E2Fs were specifically bound to the Dmp1 promoter upon mitogenic signaling and E2Fs 1-4 inhibited the Dmp1 promoter in a reporter assay. The Dmp1 promoter was repressed when the cells entered the S to G2/M phase of the cell cycle when both Dmp1 and Arf expressions were downregulated. The Dmp1 mRNA was not downregulated by serum in E2F-DB(+) cells, suggesting that the Dmp1 promoter repression is E2F-dependent. This explains why the Dmp1 and Ki67-positive cells are stained in mutually exclusive fashion in normal tissues.
Collapse
Affiliation(s)
- A Mallakin
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| | - P Taneja
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| | - LA Matise
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| | - MC Willingham
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| | - K Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
23
|
Kuroyanagi Y, Kaneko Y, Muta K, Park BS, Moi P, Ausenda S, Cappellini MD, Ikuta T. cAMP differentially regulates gamma-globin gene expression in erythroleukemic cells and primary erythroblasts through c-Myb expression. Biochem Biophys Res Commun 2006; 344:1038-47. [PMID: 16631597 DOI: 10.1016/j.bbrc.2006.03.203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 11/28/2022]
Abstract
Our previous studies demonstrated roles of cyclic nucleotides in gamma-globin gene expression. We recently found that, upon activation of the cAMP pathway, expression of the gamma-globin gene is inhibited in K562 cells but induced in adult erythroblasts. Here we show that c-Myb, a proto-oncogene product that plays a role in cell growth and differentiation, is involved in the cAMP-mediated differential regulation of gamma-globin gene expression in K562 cells and primary erythroblasts. Our studies found that c-Myb is expressed at a high level in K562 cells compared to primary erythroblasts, and that c-Myb expression is further increased following the treatment with forskolin, an adenylate cyclase activator. The induction of gamma-globin gene expression was also inhibited in K562 cells by raising the levels of c-Myb expression. Importantly, forskolin-induced erythroid differentiation in K562 cells, as determined by the expression of glycophorins and CD71, suggesting that high-level expression of c-Myb may not be sufficient to inhibit the differentiation of erythroid cells. In contrast, c-Myb was not expressed in adult erythroblasts treated with forskolin and primary erythroblasts may lack the c-Myb-mediated inhibitory mechanism for gamma-globin gene expression. Together, these results show that the cAMP pathway blocks gamma-globin gene expression in K562 cells by increasing c-Myb expression and c-Myb plays a role in defining the mode of response of the gamma-globin gene to fetal hemoglobin inducers in erythroid cells.
Collapse
Affiliation(s)
- Yuichi Kuroyanagi
- Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Davis JN, McCabe MT, Hayward SW, Park JM, Day ML. Disruption of Rb/E2F pathway results in increased cyclooxygenase-2 expression and activity in prostate epithelial cells. Cancer Res 2005; 65:3633-42. [PMID: 15867358 DOI: 10.1158/0008-5472.can-04-3129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The loss of the retinoblastoma tumor suppressor gene (RB) is common in many human cancers, including prostate. We previously reported that engineered deletion of RB in prostate epithelial cells results in sustained cell growth in serum-free media, a predisposition to develop hyperplasia and dysplasia in prostate tissue recombinant grafts, and sensitization to hormonal carcinogenesis. Examining the molecular consequence of RB loss in this system, we show that cyclooxygenase-2 (COX-2) is significantly up-regulated following RB deletion in prostate tissue recombinants. To study the effect of RB deletion on COX-2 regulation, we generated wild-type (PrE) and Rb-/- (Rb-/-PrE) prostate epithelial cell lines rescued by tissue recombination. We show elevated COX-2 mRNA and protein expression in Rb-/-PrE cell lines with increased prostaglandin synthesis. We also find that loss of Rb leads to deregulated E2F activity, with increased expression of E2F target genes, and that exogenous expression of E2F1 results in elevated COX-2 mRNA and protein levels. COX-2 promoter studies reveal that E2F1 transcriptionally activates COX-2, which is dependent on the transactivation and DNA-binding domains of E2F1. Further analysis revealed that the E2F1 target gene, c-myb, is elevated in Rb-/-PrE cells and E2F1-overexpressing cells, whereas ectopic overexpression of c-myb activates the COX-2 promoter in prostate epithelial cells. Additionally, cotransfection with E2F1 and a dominant-negative c-myb inhibited E2F1 activation of the COX-2 promoter. Taken together, these results suggest activation of a transcriptional cascade by which E2F1 regulates COX-2 expression through the c-myb oncogene. This study reports a novel finding describing that deregulation of the Rb/E2F complex results in increased COX-2 expression and activity.
