1
|
Aranda RG, Fatima S, Rafid MI, McGill I, Hadwiger JA. Regulatory differences between atypical and typical MAP kinases in Dictyostelium discoideum. Cell Signal 2025; 130:111701. [PMID: 40020888 PMCID: PMC11908898 DOI: 10.1016/j.cellsig.2025.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Within the large family of mitogen activated protein kinases (MAPKs), one outlier group referred to as atypical MAPKs is not regulated by conventional upstream MAPK kinases (MAP2Ks). This includes the Dictyostelium discoideum atypical MAPK Erk2, a protein kinase essential for chemotactic movement and development. The regulation and functional specificity of Erk2 was investigated through phenotypic analysis of chimeric and mutant MAPKs. Chimeric MAPKs containing regions of Erk2 were created using complementary regions of the more typical MAPK Erk1, that provides very different functions in this amoeba. The chimeric MAPKs were not phosphorylated at levels observed for wild-type MAPKs and none rescued wild-type MAPK function to erk1- or erk2- cells. Endogenous Erk1 and Erk2 MAPKs were destabilized in cells expressing chimeric MAPKs containing the same carboxyl terminus. A carboxyl terminal motif conserved among atypical MAPKs was important but not essential for Erk2 regulation and function and the motif did not confer atypical MAPK regulation when present in Erk1. A kinase-dead version of Erk2 was phosphorylated in response to folate or cAMP chemotactic stimulation, suggesting Erk2 is activated in vivo by an upstream protein kinase, contrary to previous predictions of autophosphorylation. This regulation implies a protein kinase distinct from the single conventional MAP2K in Dictyostelium regulates atypical MAPK signaling. A non-activatable form of Erk2 was not capable of rescuing Erk2 function in erk2- cells. These findings suggest that the regulation of atypical and typical MAPKs is substantially different and carried out by distinct upstream protein kinases.
Collapse
Affiliation(s)
- Ramee G Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Md Ikram Rafid
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Imani McGill
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America.
| |
Collapse
|
2
|
Dandasena D, Moorthy A V, Suresh A, Bhandari V, Roy S, Sharma P. Theileria annulata Hijacks Host Signaling: Integrated Phosphoproteomics and transcriptomics Unveils ERK1/2 as a Central Regulator of Host Transcription Factors. Mol Cell Proteomics 2025:100992. [PMID: 40368139 DOI: 10.1016/j.mcpro.2025.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025] Open
Abstract
THEILERIA: transformed bovine leukocytes exhibit cancer-like characteristics, but the molecular mechanisms driving these transformations remain unclear. This study provides the first comprehensive phosphoproteomic analysis of both host and parasite in Theileria annulata-infected leukocyte cell lines. We show that T. annulata significantly induces changes in the host protein phosphorylation, impacting key cancer-related processes such as apoptosis suppression, CAMK signaling, and telomere maintenance. A pivotal finding is the parasite's manipulation of the MAPK pathway via sustained ERK1/2 activation, which regulates the phosphorylation of critical transcription factors like RUNX3, FOSL2, BCL6, c-JUN, JUNB, and c-MYC. Transcriptomic analysis of genes controlled by these transcription factors confirmed their role in T. annulata replication. ERK inhibition disrupts phosphorylation, deactivates these transcription factors, and induces apoptosis in infected cells. This underscores the ERK-AP-1 axis as a central mechanism of Theileria pathogenesis and a promising therapeutic target. Additionally, parasite-specific phosphoproteins and kinases were identified, offering new insights into therapeutic strategies to combat infection.
Collapse
Affiliation(s)
| | | | - Akash Suresh
- National Institute of Animal Biotechnology, Hyderabad
| | - Vasundhra Bhandari
- National Institute of Animal Biotechnology, Hyderabad; National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad
| | - Sonti Roy
- National Institute of Animal Biotechnology, Hyderabad
| | - Paresh Sharma
- National Institute of Animal Biotechnology, Hyderabad.
| |
Collapse
|
3
|
Dahm K, Vijayarangakannan P, Wollscheid H, Schild H, Rajalingam K. Atypical MAPKs in cancer. FEBS J 2025; 292:2173-2188. [PMID: 39348153 PMCID: PMC12062777 DOI: 10.1111/febs.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Impaired kinase signalling leads to various diseases, including cancer. At the same time, kinases make up the majority of the druggable genome and targeting kinase activity has proven to be a successful first-line therapy for many cancers. Among the best-studied kinases are the mitogen-activated protein kinases (MAPKs), which regulate cell proliferation, differentiation, motility, and survival. However, the MAPK family also contains the atypical members ERK3 (MAPK6), ERK4 (MAPK4), ERK7/ERK8 (MAPK15), and NLK that are functionally and structurally different from their conventional family members and have long been neglected. Nevertheless, in recent years, important roles in carcinogenesis, actin cytoskeleton regulation and the immune system have been discovered, underlining the physiological importance of atypical MAPKs and the need to better understand their functions. This review highlights the distinctive features of the atypical MAPKs and summarizes the evidence on their regulation, physiological roles, and potential targeting strategies for cancer therapies.
Collapse
Affiliation(s)
- Katrin Dahm
- Cell Biology UnitUniversity Medical Center Mainz, JGU‐MainzGermany
| | | | | | - Hansjörg Schild
- Institute of ImmunologyUniversity Medical Center Mainz, JGU‐MainzGermany
| | | |
Collapse
|
4
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
5
|
Hadwiger JA, Aranda RG, Fatima S. Atypical MAP kinases - new insights and directions from amoeba. J Cell Sci 2023; 136:jcs261447. [PMID: 37850857 PMCID: PMC10617611 DOI: 10.1242/jcs.261447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have been the focus of many studies over the past several decades, but the understanding of one subgroup of MAPKs, orthologs of MAPK15, known as atypical MAPKs, has lagged behind others. In most organisms, specific activating signals or downstream responses of atypical MAPK signaling pathways have not yet been identified even though these MAPKs are associated with many eukaryotic processes, including cancer and embryonic development. In this Review, we discuss recent studies that are shedding new light on both the regulation and function of atypical MAPKs in different organisms. In particular, the analysis of the atypical MAPK in the amoeba Dictyostelium discoideum has revealed important roles in chemotactic responses and gene regulation. The rapid and transient phosphorylation of the atypical MAPK in these responses suggest a highly regulated activation mechanism in vivo despite the ability of atypical MAPKs to autophosphorylate in vitro. Atypical MAPK function can also impact the activation of other MAPKs in amoeba. These advances are providing new perspectives on possible MAPK roles in animals that have not been previously considered, and this might lead to the identification of potential targets for regulating cell movement in the treatment of diseases.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
6
|
Pei J, Cong Q. Computational analysis of regulatory regions in human protein kinases. Protein Sci 2023; 32:e4764. [PMID: 37632170 PMCID: PMC10503413 DOI: 10.1002/pro.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Eukaryotic proteins often feature modular domain structures comprising globular domains that are connected by linker regions and intrinsically disordered regions that may contain important functional motifs. The intramolecular interactions of globular domains and nonglobular regions can play critical roles in different aspects of protein function. However, studying these interactions and their regulatory roles can be challenging due to the flexibility of nonglobular regions, the long insertions separating interacting modules, and the transient nature of some interactions. Obtaining the experimental structures of multiple domains and functional regions is more difficult than determining the structures of individual globular domains. High-quality structural models generated by AlphaFold offer a unique opportunity to study intramolecular interactions in eukaryotic proteins. In this study, we systematically explored intramolecular interactions between human protein kinase domains (KDs) and potential regulatory regions, including globular domains, N- and C-terminal tails, long insertions, and distal nonglobular regions. Our analysis identified intramolecular interactions between human KDs and 35 different types of globular domains, exhibiting a variety of interaction modes that could contribute to orthosteric or allosteric regulation of kinase activity. We also identified prevalent interactions between human KDs and their flanking regions (N- and C-terminal tails). These interactions exhibit group-specific characteristics and can vary within each specific kinase group. Although long-range interactions between KDs and nonglobular regions are relatively rare, structural details of these interactions offer new insights into the regulation mechanisms of several kinases, such as HASPIN, MAPK7, MAPK15, and SIK1B.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
7
|
Deniz O, Hasygar K, Hietakangas V. Cellular and physiological roles of the conserved atypical MAP kinase ERK7. FEBS Lett 2023; 597:601-607. [PMID: 36266944 DOI: 10.1002/1873-3468.14521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
Abstract
Extracellular signal-regulated kinase 7 (ERK7), also known as ERK8 and MAPK15, is an atypical member of the MAP kinase family. Compared with other MAP kinases, the biological roles of ERK7 remain poorly understood. Recent work, however, has revealed several novel functions for ERK7. These include a highly conserved essential role in ciliogenesis, the ability to control cell growth, metabolism and autophagy, as well as the maintenance of genomic integrity. ERK7 functions through phosphorylation-dependent and -independent mechanisms and it is activated by cellular stressors, including DNA-damaging agents, and nutrient deprivation. Here, we summarize recent developments in understanding ERK7 function, emphasizing its conserved roles in cellular and physiological regulation.