Collapse
Affiliation(s)
- Joanne N Davis
- Department of Urology, Michigan Urology Center, University of Michigan, Ann Arbor, Michigan 48109-0944, USA
| | | | | | | | | |
Collapse
|
25
|
Davidson CJ, Tirouvanziam R, Herzenberg LA, Lipsick JS. Functional evolution of the vertebrate Myb gene family: B-Myb, but neither A-Myb nor c-Myb, complements Drosophila Myb in hemocytes. Genetics 2005; 169:215-29. [PMID: 15489525 PMCID: PMC1448883 DOI: 10.1534/genetics.104.034132] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/07/2004] [Indexed: 11/18/2022] Open
Abstract
The duplication of genes and genomes is believed to be a major force in the evolution of eukaryotic organisms. However, different models have been presented about how duplicated genes are preserved from elimination by purifying selection. Preservation of one of the gene copies due to rare mutational events that result in a new gene function (neofunctionalization) necessitates that the other gene copy retain its ancestral function. Alternatively, preservation of both gene copies due to rapid divergence of coding and noncoding regions such that neither retains the complete function of the ancestral gene (subfunctionalization) may result in a requirement for both gene copies for organismal survival. The duplication and divergence of the tandemly arrayed homeotic clusters have been studied in considerable detail and have provided evidence in support of the subfunctionalization model. However, the vast majority of duplicated genes are not clustered tandemly, but instead are dispersed in syntenic regions on different chromosomes, most likely as a result of genome-wide duplications and rearrangements. The Myb oncogene family provides an interesting opportunity to study a dispersed multigene family because invertebrates possess a single Myb gene, whereas all vertebrate genomes examined thus far contain three different Myb genes (A-Myb, B-Myb, and c-Myb). A-Myb and c-Myb appear to have arisen by a second round of gene duplication, which was preceded by the acquisition of a transcriptional activation domain in the ancestral A-Myb/c-Myb gene generated from the initial duplication of an ancestral B-Myb-like gene. B-Myb appears to be essential in all dividing cells, whereas A-Myb and c-Myb display tissue-specific requirements during spermatogenesis and hematopoiesis, respectively. We now report that the absence of Drosophila Myb (Dm-Myb) causes a failure of larval hemocyte proliferation and lymph gland development, while Dm-Myb(-/-) hemocytes from mosaic larvae reveal a phagocytosis defect. In addition, we show that vertebrate B-Myb, but neither vertebrate A-Myb nor c-Myb, can complement these hemocyte proliferation defects in Drosophila. Indeed, vertebrate A-Myb and c-Myb cause lethality in the presence or absence of endogenous Dm-Myb. These results are consistent with a neomorphic origin of an ancestral A-Myb/c-Myb gene from a duplicated B-Myb-like gene. In addition, our results suggest that B-Myb and Dm-Myb share essential conserved functions that are required for cell proliferation. Finally, these experiments demonstrate the utility of genetic complementation in Drosophila to explore the functional evolution of duplicated genes in vertebrates.
Collapse
Affiliation(s)
- Colin J Davidson
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
26
|
Lin Z, Yin Q, Flemington E. Identification of a negative regulatory element in the Epstein-Barr virus Zta transactivation domain that is regulated by the cell cycle control factors c-Myc and E2F1. J Virol 2004; 78:11962-71. [PMID: 15479836 PMCID: PMC523277 DOI: 10.1128/jvi.78.21.11962-11971.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reactivation in Epstein-Barr virus (EBV) is closely associated with a G(0)/G(1) cell cycle arrest which can be induced either by lytic cycle-inducing agents or by the immediate-early gene product Zta. Accumulating evidence shows that in epithelial cells, downregulation of the proto-oncogene, c-myc, plays an important role in lytic cycle-associated cell growth arrest. Here, we provide evidence that c-Myc provides a gatekeeper function to ensure that certain cell cycle inhibitory events have been capitulated prior to full progression into the lytic cycle. Specifically, we show that reconstitution of c-Myc expression during the lytic cycle to levels observed in cycling uninduced cells inhibits the transactivation function of Zta. Nuclear localization studies show that c-Myc does not grossly alter the nuclear localization of Zta or its association with the insoluble nuclear fraction. Enforced expression of another transcription factor that promotes cell cycle progression, E2F1, also inhibits Zta transactivation. Analysis of c-Myc- and E2F1-mediated inhibition of a panel of Zta mutants shows parallel genetics and inhibition maps to a small bipartite sequence located between amino acids 29 and 53 of Zta, containing homology to the proline-rich domain of the tumor suppressor protein p53. Mutation of a conserved tryptophan residue located at amino acid 49 of Zta largely prevents inhibition by both c-Myc and E2F1. These studies identify a negative regulatory element within the Zta activation domain that is regulated by the cell cycle-promoting factors c-Myc and E2F1.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Pathology and Molecular and Cellular Biology Graduate Program, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
27
|
Sanz-González SM, Castro C, Pérez P, Andrés V. Role of E2F and ERK1/2 in STI571-mediated smooth muscle cell growth arrest and cyclin A transcriptional repression. Biochem Biophys Res Commun 2004; 317:972-9. [PMID: 15094364 DOI: 10.1016/j.bbrc.2004.03.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Indexed: 12/17/2022]
Abstract
Platelet-derived growth factor (PDGF) ligand and receptors (PDGF-R) activate smooth muscle cell (SMC) proliferation, a key event during vascular obstructive disease. The PDGF-R tyrosine kinase inhibitor STI571 attenuates SMC proliferation and experimental neointimal thickening. Here, we investigated the molecular mechanisms underlying STI571-dependent SMC growth arrest. STI571 abrogates PDGF-BB-dependent cyclin D1 and cyclin A protein expression and inhibits transcriptional activation of reporter genes driven by the human cyclin A gene promoter. Repression of cyclin A promoter activity by STI571 requires a functional E2F-binding site, and forced expression of E2F overrides this inhibitory effect. Moreover, STI571 inhibits E2F DNA-binding activity in SMCs. We also found that STI571 abrogates PDGF-BB-dependent activation of extracellular-regulated kinase 1 and 2 (ERK1/2), and forced activation of these factors impaired STI571-dependent inhibition of both cyclin A promoter activity and SMC proliferation. Thus, E2F and ERK1/2 play an important role in STI571-mediated SMC growth arrest and cyclin A transcriptional repression. These findings may have importance in the development of novel therapeutic strategies for the treatment of neointimal hyperplasia.