Collapse
Affiliation(s)
- Onur Deniz
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Kiran Hasygar
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| |
Collapse
|
8
|
O’Shaughnessy WJ, Dewangan PS, Paiz EA, Reese ML. Not your Mother's MAPKs: Apicomplexan MAPK function in daughter cell budding. PLoS Pathog 2022; 18:e1010849. [PMID: 36227859 PMCID: PMC9560070 DOI: 10.1371/journal.ppat.1010849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Reversible phosphorylation by protein kinases is one of the core mechanisms by which biological signals are propagated and processed. Mitogen-activated protein kinases, or MAPKs, are conserved throughout eukaryotes where they regulate cell cycle, development, and stress response. Here, we review advances in our understanding of the function and biochemistry of MAPK signaling in apicomplexan parasites. As expected for well-conserved signaling modules, MAPKs have been found to have multiple essential roles regulating both Toxoplasma tachyzoite replication and sexual differentiation in Plasmodium. However, apicomplexan MAPK signaling is notable for the lack of the canonical kinase cascade that normally regulates the networks, and therefore must be regulated by a distinct mechanism. We highlight what few regulatory relationships have been established to date, and discuss the challenges to the field in elucidating the complete MAPK signaling networks in these parasites.
Collapse
Affiliation(s)
- William J. O’Shaughnessy
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Pravin S. Dewangan
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - E. Ariana Paiz
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
9
|
Er H, Tas GG, Soygur B, Ozen S, Sati L. Acute and Chronic Exposure to 900 MHz Radio Frequency Radiation Activates p38/JNK-mediated MAPK Pathway in Rat Testis. Reprod Sci 2022; 29:1471-1485. [PMID: 35015292 DOI: 10.1007/s43032-022-00844-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
Abstract
The use of electronic devices such as mobile phones has had a long stretch of rapid growth all over the world. Therefore, exposure to radio frequency radiation (RFR) has increased enormously. Here, we aimed to assess the balance between cell death and proliferation and also investigate the involvement of the JNK/p38 MAPK signaling pathway in the testis of rats exposed to 900 MHz RFR in acute and chronic periods (2 h/day, 5 days/week) for 1 or 10 weeks, respectively. The expression of proliferating cell nuclear antigen (PCNA), Bcl-xL, cleaved caspase-3, phosphorylated-JNK (p-JNK), and phosphorylated-p38 (p-p38) was analyzed in line with histopathology and TUNEL analysis in rat testis. There were no histopathological differences between sham and RFR groups in the acute and chronic groups. PCNA expression was not altered between groups in both periods. However, alterations for cleaved caspase-3 and Bcl-xL were observed depending on the exposure period. TUNEL analysis showed a significant increase in the RFR group in the acute period, whereas no difference in the chronic groups for the apoptotic index was reported. In addition, both p-p38 and p-JNK protein expressions increased significantly in RFR groups in both periods. Our study indicated that 900 MHz RFR might result in alterations during acute period exposure for several parameters, but this can be ameliorated in the chronic period in rat testis. Here, we also report the involvement of the p38/JNK-mediated MAPK pathway after exposure to 900 MHz RFR. Hence, this information might shed light in future studies toward detailed molecular mechanisms in male reproduction and infertility.
Collapse
Affiliation(s)
- Hakan Er
- Department of Biophysics, Akdeniz University School of Medicine, Akdeniz University, Antalya, Turkey.,Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Bikem Soygur
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
10
|
Zhang J, Zhang L, Shi H, Feng S, Feng T, Chen J, Zhang X, Han Y, Liu J, Wang Y, Ji Z, Jing Z, Liu D, Shi D, Feng L. Swine acute diarrhea syndrome coronavirus replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. Virology 2022; 565:96-105. [PMID: 34768113 PMCID: PMC8556614 DOI: 10.1016/j.virol.2021.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered enteric coronavirus. We have previously shown that the caspase-dependent FASL-mediated and mitochondrion-mediated apoptotic pathways play a central role in SADS-CoV-induced apoptosis, which facilitates viral replication. However, the roles of intracellular signaling pathways in SADS-CoV-mediated cell apoptosis and the relative advantages that such pathways confer on the host or virus remain largely unknown. In this study, we show that SADS-CoV induces the activation of ERK during infection, irrespective of viral biosynthesis. The knockdown or chemical inhibition of ERK1/2 significantly suppressed viral protein expression and viral progeny production. The inhibition of ERK activation also circumvented SADS-CoV-induced apoptosis. Taken together, these data suggest that ERK activation is important for SADS-CoV replication, and contributes to the virus-mediated changes in host cells. Our findings demonstrate the takeover of a particular host signaling mechanism by SADS-CoV and identify a potential approach to inhibiting viral spread.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Da Shi
- Corresponding author. Harbin Veterinary Research Institute, CAAS, 678 Haping Road Xiangfang District, Harbin, 150069, China
| | - Li Feng
- Corresponding author. Harbin Veterinary Research Institute, CAAS, 678 Haping Road Xiangfang District, Harbin, 150069, China
| |
Collapse
|
11
|
MAPK15 Controls Hedgehog Signaling in Medulloblastoma Cells by Regulating Primary Ciliogenesis. Cancers (Basel) 2021; 13:cancers13194903. [PMID: 34638386 PMCID: PMC8508543 DOI: 10.3390/cancers13194903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
In medulloblastomas, genetic alterations resulting in over-activation and/or deregulation of proteins involved in Hedgehog (HH) signaling lead to cellular transformation, which can be prevented by inhibition of primary ciliogenesis. Here, we investigated the role of MAPK15 in HH signaling and, in turn, in HH-mediated cellular transformation. We first demonstrated, in NIH3T3 mouse fibroblasts, the ability of this kinase of controlling primary ciliogenesis and canonical HH signaling. Next, we took advantage of transformed human medulloblastoma cells belonging to the SHH-driven subtype, i.e., DAOY and ONS-76 cells, to ascertain the role for MAPK15 in HH-mediated cellular transformation. Specifically, medullo-spheres derived from these cells, an established in vitro model for evaluating progression and malignancy of putative tumor-initiating medulloblastoma cells, were used to demonstrate that MAPK15 regulates self-renewal of these cancer stem cell-like cells. Interestingly, by using the HH-related oncogenes SMO-M2 and GLI2-DN, we provided evidences that disruption of MAPK15 signaling inhibits oncogenic HH overactivation in a specific cilia-dependent fashion. Ultimately, we show that pharmacological inhibition of MAPK15 prevents cell proliferation of SHH-driven medulloblastoma cells, overall suggesting that oncogenic HH signaling can be counteracted by targeting the ciliary gene MAPK15, which could therefore be considered a promising target for innovative "smart" therapies in medulloblastomas.