Collapse
MESH Headings
- Animals
- Becaplermin
- Benzamides
- Cell Cycle Proteins
- Cell Division/drug effects
- Cell Line
- Cyclin A/genetics
- Cyclin A/metabolism
- Cyclin D1/biosynthesis
- DNA-Binding Proteins
- E2F Transcription Factors
- Enzyme Inhibitors/pharmacology
- Humans
- Imatinib Mesylate
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Piperazines/antagonists & inhibitors
- Piperazines/pharmacology
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/pharmacology
- Promoter Regions, Genetic
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins c-sis
- Pyrimidines/antagonists & inhibitors
- Pyrimidines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Platelet-Derived Growth Factor/metabolism
- Repressor Proteins/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Silvia M Sanz-González
- Loboratory of Vascular Biology, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas, Valencia, Spain
| | | | | | | |
Collapse
|
28
|
Martínez-Gac L, Marqués M, García Z, Campanero MR, Carrera AC. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol 2004; 24:2181-9. [PMID: 14966295 PMCID: PMC350549 DOI: 10.1128/mcb.24.5.2181-2189.2004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 08/29/2003] [Accepted: 12/04/2003] [Indexed: 11/20/2022] Open
Abstract
Cyclin G2 is an unconventional cyclin highly expressed in postmitotic cells. Unlike classical cyclins that promote cell cycle progression, cyclin G2 blocks cell cycle entry. Here we studied the mechanisms that regulate cyclin G2 mRNA expression during the cell cycle. Analysis of synchronized NIH 3T3 cell cultures showed elevated cyclin G2 mRNA expression levels at G(0), with a considerable reduction as cells enter cell cycle. Downregulation of cyclin G2 mRNA levels requires activation of phosphoinositide 3-kinase, suggesting that this enzyme controls cyclin G2 mRNA expression. Because the phosphoinositide 3-kinase pathway inhibits the FoxO family of forkhead transcription factors, we examined the involvement of these factors in the regulation of cyclin G2 expression. We show that active forms of the forkhead transcription factor FoxO3a (FKHRL1) increase cyclin G2 mRNA levels. Cyclin G2 has forkhead consensus motifs in its promoter, which are transactivated by constitutive active FoxO3a forms. Finally, interference with forkhead-mediated transcription by overexpression of an inactive form decreases cyclin G2 mRNA expression levels. These results show that FoxO genes regulate cyclin G2 expression, illustrating a new role for phosphoinositide 3-kinase and FoxO transcription factors in the control of cell cycle entry.
Collapse
Affiliation(s)
- Lorena Martínez-Gac
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain
| | | | | | | | | |
Collapse
|
29
|
Bartůnek P, Králová J, Blendinger G, Dvorák M, Zenke M. GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter. Oncogene 2003; 22:1927-35. [PMID: 12673198 DOI: 10.1038/sj.onc.1206281] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GATA-1 and c-Myb transcription factors represent key regulators of red blood cell development. GATA-1 is upregulated and c-myb proto-oncogene expression is downregulated when red cell progenitors differentiate into erythrocytes. Here we have employed a culture system, that faithfully recapitulates red blood cell differentiation in vitro, to follow the kinetics of GATA-1 and c-myb expression. We show that c-myb proto-oncogene expression is high in progenitors and effectively downregulated at the time when nuclear GATA-1 accumulates and cells differentiate into erythrocytes. Additionally, we identified two GATA-1 binding sites within the c-myb promoter and demonstrate that GATA-1 protein binds to these sites in vitro. Furthermore, GATA-1 represses c-myb expression through one of the GATA-1 binding sites in transient transfection experiments and this requires FOG-1. Thus, our study provides evidence for a direct molecular link between GATA-1 activity and c-myb proto-oncogene expression during terminal red cell differentiation.
Collapse
Affiliation(s)
- Petr Bartůnek
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
30
|
Abstract
c-Myb is a transcription factor employed in the haematopoietic system and gastrointestinal tract to regulate the exquisite balance between cell division, differentiation and survival. In its absence, these tissues either fail to form, or show aberrant biology. Mice lacking a functional c-myb gene die in utero by day 15 of development. When inappropriately expressed, as is common in leukaemia and epithelial cancers of the breast, colon and gastro-oesophagus, c-Myb appears to activate gene targets of key importance to cancer progression and metastasis. These genes include cyclooxygenase-2 (COX-2), Bcl-2, BclX(L) and c-Myc, which influence diverse processes such as angiogenesis, proliferation and apoptosis. The clinical potential for blocking c-Myb expression in malignancies is based upon strong preclinical data and some trial-based evidence. The modest clinical experience to date has been with haematopoietic malignancies, but other disease classes may be amenable to similar interventions. The frontline agents to achieve this are nuclease-resistant oligodeoxynucleotides (ODNs), which are proving to be acceptable therapeutic reagents in terms of tolerable toxicities and delivery. Nevertheless, further effort must be focused on improving their efficacy, eliminating non-specific toxicity and optimising delivery. Optimisation issues aside, it would appear that anti-c-Myb therapies will be used with most success when combined with other agents, some of which will be established cytotoxic and differentiation-inducing drugs. This review will explore the future strategic use of ODNs in vivo, focusing on a wide spectrum of diseases, including several beyond the haematopoietic malignancies, in which c-Myb appears to play a role.