Collapse
|
12
|
Hasygar K, Deniz O, Liu Y, Gullmets J, Hynynen R, Ruhanen H, Kokki K, Käkelä R, Hietakangas V. Coordinated control of adiposity and growth by anti-anabolic kinase ERK7. EMBO Rep 2021; 22:e49602. [PMID: 33369866 PMCID: PMC7857433 DOI: 10.15252/embr.201949602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
Energy storage and growth are coordinated in response to nutrient status of animals. How nutrient-regulated signaling pathways control these processes in vivo remains insufficiently understood. Here, we establish an atypical MAP kinase, ERK7, as an inhibitor of adiposity and growth in Drosophila. ERK7 mutant larvae display elevated triacylglycerol (TAG) stores and accelerated growth rate, while overexpressed ERK7 is sufficient to inhibit lipid storage and growth. ERK7 expression is elevated upon fasting and ERK7 mutant larvae display impaired survival during nutrient deprivation. ERK7 acts in the fat body, the insect counterpart of liver and adipose tissue, where it controls the subcellular localization of chromatin-binding protein PWP1, a growth-promoting downstream effector of mTOR. PWP1 maintains the expression of sugarbabe, encoding a lipogenic Gli-similar family transcription factor. Both PWP1 and Sugarbabe are necessary for the increased growth and adiposity phenotypes of ERK7 loss-of-function animals. In conclusion, ERK7 is an anti-anabolic kinase that inhibits lipid storage and growth while promoting survival on fasting conditions.
Collapse
Affiliation(s)
- Kiran Hasygar
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Onur Deniz
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Ying Liu
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Josef Gullmets
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Riikka Hynynen
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki University Lipidomics Unit (HiLIPID)Helsinki Institute for Life Science (HiLIFE) and Biocenter FinlandHelsinkiFinland
| | - Krista Kokki
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki University Lipidomics Unit (HiLIPID)Helsinki Institute for Life Science (HiLIFE) and Biocenter FinlandHelsinkiFinland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
13
|
Raj S, Sasidharan S, Dubey VK, Saudagar P. Identification of lead molecules against potential drug target protein MAPK4 from L. donovani: An in-silico approach using docking, molecular dynamics and binding free energy calculation. PLoS One 2019; 14:e0221331. [PMID: 31425543 PMCID: PMC6699710 DOI: 10.1371/journal.pone.0221331] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis caused by obligate intracellular parasites of genus Leishmania is one of the most neglected tropical diseases threatening 350 million people worldwide. Protein kinases have drawn much attention as potential drug targets due to their important role in various cellular processes. In Leishmania sp. mitogen-activated protein kinase 4 is essential for the parasite survival because of its involvement in various regulatory, apoptotic and developmental pathways. The current study reveals the identification of natural inhibitors of L. donovani mitogen-activated protein kinase-4 (LdMPK4). We have performed in silico docking of 110 natural inhibitors of Leishmania parasite that have been reported earlier and identified two compounds Genistein (GEN) and Chrysin (CHY). The homology model of LdMPK4 was developed, followed by binding affinity studies, and pharmacokinetic properties of the inhibitors were calculated by maintaining ATP as a standard molecule. The modelled structure was deposited in the protein model database with PMDB ID: PM0080988. Molecular dynamic simulation of the enzyme-inhibitor complex along with the free energy calculations over 50 ns showed that GEN and CHY are more stable in their binding. These two molecules, GEN and CHY, can be considered as lead molecules for targeting LdMPK4 enzyme and could emerge as potential LdMPK4 inhibitors.
Collapse
Affiliation(s)
- Shweta Raj
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, (T.S.), India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, (T.S.), India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology-Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, (T.S.), India
| |
Collapse
|
14
|
Sang D, Pinglay S, Wiewiora RP, Selvan ME, Lou HJ, Chodera JD, Turk BE, Gümüş ZH, Holt LJ. Ancestral reconstruction reveals mechanisms of ERK regulatory evolution. eLife 2019; 8:38805. [PMID: 31407663 PMCID: PMC6692128 DOI: 10.7554/elife.38805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/03/2019] [Indexed: 01/21/2023] Open
Abstract
Protein kinases are crucial to coordinate cellular decisions and therefore their activities are strictly regulated. Previously we used ancestral reconstruction to determine how CMGC group kinase specificity evolved (Howard et al., 2014). In the present study, we reconstructed ancestral kinases to study the evolution of regulation, from the inferred ancestor of CDKs and MAPKs, to modern ERKs. Kinases switched from high to low autophosphorylation activity at the transition to the inferred ancestor of ERKs 1 and 2. Two synergistic amino acid changes were sufficient to induce this change: shortening of the β3-αC loop and mutation of the gatekeeper residue. Restoring these two mutations to their inferred ancestral state led to a loss of dependence of modern ERKs 1 and 2 on the upstream activating kinase MEK in human cells. Our results shed light on the evolutionary mechanisms that led to the tight regulation of a kinase that is central in development and disease.
Collapse
Affiliation(s)
- Dajun Sang
- Institute for Systems Genetics, New York University Langone Medical Center, New York, United States
| | - Sudarshan Pinglay
- Institute for Systems Genetics, New York University Langone Medical Center, New York, United States
| | - Rafal P Wiewiora
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States.,Memorial Sloan Kettering Cancer Center, New York, United States
| | - Myvizhi E Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - John D Chodera
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, United States
| |
Collapse
|
15
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
16
|
Lau ATY, Xu YM. Regulation of human mitogen-activated protein kinase 15 (extracellular signal-regulated kinase 7/8) and its functions: A recent update. J Cell Physiol 2018; 234:75-88. [PMID: 30070699 DOI: 10.1002/jcp.27053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023]
Abstract
Mitogen-activated protein kinase 15 (MAPK15), originally also known as extracellular signal-regulated kinase 7/8, is the most recently identified atypical MAPK and the least studied so far. Examinations of the role of MAPK15 in various cell lines and model systems indicate that MAPK15 participates in a variety of cellular activities such as promoting cell proliferation, cell transformation, and apoptosis; stimulating autophagy; regulating cell division, ciliogenesis, and protein secretion; and maintaining genome stability. As multiple roles of MAPK15 were observed among these studies, therefore, it remains unclear whether MAPK15 acts as a proto-oncogene or tumor suppressor. Here, the recent literature on human MAPK15 and the resulting functions will be discussed.
Collapse
Affiliation(s)
- Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
17
|
The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism. J Neurosci 2017; 37:9288-9304. [PMID: 28842414 DOI: 10.1523/jneurosci.1582-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 12/26/2022] Open
Abstract
The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function.SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders.
Collapse
|
18
|
Wu DD, Lau ATY, Yu FY, Cai NL, Dai LJ, Ok Kim M, Jin DY, Xu YM. Extracellular signal-regulated kinase 8-mediated NF-κB activation increases sensitivity of human lung cancer cells to arsenic trioxide. Oncotarget 2017; 8:49144-49155. [PMID: 28467781 PMCID: PMC5564756 DOI: 10.18632/oncotarget.17100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/03/2017] [Indexed: 02/05/2023] Open
Abstract
Extracellular signal-regulated kinase 8 (ERK8), also known as mitogen-activated protein kinase 15 (MAPK15), is the most recently identified protein kinase of the ERK family members and yet the least has been studied so far. Here, we report that ERK8 is highly expressed in several human lung cancer cell lines and is positively correlated with their sensitivities to the anti-cancer drug arsenic trioxide (As2O3). As2O3 at physiologically relevant concentrations (5-20 μM) potently stimulates the phosphorylation of ERK8 at Thr175 and Tyr177 within the TEY motif in the kinase domain, leading to its activation. Interestingly, activated ERK8 interacts and directly phosphorylates IkappaBalpha (IκBα) at Ser32 and Ser36, resulting in IκBα degradation. This in turn promotes nuclear factor-kappaB (NF-κB) p65 nuclear translocation and chromatin-binding, as well as the subsequent induction and activation of proteins involved in apoptosis. We also show that stable short-hairpin RNA-specific knockdown of endogenous ERK8 or inhibition of NF-κB activity by NF-κB inhibitor in high ERK8 expressing lung cancer H1299 cells blunted the As2O3-induced NF-κB activation and cytotoxicity towards these cells, indicating the critical role of ERK8 and NF-κB in mediating the As2O3 effects. Taken together, our findings suggest for the first time a regulatory paradigm of NF-κB activation by ERK8 upon As2O3 treatment in human lung cancer cells; and implicate a potential therapeutic advantage of As2O3 that might gain more selective killing of cancer cells with high ERK8 expression.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Fei-Yuan Yu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Na-Li Cai
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Li-Juan Dai
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Myoung Ok Kim
- Department of Animal Science, Kyungpook National University, Republic of Korea
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| |
Collapse
|
19
|
Colecchia D, Rossi M, Sasdelli F, Sanzone S, Strambi A, Chiariello M. MAPK15 mediates BCR-ABL1-induced autophagy and regulates oncogene-dependent cell proliferation and tumor formation. Autophagy 2016; 11:1790-802. [PMID: 26291129 PMCID: PMC4824572 DOI: 10.1080/15548627.2015.1084454] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A reciprocal translocation of the ABL1 gene to the BCR gene results in the expression of the oncogenic BCR-ABL1 fusion protein, which characterizes human chronic myeloid leukemia (CML), a myeloproliferative disorder considered invariably fatal until the introduction of the imatinib family of tyrosine kinase inhibitors (TKI). Nonetheless, insensitivity of CML stem cells to TKI treatment and intrinsic or acquired resistance are still frequent causes for disease persistence and blastic phase progression experienced in patients after initial successful therapies. Here, we investigated a possible role for the MAPK15/ERK8 kinase in BCR-ABL1-dependent autophagy, a key process for oncogene-induced leukemogenesis. In this context, we showed the ability of MAPK15 to physically recruit the oncogene to autophagic vesicles, confirming our hypothesis of a biologically relevant role for this MAP kinase in signal transduction by this oncogene. Indeed, by modeling BCR-ABL1 signaling in HeLa cells and taking advantage of a physiologically relevant model for human CML, i.e. K562 cells, we demonstrated that BCR-ABL1-induced autophagy is mediated by MAPK15 through its ability to interact with LC3-family proteins, in a LIR-dependent manner. Interestingly, we were also able to interfere with BCR-ABL1-induced autophagy by a pharmacological approach aimed at inhibiting MAPK15, opening the possibility of acting on this kinase to affect autophagy and diseases depending on this cellular function. Indeed, to support the feasibility of this approach, we demonstrated that depletion of endogenous MAPK15 expression inhibited BCR-ABL1-dependent cell proliferation, in vitro, and tumor formation, in vivo, therefore providing a novel "druggable" link between BCR-ABL1 and human CML.
Collapse
Affiliation(s)
- David Colecchia
- a Istituto Toscano Tumori-Core Research Laboratory; Signal Transduction Unit, AOU Senese ; Siena Italy.,b Istituto di Fisiologia Clinica; Sede di Siena, CNR ; Siena , Italy
| | - Matteo Rossi
- a Istituto Toscano Tumori-Core Research Laboratory; Signal Transduction Unit, AOU Senese ; Siena Italy
| | - Federica Sasdelli
- a Istituto Toscano Tumori-Core Research Laboratory; Signal Transduction Unit, AOU Senese ; Siena Italy.,b Istituto di Fisiologia Clinica; Sede di Siena, CNR ; Siena , Italy
| | - Sveva Sanzone
- a Istituto Toscano Tumori-Core Research Laboratory; Signal Transduction Unit, AOU Senese ; Siena Italy
| | - Angela Strambi
- a Istituto Toscano Tumori-Core Research Laboratory; Signal Transduction Unit, AOU Senese ; Siena Italy
| | - Mario Chiariello
- a Istituto Toscano Tumori-Core Research Laboratory; Signal Transduction Unit, AOU Senese ; Siena Italy.,b Istituto di Fisiologia Clinica; Sede di Siena, CNR ; Siena , Italy
| |
Collapse
|
20
|
Phosphorylated and Nonphosphorylated PfMAP2 Are Localized in the Nucleus, Dependent on the Stage of Plasmodium falciparum Asexual Maturation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1645097. [PMID: 27525262 PMCID: PMC4976173 DOI: 10.1155/2016/1645097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/16/2016] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum mitogen-activated protein (MAP) kinases, a family of enzymes central to signal transduction processes including inflammatory responses, are a promising target for antimalarial drug development. Our study shows for the first time that the P. falciparum specific MAP kinase 2 (PfMAP2) is colocalized in the nucleus of all of the asexual erythrocytic stages of P. falciparum and is particularly elevated in its phosphorylated form. It was also discovered that PfMAP2 is expressed in its highest quantity during the early trophozoite (ring form) stage and significantly reduced in the mature trophozoite and schizont stages. Although the phosphorylated form of the kinase is always more prevalent, its ratio relative to the nonphosphorylated form remained constant irrespective of the parasites' developmental stage. We have also shown that the TSH motif specifically renders PfMAP2 genetically divergent from the other plasmodial MAP kinase activation sites using Neighbour Joining analysis. Furthermore, TSH motif-specific designed antibody is crucial in determining the location of the expression of the PfMAP2 protein. However, by using immunoelectron microscopy, PPfMAP2 were detected ubiquitously in the parasitized erythrocytes. In summary, PfMAP2 may play a far more important role than previously thought and is a worthy candidate for research as an antimalarial.
Collapse
|
21
|
Activation of AtMPK9 through autophosphorylation that makes it independent of the canonical MAPK cascades. Biochem J 2015; 467:167-75. [DOI: 10.1042/bj20141176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are part of conserved signal transduction modules in eukaryotes that are typically organized into three-tiered kinase cascades. The activation of MAPKs in these pathways is fully dependent on the bisphosphorylation of the TXY motif in the T-loop by the pertinent dual-specificity MAPK kinases (MAPKKs). The Arabidopsis mitogen-activated protein kinase 9 (AtMPK9) is a member of an atypical class of MAPKs. Representatives of this MAPK family have a TDY phosphoacceptor site, a long C-terminal extension and lack the common MAPKK-binding docking motif. In the present paper, we describe multiple in vitro and in vivo data showing that AtMPK9 is activated independently of any upstream MAPKKs but rather is activated through autophosphorylation. We mapped the autophosphorylation sites by MS to the TDY motif and to the C-terminal regulatory extension. We mutated the phosphoacceptor sites on the TDY, which confirmed the requirement for bisphorylation at this site for full kinase activity. Next, we demonstrated that the kinase-inactive mutant form of AtMPK9 is not trans-phosphorylated on the TDY site when mixed with an active AtMPK9, implying that the mechanism of the autocatalytic phosphorylation is intramolecular. Furthermore, we show that in vivo AtMPK9 is activated by salt and is regulated by okadaic acid-sensitive phosphatases. We conclude that the plant AtMPK9 shows similarities to the mammalian atypical MAPKs, such as extracellular-signal-regulated kinase (ERK) 7/8, in terms of an MAPKK-independent activation mechanism.