Collapse
MESH Headings
- Animals
- Anti-HIV Agents/administration & dosage
- Anti-HIV Agents/adverse effects
- Anti-HIV Agents/pharmacology
- Anti-HIV Agents/therapeutic use
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma/drug therapy
- Carcinoma/genetics
- Cell Transformation, Neoplastic/drug effects
- Clinical Trials as Topic
- Drug Delivery Systems
- Drug Design
- Drug Therapy, Combination
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Viral/drug effects
- Genes, myb/drug effects
- HIV Infections/drug therapy
- HIV Infections/genetics
- Hematopoiesis/drug effects
- Hematopoiesis/physiology
- Humans
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms/drug therapy
- Neoplasms/genetics
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/adverse effects
- Oligodeoxyribonucleotides/pharmacology
- Oligodeoxyribonucleotides/therapeutic use
- Proto-Oncogene Proteins c-myb/antagonists & inhibitors
- Proto-Oncogene Proteins c-myb/biosynthesis
- Proto-Oncogene Proteins c-myb/physiology
- RNA, Messenger/chemistry
- RNA, Messenger/drug effects
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/drug effects
- Transcription, Genetic/drug effects
- Treatment Outcome
Collapse
Affiliation(s)
- Robert G Ramsay
- Differentiation and Transcription Group, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Victoria, Australia.
| | | | | |
Collapse
|
31
|
The E2F-Cdc2 cell-cycle pathway specifically mediates activity deprivation-induced apoptosis of postmitotic neurons. J Neurosci 2003. [PMID: 12629169 DOI: 10.1523/jneurosci.23-05-01649.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal apoptosis plays a critical role in the normal development of the mammalian brain and is thought to contribute to the pathogenesis of several neurologic disorders. However, the intracellular mechanisms underlying apoptosis of neurons remain incompletely understood. In the present study, we characterized a cell-cycle-based mechanism by which neuronal activity deprivation induces apoptosis of postmitotic neurons. Activity deprivation, but not growth factor withdrawal, was found to induce Cdc2 expression and consequent Cdc2-mediated apoptosis in granule neurons of the developing rat cerebellum. We found that activity deprivation induces cdc2 transcription in neurons via an E2F-binding element (EBE) within the cdc2 promoter. The transcription factor E2F1 that is expressed in granule neurons was found in DNA binding assays to bind to the EBE of the cdc2 gene. In chromatin immunoprecipitation analysis, endogenous E2F1 forms a complex with the promoter of the endogenous cdc2 gene in granule neurons, indicating that endogenous E2F1 is poised to activate transcription of the endogenous cdc2 gene in neurons. Consistent with this conclusion, a dominant interfering form of E2F, when expressed in granule neurons, blocked activity deprivation-induced cdc2 transcription. In other experiments, we found that the expression of E2F1 in granule neurons induces Cdc2 expression and promotes neuronal apoptosis via the activation of Cdc2. Remarkably, in contrast to inducing the E2F-mediated expression and activation of Cdc2 in granule neurons, activity deprivation fails to stimulate the expression of E2F-target genes that trigger DNA synthesis and replication. Together, our findings define a novel apoptotic mechanism whereby E2F selectively couples an activity deprivation-induced signal to cdc2 transcription in the absence of stimulating DNA synthesis and thus culminating in Cdc2-mediated apoptosis of postmitotic neurons.