Collapse
|
22
|
Jenardhanan P, Mathur PP. Kinases as targets for chemical modulators: Structural aspects and their role in spermatogenesis. SPERMATOGENESIS 2015; 4:e979113. [PMID: 26413395 DOI: 10.4161/21565562.2014.979113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 01/18/2023]
Abstract
Protein phosphorylation and de-phosphorylation events are crucial in deciding the fate of cells. They regulate cellular growth, differentiation and cell death, and kinases are the key players of these events. The members of ser/thr kinases and tyrosine kinases form the majority of protein kinase family, exerting their regulatory mechanism in almost all cells. In testis, they impact signal transduction events, regulate all stages of sperm development from mitosis through fertilization. Understanding the function of these kinases at the structural level and studying their interactions with inhibitors can help in understanding the machinery of spermatogenesis. In view of this, we have reviewed some of the prominent kinases that are known to play a role in spermatogenesis. A better understanding of the impacts of kinase inhibition on spermatogenesis should aid in the interpretation of lesions and hopefully further the development of more efficient and potent drug candidates.
Collapse
Affiliation(s)
- Pranitha Jenardhanan
- Centre for Bioinformatics; School of Life Sciences; Pondicherry University ; Puducherry, India
| | - Premendu P Mathur
- Centre for Bioinformatics; School of Life Sciences; Pondicherry University ; Puducherry, India ; Department of Biochemistry & Molecular Biology; School of Life Sciences; Pondicherry University ; Puducherry, India ; KIIT University ; Bhubaneshwar, Odisha, India
| |
Collapse
|
23
|
p53- and ERK7-dependent ribosome surveillance response regulates Drosophila insulin-like peptide secretion. PLoS Genet 2014; 10:e1004764. [PMID: 25393288 PMCID: PMC4230838 DOI: 10.1371/journal.pgen.1004764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs) regulate larval growth by secreting insulin-like peptides (dILPs) in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15), which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions. Ribosome biogenesis is a major consumer of cellular energy and a rate-limiting process during cell growth. The ribosome biogenesis pathway is tightly connected with signaling pathways that regulate tissue growth. For example, nutrient-regulated signaling cues adjust the rate of ribosome biogenesis. On the other hand, the process of ribosome biogenesis is closely monitored by so-called surveillance mechanisms. The best-known ribosome surveillance factor is the transcription factor and tumor suppressor p53. In proliferating cells, activation of p53 upon disturbed ribosome biogenesis leads to cell cycle arrest and inhibition of proliferation. Here we show that ribosome surveillance not only regulates growth locally in proliferating cells, but is also coupled to hormonal growth control through regulation of insulin like peptide (dILPs) secretion. We observed that inhibition of ribosome biogenesis in the Drosophila insulin-producing cells generates a strong cell autonomous signal to inhibit dILP secretion. We identify two downstream effectors of this ribosome surveillance response by showing that p53 as well as an atypical MAP kinase ERK7 are mediators of the inhibition of dILP secretion. We also provide evidence that this ribosome surveillance mechanism contributes to nutrient-dependent regulation of dILP secretion.
Collapse
|
24
|
Yıldız MT, Arslanyolu M. In silico identification and characterization of the MAPK family members of unicellular model eukaryote Tetrahymena thermophila. Eur J Protistol 2014; 50:538-50. [DOI: 10.1016/j.ejop.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
|
25
|
Cayla M, Rachidi N, Leclercq O, Schmidt-Arras D, Rosenqvist H, Wiese M, Späth GF. Transgenic analysis of the Leishmania MAP kinase MPK10 reveals an auto-inhibitory mechanism crucial for stage-regulated activity and parasite viability. PLoS Pathog 2014; 10:e1004347. [PMID: 25232945 PMCID: PMC4169501 DOI: 10.1371/journal.ppat.1004347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 07/17/2014] [Indexed: 01/15/2023] Open
Abstract
Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even though Leishmania mitogen-activated protein kinases (MAPKs) have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10). Using a transgenic approach, we demonstrate that MPK10 is stage-specifically regulated, as its kinase activity increases during the promastigote to amastigote conversion. However, unlike canonical MAPKs that are activated by dual phosphorylation of the regulatory TxY motif in the activation loop, MPK10 activation is independent from the phosphorylation of the tyrosine residue, which is largely constitutive. Removal of the last 46 amino acids resulted in significantly enhanced MPK10 activity both for the recombinant and transgenic protein, revealing that MPK10 is regulated by an auto-inhibitory mechanism. Over-expression of this hyperactive mutant in transgenic parasites led to a dominant negative effect causing massive cell death during amastigote differentiation, demonstrating the essential nature of MPK10 auto-inhibition for parasite viability. Moreover, phosphoproteomics analyses identified a novel regulatory phospho-serine residue in the C-terminal auto-inhibitory domain at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10 as a potential signal sensor of the mammalian host environment, whose intrinsic pre-activated conformation is regulated by auto-inhibition. Leishmaniasis is an important human disease caused by Leishmania parasites. A crucial aspect of Leishmania infectivity is its capacity to sense different environments and adapt for survival inside insect vector and vertebrate host by stage differentiation. This process is triggered by environmental changes encountered in these organisms, including temperature and pH shifts, which usually are sensed and transduced by signaling cascades including protein kinases and their substrates. In this study, we analyzed the regulation of the Leishmania mitogen-activated protein kinase MPK10 using protein purified from transgenic parasites and combining site-directed mutagenesis and activity tests. We demonstrate that this kinase is activated during parasite differentiation and regulated by an atypical mechanism involving auto-inhibition, which is essential for parasite viability.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Olivier Leclercq
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Dirk Schmidt-Arras
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Gerald F. Späth
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- * E-mail:
| |
Collapse
|
26
|
Bavaria MN, Jin S, Ray RM, Johnson LR. The mechanism by which MEK/ERK regulates JNK and p38 activity in polyamine depleted IEC-6 cells during apoptosis. Apoptosis 2014; 19:467-79. [PMID: 24253595 DOI: 10.1007/s10495-013-0944-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polyamine-depletion inhibited apoptosis by activating ERK1/2, while, preventing JNK1/2 activation. MKP-1 knockdown by SiRNA increased ERK1/2, JNK1/2, and p38 phosphorylation and apoptosis. Therefore, we predicted that polyamines might regulate MKP1 via MEK/ERK and thereby apoptosis. We examined the role of MEK/ERK in the regulation of MKP1 and JNK, and p38 activities and apoptosis. Inhibition of MKP-1 activity with a pharmacological inhibitor, sanguinarine (SA), increased JNK1/2, p38, and ERK1/2 activities without causing apoptosis. However, pre-activation of these kinases by SA significantly increased camptothecin (CPT)-induced apoptosis suggesting different roles for MAPKs during survival and apoptosis. Inhibition of MEK1 activity prevented the expression of MKP-1 protein and augmented CPT-induced apoptosis, which correlated with increased activities of JNK1/2, caspases, and DNA fragmentation. Polyamine depleted cells had higher levels of MKP-1 protein and decreased JNK1/2 activity and apoptosis. Inhibition of MEK1 prevented MKP-1 expression and increased JNK1/2 and apoptosis. Phospho-JNK1/2, phospho-ERK2, MKP-1, and the catalytic subunit of PP2Ac formed a complex in response to TNF/CPT. Inactivation of PP2Ac had no effect on the association of MKP-1 and JNK1. However, inhibition of MKP-1 activity decreased the formation of the MKP-1, PP2Ac and JNK complex. Following inhibition by SA, MKP-1 localized in the cytoplasm, while basal and CPT-induced MKP-1 remained in the nuclear fraction. These results suggest that nuclear MKP-1 translocates to the cytoplasm, binds phosphorylated JNK and p38 resulting in dephosphorylation and decreased activity. Thus, MEK/ERK activity controls the levels of MKP-1 and, thereby, regulates JNK activity in polyamine-depleted cells.