Collapse
|
32
|
Konishi Y, Bonni A. The E2F-Cdc2 cell-cycle pathway specifically mediates activity deprivation-induced apoptosis of postmitotic neurons. J Neurosci 2003; 23:1649-58. [PMID: 12629169 PMCID: PMC6741984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Neuronal apoptosis plays a critical role in the normal development of the mammalian brain and is thought to contribute to the pathogenesis of several neurologic disorders. However, the intracellular mechanisms underlying apoptosis of neurons remain incompletely understood. In the present study, we characterized a cell-cycle-based mechanism by which neuronal activity deprivation induces apoptosis of postmitotic neurons. Activity deprivation, but not growth factor withdrawal, was found to induce Cdc2 expression and consequent Cdc2-mediated apoptosis in granule neurons of the developing rat cerebellum. We found that activity deprivation induces cdc2 transcription in neurons via an E2F-binding element (EBE) within the cdc2 promoter. The transcription factor E2F1 that is expressed in granule neurons was found in DNA binding assays to bind to the EBE of the cdc2 gene. In chromatin immunoprecipitation analysis, endogenous E2F1 forms a complex with the promoter of the endogenous cdc2 gene in granule neurons, indicating that endogenous E2F1 is poised to activate transcription of the endogenous cdc2 gene in neurons. Consistent with this conclusion, a dominant interfering form of E2F, when expressed in granule neurons, blocked activity deprivation-induced cdc2 transcription. In other experiments, we found that the expression of E2F1 in granule neurons induces Cdc2 expression and promotes neuronal apoptosis via the activation of Cdc2. Remarkably, in contrast to inducing the E2F-mediated expression and activation of Cdc2 in granule neurons, activity deprivation fails to stimulate the expression of E2F-target genes that trigger DNA synthesis and replication. Together, our findings define a novel apoptotic mechanism whereby E2F selectively couples an activity deprivation-induced signal to cdc2 transcription in the absence of stimulating DNA synthesis and thus culminating in Cdc2-mediated apoptosis of postmitotic neurons.
Collapse
Affiliation(s)
- Yoshiyuki Konishi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Lauder A, Castellanos A, Weston K. c-Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of Tcells and is required for PKB-mediated protection from apoptosis. Mol Cell Biol 2001; 21:5797-805. [PMID: 11486019 PMCID: PMC87299 DOI: 10.1128/mcb.21.17.5797-5805.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Accepted: 06/07/2001] [Indexed: 01/14/2023] Open
Abstract
During T-cell activation, c-Myb is induced upon interleukin 2 (IL-2) stimulation and is required for correct proliferation of cells. In this paper, we provide evidence that IL-2-mediated induction of the c-myb gene occurs via the phosphoinositide 3-kinase (PI3K) signaling pathway, that protein kinase B (PKB) is the principal transducer of this signal, and that activation of the c-myb promoter can be abolished by deletion of conserved E2F and NF-kappaB binding sites. We show that Myb is required to protect activated peripheral T cells from bcl-2-independent apoptosis and that overexpression of oncogenic v-Myb is antiapoptotic. Overexpression of a Myb dominant-negative transgene abrogates PKB-mediated protection from apoptosis. Taken together, these results suggest that induction of c-myb transcription is an important downstream event for PKB-mediated protection of T cells from programmed cell death.
Collapse
Affiliation(s)
- A Lauder
- CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | |
Collapse
|
34
|
Polanowska J, Fabbrizio E, Le Cam L, Trouche D, Emiliani S, Herrera R, Sardet C. The periodic down regulation of Cyclin E gene expression from exit of mitosis to end of G(1) is controlled by a deacetylase- and E2F-associated bipartite repressor element. Oncogene 2001; 20:4115-27. [PMID: 11464278 DOI: 10.1038/sj.onc.1204514] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2001] [Revised: 04/06/2001] [Accepted: 04/09/2001] [Indexed: 11/09/2022]
Abstract
The expression of cyclin E and that of a few other bona fide cell cycle regulatory genes periodically oscillates every cycle in proliferating cells. Although numerous experiments have documented the role of E2F sites and E2F activities in the control of these genes as cells exit from G(0) to move through the initial G(1)/S phase transition, almost nothing is known on the role of E2Fs during the subsequent cell cycles. Here we show that a variant E2F-site that is part of the Cyclin E Repressor Module (CERM) (Le Cam et al., 1999b) accounts for the periodic down regulation of the cyclin E promoter observed between the exit from mitosis until the mid/late G(1) phase in exponentially cycling cells. This cell cycle-dependent repression correlates with the periodic binding of an atypical G(1)-specific high molecular weight p107-E2F complex (Cyclin E Repressor Complex: CERC2) that differs in both size and DNA binding behaviors from known p107-E2F complexes. Notably, affinity purified CERC2 displays a TSA-sensitive histone deacetylase activity and, consistent with this, derepression of the cyclin E promoter by trichostatin A depends on the CERM element. Altogether, this shows that the cell cycle-dependent control of cyclin E promoter in cycling cells is embroiled in acetylation pathways via the CERM-like E2F element.