Collapse
Affiliation(s)
- Mitul N Bavaria
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN, 38163, USA
| | | | | | | |
Collapse
|
27
|
Identification of obscure yet conserved actin-associated proteins in Giardia lamblia. EUKARYOTIC CELL 2014; 13:776-84. [PMID: 24728194 DOI: 10.1128/ec.00041-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectroscopy (multidimensional protein identification technology [MudPIT]) and have identified >80 putative actin-binding proteins. Several of these have homology to conserved proteins known to complex with actin for functions in the nucleus and flagella. We validated localization and interaction for seven of these proteins, including 14-3-3, a known cytoskeletal regulator with a controversial relationship to actin. Our results indicate that although Giardia lacks canonical actin-binding proteins, there is a conserved set of actin-interacting proteins that are evolutionarily indispensable and perhaps represent some of the earliest functions of the actin cytoskeleton.
Collapse
|
28
|
Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 2013; 18:1165-207. [PMID: 22607099 PMCID: PMC3579385 DOI: 10.1089/ars.2011.4322] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes.
Collapse
Affiliation(s)
- Samuel Lee
- The Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
29
|
Wierk JK, Langbehn A, Kamper M, Richter S, Burda PC, Heussler VT, Deschermeier C. Plasmodium berghei MAPK1 displays differential and dynamic subcellular localizations during liver stage development. PLoS One 2013; 8:e59755. [PMID: 23544094 PMCID: PMC3609774 DOI: 10.1371/journal.pone.0059755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 02/18/2013] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite's nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization.
Collapse
Affiliation(s)
- Jannika Katharina Wierk
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Annette Langbehn
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Maria Kamper
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefanie Richter
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Christina Deschermeier
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
30
|
Zassadowski F, Rochette-Egly C, Chomienne C, Cassinat B. Regulation of the transcriptional activity of nuclear receptors by the MEK/ERK1/2 pathway. Cell Signal 2012; 24:2369-77. [PMID: 22906493 DOI: 10.1016/j.cellsig.2012.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023]
Abstract
Cells undergo continuous and simultaneous external influences regulating their behavior. As an example, during differentiation, they go through different stages of maturation and gene expression is regulated by several simultaneous signaling pathways. We often tend at separating the nuclear pathways from the signaling ones initiated at membrane receptors. However, it is essential to keep in mind that all these pathways are interconnected to achieve a fine regulation of cell functions. The regulation of transcription by nuclear receptors has been thoroughly studied, but it now appears that a critical level of this regulation involves the action of several kinases that target the nuclear receptors themselves as well as their partners. The purpose of this review is to highlight the importance of one family of the mitogen-activated protein kinase (MAPK) superfamily, the MEK/ERK1/2 pathway, in the transcriptional activity of nuclear receptors.
Collapse
|
31
|
Wortzel I, Seger R. The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer 2011; 2:195-209. [PMID: 21779493 DOI: 10.1177/1947601911407328] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is a central signaling pathway that regulates a wide variety of stimulated cellular processes, including mainly proliferation, differentiation, and survival, but apoptosis and stress response as well. The ability of this linear cascade to induce so many distinct and even opposing effects after various stimulations raises the question as to how the signaling specificity of the cascade is regulated. Over the past years, several specificity-mediating mechanisms have been elucidated, including temporal regulation, scaffolding interactions, crosstalks with other signaling components, substrate competition, and multiple components in each tier of the cascade. In addition, spatial regulation of various components of the cascade is probably one of the main ways by which signals can be directed to some downstream targets and not to others. In this review, we describe first the components of the ERK1/2 cascade and their mode of regulation by kinases, phosphatases, and scaffold proteins. In the second part, we focus on the role of MEK1/2 and ERK1/2 compartmentalization in the nucleus, mitochondria, endosomes, plasma membrane, cytoskeleton, and Golgi apparatus. We explain that this spatial distribution may direct ERK1/2 signals to regulate the organelles' activities. However, it can also direct the activity of the cascade's components to the outer surface of the organelles in order to bring them to close proximity to specific cytoplasmic targets. We conclude that the dynamic localization of the ERK1/2 cascade components is an important regulatory mechanism in determining the signaling specificity of the cascade, and its understanding should shed a new light on the understanding of many stimulus-dependent processes.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
32
|
Li M, Liu J, Zhang C. Evolutionary history of the vertebrate mitogen activated protein kinases family. PLoS One 2011; 6:e26999. [PMID: 22046431 PMCID: PMC3202601 DOI: 10.1371/journal.pone.0026999] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
Background The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear. Methodology/Principal Findings The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes. Conclusions/Significance These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.
Collapse
Affiliation(s)
- Meng Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chiyu Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
33
|
Huang H, Ma YF, Bao Y, Lee H, Lisanti MP, Tanowitz HB, Weiss LM. Molecular cloning and characterization of mitogen-activated protein kinase 2 in Toxoplasma gondii. Cell Cycle 2011; 10:3519-26. [PMID: 22030559 DOI: 10.4161/cc.10.20.17791] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are major signal transduction systems by which eukaryotic cells convert environmental cues to intracellular events, such as cell proliferation and differentiation. Toxoplasma gondii is an obligate intracellular protozoan that is both a human and animal pathogen. This Apicomplexan causes significant morbidity and mortality in immune-competent and immune-compromised hosts. In humans, the most common manifestations of T. gondii infections are chorioretinitis in congenital infection and encephalitis in immune-compromised patients, such as patients with advanced AIDS. We have identified a T. gondii homolog of the MAPK family that we have called TgMAPK2. Sequence analyses demonstrated that TgMAPK2 has homology with lower eukaryotic ERK2 but has significant differences from mammalian ERK2. TgMAPK2 has an open reading frame of 2,037 bp, 678 amino acids, and its molecular weight is 73.1 kDa. It contains the typical 12 subdomains of a MAPK and has a TDY motif in the dual phosphorylation and activation subdomains. This suggests that TgMAPK2 may play an important role in stress response. recombinant TgMAPK2 was catalytically active and was not inhibited by a human ERK2 inhibitor, FR180204. A partial TgMAPK2 lacking the ATP-binding motifs GxGxxGxV was successfully regulated by a ligand-controlled destabilization domain (ddFKBP) expression vector system in T. gondii. Since TgMAPK2 is significantly different from its mammalian counterpart, it may be useful as a drug target. This work establishes a foundation for further study for this unique kinase.
Collapse
Affiliation(s)
- Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Zacharogianni M, Kondylis V, Tang Y, Farhan H, Xanthakis D, Fuchs F, Boutros M, Rabouille C. ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association. EMBO J 2011; 30:3684-700. [PMID: 21847093 DOI: 10.1038/emboj.2011.253] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 07/07/2011] [Indexed: 01/08/2023] Open
Abstract
RNAi screening for kinases regulating the functional organization of the early secretory pathway in Drosophila S2 cells has identified the atypical Mitotic-Associated Protein Kinase (MAPK) Extracellularly regulated kinase 7 (ERK7) as a new modulator. We found that ERK7 negatively regulates secretion in response to serum and amino-acid starvation, in both Drosophila and human cells. Under these conditions, ERK7 turnover through the proteasome is inhibited, and the resulting higher levels of this kinase lead to a modification in a site within the C-terminus of Sec16, a key ER exit site component. This post-translational modification elicits the cytoplasmic dispersion of Sec16 and the consequent disassembly of the ER exit sites, which in turn results in protein secretion inhibition. We found that ER exit site disassembly upon starvation is TOR complex 1 (TORC1) independent, showing that under nutrient stress conditions, cell growth is not only inhibited at the transcriptional and translational levels, but also independently at the level of secretion by inhibiting the membrane flow through the early secretory pathway. These results reveal the existence of new signalling circuits participating in the complex regulation of cell growth.