Collapse
Affiliation(s)
- J Polanowska
- Institut de Genetique Moleculaire UMR 5535 / IFR24 CNRS, 1919 Route de Mende 34293, Montpellier cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Izumi M, Yokoi M, Nishikawa NS, Miyazawa H, Sugino A, Yamagishi M, Yamaguchi M, Matsukage A, Yatagai F, Hanaoka F. Transcription of the catalytic 180-kDa subunit gene of mouse DNA polymerase alpha is controlled by E2F, an Ets-related transcription factor, and Sp1. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:341-52. [PMID: 11004506 DOI: 10.1016/s0167-4781(00)00117-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have isolated a genomic DNA fragment spanning the 5'-end of the gene encoding the catalytic subunit of mouse DNA polymerase alpha. The nucleotide sequence of the upstream region was G/C-rich and lacked a TATA box. Transient expression assays in cycling NIH 3T3 cells demonstrated that the GC box of 20 bp (at nucleotides -112/-93 with respect to the transcription initiation site) and the palindromic sequence of 14 bp (at nucleotides -71/-58) were essential for basal promoter activity. Electrophoretic mobility shift assays showed that Sp1 binds to the GC box. We also purified a protein capable of binding to the palindrome and identified it as GA-binding protein (GABP), an Ets- and Notch-related transcription factor. Transient expression assays in synchronized NIH 3T3 cells revealed that three variant E2F sites near the transcription initiation site (at nucleotides -23/-16, -1/+7 and +17/+29) had no basal promoter activity by themselves, but were essential for growth-dependent stimulation of the gene expression. These data indicate that E2F, GABP and Sp1 regulate the gene expression of this principal replication enzyme.
Collapse
Affiliation(s)
- M Izumi
- Division of Radioisotope Technology, RIKEN (The Institute of Physical and CHemical Research), Saitama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Campanero MR, Armstrong MI, Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A 2000; 97:6481-6. [PMID: 10823896 PMCID: PMC18629 DOI: 10.1073/pnas.100340697] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1999] [Indexed: 01/03/2023] Open
Abstract
Regulation of gene expression in mammals through methylation of cytosine residues at CpG dinucleotides is involved in the development and progression of tumors. Because many genes that are involved in the control of cell proliferation are regulated by members of the E2F family of transcription factors and because some E2F DNA-binding sites are methylated in vivo, we have investigated whether CpG methylation can regulate E2F functions. We show here that methylation of E2F elements derived from the dihydrofolate reductase, E2F1, and cdc2 promoters prevents the binding of all E2F family members tested (E2F1 through E2F5). In contrast, methylation of the E2F elements derived from the c-myc and c-myb promoters minimally affects the binding of E2F2, E2F3, E2F4, and E2F5 but significantly inhibits the binding of E2F1. Consistent with these studies, E2F3, but not E2F1, activates transcription through methylated E2F sites derived from the c-myb and c-myc genes whereas both E2F1 and E2F3 fail to transactivate a reporter gene that is under the control of a methylated dihydrofolate reductase E2F site. Together, these data illustrate a means through which E2F activity can be controlled.
Collapse
Affiliation(s)
- M R Campanero
- Department of Cancer Immunology and AIDS, Harvard Medical School and Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
| | | | | |
Collapse
|