Collapse
Affiliation(s)
- Margarita Zacharogianni
- Department of Cell Biology, Cell microscopy Centre, UMC Utrecht, Heidelberglaan, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75:50-83. [PMID: 21372320 DOI: 10.1128/mmbr.00031-10] [Citation(s) in RCA: 2345] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
|
36
|
Ray RM, Jin S, Bavaria MN, Johnson LR. Regulation of JNK activity in the apoptotic response of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 300:G761-70. [PMID: 21350193 PMCID: PMC3094148 DOI: 10.1152/ajpgi.00405.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have studied apoptosis of gastrointestinal epithelial cells by examining the receptor-mediated and DNA damage-induced pathways using TNF-α and camptothecin (CPT), respectively. TNF-α requires inhibition of antiapoptotic protein synthesis by cycloheximide (CHX). CHX also results in high levels of active JNK, which are necessary for TNF-induced apoptosis. While CPT induces apoptosis, the increase in JNK activity was not proportional to the degree of apoptosis. Thus the mechanism of activation of JNK and its role in apoptosis are unclear. We examined the course of JNK activation in response to a combination of TNF-α and CPT (TNF + CPT), which resulted in a three- to fourfold increase in apoptosis compared with CPT alone, indicating an amplification of apoptotic signaling pathways. TNF + CPT caused apoptosis by activating JNK, p38, and caspases-8, -9, and -3. TNF-α stimulated a transient phosphorylation of JNK1/2 and ERK1/2 at 15 min, which returned to basal by 60 min and remained low for 4 h. CPT increased JNK1/2 activity between 3 and 4 h. TNF + CPT caused a sustained and robust JNK1/2 and ERK1/2 phosphorylation by 2 h, which remained high at 4 h, suggesting involvement of MEKK4/7 and MEK1, respectively. When administered with TNF + CPT, SP-600125, a specific inhibitor of MEKK4/7, completely inhibited JNK1/2 and decreased apoptosis. However, administration of SP-600125 at 1 h after TNF + CPT failed to prevent JNK1/2 phosphorylation, and the protective effect of SP-600125 on apoptosis was abolished. These results indicate that the persistent activation of JNK might be due to inhibition of JNK-specific MAPK phosphatase 1 (MKP1). Small interfering RNA-mediated knockdown of MKP1 enhanced TNF + CPT-induced activity of JNK1/2 and caspases-9 and -3. Taken together, these results suggest that MKP1 activity determines the duration of JNK1/2 and p38 activation and, thereby, apoptosis in response to TNF + CPT.
Collapse
Affiliation(s)
- Ramesh M. Ray
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Shi Jin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mitulkumar N. Bavaria
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Leonard R. Johnson
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
37
|
Cargnello M, Roux PP. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol Mol Biol Rev 2011. [DOI: 78495111110.1128/mmbr.00031-10' target='_blank'>'"<>78495111110.1128/mmbr.00031-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1128/mmbr.00031-10','', '10.1128/mcb.19.2.1301')">Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
78495111110.1128/mmbr.00031-10" />
Abstract
SUMMARYThe mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
Affiliation(s)
- Marie Cargnello
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Parasite mitogen-activated protein kinases as drug discovery targets to treat human protozoan pathogens. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:971968. [PMID: 21637385 PMCID: PMC3100106 DOI: 10.1155/2011/971968] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/12/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022]
Abstract
Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known.
Collapse
|
39
|
De la Mota-Peynado A, Chernoff J, Beeser A. Identification of the atypical MAPK Erk3 as a novel substrate for p21-activated kinase (Pak) activity. J Biol Chem 2011; 286:13603-11. [PMID: 21317288 DOI: 10.1074/jbc.m110.181743] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The class I p21-activated kinases (Pak1-3) regulate many essential biological processes, including cytoskeletal rearrangement, cell cycle progression, apoptosis, and cellular transformation. Although many Pak substrates, including elements of MAPK signaling cascades, have been identified, it is likely that additional substrates remain to be discovered. Identification of such substrates, and determination of the consequences of their phosphorylation, is essential for a better understanding of class I Pak activity. To identify novel class I Pak substrates, we used recombinant Pak2 to screen high density protein microarrays. This approach identified the atypical MAPK Erk3 as a potential Pak2 substrate. Solution-based in vitro kinase assays using recombinant Erk3 confirmed the protein microarray results, and phospho-specific antisera identified serine 189, within the Erk3 activation loop, as a site directly phosphorylated by Pak2 in vitro. Erk3 protein is known to shuttle between the cytoplasm and the nucleus, and we showed that selective inhibition of class I Pak kinase activity in cells promoted increased nuclear accumulation of Erk3. Pak inhibition in cells additionally reduced the extent of Ser(189) phosphorylation and inhibited the formation of Erk3-Prak complexes. Collectively, our results identify the Erk3 protein as a novel class I Pak substrate and further suggest a role for Pak kinase activity in atypical MAPK signaling.
Collapse
Affiliation(s)
- Alina De la Mota-Peynado
- Division of Biology and Molecular, Cellular, and Developmental Biology Program, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
40
|
Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661:3-38. [PMID: 20811974 DOI: 10.1007/978-1-60761-795-2_1] [Citation(s) in RCA: 439] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sequential activation of kinases within the mitogen-activated protein (MAP) kinase (MAPK) cascades is a common, and evolutionary-conserved mechanism of signal transduction. Four MAPK cascades have been identified in the last 20 years and those are usually named according to the MAPK components that are the central building blocks of each of the cascades. These are the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-Terminal kinase (JNK), p38, and ERK5 cascades. Each of these cascades consists of a core module of three tiers of protein kinases termed MAPK, MAPKK, and MAP3K, and often two additional tiers, the upstream MAP4K and the downstream MAPKAPK, which can complete five tiers of each cascade in certain cell lines or stimulations. The transmission of the signal via each cascade is mediated by sequential phosphorylation and activation of the components in the sequential tiers. These cascades cooperate in transmitting various extracellular signals and thus control a large number of distinct and even opposing cellular processes such as proliferation, differentiation, survival, development, stress response, and apoptosis. One way by which the specificity of each cascade is regulated is through the existence of several distinct components in each tier of the different cascades. About 70 genes, which are each translated to several alternatively spliced isoforms, encode the entire MAPK system, and allow the wide array of cascade's functions. These components, their regulation, as well as their involvement together with other mechanisms in the determination of signaling specificity by the MAPK cascade is described in this review. Mis-regulation of the MAPKs signals usually leads to diseases such as cancer and diabetes; therefore, studying the mechanisms of specificity-determination may lead to better understanding of these signaling-related diseases.
Collapse
Affiliation(s)
- Yonat Keshet
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
41
|
Saravanan P, Venkatesan SK, Mohan CG, Patra S, Dubey VK. Mitogen-activated protein kinase 4 of Leishmania parasite as a therapeutic target. Eur J Med Chem 2010; 45:5662-70. [PMID: 20884088 DOI: 10.1016/j.ejmech.2010.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
Protein kinases are important regulators of many different cellular processes such as transcriptional control, cell cycle progression and differentiation, and have drawn much attention as potential drug targets. Leishmania mexicana mitogen-activated protein kinase 4 (LmxMPK4) is crucial for the survival of the parasite. As the crystal structure of the enzyme is not known, we have used bioinformatics techniques to model LmxMPK4 structure. The current study reveals conservation of all sequence and structural motifs of LmxMPK4. Study shows mitogen-activated protein kinases are highly conserved throughout different Leishmania species and significant divergence is observed towards mammalian mitogen-activated protein kinases. Additionally, using virtual docking methods, we have identified inhibitors for LmxMPK4. The sequence and structure analysis results were helpful in identifying the ligand binding sites and molecular function of the Leishmania specific mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Parameswaran Saravanan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | | | | | | |
Collapse
|
42
|
Erster O, Seger R, Liscovitch M. Ligand interaction scan (LIScan) in the study of ERK8. Biochem Biophys Res Commun 2010; 399:37-41. [PMID: 20638370 DOI: 10.1016/j.bbrc.2010.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/09/2010] [Indexed: 02/02/2023]
Abstract
ERK8 is the most recent addition for the MAPK family, and its mechanism of activation and function are not yet known, mainly due to the lack of any known physiological stimulator. In this report, we describe the preparation of reagents for the use of a novel method, the ligand interaction scan (LIScan), to study the function of this protein kinase. We generated a set of mutants of ERK8, and identified inhibited as well as stimulated forms. By specifically inhibiting or stimulating the mutants of ERK8, we show that the ERK8-induced inhibition of proliferation is altered. Moreover, we used the developed mutants to show for the first time that ERK8 translocates to the nucleus upon activation. The use of methods such as the ligand interaction scan may thus promote the analyses of the functions of uncharacterized proteins such as ERK8, and possibly help in controlling the activity of target proteins in various experimental systems and applications.
Collapse
Affiliation(s)
- Oran Erster
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
43
|
Bao Y, Weiss LM, Ma YF, Lisanti MP, Tanowitz HB, Das BC, Zheng R, Huang H. Molecular cloning and characterization of mitogen-activated protein kinase 2 in Trypanosoma cruzi. Cell Cycle 2010; 9:2888-96. [PMID: 20603604 DOI: 10.4161/cc.9.14.12372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are major signal transduction systems by which eukaryotic cells convert environmental cues to intracellular events such as proliferation and differentiation. We have identified a Trypanosoma cruzi homologue of the MAPK family that we have called TcMAPK2. Sequence analyses demonstrates TcMAPK2 has high homology with lower eukaryotic ERK2 but has significant differences from mammalian ERK2. Enzymatic assays of both recombinant TcMAPK2 and native protein obtained by immunoprecipitation using anti-TcMAPK2 demonstrated that both preparations of TcMAPK2 were catalytically active. Immunofluorescence analysis of the subcellular localization of TcMAPK2 determined it is mainly cytoplasmic in epimastigotes, along the flagella in trypomastigotes and on the plasma membrane of intracellular amastigotes. Phosphorylated TcMAPK2 was highest in trypomastigotes and lowest in amastigotes. Recombinant TcMAPK2 was able to phosphorylate the recombinant protein of a cAMP specific phosphodiesterase. Overexpression of TcMAPK2 in epimastigotes inhibited growth and development leading to death. TcMAPK2 has an important role in the stress response of the parasite and may be important in regulating proliferation and differentiation.
Collapse
Affiliation(s)
- Yi Bao
- Departments of Pathology and Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Vallesi A, Di Pretoro B, Ballarini P, Apone F, Luporini P. A Novel Protein Kinase from the Ciliate Euplotes raikovi with Close Structural Identity to the Mammalian Intestinal and Male-Germ Cell Kinases: Characterization and Functional Implications in the Autocrine Pheromone Signaling Loop. Protist 2010; 161:250-63. [DOI: 10.1016/j.protis.2009.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/21/2009] [Indexed: 12/01/2022]
|
45
|
González JM, Navarro-Puche A, Casar B, Crespo P, Andrés V. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. ACTA ACUST UNITED AC 2008; 183:653-66. [PMID: 19015316 PMCID: PMC2582892 DOI: 10.1083/jcb.200805049] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sequestration of c-Fos at the nuclear envelope (NE) through interaction with A-type lamins suppresses AP-1–dependent transcription. We show here that c-Fos accumulation within the extraction-resistant nuclear fraction (ERNF) and its interaction with lamin A are reduced and enhanced by gain-of and loss-of ERK1/2 activity, respectively. Moreover, hindering ERK1/2-dependent phosphorylation of c-Fos attenuates its release from the ERNF induced by serum and promotes its interaction with lamin A. Accordingly, serum stimulation rapidly releases preexisting c-Fos from the NE via ERK1/2-dependent phosphorylation, leading to a fast activation of AP-1 before de novo c-Fos synthesis. Moreover, lamin A–null cells exhibit increased AP-1 activity and reduced levels of c-Fos phosphorylation. We also find that active ERK1/2 interacts with lamin A and colocalizes with c-Fos and A-type lamins at the NE. Thus, NE-bound ERK1/2 functions as a molecular switch for rapid mitogen-dependent AP-1 activation through phosphorylation-induced release of preexisting c-Fos from its inhibitory interaction with lamin A/C.
Collapse
Affiliation(s)
- José María González
- Laboratory of Vascular Biology, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas (CSIC), Valencia, Spain
| | | | | | | | | |
Collapse
|
46
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
47
|
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central pathways that participate in the intracellular transmission of extracellular signals. Each of the MAPK signaling cascades seems to consist of three to five tiers of protein kinases that sequentially activate each other by phosphorylation. Since the majority of MAPK cascade components are kinases, the methods used to detect their activation involve determining phosphorylation state and protein kinase activities. The primary method describes the use of immunoblotting with specific anti-phospho antibody to detect activation of MAPK components. Alternative methods described are immunoprecipitation of desired protein kinases followed by phosphorylation of specific substrates and the use of an in-gel kinase assay. These methods have proven useful in the study of the MAPK signaling cascades.
Collapse
Affiliation(s)
- Yoav Shaul
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
48
|
Shaul Y, Seger R. The detection of MAPK signaling. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 14:Unit 14.3. [PMID: 18228462 DOI: 10.1002/0471143030.cb1403s28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central pathways that participate in the intracellular transmission of extracellular signals. Each of the MAPK signaling cascades seems to consist of three to five tiers of protein kinases that sequentially activate each other by phosphorylation. Since the majority of MAPK cascade components are kinases, the methods used to detect their activation involve determining phosphorylation state and protein kinase activities. The Basic Protocol describes the use of immunoblotting with specific anti-phospho antibody to detect activation of MAPK components. Alternative methods described are immunoprecipitation of desired protein kinases followed by phosphorylation of specific substrates and the use of an in-gel kinase assay. These methods have proven useful in the study of the MAPK signaling cascades.
Collapse
Affiliation(s)
- Yoav Shaul
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
49
|
Wiese M. Leishmania MAP kinases – Familiar proteins in an unusual context. Int J Parasitol 2007; 37:1053-62. [PMID: 17548090 DOI: 10.1016/j.ijpara.2007.04.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 04/05/2007] [Accepted: 04/18/2007] [Indexed: 12/01/2022]
Abstract
Mitogen-activated protein kinases are well-known mediators of signal transduction of higher eukaryotes regulating important processes like proliferation, differentiation, stress response and apoptosis. In Leishmania, the typical three-tiered module of MAP kinase signal transduction pathways is present. However, typical activators like cell surface receptors and substrates such as RNA polymerase II transcription factors are missing. Here, I describe the set of 15 putative mitogen-activated protein kinases encoded in the Leishmania genome and discuss their potential function.
Collapse
Affiliation(s)
- Martin Wiese
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany.
| |
Collapse
|
50
|
Coulombe P, Meloche S. Atypical mitogen-activated protein kinases: structure, regulation and functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:1376-87. [PMID: 17161475 DOI: 10.1016/j.bbamcr.2006.11.001] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 11/18/2022]
Abstract
Mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that play a central role in transducing extracellular cues into a variety of intracellular responses ranging from lineage specification to cell division and adaptation. Fourteen MAP kinase genes have been identified in the human genome, which define 7 distinct MAP kinase signaling pathways. MAP kinases can be classified into conventional or atypical enzymes, based on their ability to get phosphorylated and activated by members of the MAP kinase kinase (MAPKK)/MEK family. Conventional MAP kinases comprise ERK1/ERK2, p38s, JNKs, and ERK5, which are all substrates of MAPKKs. Atypical MAP kinases include ERK3/ERK4, NLK and ERK7. Much less is known about the regulation, substrate specificity and physiological functions of atypical MAP kinases.
Collapse
Affiliation(s)
- Phillipe Coulombe
- Institut de Recherche en Immunologie et Cancérologie and Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | | |
Collapse
|